51
|
Quan Y, Jin R, Huang A, Zhao H, Feng B, Zang L, Zheng M. Downregulation of GRHL2 inhibits the proliferation of colorectal cancer cells by targeting ZEB1. Cancer Biol Ther 2014; 15:878-87. [PMID: 24756066 PMCID: PMC4100988 DOI: 10.4161/cbt.28877] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 04/09/2014] [Accepted: 04/13/2014] [Indexed: 12/19/2022] Open
Abstract
Previous reports have associated GRHL2 with tumor progression. However, the biological role of GRHL2 in human colorectal cancer (CRC) has not been explored. We examined the expression of GRHL2 in 75 CRC samples, as well as the paired non-tumor tissues, by immunohistochemistry, qRT-PCR, and western blot analysis. The association between GRHL2 expression and various clinicopathological parameters including Ki-67, a marker of proliferative activity, was also evaluated. We performed lentivirus-mediated shRNA transfection to knock down GRHL2 gene expression in HT29 and HCT116 CRC cells. Cell proliferation was examined by the CCK-8 (Cell Counting Kit-8) assay, colony formation, and cell cycle assay in vitro. Tumorigenesis in vivo was assessed using a mouse xenograft model. Moreover, we transiently silenced ZEB1 expression in GRHL2-knockdown CRC cells using specific shRNA, and then examined the effects on GRHL2 and E-cadherin expression, as well as cell proliferation. Herein, we demonstrated that enhanced GRHL2 expression was detected in CRC, and correlated with higher levels of Ki-67 staining, larger tumor size, and advanced clinical stage. Knocking down GRHL2 in HT29 and HCT116 CRC cells significantly inhibited cell proliferation by decreasing the number of cells in S phase and increasing that in the G 0/G 1 phaseof the cell cycle. This resulted in inhibition of tumorigenesis in vivo, as well as increased expression of ZEB1. Furthermore, transient ZEB1 knockdown dramatically enhanced cell proliferation and increased GRHL2 and E-cadherin expression. Collectively, our study has identified ZEB1 as a target of GRHL2 and suggested a reciprocal GRHL2-ZEB1 repressive relationship, providing a novel mechanism through which proliferation may be modulated in CRC cells.
Collapse
Affiliation(s)
- Yingjun Quan
- Department of Surgery; Ruijin Hospital; Shanghai Jiao Tong University School of Medicine; Shanghai, PR China
- Shanghai Institute of Digestive Surgery; Shanghai, PR China
| | - Runsen Jin
- Department of Surgery; Ruijin Hospital; Shanghai Jiao Tong University School of Medicine; Shanghai, PR China
| | - Ao Huang
- Shanghai Institute of Digestive Surgery; Shanghai, PR China
| | - Hongchao Zhao
- Shanghai Institute of Digestive Surgery; Shanghai, PR China
| | - Bo Feng
- Department of Surgery; Ruijin Hospital; Shanghai Jiao Tong University School of Medicine; Shanghai, PR China
| | - Lu Zang
- Department of Surgery; Ruijin Hospital; Shanghai Jiao Tong University School of Medicine; Shanghai, PR China
| | - Minhua Zheng
- Department of Surgery; Ruijin Hospital; Shanghai Jiao Tong University School of Medicine; Shanghai, PR China
- Shanghai Minhang District Central Hospital; Shanghai, PR China
| |
Collapse
|
52
|
Treps L, Le Guelte A, Gavard J. Emerging roles of Semaphorins in the regulation of epithelial and endothelial junctions. Tissue Barriers 2014; 1:e23272. [PMID: 24665374 PMCID: PMC3879177 DOI: 10.4161/tisb.23272] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Revised: 12/11/2012] [Accepted: 12/13/2012] [Indexed: 12/13/2022] Open
Abstract
Tissue barriers maintain homeostasis, protect underlying tissues, are remodeled during organogenesis and injury and limit aberrant proliferation and dissemination. In this context, endothelial and epithelial intercellular junctions are the primary targets of various cues. This cellular adaptation requires plasticity and dynamics of adhesion molecules and the associated cytoskeleton, as well as the adhesive-linked signaling platforms. It is therefore not surprising that the guidance molecules from the Semaphorin family arise as novel modifiers of epithelia and endothelia in development and diseases. This review will focus on the actions of Semaphorins, and their cognate receptors, Plexins and Neuropilins, on epithelial and endothelial barrier properties.
Collapse
Affiliation(s)
- Lucas Treps
- CNRS; UMR8104; Paris, France ; Inserm; U1016; Paris, France ; Université Paris Descartes; Sorbonne Paris Cite; Paris, France
| | - Armelle Le Guelte
- CNRS; UMR8104; Paris, France ; Inserm; U1016; Paris, France ; Université Paris Descartes; Sorbonne Paris Cite; Paris, France
| | - Julie Gavard
- CNRS; UMR8104; Paris, France ; Inserm; U1016; Paris, France ; Université Paris Descartes; Sorbonne Paris Cite; Paris, France
| |
Collapse
|
53
|
Tanimizu N, Mitaka T. Role of grainyhead-like 2 in the formation of functional tight junctions. Tissue Barriers 2014; 1:e23495. [PMID: 24665375 PMCID: PMC3875637 DOI: 10.4161/tisb.23495] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2012] [Revised: 12/24/2012] [Accepted: 01/04/2013] [Indexed: 02/02/2023] Open
Abstract
Epithelial cells develop intercellular junctions, including tight junctions (TJs) and adherens junctions (AJs). In epithelial tissues, TJs act as barriers that protect bodies from dehydration, infection and toxic substances. However, the molecular mechanisms regulating the establishment of functional TJs during organogenesis remain largely unknown. Recently, we identified grainyhead-like 2 (Grhl2) as a transcription factor that is specifically expressed in cholangiocytes, which are epithelial cells lining the bile duct tubules in the liver. Using our three-dimensional (3D) culture system of hepatic progenitor cells, we demonstrated that Grhl2 enhanced barrier functions of hepatic progenitor cells by upregulating claudin (Cldn) 3 and Cldn4, thereby promoting epithelial morphogenesis. In addition, we identified Rab25 as another target of Grhl2, which promotes the localization of Cldn4 at TJs. Our results indicate that a transcription factor promotes epithelial morphogenesis by establishing functional TJs by not only regulating the transcription of Cldns but also affecting their localization at TJs.
Collapse
Affiliation(s)
- Naoki Tanimizu
- Department of Tissue Development and Regeneration; Research Institute for Frontier Medicine; Sapporo Medical University School of Medicine; Sapporo, Japan
| | - Toshihiro Mitaka
- Department of Tissue Development and Regeneration; Research Institute for Frontier Medicine; Sapporo Medical University School of Medicine; Sapporo, Japan
| |
Collapse
|
54
|
Abada PB, Howell SB. Cisplatin induces resistance by triggering differentiation of testicular embryonal carcinoma cells. PLoS One 2014; 9:e87444. [PMID: 24475288 PMCID: PMC3903721 DOI: 10.1371/journal.pone.0087444] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 12/27/2013] [Indexed: 12/13/2022] Open
Abstract
Although testicular germ cell tumors are generally quite responsive to treatment with cisplatin, a small fraction of them acquire resistance during therapy. Even when cisplatin treatment is successful the patient is often left with a residual teratoma at the site of the primary tumor suggesting that cisplatin may trigger differentiation in some tumors. Using the human embryonal carcinoma cell line NTera2/D1, we confirmed that exposure to the differentiating agent retinoic acid produced a reduction in pluripotency markers NANOG and POU5F1 (Oct3/4) and an acute concentration-dependent increase in resistance to both cisplatin and paclitaxel that reached as high as 18-fold for cisplatin and 61-fold for paclitaxel within four days. A two day exposure to cisplatin also produced a concentration-dependent decrease in the expression of the NANOG and POU5F1 and increased expression of three markers whose levels increase with differentiation including Nestin, SCG10 and Fibronectin. In parallel, exposure to cisplatin induced up to 6.2-fold resistance to itself and 104-fold resistance to paclitaxel. Paclitaxel did not induce differentiation or resistance to either itself or cisplatin. Neither retinoic acid nor cisplatin induced resistance in cervical or prostate cancer cell lines or other germ cell tumor lines in which they failed to alter the expression of NANOG and POU5F1. Forced expression of NANOG prevented the induction of resistance to cisplatin by retinoic acid. We conclude that cisplatin can acutely induce resistance to itself and paclitaxel by triggering a differentiation response in pluripotent germ cell tumor cells.
Collapse
Affiliation(s)
- Paolo B. Abada
- Department of Medicine and the Moores UCSD Cancer Center, University of California San Diego, La Jolla, California, United States of America
| | - Stephen B. Howell
- Department of Medicine and the Moores UCSD Cancer Center, University of California San Diego, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
55
|
Varma S, Mahavadi P, Sasikumar S, Cushing L, Hyland T, Rosser AE, Riccardi D, Lu J, Kalin TV, Kalinichenko VV, Guenther A, Ramirez MI, Pardo A, Selman M, Warburton D. Grainyhead-like 2 (GRHL2) distribution reveals novel pathophysiological differences between human idiopathic pulmonary fibrosis and mouse models of pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol 2013; 306:L405-19. [PMID: 24375798 DOI: 10.1152/ajplung.00143.2013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Chronic injury of alveolar lung epithelium leads to epithelial disintegrity in idiopathic pulmonary fibrosis (IPF). We had reported earlier that Grhl2, a transcriptional factor, maintains alveolar epithelial cell integrity by directly regulating components of adherens and tight junctions and thus hypothesized an important role of GRHL2 in pathogenesis of IPF. Comparison of GRHL2 distribution at different stages of human lung development showed its abundance in developing lung epithelium and in adult lung epithelium. However, GRHL2 is detected in normal human lung mesenchyme only at early fetal stage (week 9). Similar mesenchymal reexpression of GRHL2 was also observed in IPF. Immunofluorescence analysis in serial sections from three IPF patients revealed at least two subsets of alveolar epithelial cells (AEC), based on differential GRHL2 expression and the converse fluorescence intensities for epithelial vs. mesenchymal markers. Grhl2 was not detected in mesenchyme in intraperitoneal bleomycin-induced injury as well as in spontaneously occurring fibrosis in double-mutant HPS1 and HPS2 mice, whereas in contrast in a radiation-induced fibrosis model, with forced Forkhead box M1 (Foxm1) expression, an overlap of Grhl2 with a mesenchymal marker was observed in fibrotic regions. Grhl2's role in alveolar epithelial cell plasticity was confirmed by altered Grhl2 gene expression analysis in IPF and further validated by in vitro manipulation of its expression in alveolar epithelial cell lines. Our findings reveal important pathophysiological differences between human IPF and specific mouse models of fibrosis and support a crucial role of GRHL2 in epithelial activation in lung fibrosis and perhaps also in epithelial plasticity.
Collapse
Affiliation(s)
- Saaket Varma
- Saban Research Institute, Children's Hospital Los Angeles, 4650 Sunset Blvd., MS35, Los Angeles, CA 90027.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Werner S, Frey S, Riethdorf S, Schulze C, Alawi M, Kling L, Vafaizadeh V, Sauter G, Terracciano L, Schumacher U, Pantel K, Assmann V. Dual roles of the transcription factor grainyhead-like 2 (GRHL2) in breast cancer. J Biol Chem 2013; 288:22993-3008. [PMID: 23814079 DOI: 10.1074/jbc.m113.456293] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Using a retrovirus-mediated cDNA expression cloning approach, we identified the grainyhead-like 2 (GRHL2) transcription factor as novel protooncogene. Overexpression of GRHL2 in NIH3T3 cells induced striking morphological changes, an increase in cell proliferation, anchorage-independent growth, and tumor growth in vivo. By combining a microarray analysis and a phylogenetic footprinting analysis with various biochemical assays, we identified the epidermal growth factor receptor family member Erbb3 as a novel GRHL2 target gene. In breast cancer cell lines, shRNA-mediated knockdown of GRHL2 expression or functional inactivation of GRHL2 using dominant negative GRHL2 proteins induces down-regulation of ERBB3 gene expression, a striking reduction in cell proliferation, and morphological and phenotypical alterations characteristic of an epithelial-to-mesenchymal transition (EMT), thus implying contradictory roles of GRHL2 in breast carcinogenesis. Interestingly, we could further demonstrate that expression of GRHL2 is directly suppressed by the transcription factor zinc finger enhancer-binding protein 1 (ZEB1), which in turn is a direct target for repression by GRHL2, suggesting that the EMT transcription factors GRHL2 and ZEB1 form a double negative regulatory feedback loop in breast cancer cells. Finally, a comprehensive immunohistochemical analysis of GRHL2 expression in primary breast cancers showed loss of GRHL2 expression at the invasive front of primary tumors. A pathophysiological relevance of GRHL2 in breast cancer metastasis is further demonstrated by our finding of a statistically significant association between loss of GRHL2 expression in primary breast cancers and lymph node metastasis. We thus demonstrate a crucial role of GRHL2 in breast carcinogenesis.
Collapse
Affiliation(s)
- Stefan Werner
- Department of Tumor Biology, Leibniz-Institute for Experimental Virology, Virus Genomics, Hamburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Evidence for multiple roles for grainyhead-like 2 in the establishment and maintenance of human mucociliary airway epithelium.[corrected]. Proc Natl Acad Sci U S A 2013; 110:9356-61. [PMID: 23690579 DOI: 10.1073/pnas.1307589110] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Most of the airways of the human lung are lined by an epithelium made up of ciliated and secretory luminal cells and undifferentiated basal progenitor cells. The integrity of this epithelium and its ability to act as a selective barrier are critical for normal lung function. In other epithelia, there is evidence that transcription factors of the evolutionarily conserved grainyheadlike (GRHL) family play key roles in coordinating multiple cellular processes required for epithelial morphogenesis, differentiation, remodeling, and repair. However, only a few target genes have been identified, and little is known about GRHL function in the adult lung. Here we focus on the role of GRHL2 in primary human bronchial epithelial cells, both as undifferentiated progenitors and as they differentiate in air-liquid interface culture into an organized mucociliary epithelium with transepithelial resistance. Using a dominant-negative protein or shRNA to inhibit GRHL2, we follow changes in epithelial phenotype and gene transcription using RNA sequencing or microarray analysis. We identify several hundreds of genes that are directly or indirectly regulated by GRHL2 in both undifferentiated cells and air-liquid interface cultures. Using ChIP sequencing to map sites of GRHL2 binding in the basal cells, we identify 7,687 potential primary targets and confirm that GRHL2 binding is strongly enriched near GRHL2-regulated genes. Taken together, the results support the hypothesis that GRHL2 plays a key role in regulating many physiological functions of human airway epithelium, including those involving cell morphogenesis, adhesion, and motility.
Collapse
|
58
|
Li C, Li A, Xing Y, Li M, Chan B, Ouyang R, Taketo MM, Kucherlapati R, Borok Z, Minoo P. Apc deficiency alters pulmonary epithelial cell fate and inhibits Nkx2.1 via triggering TGF-beta signaling. Dev Biol 2013; 378:13-24. [PMID: 23562608 DOI: 10.1016/j.ydbio.2013.03.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 03/04/2013] [Accepted: 03/25/2013] [Indexed: 12/21/2022]
Abstract
Wnt signaling is critical for cell fate specification and cell differentiation in many organs, but its function in pulmonary neuroendocrine cell (PNEC) differentiation has not been fully addressed. In this study, we examined the role of canonical Wnt signaling by targeting the gene for Adenomatous Polyposis Coli (Apc), which controls Wnt signaling activity via mediating phosphorylation of beta-catenin (Ctnnb). Targeting the Apc gene in lung epithelial progenitors by Nkx2.1-cre stabilized Ctnnb and activated canonical Wnt signaling. Apc deficiency altered lung epithelial cell fate by inhibiting Clara and ciliated cell differentiation and activating Uchl1, a marker of neuroendocrine cells. Similar to PNEC in normal lung, Uchl1(positive) cells were innervated. In mice with targeted inactivation of Ctnnb by Nkx2.1-cre, PNEC differentiation was not interrupted. These indicate that, after lung primordium formation, Wnt signaling is not essential for PNEC differentiation; however, its over-activation promotes PNEC features. Interestingly, Nkx2.1 was extinguished in Apc deficient epithelial progenitors before activation of Uchl1. Examination of Nkx2.1 null lungs suggested that early deletion of Nkx2.1 inhibits PNEC differentiation, while late repression does not. Nkx2.1 was specifically inhibited in Apc deficient lungs but not in Ctnnb gain-of-function lungs indicating a functional difference between Apc deletion and Ctnnb stabilization, both of which activate Wnt signaling. Further analysis revealed that Apc deficiency led to increased TGF-beta signaling, which inhibited Nkx2.1 in cultured lung endodermal explants. In contrast, TGF-beta activity was not increased in Ctnnb gain-of-function lungs. Therefore, our studies revealed an important mechanism involving Apc and TGF-beta signaling in regulating the key transcriptional factor, Nkx2.1, for lung epithelial progenitor cell fate determination.
Collapse
Affiliation(s)
- Changgong Li
- Department of Pediatrics, USC Keck School of Medicine & Childrens Hospital Los Angeles, Los Angeles, CA 90033, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Rehman M, Tamagnone L. Semaphorins in cancer: biological mechanisms and therapeutic approaches. Semin Cell Dev Biol 2013; 24:179-89. [PMID: 23099250 DOI: 10.1016/j.semcdb.2012.10.005] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 10/15/2012] [Accepted: 10/17/2012] [Indexed: 01/07/2023]
Abstract
The hallmarks of cancer include multiple alterations in the physiological processes occurring in normal tissues, such as cell proliferation, apoptosis, and restricted cell migration. These aberrant behaviors are due to genetic and epigenetic changes that affect signaling pathways controlling cancer cells, as well as the surrounding "normal" cells in the tumor microenvironment. Semaphorins and their receptors (mainly plexins and neuropilins) are aberrantly expressed in human tumors, and multiple family members are emerging as pivotal signals deregulated in cancer. Notably, different semaphorins can promote or inhibit tumor progression, depending on the implicated receptor complexes and responsive cell type. The important role of semaphorin signals in the regulation of tumor angiogenesis, invasion and metastasis has initiated multiple experimental approaches aimed at targeting these pathways to inhibit cancer.
Collapse
Affiliation(s)
- Michael Rehman
- Institute for Cancer Research at Candiolo (IRC@C), University of Torino-Dept. of Oncology, 10060 Candiolo, Italy
| | | |
Collapse
|