51
|
Zhang M, Zu H, Zhuang X, Yu Y, Wang Y, Zhao Z, Zhou Y. Structural analyses of the HG-type pectin from notopterygium incisum and its effects on galectins. Int J Biol Macromol 2020; 162:1035-1043. [DOI: 10.1016/j.ijbiomac.2020.06.216] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/08/2020] [Accepted: 06/23/2020] [Indexed: 01/24/2023]
|
52
|
Jean Baptiste S, Le THY, Le TKV, Vu DN, Nguyen DD. Anti-cancer Immune-modulatory Activities of Panax Genus Extracts and Bioactive Compounds. FOOD REVIEWS INTERNATIONAL 2020. [DOI: 10.1080/87559129.2020.1817065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
| | - Thi Hoang Yen Le
- Fungal Technology Laboratory, Institute of Microbiology and Biotechnology, Vietnam National University, Hanoi, Vietnam
| | - T. K. V. Le
- Faculty of Medicinal Processing, National Institution of Medicinal Materials, Hanoi, Vietnam
| | - Duy Nhan Vu
- Institute of Chemistry, Military Academy of Science and Technology, Hanoi, Vietnam
| | - Duc Doan Nguyen
- Faculty of Food Science and Technology, Vietnam National University of Agriculture, Hanoi, Vietnam
| |
Collapse
|
53
|
Beukema M, Faas MM, de Vos P. The effects of different dietary fiber pectin structures on the gastrointestinal immune barrier: impact via gut microbiota and direct effects on immune cells. Exp Mol Med 2020; 52:1364-1376. [PMID: 32908213 PMCID: PMC8080816 DOI: 10.1038/s12276-020-0449-2] [Citation(s) in RCA: 142] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 03/31/2020] [Accepted: 04/27/2020] [Indexed: 12/25/2022] Open
Abstract
Pectins are dietary fibers with different structural characteristics. Specific pectin structures can influence the gastrointestinal immune barrier by directly interacting with immune cells or by impacting the intestinal microbiota. The impact of pectin strongly depends on the specific structural characteristics of pectin; for example, the degree of methyl-esterification, acetylation and rhamnogalacturonan I or rhamnogalacturonan II neutral side chains. Here, we review the interactions of specific pectin structures with the gastrointestinal immune barrier. The effects of pectin include strengthening the mucus layer, enhancing epithelial integrity, and activating or inhibiting dendritic cell and macrophage responses. The direct interaction of pectins with the gastrointestinal immune barrier may be governed through pattern recognition receptors, such as Toll-like receptors 2 and 4 or Galectin-3. In addition, specific pectins can stimulate the diversity and abundance of beneficial microbial communities. Furthermore, the gastrointestinal immune barrier may be enhanced by short-chain fatty acids. Moreover, pectins can enhance the intestinal immune barrier by favoring the adhesion of commensal bacteria and inhibiting the adhesion of pathogens to epithelial cells. Current data illustrate that pectin may be a powerful dietary fiber to manage and prevent several inflammatory conditions, but additional human studies with pectin molecules with well-defined structures are urgently needed.
Collapse
Affiliation(s)
- Martin Beukema
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University Medical Centre Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands.
| | - Marijke M Faas
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University Medical Centre Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Paul de Vos
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University Medical Centre Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| |
Collapse
|
54
|
Analysis of the water-soluble polysaccharides from Camellia japonica pollen and their inhibitory effects on galectin-3 function. Int J Biol Macromol 2020; 159:455-460. [DOI: 10.1016/j.ijbiomac.2020.05.051] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/11/2020] [Accepted: 05/07/2020] [Indexed: 12/13/2022]
|
55
|
Cao J, Yang J, Wang Z, Lu M, Yue K. Modified citrus pectins by UV/H 2O 2 oxidation at acidic and basic conditions: Structures and in vitro anti-inflammatory, anti-proliferative activities. Carbohydr Polym 2020; 247:116742. [PMID: 32829861 DOI: 10.1016/j.carbpol.2020.116742] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 07/06/2020] [Accepted: 07/06/2020] [Indexed: 12/22/2022]
Abstract
Two modified citrus pectins, MCP4 and MCP10, were prepared by UV/H2O2 treatment at pH 4 and pH 10, respectively, and their structures were characterized. MCP10 had a rhamnogalacturonan-I (RG-I) enriched backbone with a high degree of branching (DB ∼61 %) and a low methoxylation degree (24 %). MCP4 had a homogalacturonan enriched backbone with a high degree (46 %) of methoxylation and a low DB (∼41 %) of RG-I branches. MCP10 exhibited a higher anti-inflammatory activity than MCP4 in suppressing the NF-κB expression and the production of pro-inflammatory factors TNF-α and IL-1β of THP-1 cells stimulated by lipopolysaccharide. MCP10 also showed a stronger inhibitory effect on Caco-2 cell proliferation. The stronger bioactivities of MCP10 may be attributable to the abundant branches and the proper length of terminal galactan residues attached to the RG-I domain.
Collapse
Affiliation(s)
- Jing Cao
- School of Food Science & Engineering, South China University of Technology, Guangzhou, Guangdong, 510640, PR China
| | - Jian Yang
- College of Pharmacy and Nutrition, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK, S7N 5E5, Canada
| | - Zhaomei Wang
- School of Food Science & Engineering, South China University of Technology, Guangzhou, Guangdong, 510640, PR China; Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou, Guangdong, 510640, PR China.
| | - Muwen Lu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou, Guangdong, 510640, PR China
| | - Kaiting Yue
- School of Food Science & Engineering, South China University of Technology, Guangzhou, Guangdong, 510640, PR China
| |
Collapse
|
56
|
Chan MK, Yu Y, Wulamu S, Wang Y, Wang Q, Zhou Y, Sun L. Structural analysis of water-soluble polysaccharides isolated from Panax notoginseng. Int J Biol Macromol 2020; 155:376-385. [DOI: 10.1016/j.ijbiomac.2020.03.233] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/25/2020] [Accepted: 03/26/2020] [Indexed: 12/19/2022]
|
57
|
Wu D, Zheng J, Hu W, Zheng X, He Q, Linhardt RJ, Ye X, Chen S. Structure-activity relationship of Citrus segment membrane RG-I pectin against Galectin-3: The galactan is not the only important factor. Carbohydr Polym 2020; 245:116526. [PMID: 32718630 DOI: 10.1016/j.carbpol.2020.116526] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 05/27/2020] [Accepted: 05/28/2020] [Indexed: 11/25/2022]
Abstract
Rhamnogalacturonan I (RG-I) pectin are regarded as strong galectin-3 (Gal-3) antagonist because of galactan sidechains. The present study focused on discussing the effects of more structural regions in pectin on the anti-Gal-3 activity. The water-soluble pectin (WSP) recovered from citrus canning processing water was categorized as RG-I pectin. The controlled enzymatic hydrolysis was employed to sequentially remove the α-1,5-arabinan, homogalaturonan and β-1,4-galactan in WSP. The Gal-3-binding affinity KD (kd/ka) of WSP and debranched pectins were calculated to be 0.32 μM, 0.48 μM, 0.56 μM and 1.93 μM. Moreover, based on the more sensitive cell line (MCF-7) model, the IC30 value of WSP was lower than these of modified pectins, indicating decreased anti-Gal-3 activity. Our results suggested that the total amount of neutral sugar sidechains, the length of arabinan and cooperation between HG and RG-I played important roles in the anti-Gal-3 activity of WSP, not the Gal/Ara ratio or RG-I/HG ratio. These results provided a new insight into structure-activity relationship of citrus segment membrane RG-I as a galectin-3 antagonist and a new functional food.
Collapse
Affiliation(s)
- Dongmei Wu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China
| | - Jiaqi Zheng
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China
| | - Weiwei Hu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China
| | - Xiaoliang Zheng
- Center for Molecular Medicine, Zhejiang Academy of Medical Sciences, Hangzhou 310013, China
| | - Qiaojun He
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Robert J Linhardt
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Xingqian Ye
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China; Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Shiguo Chen
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China; Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China.
| |
Collapse
|
58
|
Balakrishnan B, Subramanian S, Mallia MB, Repaka K, Kaur S, Chandan R, Bhardwaj P, Dash A, Banerjee R. Multifunctional Core–Shell Glyconanoparticles for Galectin-3-Targeted, Trigger-Responsive Combination Chemotherapy. Biomacromolecules 2020; 21:2645-2660. [DOI: 10.1021/acs.biomac.0c00358] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Biji Balakrishnan
- Nanomedicine Laboratory, Department of Biosciences and Bioengineering, IIT Bombay, Mumbai 400076, India
| | - Suresh Subramanian
- Radiopharmaceuticals Division, BARC, Trombay, Mumbai 400085, India
- Homi Bhabha National Institute, Mumbai 400094, India
| | - Madhava B. Mallia
- Radiopharmaceuticals Division, BARC, Trombay, Mumbai 400085, India
- Homi Bhabha National Institute, Mumbai 400094, India
| | | | - Shahdeep Kaur
- Nanomedicine Laboratory, Department of Biosciences and Bioengineering, IIT Bombay, Mumbai 400076, India
| | - Rajeet Chandan
- Nanomedicine Laboratory, Department of Biosciences and Bioengineering, IIT Bombay, Mumbai 400076, India
| | - Prateek Bhardwaj
- Nanomedicine Laboratory, Department of Biosciences and Bioengineering, IIT Bombay, Mumbai 400076, India
| | - Ashutosh Dash
- Radiopharmaceuticals Division, BARC, Trombay, Mumbai 400085, India
- Homi Bhabha National Institute, Mumbai 400094, India
| | - Rinti Banerjee
- Nanomedicine Laboratory, Department of Biosciences and Bioengineering, IIT Bombay, Mumbai 400076, India
| |
Collapse
|
59
|
Reconsidering conventional and innovative methods for pectin extraction from fruit and vegetable waste: Targeting rhamnogalacturonan I. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.11.001] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
60
|
Wu D, Zheng J, Mao G, Hu W, Ye X, Linhardt RJ, Chen S. Rethinking the impact of RG-I mainly from fruits and vegetables on dietary health. Crit Rev Food Sci Nutr 2019; 60:2938-2960. [PMID: 31607142 DOI: 10.1080/10408398.2019.1672037] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Rhamnogalacturonan I (RG-I) pectin is composed of backbone of repeating disaccharide units →2)-α-L-Rhap-(1→4)-α-D-GalpA-(1→ and neutral sugar side-chains mainly consisting of arabinose and galactose having variable types of linkages. However, since traditional pectin extraction methods damages the RG-I structure, the characteristics and health effects of RG-I remains unclear. Recently, many studies have focused on RG-I, which is often more active than the homogalacturonan (HG) portion of pectic polysaccharides. In food products, RG-I is common to fruits and vegetables and possesses many health benefits. This timely and comprehensive review describes the many different facets of RG-I, including its dietary sources, history, metabolism and potential functionalities, all of which have been compiled to establish a platform for taking full advantage of the functional value of RG-I pectin.
Collapse
Affiliation(s)
- Dongmei Wu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China
| | - Jiaqi Zheng
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China
| | - Guizhu Mao
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China
| | - Weiwei Hu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China
| | - Xingqian Ye
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China
| | - Robert J Linhardt
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Shiguo Chen
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China
| |
Collapse
|
61
|
Xue H, Zhao Z, Lin Z, Geng J, Guan Y, Song C, Zhou Y, Tai G. Selective effects of ginseng pectins on galectin-3-mediated T cell activation and apoptosis. Carbohydr Polym 2019; 219:121-129. [DOI: 10.1016/j.carbpol.2019.05.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 04/17/2019] [Accepted: 05/07/2019] [Indexed: 12/26/2022]
|
62
|
Li J, Wang D, Xing X, Cheng TJR, Liang PH, Bulone V, Park JH, Hsieh YS. Structural analysis and biological activity of cell wall polysaccharides extracted from Panax ginseng marc. Int J Biol Macromol 2019; 135:29-37. [DOI: 10.1016/j.ijbiomac.2019.05.077] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 05/03/2019] [Accepted: 05/13/2019] [Indexed: 01/01/2023]
|
63
|
Zhao B, Lv C, Lu J. Natural occurring polysaccharides from Panax ginseng C. A. Meyer: A review of isolation, structures, and bioactivities. Int J Biol Macromol 2019; 133:324-336. [DOI: 10.1016/j.ijbiomac.2019.03.229] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 03/24/2019] [Accepted: 03/29/2019] [Indexed: 10/27/2022]
|
64
|
Miller MC, Zheng Y, Zhou Y, Tai G, Mayo KH. Galectin-3 binds selectively to the terminal, non-reducing end of β(1→4)-galactans, with overall affinity increasing with chain length. Glycobiology 2019; 29:74-84. [PMID: 30204870 DOI: 10.1093/glycob/cwy085] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 09/11/2018] [Indexed: 12/15/2022] Open
Abstract
Galactans are linear polysaccharides of β(1→4)-linked galactose residues. Although they can antagonize galectin function, the nature of their binding to galectins needs to be better defined to develop them as drugs. Here, we investigated interactions between galectin-3 (Gal-3) and a series of galactans ranging in weight average molecular weight from 670 to 7550 Da. 15N-1H HSQC NMR studies with 15N-labeled Gal-3 carbohydrate recognition domain (CRD) indicate that each of these galactans interacts primarily with residues in β-strands 4, 5 and 6 on the canonical, β-galactoside sugar binding S-face. Although these galactans also bind to full length Gal-3 (CRD plus N-terminal tail) to the same extent, it appears that binding to the S-face attenuates interactions between the CRD F-face and N-terminal tail, making interpretation of site-specific binding unclear. Following assignment of galactan 13C and 1H resonances using HSQC, HMBC and TOCSY experiments, we used 13C-1H HSQC data to demonstrate that the Gal-3 CRD binds to the terminal, non-reducing end of these galactans, regardless of their size, but with binding affinity increasing as the galactan chain length increases. Overall, our findings increase understanding as to how galactans interact with Gal-3 at the non-reducing, terminal end of galactose-containing polysaccharides as found on the cell surface.
Collapse
Affiliation(s)
- Michelle C Miller
- Department of Biochemistry, Molecular Biology & Biophysics, 6-155 Jackson Hall, University of Minnesota, Minneapolis, MN, USA
| | - Yi Zheng
- School of Life Sciences, Northeast Normal University, Changchun, PR China
| | - Yifa Zhou
- School of Life Sciences, Northeast Normal University, Changchun, PR China
| | - Guihua Tai
- School of Life Sciences, Northeast Normal University, Changchun, PR China
| | - Kevin H Mayo
- Department of Biochemistry, Molecular Biology & Biophysics, 6-155 Jackson Hall, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
65
|
Antioxidant activity of polysaccharides from different sources of ginseng. Int J Biol Macromol 2019; 125:906-908. [DOI: 10.1016/j.ijbiomac.2018.12.134] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 12/13/2018] [Accepted: 12/16/2018] [Indexed: 11/21/2022]
|
66
|
Andersen MCF, Boos I, Kinnaert C, Awan SI, Pedersen HL, Kračun SK, Lanz G, Rydahl MG, Kjærulff L, Håkansson M, Kimbung R, Logan DT, Gotfredsen CH, Willats WGT, Clausen MH. Synthesis of branched and linear 1,4-linked galactan oligosaccharides. Org Biomol Chem 2019; 16:1157-1162. [PMID: 29367995 DOI: 10.1039/c7ob03035e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We report the synthesis of linear and branched (1→4)-d-galactans. Four tetrasaccharides and one pentasaccharide were accessed by adopting a procedure of regioselective ring opening of a 4,6-O-naphthylidene protecting group followed by glycosylation using phenyl thioglycoside donors. The binding of the linear pentasaccharide with galectin-3 is also investigated by the determination of a co-crystal structure. The binding of the (1→4)-linked galactan to Gal-3 highlights the oligosaccharides of pectic galactan, which is abundant in the human diet, as putative Gal-3 ligands.
Collapse
Affiliation(s)
- Mathias C F Andersen
- Center for Nanomedicine and Theranostics, Department of Chemistry, Technical University of Denmark, Kemitorvet 207, DK-2800, Kgs. Lyngby, Denmark.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Cui L, Wang J, Huang R, Tan Y, Zhang F, Zhou Y, Sun L. Analysis of pectin from Panax ginseng flower buds and their binding activities to galectin-3. Int J Biol Macromol 2019; 128:459-467. [PMID: 30703424 DOI: 10.1016/j.ijbiomac.2019.01.129] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/23/2019] [Accepted: 01/23/2019] [Indexed: 01/23/2023]
Abstract
Water-soluble pectic polysaccharides isolated from Panax ginseng flower buds (WGFPA) were completely fractionated into six homogeneous fractions (WGFPA-1a, WGFPA-2a, WGFPA-3a, WGFPA-1b, WGFPA-2b and WGFPA-3b) by a combination of ion-exchange and size exclusion chromatographies. Monosaccharide composition, enzymatic hydrolysis and 13C nuclear magnetic resonance (NMR) spectra analysis were combined to characterize their structural features. Furthermore, the interactions between these polysaccharides and galectin-3 were evaluated by biolayer interferometry assay. The results showed that WGFPA-1a, WGFPA-2a and WGFPA-3a were rhamnogalacturonan I (RG-I) type pectin with abundant side chains, including α-L-1,5-arabinan, β-D-1,4-galactan, arabinogalactan I (AG-I) and arabinogalactan II (AG-II), exhibiting strong binding activities to galectin-3 with apparent KD values 4.9 μM, 0.71 μM and 0.24 μM, respectively. WGFPA-1b, WGFPA-2b and WGFPA-3b were homogalacturonan (HG) type pectin covalently linked with different ratios of rhamnogalacturonan II (RG-II) domains, showing weaker or no interactions with galectin-3. This study provides useful structural information for further investigation on the structure-activity relationship of ginseng flower buds pectin.
Collapse
Affiliation(s)
- Liangnan Cui
- Jilin Province Key Laboratory on Chemistry and Biology of Natural Drugs in Changbai Mountain, School of Life Sciences, Northeast Normal University, Changchun 130024, PR China.
| | - Jiayi Wang
- Jilin Province Key Laboratory on Chemistry and Biology of Natural Drugs in Changbai Mountain, School of Life Sciences, Northeast Normal University, Changchun 130024, PR China.
| | - Rui Huang
- Jilin Province Key Laboratory on Chemistry and Biology of Natural Drugs in Changbai Mountain, School of Life Sciences, Northeast Normal University, Changchun 130024, PR China.
| | - Ya Tan
- Jilin Province Key Laboratory on Chemistry and Biology of Natural Drugs in Changbai Mountain, School of Life Sciences, Northeast Normal University, Changchun 130024, PR China.
| | - Fan Zhang
- Jilin Province Key Laboratory on Chemistry and Biology of Natural Drugs in Changbai Mountain, School of Life Sciences, Northeast Normal University, Changchun 130024, PR China.
| | - Yifa Zhou
- Jilin Province Key Laboratory on Chemistry and Biology of Natural Drugs in Changbai Mountain, School of Life Sciences, Northeast Normal University, Changchun 130024, PR China.
| | - Lin Sun
- Jilin Province Key Laboratory on Chemistry and Biology of Natural Drugs in Changbai Mountain, School of Life Sciences, Northeast Normal University, Changchun 130024, PR China.
| |
Collapse
|
68
|
Structural characterization of rhamnogalacturonan domains from Panax ginseng C. A. Meyer. Carbohydr Polym 2019; 203:119-127. [DOI: 10.1016/j.carbpol.2018.09.045] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 09/15/2018] [Accepted: 09/18/2018] [Indexed: 11/22/2022]
|
69
|
Riaz M, Rahman NU, Zia-Ul-Haq M, Jaffar HZ, Manea R. Ginseng: A dietary supplement as immune-modulator in various diseases. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2018.11.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
70
|
Preparation of individual galactan oligomers, their prebiotic effects, and use in estimating galactan chain length in pectin-derived polysaccharides. Carbohydr Polym 2018; 199:526-533. [DOI: 10.1016/j.carbpol.2018.07.048] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 07/14/2018] [Accepted: 07/16/2018] [Indexed: 11/19/2022]
|
71
|
Bai R, Li W, Li Y, Ma M, Wang Y, Zhang J, Hu F. Cytotoxicity of two water-soluble polysaccharides from Codonopsis pilosula Nannf. var. modesta (Nannf.) L.T.Shen against human hepatocellular carcinoma HepG2 cells and its mechanism. Int J Biol Macromol 2018; 120:1544-1550. [PMID: 30248423 DOI: 10.1016/j.ijbiomac.2018.09.123] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 09/11/2018] [Accepted: 09/20/2018] [Indexed: 01/02/2023]
Abstract
Two water-soluble polysaccharides named CPP1a and CPP1c were isolated from C. pilosula Nannf. var. modesta L.T.Shen by hot-water extraction and purified by graded alcohol precipitation and DEAE-52 cellulose column. The structure of CPP1c with higher yield has been characterized while its antitumor activities has not been elucidated. In this study, we firstly analyzed the chemical structure of CPP1a. The results of instrumental analysis combined with chemical analysis showed that CPP1a was composed of →1)- β‑l‑Rhap‑(4→, →1)- β‑Arap‑(5→, →1)- β‑d‑GalpA‑(4→, →1)- β‑d‑Galp‑(6→, terminal‑β‑d‑Glcp in a molar ratio of 1:12:1:10:3 and its relative and absolute molecular weight were 1.01 × 105 Da and 1.03 × 105 Da respectively. Further, the cytotoxicity assay indicated that CPP1a and CPP1c were more sensitive to HepG2 cells than cervical carcinoma Hela cells and gastric carcinoma MKN45 cells. Both of CPP1a and CPP1c could influence cell morphology, inhibit the migration and induce apoptosis by affecting the G2/M phase of HepG2 cells. Preliminary mechanism studies confirmed that CPP1a and CPP1c could induce apoptosis through up-regulating the ratio of Bax/Bcl-2 and activating caspase-3. According to previous research, we might speculate that the reason for the stronger cytotoxicity and pro-apoptotic effect of CPP1c than that of CPP1a can be attributed to its high uronic acid content.
Collapse
Affiliation(s)
- Ruibin Bai
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Wuyan Li
- Center for Inflammation, Translational and Clinical Lung Research, Temple University School of Medicine, Philadelphia, PA, USA
| | - Yingdong Li
- Institute of Integrated Traditional Chinese and Western Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, China
| | - Ming Ma
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Yanping Wang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Jing Zhang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Fangdi Hu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
72
|
Structural characterization and anti-proliferative activities of partially degraded polysaccharides from peach gum. Carbohydr Polym 2018; 203:193-202. [PMID: 30318204 DOI: 10.1016/j.carbpol.2018.09.029] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 08/28/2018] [Accepted: 09/15/2018] [Indexed: 11/22/2022]
Abstract
LP100R, LP10R and LP5R were isolated from peach gum by ultrafiltration. They were identified as AG II arabinogalactans composed of mannose, rhamnose, glucuronic acid, galactose, xylose and arabinose, which had a β-d-(1→6)-galactan backbone and were branched at O-3 and O-4. LP100R, LP10R and LP5R exist in a spherical conformation with the molecular weight of 8.50 × 104 g/mol, 4.77 × 104 g/mol and 2.40 × 104 g/mol, respectively. The binding affinities of LP fractions to galectin-3 (Gal-3) were 0.77 μM for LP100R, 2.88 μM for LP10R and 5.15 μM for LP5R, respectively. Meanwhile, an anti-proliferative assay revealed that LP100R possessed higher anti-proliferative activity against HepG2 cells (IC50, 4.5 mg/mL) and MCF-7 cells (IC50, 0.43 mg/mL) than did LP10R and LP5R, which were in accordance with their binding affinities to galectin-3. Therefore, LP fractions (especially LP100R) might exert the anti-tumor activity by directly inhibiting the Gal-3 mediated proliferation of cancer cells.
Collapse
|
73
|
Extraction and characterization of RG-I enriched pectic polysaccharides from mandarin citrus peel. Food Hydrocoll 2018. [DOI: 10.1016/j.foodhyd.2017.12.002] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
74
|
Miller MC, Zheng Y, Yan J, Zhou Y, Tai G, Mayo KH. Novel polysaccharide binding to the N-terminal tail of galectin-3 is likely modulated by proline isomerization. Glycobiology 2018; 27:1038-1051. [PMID: 28973299 DOI: 10.1093/glycob/cwx071] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 08/03/2017] [Indexed: 11/13/2022] Open
Abstract
Interactions between galectins and polysaccharides are crucial to many biological processes, and yet these are some of the least understood, usually being limited to studies with small saccharides and short oligosaccharides. The present study is focused on human galectin-3 (Gal-3) interactions with a 60 kDa rhamnogalacturonan RG-I-4 that we use as a model to garner information as to how galectins interact with large polysaccharides, as well as to develop this agent as a therapeutic against human disease. Gal-3 is unique among galectins, because as the only chimera-type, it has a long N-terminal tail (NT) that has long puzzled investigators due to its dynamic, disordered nature and presence of numerous prolines. Here, we use 15N-1H heteronuclear single quantum coherence NMR spectroscopy to demonstrate that multiple sites on RG-I-4 provide epitopes for binding to three sites on 15N-labeled Gal-3, two within its carbohydrate recognition domain (CRD) and one at a novel site within the NT encompassing the first 40 residues that are highly conserved among all species of Gal-3. Moreover, strong binding of RG-I-4 to the Gal-3 NT occurs on a very slow time scale, suggesting that it may be mediated by cis-trans proline isomerization, a well-recognized modulator of many biological activities. The NT binding epitope within RG-I-4 appears to reside primarily in the side chains of the polysaccharide, some of which are galactans. Our results provide new insight into the role of the NT in Gal-3 function.
Collapse
Affiliation(s)
- Michelle C Miller
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota Health Sciences Center, 6-155 Jackson Hall, 321 Church Street, Minneapolis, MN 55455, USA
| | - Y Zheng
- School of Life Sciences, Northeast Normal University, 5268 Renmin Street, Changchun 130024, PR China
| | - Jingmin Yan
- School of Life Sciences, Northeast Normal University, 5268 Renmin Street, Changchun 130024, PR China
| | - Yifa Zhou
- School of Life Sciences, Northeast Normal University, 5268 Renmin Street, Changchun 130024, PR China
| | - Guihua Tai
- School of Life Sciences, Northeast Normal University, 5268 Renmin Street, Changchun 130024, PR China
| | - Kevin H Mayo
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota Health Sciences Center, 6-155 Jackson Hall, 321 Church Street, Minneapolis, MN 55455, USA
| |
Collapse
|
75
|
Ji L, Jie Z, Ying X, Yue Q, Zhou Y, Sun L. Structural characterization of alkali-soluble polysaccharides from Panax ginseng C. A. Meyer. ROYAL SOCIETY OPEN SCIENCE 2018; 5:171644. [PMID: 29657770 PMCID: PMC5882694 DOI: 10.1098/rsos.171644] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 01/24/2018] [Indexed: 05/19/2023]
Abstract
Panax ginseng C. A. Meyer (ginseng) has been widely used as a herb and functional food in the world. Polysaccharides are the main active components of ginseng. In this paper, the polysaccharides were sequentially extracted by 50 mM Na2CO3, 1 M KOH and 4 M KOH from ginseng roots treated sequentially with hot water, α-amylase and ethylenediaminetetraacetic acid extraction. Na2CO3-soluble ginseng polysaccharide (NGP) was fractionated into one neutral and three acidic fractions by anion exchange and gel permeation chromatography. Fourier transform infrared, NMR and methylation analysis indicated acidic fractions in NGP were highly branched rhamnogalacturonan-I domains, with → 4)-α-GalpA-(1 → 2)-α-Rhap-(1 → disaccharide repeating units as backbone and β-1,4-galactan, α-1,5/1,3,5-arabinan and type II arabinogalactan as side chains. 1-KGP (1 M KOH-soluble ginseng polysaccharide) and 4-KGP (4 M KOH-soluble ginseng polysaccharide) were mainly composed of hemicellulose besides starch-like polysaccharides and minor pectin. Antibody detection, enzymic hydrolysis, high performance anion exchange chromatography and methylation analysis demonstrated xylan was the major component in 1-KGP, while xyloglucan was predominant in 4-KGP. Comparing the polysaccharides obtained by different solvent extractions, we have a comprehensive understanding about total ginseng polysaccharides.
Collapse
Affiliation(s)
| | | | | | | | | | - Lin Sun
- Author for correspondence: Lin Sun e-mail:
| |
Collapse
|
76
|
Galectin-13, a different prototype galectin, does not bind β-galacto-sides and forms dimers via intermolecular disulfide bridges between Cys-136 and Cys-138. Sci Rep 2018; 8:980. [PMID: 29343868 PMCID: PMC5772480 DOI: 10.1038/s41598-018-19465-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 01/02/2018] [Indexed: 12/24/2022] Open
Abstract
During pregnancy, placental protein-13 (galectin-13) is highly expressed in the placenta and fetal tissue, and less so in maternal serum that is related to pre-eclampsia. To understand galectin-13 function at the molecular level, we solved its crystal structure and discovered that its dimer is stabilized by two disulfide bridges between Cys136 and Cys138 and six hydrogen bonds involving Val135, Val137, and Gln139. Native PAGE and gel filtration demonstrate that this is not a crystallization artifact because dimers also form in solution. Our biochemical studies indicate that galectin-13 ligand binding specificity is different from that of other galectins in that it does not bind β-galactosides. This is partly explained by the presence of Arg53 rather than His53 at the bottom of the carbohydrate binding site in a position that is crucial for interactions with β-galactosides. Mutating Arg53 to histidine does not re-establish normal β-galactoside binding, but rather traps cryoprotectant glycerol molecules within the ligand binding site in crystals of the R53H mutant. Moreover, unlike most other galectins, we also found that GFP-tagged galectin-13 is localized within the nucleus of HeLa and 293 T cells. Overall, galectin-13 appears to be a new type of prototype galectin with distinct properties.
Collapse
|
77
|
Suthahar N, Meijers WC, Silljé HH, Ho JE, Liu FT, de Boer RA. Galectin-3 Activation and Inhibition in Heart Failure and Cardiovascular Disease: An Update. Theranostics 2018; 8:593-609. [PMID: 29344292 PMCID: PMC5771079 DOI: 10.7150/thno.22196] [Citation(s) in RCA: 155] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 09/24/2017] [Indexed: 12/15/2022] Open
Abstract
Galectin-3 is a versatile protein orchestrating several physiological and pathophysiological processes in the human body. In the last decade, considerable interest in galectin-3 has emerged because of its potential role as a biotarget. Galectin-3 is differentially expressed depending on the tissue type, however its expression can be induced under conditions of tissue injury or stress. Galectin-3 overexpression and secretion is associated with several diseases and is extensively studied in the context of fibrosis, heart failure, atherosclerosis and diabetes mellitus. Monomeric (extracellular) galectin-3 usually undergoes further "activation" which significantly broadens the spectrum of biological activity mainly by modifying its carbohydrate-binding properties. Self-interactions of this protein appear to play a crucial role in regulating the extracellular activities of this protein, however there is limited and controversial data on the mechanisms involved. We therefore summarize (recent) literature in this area and describe galectin-3 from a binding perspective providing novel insights into mechanisms by which galectin-3 is known to be "activated" and how such activation may be regulated in pathophysiological scenarios.
Collapse
Affiliation(s)
- Navin Suthahar
- University Medical Center Groningen, University of Groningen, Department of Cardiology, PO Box 30.001, 9700 RB Groningen, the Netherlands
| | - Wouter C. Meijers
- University Medical Center Groningen, University of Groningen, Department of Cardiology, PO Box 30.001, 9700 RB Groningen, the Netherlands
| | - Herman H.W. Silljé
- University Medical Center Groningen, University of Groningen, Department of Cardiology, PO Box 30.001, 9700 RB Groningen, the Netherlands
| | - Jennifer E. Ho
- Massachusetts General Hospital, Cardiovascular Research Center, Boston, MA, USA
| | - Fu-Tong Liu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Rudolf A. de Boer
- University Medical Center Groningen, University of Groningen, Department of Cardiology, PO Box 30.001, 9700 RB Groningen, the Netherlands
| |
Collapse
|
78
|
Su J, Gao J, Si Y, Cui L, Song C, Wang Y, Wu R, Tai G, Zhou Y. Galectin-10: a new structural type of prototype galectin dimer and effects on saccharide ligand binding. Glycobiology 2017; 28:159-168. [DOI: 10.1093/glycob/cwx107] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Accepted: 12/21/2017] [Indexed: 12/27/2022] Open
Affiliation(s)
- Jiyong Su
- Jilin Province Key Laboratory for Chemistry and Biology of Natural Drugs in Changbai Mountain, The School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Jin Gao
- Jilin Province Key Laboratory for Chemistry and Biology of Natural Drugs in Changbai Mountain, The School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Yunlong Si
- Jilin Province Key Laboratory for Chemistry and Biology of Natural Drugs in Changbai Mountain, The School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Linlin Cui
- Jilin Province Key Laboratory for Chemistry and Biology of Natural Drugs in Changbai Mountain, The School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Chenyang Song
- Jilin Province Key Laboratory for Chemistry and Biology of Natural Drugs in Changbai Mountain, The School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Yue Wang
- Jilin Province Key Laboratory for Chemistry and Biology of Natural Drugs in Changbai Mountain, The School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Runjie Wu
- Jilin Province Key Laboratory for Chemistry and Biology of Natural Drugs in Changbai Mountain, The School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Guihua Tai
- Jilin Province Key Laboratory for Chemistry and Biology of Natural Drugs in Changbai Mountain, The School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Yifa Zhou
- Jilin Province Key Laboratory for Chemistry and Biology of Natural Drugs in Changbai Mountain, The School of Life Sciences, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
79
|
Prado SBRD, Ferreira GF, Harazono Y, Shiga TM, Raz A, Carpita NC, Fabi JP. Ripening-induced chemical modifications of papaya pectin inhibit cancer cell proliferation. Sci Rep 2017; 7:16564. [PMID: 29185464 PMCID: PMC5707353 DOI: 10.1038/s41598-017-16709-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 10/13/2017] [Indexed: 12/13/2022] Open
Abstract
Papaya (Carica papaya L.) is a fleshy fruit with a rapid pulp softening during ripening. Ripening events are accompanied by gradual depolymerization of pectic polysaccharides, including homogalacturonans, rhamnogalacturonans, arabinogalactans, and their modified forms. During intermediate phases of papaya ripening, partial depolymerization of pectin to small size with decreased branching had enhanced pectin anti-cancer properties. These properties were lost with continued decomposition at later phases of ripening. Pectin extracted from intermediate phases of papaya ripening markedly decreased cell viability, induced necroptosis, and delayed culture wound closing in three types of immortalized cancer cell lines. The possible explanation for these observations is that papaya pectins extracted from the third day after harvesting have disrupted interaction between cancer cells and the extracellular matrix proteins, enhancing cell detachment and promoting apoptosis/necroptosis. The anticancer activity of papaya pectin is dependent on the presence and the branch of arabinogalactan type II (AGII) structure. These are first reports of AGII in papaya pulp and the first reports of an in vitro biological activity of papaya pectins that were modified by natural action of ripening-induced pectinolytic enzymes. Identification of the specific pectin branching structures presents a biological route to enhancing anti-cancer properties in papaya and other climacteric fruits.
Collapse
Affiliation(s)
- Samira Bernardino Ramos do Prado
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Gabrielle Fernandez Ferreira
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Yosuke Harazono
- Departments of Oncology and Pathology, School of Medicine, Wayne State University, and Karmanos Cancer Institute, Detroit, MI, USA
- Department of Maxillofacial Surgery, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Tânia Misuzu Shiga
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Avraham Raz
- Departments of Oncology and Pathology, School of Medicine, Wayne State University, and Karmanos Cancer Institute, Detroit, MI, USA
| | - Nicholas C Carpita
- Department of Botany & Plant Pathology, Purdue University, West Lafayette, IN, USA
| | - João Paulo Fabi
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil.
- Food and Nutrition Research Center (NAPAN), University of São Paulo, São Paulo, SP, Brazil.
- Food Research Center (FoRC), CEPID-FAPESP (Research, Innovation and Dissemination Centers, São Paulo Research Foundation), São Paulo, SP, Brazil.
| |
Collapse
|
80
|
Macromolecular assemblies of complex polysaccharides with galectin-3 and their synergistic effects on function. Biochem J 2017; 474:3849-3868. [PMID: 28986508 DOI: 10.1042/bcj20170143] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 09/17/2017] [Accepted: 10/03/2017] [Indexed: 12/11/2022]
Abstract
Although pectin-derived polysaccharides can antagonize galectin function in various pathological disorders, the nature of their binding interactions needs to be better defined for developing them as drugs. Moreover, given their relatively large size and complexity, pectin-derived polysaccharides are also useful as model systems to assess inter-polysaccharide and protein-polysaccharide interactions. Here, we investigated interactions between galectin-3 (Gal-3) and pectin-derived polysaccharides: a rhamnogalacturonan (RG) and two homogalacturonans (HGs). BioLayer Interferometry and fluorescence-linked immunosorbent assays indicate that these polysaccharides bind Gal-3 with macroscopic or apparent KD values of 49 nM, 46 µM, and 138 µM, respectively. 15N-1H heteronuclear single quantum coherence (HSQC) NMR studies reveal that these polysaccharides interact primarily with the F-face of the Gal-3 carbohydrate recognition domain. Even though their binding to Gal-3 does not inhibit Gal-3-mediated T-cell apoptosis and only weakly attenuates hemagglutination, their combination in specific proportions increases activity synergistically along with avidity for Gal-3. This suggests that RG and HG polysaccharides act in concert, a proposal supported by polysaccharide particle size measurements and 13C-1H HSQC data. Our model has HG interacting with RG to promote increased avidity of RG for Gal-3, likely by exposing additional lectin-binding sites on the RG. Overall, the present study contributes to our understanding of how complex HG and RG polysaccharides interact with Gal-3.
Collapse
|
81
|
Chen Q, Zhu L, Tang Y, Zhao Z, Yi T, Chen H. Preparation-related structural diversity and medical potential in the treatment of diabetes mellitus with ginseng pectins. Ann N Y Acad Sci 2017; 1401:75-89. [DOI: 10.1111/nyas.13424] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 05/30/2017] [Accepted: 06/05/2017] [Indexed: 01/12/2023]
Affiliation(s)
- Qilei Chen
- School of Chinese Medicine, Hong Kong Baptist University; Hong Kong Special Administrative Region; Hong Kong P.R. China
| | - Lin Zhu
- Shenzhen Research Institute; The Chinese University of Hong Kong; Shenzhen P.R. China
| | - Yina Tang
- Sichuan Academy of Chinese Medical Sciences; Sichuan P.R. China
| | - Zhongzhen Zhao
- School of Chinese Medicine, Hong Kong Baptist University; Hong Kong Special Administrative Region; Hong Kong P.R. China
| | - Tao Yi
- School of Chinese Medicine, Hong Kong Baptist University; Hong Kong Special Administrative Region; Hong Kong P.R. China
| | - Hubiao Chen
- School of Chinese Medicine, Hong Kong Baptist University; Hong Kong Special Administrative Region; Hong Kong P.R. China
| |
Collapse
|
82
|
Abstract
A rhamnogalacturonan I domain, named RG-I-3A, was prepared from ginseng pectin by pectinase digestion and chromatography separation. Monosaccharide composition analysis revealed that it was mainly composed of galacturonic acid, rhamnose, galactose, and arabinose in a molar ratio of 32.5:11.2:31.9:16.5, with a molecular weight of 50 kDa. Partial acid hydrolysis, monoclonal antibody detection, and NMR spectra analysis suggested RG-I-3A was composed of →4)-α-GalpA-(1→2)-α-Rhap-(1→disaccharide repeating units as backbone, with β-1,4-galactan, α-1,5-arabinan, AG-I, and AG-II side chains substituted via the O-4 of Rhap. Galectin-3-mediated hemagglutination and biolayer interferometry assay indicated that RG-I-3A had inhibitory activity on galectin-3. These findings suggest the potential use of this ginseng RG-I domain as a galectin-3 inhibitor in drug development applications.
Collapse
|
83
|
Isolation of a lectin binding rhamnogalacturonan-I containing pectic polysaccharide from pumpkin. Carbohydr Polym 2017; 163:330-336. [DOI: 10.1016/j.carbpol.2017.01.067] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Revised: 01/02/2017] [Accepted: 01/18/2017] [Indexed: 11/21/2022]
|
84
|
Emerging concepts in the nutraceutical and functional properties of pectin-A Review. Carbohydr Polym 2017; 168:227-239. [PMID: 28457445 DOI: 10.1016/j.carbpol.2017.03.058] [Citation(s) in RCA: 224] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 02/21/2017] [Accepted: 03/17/2017] [Indexed: 01/30/2023]
Abstract
Pectin is a structural heteropolysaccharide found ubiquitously in terrestrial plants. It finds diverse food applications such as that of a gelling agent, stabilizer, and fat replacer. In the pharmaceutical arena, pectin exhibits a number of functions, from decreasing blood fat to combating various types of cancers. This review shows the shift of pectin from its conventional roles to its progressive applications. Insights into the advances in the production of pectin, the role it plays as a nutraceutical, possible prebiotic potential and a delivery vehicle for probiotics, and food applications are highlighted. Bioactive and functional properties of pectin are discussed and how the structural built up defines them, is emphasized. As a biopolymer, the applications of pectin in active packaging are also mentioned.
Collapse
|
85
|
Venkateshaiah SU, Eswaraiah MS, Annaiah HNM, Dharmesh SM. Antimetastatic pectic polysaccharide from Decalepis hamiltonii; galectin-3 inhibition and immune-modulation. Clin Exp Metastasis 2017; 34:141-154. [PMID: 28160109 DOI: 10.1007/s10585-017-9836-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 01/16/2017] [Indexed: 12/26/2022]
Abstract
Melanoma is a malignant neoplasm of major concern because of its high mortality rate and failure of chemotherapy. Previously we have shown that galectin-3, a galactose specific lectin, plays a pivotal role in the initiation of metastasis. It was hypothesized that blocking galectin-3 with galactose rich dietary pectic polymer would inhibit metastasis. The current study analyzes the preventive effect and mode of action of a pectic polymer from Swallow Root (Decalepis hamiltonii) in a preventative study of B16F10 cells lung colonization. Matrix metalloproteinase (MMPs) activity was assayed by zymography. Apoptotic/proliferative markers and cytokines were analyzed by immunoassay. Results indicated ~88% inhibition of lung colonization by SRPP as compared to 60% by CPP and only 7% by GRPP. Further molecular analysis revealed that galectin-3 blockade was associated with down regulation of MMPs and NFκB. Activation of caspases supported the apoptotic effect of SRPP. Infiltration of inflammatory cells into the lung was evidenced by presence of CD11b+ cells and release of the pro-inflammatory cytokine-IL-17, indicating inflammation during the cancer cell colonization process. SRPP enhanced the release of IL-12 that enables the reduction of inflammation. Our data for the first time indicate the effective anti-metastatic effect of SRPP due to both galectin-3 blockade and immunomodulation.
Collapse
Affiliation(s)
- Sathisha U Venkateshaiah
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysuru, 570 020, Karnataka, India
| | - Mallikarjuna S Eswaraiah
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysuru, 570 020, Karnataka, India
| | - Harish Nayaka M Annaiah
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysuru, 570 020, Karnataka, India
| | - Shylaja M Dharmesh
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysuru, 570 020, Karnataka, India.
| |
Collapse
|
86
|
Meresta A, Folkert J, Gaber T, Miksch K, Buttgereit F, Detert J, Pischon N, Gurzawska K. Plant-derived pectin nanocoatings to prevent inflammatory cellular response of osteoblasts following Porphyromonas gingivalis infection. Int J Nanomedicine 2017; 12:433-445. [PMID: 28138240 PMCID: PMC5238760 DOI: 10.2147/ijn.s113740] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background Bioengineered plant-derived Rhamnogalacturonan-Is (RG-Is) from pectins are potential candidates for surface nanocoating of medical devices. It has recently been reported that RG-I nanocoatings may prevent bacterial infection and improve the biocompatibility of implants. The aim of the study was to evaluate in vitro impact of bioengineered RG-I nanocoatings on osteogenic capacity and proinflammatory cytokine response of murine osteoblasts following Porphyromonas gingivalis infection. Methods Murine MC3T3-E1 osteoblasts and isolated primary calvarial osteoblasts from C57BL/6J (B6J osteoblasts) mice were infected with P. gingivalis and incubated on tissue culture polystyrene plates with or without nanocoatings of unmodified RG-Is isolated from potato pulps (PU) or dearabinanated RG-Is (PA). To investigate a behavior of infected osteoblasts cultured on RG-Is cell morphology, proliferation, metabolic activity, mineralization and osteogenic and pro-inflammatory gene expression were examined. Results Following P. gingivalis infection, PA, but not PU, significantly promoted MC3T3-E1 and BJ6 osteoblasts proliferation, metabolic activity, and calcium deposition. Moreover, Il-1b, Il-6, TNF-α, and Rankl gene expressions were downregulated in cells cultured on PU and to a higher extent on PA as compared to the corresponding control, whereas Runx, Alpl, Col1a1, and Bglap gene expressions were upregulated vice versa. Conclusion Our data clearly showed that pectin RG-Is nanocoating with high content of galactan (PA) reduces the osteoblastic response to P. gingivalis infection in vitro and may, therefore, reduce a risk of inflammation especially in immunocompromised patients with rheumatoid or periodontal disorders.
Collapse
Affiliation(s)
- Anna Meresta
- Environmental Biotechnology Department, Faculty of Power and Environmental, Silesian University of Technology, Gliwice, Poland
| | - Justyna Folkert
- Environmental Biotechnology Department, Faculty of Power and Environmental, Silesian University of Technology, Gliwice, Poland
| | - Timo Gaber
- Department of Rheumatology and Clinical Immunology
| | - Korneliusz Miksch
- Environmental Biotechnology Department, Faculty of Power and Environmental, Silesian University of Technology, Gliwice, Poland
| | | | | | - Nicole Pischon
- Department of Periodontology, Charité University Medicine, Berlin, Germany
| | - Katarzyna Gurzawska
- Department of Periodontology, Charité University Medicine, Berlin, Germany; Oral Surgery Department, The School of Dentistry, University of Birmingham, Birmingham, UK
| |
Collapse
|
87
|
Folkert J, Meresta A, Gaber T, Miksch K, Buttgereit F, Detert J, Pischon N, Gurzawska K. Nanocoating with plant-derived pectins activates osteoblast response in vitro. Int J Nanomedicine 2016; 12:239-249. [PMID: 28096669 PMCID: PMC5207473 DOI: 10.2147/ijn.s99020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
A new strategy to improve osseointegration of implants is to stimulate adhesion of bone cells, bone matrix formation, and mineralization at the implant surface by modifying surface coating on the nanoscale level. Plant-derived pectins have been proposed as potential candidates for surface nanocoating of orthopedic and dental titanium implants due to 1) their osteogenic stimulation of osteoblasts to mineralize and 2) their ability to control pectin structural changes. The aim of this study was to evaluate in vitro the impact of the nanoscale plant-derived pectin Rhamnogalacturonan-I (RG-I) from potato on the osteogenic response of murine osteoblasts. RG-I from potato pulps was isolated, structurally modified, or left unmodified. Tissue culture plates were either coated with modified RG-I or unmodified RG-I or - as a control - left uncoated. The effect of nanocoating on mice osteoblast-like cells MC3T3-E1 and primary murine osteoblast with regard to proliferation, osteogenic response in terms of mineralization, and gene expression of Runt-related transcription factor 2 (Runx2), alkaline phosphate (Alpl), osteocalcin (Bglap), α-1 type I collagen (Col1a1), and receptor activator of NF-κB ligand (Rankl) were analyzed after 3, 7, 14, and 21 days, respectively. Nanocoating with pectin RG-Is increased proliferation and mineralization of MC3T3-E1 and primary osteoblast as compared to osteoblasts cultured without nanocoating. Moreover, osteogenic transcriptional response of osteoblasts was induced by nanocoating in terms of gene induction of Runx2, Alpl, Bglap, and Col1a1 in a time-dependent manner - of note - to the highest extent under the PA-coating condition. In contrast, Rankl expression was initially reduced by nanocoating in MC3T3-E1 or remained unaltered in primary osteoblast as compared to the uncoated controls. Our results showed that nanocoating of implants with modified RG-I beneficially 1) supports osteogenesis, 2) has the capacity to improve osseointegration of implants, and is therefore 3) a potential candidate for nanocoating of bone implants.
Collapse
Affiliation(s)
- J Folkert
- Environmental Biotechnology Department, Faculty of Power and Environmental, Silesian University of Technology, Gliwice, Poland
| | - A Meresta
- Environmental Biotechnology Department, Faculty of Power and Environmental, Silesian University of Technology, Gliwice, Poland
| | - T Gaber
- Department of Rheumatology and Clinical Immunology
| | - K Miksch
- Environmental Biotechnology Department, Faculty of Power and Environmental, Silesian University of Technology, Gliwice, Poland
| | - F Buttgereit
- Department of Rheumatology and Clinical Immunology
| | - J Detert
- Department of Rheumatology and Clinical Immunology
| | - N Pischon
- Department of Periodontology, Charité-Universitätsmedizin, Berlin, Germany
| | - K Gurzawska
- Department of Periodontology, Charité-Universitätsmedizin, Berlin, Germany; Department of Oral Surgery, The School of Dentistry, University of Birmingham, Birmingham, UK
| |
Collapse
|
88
|
Crystallization of Galectin-8 Linker Reveals Intricate Relationship between the N-terminal Tail and the Linker. Int J Mol Sci 2016; 17:ijms17122088. [PMID: 27973456 PMCID: PMC5187888 DOI: 10.3390/ijms17122088] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/28/2016] [Accepted: 12/07/2016] [Indexed: 12/13/2022] Open
Abstract
Galectin-8 (Gal-8) plays a significant role in normal immunological function as well as in cancer. This lectin contains two carbohydrate recognition domains (CRD) connected by a peptide linker. The N-terminal CRD determines ligand binding specificity, whereas the linker has been proposed to regulate overall Gal-8 function, including multimerization and biological activity. Here, we crystallized the Gal-8 N-terminal CRD with the peptide linker using a crystallization condition that contains Ni2+. The Ni2+ ion was found to be complexed between two CRDs via crystal packing contacts. The coordination between Ni2+ and Asp25 plays an indirect role in determining the structure of β-strand F0 and in influencing the linker conformation which could not be defined due to its dynamic nature. The linker was also shortened in situ and crystallized under a different condition, leading to a higher resolution structure refined to 1.08 Å. This crystal structure allowed definition of a short portion of the linker interacting with the Gal-8 N-terminal tail via ionic interactions and hydrogen bonds. Observation of two Gal-8 N-terminal CRD structures implies that the N-terminal tail and the linker may influence each other’s conformation. In addition, under specific crystallization conditions, glycerol could replace lactose and was observed at the carbohydrate binding site. However, glycerol did not show inhibition activity in hemagglutination assay.
Collapse
|
89
|
Si Y, Feng S, Gao J, Wang Y, Zhang Z, Meng Y, Zhou Y, Tai G, Su J. Human galectin-2 interacts with carbohydrates and peptides non-classically: new insight from X-ray crystallography and hemagglutination. Acta Biochim Biophys Sin (Shanghai) 2016; 48:939-947. [PMID: 27563008 DOI: 10.1093/abbs/gmw089] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 07/29/2016] [Indexed: 12/15/2022] Open
Abstract
Galectin-2 (Gal-2) plays a role in cancer, myocardial infarction, immune response, and gastrointestinal tract diseases. The only reported crystal structure of Gal-2 shows that it is a dimer in which the monomer subunits have almost identical structures, each binding with one molecule of lactose. In this study, we crystallized Gal-2 under new conditions that produced three crystal structures. In each Gal-2 dimer structure, lactose was shown to be bound to only one of the carbohydrate recognition domain subunits. In solution studies, the thermal shift assay demonstrated that inequivalent monomer subunits in the Gal-2 dimer become equivalent upon ligand binding. In addition, galectin-mediated erythrocyte agglutination assays using lactose and larger complex polysaccharides as inhibitors showed the structural differences between Gal-1 and Gal-2. Overall, our results reveal some novel aspects to the structural differentiation in Gal-2 and expand the potential for different types of molecular interactions that may be specific to this lectin.
Collapse
Affiliation(s)
- Yunlong Si
- Jilin Province Key Laboratory on Chemistry and Biology of Natural Drugs in Changbai Mountain, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Shiqiong Feng
- Jilin Province Key Laboratory on Chemistry and Biology of Natural Drugs in Changbai Mountain, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Jin Gao
- Jilin Province Key Laboratory on Chemistry and Biology of Natural Drugs in Changbai Mountain, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Yue Wang
- Jilin Province Key Laboratory on Chemistry and Biology of Natural Drugs in Changbai Mountain, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Zhongyu Zhang
- Jilin Province Key Laboratory on Chemistry and Biology of Natural Drugs in Changbai Mountain, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Yue Meng
- Jilin Province Key Laboratory on Chemistry and Biology of Natural Drugs in Changbai Mountain, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Yifa Zhou
- Jilin Province Key Laboratory on Chemistry and Biology of Natural Drugs in Changbai Mountain, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Guihua Tai
- Jilin Province Key Laboratory on Chemistry and Biology of Natural Drugs in Changbai Mountain, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Jiyong Su
- Jilin Province Key Laboratory on Chemistry and Biology of Natural Drugs in Changbai Mountain, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
90
|
Zhang T, Lan Y, Zheng Y, Liu F, Zhao D, Mayo KH, Zhou Y, Tai G. Identification of the bioactive components from pH-modified citrus pectin and their inhibitory effects on galectin-3 function. Food Hydrocoll 2016. [DOI: 10.1016/j.foodhyd.2016.02.020] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
91
|
Zhang T, Zheng Y, Zhao D, Yan J, Sun C, Zhou Y, Tai G. Multiple approaches to assess pectin binding to galectin-3. Int J Biol Macromol 2016; 91:994-1001. [PMID: 27328612 DOI: 10.1016/j.ijbiomac.2016.06.058] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 06/15/2016] [Accepted: 06/18/2016] [Indexed: 11/16/2022]
Abstract
Although several approaches have been used to evaluate binding of carbohydrates to lectins, results are not always comparable, especially with larger polysaccharides. Here, we quantitatively assessed and compared binding of pectin-derived polysaccharides to galectin-3 (Gal-3) using five methods: surface plasmon resonance (SPR), bio-layer interferometry (BLI), fluorescence polarization (FP), competitive fluorescence-linked immunosorbance (cFLISA), and the well-known cell-based hemagglutination assay (G3H). Our studies revealed that whereas Gal-3-pectin binding parameters determined by SPR and BLI were comparable and correlated with inhibitory potencies from the G3H assay, results using FP and cFLISA assays were highly variable and depended greatly on the probe and mass of the polysaccharide. In the cFLISA assay, for example, pectins showed no inhibition when using the DTAF-labeled asialofetuin probe, but did when using a DTAF-labeled pectin probe. And the FP approach with the DTAF-lactose probe did not work on polysaccharides and large galactan chains, although it did work well with smaller galactans. Nevertheless, even though results derived from all of these methods are in general agreement, derived KD, IC50, and MIC values do differ. Our results reflect the variability using various techniques and therefore will be useful to investigators who are developing pectin-derived Gal-3 antagonists as anti-cancer agents.
Collapse
Affiliation(s)
- Tao Zhang
- Jilin Province Key Laboratory for Chemistry and Biology of Natural Drugs in Changbai Mountain, School of Life Sciences, Northeast Normal University, Changchun 130024, PR China
| | - Yi Zheng
- Jilin Province Key Laboratory for Chemistry and Biology of Natural Drugs in Changbai Mountain, School of Life Sciences, Northeast Normal University, Changchun 130024, PR China
| | - Dongyang Zhao
- Jilin Province Key Laboratory for Chemistry and Biology of Natural Drugs in Changbai Mountain, School of Life Sciences, Northeast Normal University, Changchun 130024, PR China
| | - Jingmin Yan
- Jilin Province Key Laboratory for Chemistry and Biology of Natural Drugs in Changbai Mountain, School of Life Sciences, Northeast Normal University, Changchun 130024, PR China
| | - Chongliang Sun
- Jilin Province Key Laboratory for Chemistry and Biology of Natural Drugs in Changbai Mountain, School of Life Sciences, Northeast Normal University, Changchun 130024, PR China
| | - Yifa Zhou
- Jilin Province Key Laboratory for Chemistry and Biology of Natural Drugs in Changbai Mountain, School of Life Sciences, Northeast Normal University, Changchun 130024, PR China.
| | - Guihua Tai
- Jilin Province Key Laboratory for Chemistry and Biology of Natural Drugs in Changbai Mountain, School of Life Sciences, Northeast Normal University, Changchun 130024, PR China.
| |
Collapse
|
92
|
Stegmayr J, Lepur A, Kahl-Knutson B, Aguilar-Moncayo M, Klyosov AA, Field RA, Oredsson S, Nilsson UJ, Leffler H. Low or No Inhibitory Potency of the Canonical Galectin Carbohydrate-binding Site by Pectins and Galactomannans. J Biol Chem 2016; 291:13318-34. [PMID: 27129206 PMCID: PMC4933242 DOI: 10.1074/jbc.m116.721464] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Indexed: 12/17/2022] Open
Abstract
Some complex plant-derived polysaccharides, such as modified citrus pectins and galactomannans, have been shown to have promising anti-inflammatory and anti-cancer effects. Most reports propose or claim that these effects are due to interaction of the polysaccharides with galectins because the polysaccharides contain galactose-containing side chains that might bind this class of lectin. However, their direct binding to and/or inhibition of the evolutionarily conserved galactoside-binding site of galectins has not been demonstrated. Using a well established fluorescence anisotropy assay, we tested the direct interaction of several such polysaccharides with physiological concentrations of a panel of galectins. The bioactive pectic samples tested were very poor inhibitors of the canonical galactoside-binding site for the tested galectins, with IC50 values >10 mg/ml for a few or in most cases no inhibitory activity at all. The galactomannan Davanat® was more active, albeit not a strong inhibitor (IC50 values ranging from 3 to 20 mg/ml depending on the galectin). Pure synthetic oligosaccharide fragments found in the side chains and backbone of pectins and galactomannans were additionally tested. The most commonly found galactan configuration in pectins had no inhibition of the galectins tested. Galactosylated tri- and pentamannosides, representing the structure of Davanat®, had an inhibitory effect of galectins comparable with that of free galactose. Further evaluation using cell-based assays, indirectly linked to galectin-3 inhibition, showed no inhibition of galectin-3 by the polysaccharides. These data suggest that the physiological effects of these plant polysaccharides are not due to inhibition of the canonical galectin carbohydrate-binding site.
Collapse
Affiliation(s)
- John Stegmayr
- From the Section MIG (Microbiology, Immunology, Glycobiology), Department of Laboratory Medicine, Lund University, 221 00 Lund, Sweden, the Department of Biology and
| | - Adriana Lepur
- From the Section MIG (Microbiology, Immunology, Glycobiology), Department of Laboratory Medicine, Lund University, 221 00 Lund, Sweden
| | - Barbro Kahl-Knutson
- From the Section MIG (Microbiology, Immunology, Glycobiology), Department of Laboratory Medicine, Lund University, 221 00 Lund, Sweden
| | - Matilde Aguilar-Moncayo
- the Department of Biological Chemistry, John Innes Centre, Norwich Research Park, NR4 7UH Norwich, United Kingdom, and
| | | | - Robert A Field
- the Department of Biological Chemistry, John Innes Centre, Norwich Research Park, NR4 7UH Norwich, United Kingdom, and
| | | | - Ulf J Nilsson
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University, Lund, Sweden
| | - Hakon Leffler
- From the Section MIG (Microbiology, Immunology, Glycobiology), Department of Laboratory Medicine, Lund University, 221 00 Lund, Sweden,
| |
Collapse
|
93
|
Peng X, Yang G, Fan X, Bai Y, Ren X, Zhou Y. Controlled methyl-esterification of pectin catalyzed by cation exchange resin. Carbohydr Polym 2016; 137:650-656. [PMID: 26686175 DOI: 10.1016/j.carbpol.2015.11.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 11/02/2015] [Accepted: 11/03/2015] [Indexed: 11/18/2022]
Abstract
This study developed a new method to methyl-esterify pectin using a cation exchange resin. Homogalacturonan (HG)-type pectin (WGPA-3-HG) and rhamnogalacturonan (RG)-I-type pectin (AHP-RG) obtained from the roots of Panax ginseng and sunflower heads, respectively, were used as models. Compared to commonly used methyl-esterification methods that use either methyl iodide or acidified methanol, the developed method can methyl-esterify both HG- and RG-I-type pectins without degrading their structures via β-elimination or acid hydrolysis. In addition, by modifying reaction conditions, including the mass ratio of resin to pectin, reaction time, and temperature, the degree of esterification can be controlled. Moreover, the resin and methanol can be recycled to conserve resources, lower costs, and reduce environmental pollution. This new methodology will be highly useful for industrial esterification of pectin.
Collapse
Affiliation(s)
- Xiaoxia Peng
- Jilin Province Key Laboratory on Chemistry and Biology of Natural Drugs in Changbai Mountain, School of Life Sciences, Northeast Normal University, Changchun 130024, PR China
| | - Guang Yang
- Jilin Province Key Laboratory on Chemistry and Biology of Natural Drugs in Changbai Mountain, School of Life Sciences, Northeast Normal University, Changchun 130024, PR China
| | - Xingchen Fan
- Jilin Province Key Laboratory on Chemistry and Biology of Natural Drugs in Changbai Mountain, School of Life Sciences, Northeast Normal University, Changchun 130024, PR China
| | - Yeming Bai
- Jilin Province Key Laboratory on Chemistry and Biology of Natural Drugs in Changbai Mountain, School of Life Sciences, Northeast Normal University, Changchun 130024, PR China
| | - Xiaomeng Ren
- Jilin Province Key Laboratory on Chemistry and Biology of Natural Drugs in Changbai Mountain, School of Life Sciences, Northeast Normal University, Changchun 130024, PR China
| | - Yifa Zhou
- Jilin Province Key Laboratory on Chemistry and Biology of Natural Drugs in Changbai Mountain, School of Life Sciences, Northeast Normal University, Changchun 130024, PR China.
| |
Collapse
|
94
|
Cui S, Yao B, Sun X, Hu J, Zhou Y, Liu Y. Reducing the content of carrier polymer in pectin nanofibers by electrospinning at low loading followed with selective washing. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 59:885-893. [DOI: 10.1016/j.msec.2015.10.086] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 09/20/2015] [Accepted: 10/26/2015] [Indexed: 12/31/2022]
|
95
|
Maxwell EG, Colquhoun IJ, Chau HK, Hotchkiss AT, Waldron KW, Morris VJ, Belshaw NJ. Modified sugar beet pectin induces apoptosis of colon cancer cells via an interaction with the neutral sugar side-chains. Carbohydr Polym 2016; 136:923-9. [DOI: 10.1016/j.carbpol.2015.09.063] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 09/15/2015] [Accepted: 09/21/2015] [Indexed: 11/28/2022]
|
96
|
Zheng Y, Yang G, Zhao Z, Guo T, Shi H, Zhou Y, Sun L. Structural analysis of ginseng polysaccharides extracted by EDTA solution. RSC Adv 2016. [DOI: 10.1039/c5ra22751h] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Polysaccharides extracted from Panax ginseng by EDTA solution are composed of both starch-like glucan and pectin.
Collapse
Affiliation(s)
- Yan Zheng
- Jilin Province Key Laboratory on Chemistry and Biology of Natural Drugs in Changbai Mountain
- School of Life Sciences
- Northeast Normal University
- Changchun 130024
- P. R. China
| | - Guang Yang
- Jilin Province Key Laboratory on Chemistry and Biology of Natural Drugs in Changbai Mountain
- School of Life Sciences
- Northeast Normal University
- Changchun 130024
- P. R. China
| | - Zihan Zhao
- Jilin Province Key Laboratory on Chemistry and Biology of Natural Drugs in Changbai Mountain
- School of Life Sciences
- Northeast Normal University
- Changchun 130024
- P. R. China
| | - Te Guo
- Jilin Province Key Laboratory on Chemistry and Biology of Natural Drugs in Changbai Mountain
- School of Life Sciences
- Northeast Normal University
- Changchun 130024
- P. R. China
| | - Huimin Shi
- Jilin Province Key Laboratory on Chemistry and Biology of Natural Drugs in Changbai Mountain
- School of Life Sciences
- Northeast Normal University
- Changchun 130024
- P. R. China
| | - Yifa Zhou
- Jilin Province Key Laboratory on Chemistry and Biology of Natural Drugs in Changbai Mountain
- School of Life Sciences
- Northeast Normal University
- Changchun 130024
- P. R. China
| | - Lin Sun
- Jilin Province Key Laboratory on Chemistry and Biology of Natural Drugs in Changbai Mountain
- School of Life Sciences
- Northeast Normal University
- Changchun 130024
- P. R. China
| |
Collapse
|
97
|
Rhamnogalacturonan I containing homogalacturonan inhibits colon cancer cell proliferation by decreasing ICAM1 expression. Carbohydr Polym 2015; 132:546-53. [DOI: 10.1016/j.carbpol.2015.06.082] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 06/22/2015] [Accepted: 06/24/2015] [Indexed: 12/29/2022]
|
98
|
|
99
|
Sun L, Wu D, Ning X, Yang G, Lin Z, Tian M, Zhou Y. α-Amylase-assisted extraction of polysaccharides from Panax ginseng. Int J Biol Macromol 2015; 75:152-7. [DOI: 10.1016/j.ijbiomac.2015.01.025] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Revised: 01/09/2015] [Accepted: 01/13/2015] [Indexed: 10/24/2022]
|
100
|
Blanchard H, Yu X, Collins PM, Bum-Erdene K. Galectin-3 inhibitors: a patent review (2008–present). Expert Opin Ther Pat 2014; 24:1053-65. [DOI: 10.1517/13543776.2014.947961] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|