51
|
Cole SPC. Targeting multidrug resistance protein 1 (MRP1, ABCC1): past, present, and future. Annu Rev Pharmacol Toxicol 2013; 54:95-117. [PMID: 24050699 DOI: 10.1146/annurev-pharmtox-011613-135959] [Citation(s) in RCA: 232] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The human ATP-binding cassette transporter multidrug resistance protein 1 (MRP1), encoded by ABCC1, was initially identified because of its ability to confer multidrug resistance in lung cancer cells. It is now established that MRP1 plays a role in protecting certain tissues from xenobiotic insults and that it mediates the cellular efflux of the proinflammatory cysteinyl leukotriene C4 as well as a vast array of other endo- and xenobiotic organic anions. Many of these are glutathione (GSH) or glucuronide conjugates, the products of Phase II drug metabolism. MRP1 also plays a role in the cellular efflux of the reduced and oxidized forms of GSH and thus contributes to the many physiological and pathophysiological processes influenced by these small peptides, including oxidative stress. In this review, the pharmacological and physiological aspects of MRP1 are considered in the context of the current status and future prospects of pharmacological and genetic modulation of MRP1 activity.
Collapse
Affiliation(s)
- Susan P C Cole
- Department of Pathology and Molecular Medicine, and Division of Cancer Biology and Genetics, Queen's University Cancer Research Institute, Kingston, Ontario K7L 3N6, Canada;
| |
Collapse
|
52
|
Functional properties of cell-free expressed human endothelin A and endothelin B receptors in artificial membrane environments. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:2182-92. [DOI: 10.1016/j.bbamem.2013.05.031] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 05/27/2013] [Accepted: 05/29/2013] [Indexed: 01/06/2023]
|
53
|
Karasawa A, Swier LJYM, Stuart MCA, Brouwers J, Helms B, Poolman B. Physicochemical factors controlling the activity and energy coupling of an ionic strength-gated ATP-binding cassette (ABC) transporter. J Biol Chem 2013; 288:29862-71. [PMID: 23979139 DOI: 10.1074/jbc.m113.499327] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cells control their volume through the accumulation of compatible solutes. The bacterial ATP-binding cassette transporter OpuA couples compatible solute uptake to ATP hydrolysis. Here, we study the gating mechanism and energy coupling of OpuA reconstituted in lipid nanodiscs. We show that anionic lipids are essential both for the gating and the energy coupling. The tight coupling between substrate binding on extracellular domains and ATP hydrolysis by cytoplasmic nucleotide-binding domains allows the study of transmembrane signaling in nanodiscs. From the tight coupling between processes at opposite sides of the membrane, we infer that the ATPase activity of OpuA in nanodiscs reflects solute translocation. Intriguingly, the substrate-dependent, ionic strength-gated ATPase activity of OpuA in nanodiscs is at least an order of magnitude higher than in lipid vesicles (i.e. with identical membrane lipid composition, ionic strength, and nucleotide and substrate concentrations). Even with the chemical components the same, the lateral pressure (profile) of the nanodiscs will differ from that of the vesicles. We thus propose that membrane tension limits translocation in vesicular systems. Increased macromolecular crowding does not activate OpuA but acts synergistically with ionic strength, presumably by favoring gating interactions of like-charged surfaces via excluded volume effects.
Collapse
Affiliation(s)
- Akira Karasawa
- From the Departments of Biochemistry and Biophysical Chemistry, Groningen Biomolecular Sciences and Biotechnology Institute, Netherlands Proteomics Centre
| | | | | | | | | | | |
Collapse
|
54
|
Chen K, Huang YH, Chen JL. Understanding and targeting cancer stem cells: therapeutic implications and challenges. Acta Pharmacol Sin 2013; 34:732-40. [PMID: 23685952 PMCID: PMC3674516 DOI: 10.1038/aps.2013.27] [Citation(s) in RCA: 440] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 03/06/2013] [Indexed: 02/07/2023] Open
Abstract
Cancer stem cells (CSCs) have been identified as rare cell populations in many cancers, including leukemia and solid tumors. Accumulating evidence has suggested that CSCs are capable of self-renewal and differentiation into various types of cancer cells. Aberrant regulation of gene expression and some signaling pathways has been observed in CSCs compared to other tumor cells. CSCs are thought to be responsible for cancer initiation, progression, metastasis, recurrence and drug resistance. The CSC hypothesis has recently attracted much attention due to the potential for discovery and development of CSC-related therapies and the identification of key molecules involved in controlling the unique properties of CSC populations. Over the past several years, a tremendous amount of effort has been invested in the development of new drugs, such as nanomedicines, that can take advantage of the "Achilles' heel" of CSCs by targeting cell-surface molecular markers or various signaling pathways. Novel compounds and therapeutic strategies that selectively target CSCs have been identified, some of which have been evaluated in preclinical and clinical studies. In this article, we review new findings related to the investigation of the CSC hypothesis, and discuss the crucial pathways involved in regulating the development of CSC populations and the advances in studies of drug resistance. In addition, we review new CSC-targeted therapeutic strategies aiming to eradicate malignancies.
Collapse
Affiliation(s)
- Ke Chen
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Ying-hui Huang
- China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Ji-long Chen
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
55
|
Surface plasmon resonance spectroscopy for characterisation of membrane protein-ligand interactions and its potential for drug discovery. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1838:43-55. [PMID: 23665295 DOI: 10.1016/j.bbamem.2013.04.028] [Citation(s) in RCA: 257] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 04/25/2013] [Accepted: 04/29/2013] [Indexed: 11/22/2022]
Abstract
Surface plasmon resonance (SPR) spectroscopy is a rapidly developing technique for the study of ligand binding interactions with membrane proteins, which are the major molecular targets for validated drugs and for current and foreseeable drug discovery. SPR is label-free and capable of measuring real-time quantitative binding affinities and kinetics for membrane proteins interacting with ligand molecules using relatively small quantities of materials and has potential to be medium-throughput. The conventional SPR technique requires one binding component to be immobilised on a sensor chip whilst the other binding component in solution is flowed over the sensor surface; a binding interaction is detected using an optical method that measures small changes in refractive index at the sensor surface. This review first describes the basic SPR experiment and the challenges that have to be considered for performing SPR experiments that measure membrane protein-ligand binding interactions, most importantly having the membrane protein in a lipid or detergent environment that retains its native structure and activity. It then describes a wide-range of membrane protein systems for which ligand binding interactions have been characterised using SPR, including the major drug targets G protein-coupled receptors, and how challenges have been overcome for achieving this. Finally it describes some recent advances in SPR-based technology and future potential of the technique to screen ligand binding in the discovery of drugs. This article is part of a Special Issue entitled: Structural and biophysical characterisation of membrane protein-ligand binding.
Collapse
|
56
|
Luthra A, Gregory M, Grinkova YV, Denisov IG, Sligar SG. Nanodiscs in the studies of membrane-bound cytochrome P450 enzymes. Methods Mol Biol 2013; 987:115-27. [PMID: 23475672 DOI: 10.1007/978-1-62703-321-3_10] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cytochromes P450 from eukaryotes and their native redox partners cytochrome P450 reductases both belong to the class of monotopic membrane proteins containing one transmembrane anchor. Incorporation into the lipid bilayer significantly affects their equilibrium and kinetic properties and plays an important role in their interactions. We describe here the detailed protocols developed in our group for the functional self-assembly of mammalian cytochromes P450 and cytochrome P450 reductases into Nanodiscs with controlled lipid composition. The resulting preparations are fully functional, homogeneous in size, composition and oligomerization state of the heme enzyme, and show an improved stability with respect to P420 formation. We provide a brief overview of applications of Nanodisc technology to the biophysical and biochemical mechanistic studies of cytochromes P450 involved in steroidogenesis, and of the most abundant xenobiotic-metabolizing human cytochrome P450 CYP3A4.
Collapse
Affiliation(s)
- A Luthra
- Department of Biochemistry, University of Illinois, Urbana, IL, USA
| | | | | | | | | |
Collapse
|
57
|
Abstract
Nanodiscs are self-assembled discoidal fragments of lipid bilayers 8-16 nm in diameter, stabilized in solution by two amphipathic helical scaffold proteins. As stable and highly soluble membrane mimetics with controlled lipid composition and ability to add affinity tags to the scaffold protein, nanodiscs represent an attractive model system for solubilization, isolation, purification, and biophysical and biochemical studies of membrane proteins. In this chapter we overview various approaches to structural and functional studies of different classes of integral membrane proteins such as ion channels, transporters, GPCR and other receptors, membrane enzymes, and blood coagulation cascade proteins which have been incorporated into nanodiscs. We outline the advantages provided by homogeneity, ability to control oligomerization state of the target protein and lipid composition of the bilayer. Special attention is paid to the opportunities afforded by nanodisc system for the detailed studies of the role of different lipid properties and protein-lipid interactions in the functional behavior of membrane proteins.
Collapse
Affiliation(s)
- Mary A. Schuler
- Department of Biochemistry, University of Illinois, Urbana, IL 61801 USA
- Department of Cell and Developmental Biology, University of Illinois, Urbana, IL 61801 USA
| | - Ilia G. Denisov
- Department of Biochemistry, University of Illinois, Urbana, IL 61801 USA
| | - Stephen G. Sligar
- Department of Biochemistry, University of Illinois, Urbana, IL 61801 USA
- Department of Chemistry, University of Illinois, Urbana, IL 61801 USA
| |
Collapse
|
58
|
Loo TW, Bartlett MC, Detty MR, Clarke DM. The ATPase activity of the P-glycoprotein drug pump is highly activated when the N-terminal and central regions of the nucleotide-binding domains are linked closely together. J Biol Chem 2012; 287:26806-16. [PMID: 22700974 DOI: 10.1074/jbc.m112.376202] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The P-glycoprotein (P-gp, ABCB1) drug pump protects us from toxic compounds and confers multidrug resistance. Each of the homologous halves of P-gp is composed of a transmembrane domain (TMD) with 6 TM segments followed by a nucleotide-binding domain (NBD). The predicted drug- and ATP-binding sites reside at the interface between the TMDs and NBDs, respectively. Crystal structures and EM projection images suggest that the two halves of P-gp are separated by a central cavity that closes upon binding of nucleotide. Binding of drug substrates may induce further structural rearrangements because they stimulate ATPase activity. Here, we used disulfide cross-linking with short (8 Å) or long (22 Å) cross-linkers to identify domain-domain interactions that activate ATPase activity. It was found that cross-linking of cysteines that lie close to the LSGGQ (P517C) and Walker A (I1050C) sites of NBD1 and NBD2, respectively, as well as the cytoplasmic extensions of TM segments 3 (D177C or L175C) and 9 (N820C) with a short cross-linker activated ATPase activity over 10-fold. A pyrylium compound that inhibits ATPase activity blocked cross-linking at these sites. Cross-linking between the NBDs was not inhibited by tariquidar, a drug transport inhibitor that stimulates P-gp ATPase activity but is not transported. Cross-linking between extracellular cysteines (T333C/L975C) predicted to lock P-gp into a conformation that prevents close NBD association inhibited ATPase activity. The results suggest that trapping P-gp in a conformation in which the NBDs are closely associated likely mimics the structural rearrangements caused by binding of drug substrates that stimulate ATPase activity.
Collapse
Affiliation(s)
- Tip W Loo
- Department of Medicine and Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | | | | | | |
Collapse
|
59
|
Mittal A, Böhm S, Grütter MG, Bordignon E, Seeger MA. Asymmetry in the homodimeric ABC transporter MsbA recognized by a DARPin. J Biol Chem 2012; 287:20395-406. [PMID: 22523072 DOI: 10.1074/jbc.m112.359794] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
ABC transporters harness the energy from ATP binding and hydrolysis to translocate substrates across the membrane. Binding of two ATP molecules at the nucleotide binding domains (NBDs) leads to the formation of an outward-facing state. The conformational changes required to reset the transporter to the inward-facing state are initiated by sequential hydrolysis of the bound nucleotides. In a homodimeric ABC exporter such as MsbA responsible for lipid A transport in Escherichia coli, sequential ATP hydrolysis implies the existence of an asymmetric conformation. Here we report the in vitro selection of a designed ankyrin repeat protein (DARPin) specifically binding to detergent-solubilized MsbA. Only one DARPin binds to the homodimeric transporter in the absence as well as in the presence of nucleotides, suggesting that it recognizes asymmetries in MsbA. DARPin binding increases the rate of ATP hydrolysis by a factor of two independent of the substrate-induced ATPase stimulation. Electron paramagnetic resonance (EPR) measurements are found to be in good agreement with the available crystal structures and reveal that DARPin binding does not affect the large nucleotide-driven conformational changes of MsbA. The binding epitope was mapped by cross-linking and EPR to the membrane-spanning part of the transmembrane domain (TMD). Using cross-linked DARPin-MsbA complexes, 8-azido-ATP was found to preferentially photolabel one chain of the homodimer, suggesting that the asymmetries captured by DARPin binding at the TMDs are propagated to the NBDs. This work demonstrates that in vitro selected binders are useful tools to study the mechanism of membrane proteins.
Collapse
Affiliation(s)
- Anshumali Mittal
- Department of Biochemistry, University of Zurich, 8057 Zurich, Switzerland
| | | | | | | | | |
Collapse
|
60
|
Gao M, Yamazaki M, Loe DW, Westlake CJ, Grant CE, Cole SP, Deeley RG. Multidrug resistance protein. Identification of regions required for active transport of leukotriene C4. J Biol Chem 1998; 273:10733-10740. [PMID: 9553138 DOI: 10.1002/9781118705308.ch9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023] Open
Abstract
Multidrug resistance protein (MRP) is a broad specificity, primary active transporter of organic anion conjugates that confers a multidrug resistance phenotype when transfected into drug-sensitive cells. The protein was the first example of a subgroup of the ATP-binding cassette superfamily whose members have three membrane-spanning domains (MSDs) and two nucleotide binding domains. The role(s) of the third MSD of MRP and its related transporters is not known. To begin to address this question, we examined the ability of various MRP fragments, expressed individually and in combination, to transport the MRP substrate, leukotriene C4 (LTC4). We found that elimination of the entire NH2-terminal MSD or just the first putative transmembrane helix, or substitution of the MSD with the comparable region of the functionally and structurally related transporter, the canalicular multispecific organic anion transporter (cMOAT/MRP2), had little effect on protein accumulation in the membrane. However, all three modifications decreased LTC4 transport activity by at least 90%. Transport activity could be reconstituted by co-expression of the NH2-terminal MSD with a fragment corresponding to the remainder of the MRP molecule, but this required both the region encoding the transmembrane helices of the NH2-terminal MSD and the cytoplasmic region linking it to the next MSD. In contrast, a major part of the cytoplasmic region linking the NH2-proximal nucleotide binding domain of the protein to the COOH-proximal MSD was not required for active transport of LTC4.
Collapse
Affiliation(s)
- M Gao
- Cancer Research Laboratories, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | | | | | | | | | | | | |
Collapse
|