51
|
Mamrut S, Avidan N, Truffault F, Staun-Ram E, Sharshar T, Eymard B, Frenkian M, Pitha J, de Baets M, Servais L, Berrih-Aknin S, Miller A. Methylome and transcriptome profiling in Myasthenia Gravis monozygotic twins. J Autoimmun 2017; 82:62-73. [PMID: 28549776 DOI: 10.1016/j.jaut.2017.05.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 05/11/2017] [Accepted: 05/15/2017] [Indexed: 01/07/2023]
Abstract
OBJECTIVE To identify novel genetic and epigenetic factors associated with Myasthenia gravis (MG) using an identical twins experimental study design. METHODS The transcriptome and methylome of peripheral monocytes were compared between monozygotic (MZ) twins discordant and concordant for MG, as well as with MG singletons and healthy controls, all females. Sets of differentially expressed genes and differentially methylated CpGs were validated using RT-PCR for expression and target bisulfite sequencing for methylation on additional samples. RESULTS >100 differentially expressed genes and ∼1800 differentially methylated CpGs were detected in peripheral monocytes between MG patients and controls. Several transcripts associated with immune homeostasis and inflammation resolution were reduced in MG patients. Only a relatively few genes differed between the discordant healthy and MG co-twins, and both their expression and methylation profiles demonstrated very high similarity. INTERPRETATION This is the first study to characterize the DNA methylation profile in MG, and the expression profile of immune cells in MZ twins with MG. Results suggest that numerous small changes in gene expression or methylation might together contribute to disease. Impaired monocyte function in MG and decreased expression of genes associated with inflammation resolution could contribute to the chronicity of the disease. Findings may serve as potential new predictive biomarkers for disease and disease activity, as well as potential future targets for therapy development. The high similarity between the healthy and the MG discordant twins, suggests that a molecular signature might precede a clinical phenotype, and that genetic predisposition may have a stronger contribution to disease than previously assumed.
Collapse
Affiliation(s)
- Shimrat Mamrut
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, 31096, Israel
| | - Nili Avidan
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, 31096, Israel
| | - Frédérique Truffault
- INSERM - U974/CNRS UMR7215//UPMC UM76/AIM, Institute of Myology Pitie-Salpetriere, Paris, 73013, France
| | - Elsebeth Staun-Ram
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, 31096, Israel
| | - Tarek Sharshar
- General Intensive Care Medicine, Assistance Publique Hôpitaux de Paris, Raymond Poincaré Hospital, University of Versailles Saint-Quentin en Yvelines, 92380, Garches, France
| | - Bruno Eymard
- Department of Neuromuscular Disorders, CHU Salpêtrière, Paris, 75013, France
| | - Mélinée Frenkian
- INSERM - U974/CNRS UMR7215//UPMC UM76/AIM, Institute of Myology Pitie-Salpetriere, Paris, 73013, France
| | - Jiri Pitha
- Department of Neurology and Clinical Neuroscience Center, 1st Faculty of Medicine, Charles University and General Teaching Hospital, Prague, Czech Republic
| | - Marc de Baets
- Neuroimmunology Group, Division of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Laurent Servais
- Institute of Myology, Groupe hospitalier Pitié-Salpêtrière, AP-HP, Sorbonne Universités, UPMC Universités Paris 06, INSERM, Paris, 75013, France
| | - Sonia Berrih-Aknin
- INSERM - U974/CNRS UMR7215//UPMC UM76/AIM, Institute of Myology Pitie-Salpetriere, Paris, 73013, France
| | - Ariel Miller
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, 31096, Israel; Division of Neuroimmunology, Lady Davis Carmel Medical Center, Haifa, 34362, Israel.
| |
Collapse
|
52
|
Geng HX, Li RP, Li YG, Wang XQ, Zhang L, Deng JB, Wang L, Deng JX. 14,15-EET Suppresses Neuronal Apoptosis in Ischemia-Reperfusion Through the Mitochondrial Pathway. Neurochem Res 2017; 42:2841-2849. [PMID: 28508993 DOI: 10.1007/s11064-017-2297-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 04/28/2017] [Accepted: 05/08/2017] [Indexed: 11/28/2022]
Abstract
Neuronal apoptosis mediated by the mitochondrial apoptosis pathway is an important pathological process in cerebral ischemia-reperfusion injury. 14,15-EET, an intermediate metabolite of arachidonic acid, can promote cell survival during ischemia/reperfusion. However, whether the mitochondrial apoptotic pathway is involved this survival mechanism is not fully understood. In this study, we observed that infarct size in ischemia-reperfusion injury was reduced in sEH gene knockout mice. In addition, Caspase 3 activation, cytochrome C release and AIF nuclear translocation were also inhibited. In this study, 14,15-EET pretreatment reduced neuronal apoptosis in the oxygen-glucose deprivation and re-oxygenation group in vitro. The mitochondrial apoptosis pathway was also inhibited, as evidenced by AIF translocation from the mitochondria to nucleus and the reduction in the expressions of cleaved-caspase 3 and cytochrome C in the cytoplasm. 14,15-EET could reduce neuronal apoptosis through upregulation of the ratio of Bcl-2 (anti-apoptotic protein) to Bax (apoptosis protein) and inhibition of Bax aggregation onto mitochondria. PI3K/AKT pathway is also probably involved in the reduction of neuronal apoptosis by EET. Our study suggests that 14,15-EET could suppress neuronal apoptosis and reduce infarct volume through the mitochondrial apoptotic pathway. Furthermore, the PI3K/AKT pathway also appears to be involved in the neuroprotection against ischemia-reperfusion by 14,15-EET.
Collapse
Affiliation(s)
- Hui-Xia Geng
- School of Nursing and Health Sciences, Henan University, Kaifeng, 475004, Henan, People's Republic of China
| | - Rui-Ping Li
- Institute of Neurobiology, College of Life Science, Henan University, Kaifeng, 475004, Henan, People's Republic of China
| | - Ying-Ge Li
- Institute of Neurobiology, College of Life Science, Henan University, Kaifeng, 475004, Henan, People's Republic of China
| | - Xiao-Qing Wang
- Institute of Neurobiology, College of Life Science, Henan University, Kaifeng, 475004, Henan, People's Republic of China
| | - Li Zhang
- School of Nursing and Health Sciences, Henan University, Kaifeng, 475004, Henan, People's Republic of China
| | - Jin-Bo Deng
- Institute of Neurobiology, College of Life Science, Henan University, Kaifeng, 475004, Henan, People's Republic of China
| | - Lai Wang
- Institute of Neurobiology, College of Life Science, Henan University, Kaifeng, 475004, Henan, People's Republic of China.
| | - Jie-Xin Deng
- Institute of Neurobiology, College of Life Science, Henan University, Kaifeng, 475004, Henan, People's Republic of China.
| |
Collapse
|
53
|
HIV-related proteins prolong macrophage survival through induction of Triggering receptor expressed on myeloid cells-1. Sci Rep 2017; 7:42028. [PMID: 28181540 PMCID: PMC5299418 DOI: 10.1038/srep42028] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 01/03/2017] [Indexed: 12/11/2022] Open
Abstract
Triggering receptor expressed on myeloid cells-1(TREM-1) is a member of the superimmunoglobulin receptor family. We have previously shown that TREM-1 prolongs survival of macrophages treated with lipoolysaccharide through Egr2-Bcl2 signaling. Recent studies suggest a role for TREM-1 in viral immunity. Human immunodeficiency virus-1 (HIV) targets the monocyte/macrophage lineage at varying stages of infection. Emerging data suggest that macrophages are key reservoirs for latent HIV even in individuals on antiretroviral therapy. Here, we investigated the potential role of TREM-1 in HIV latency in macrophages. Our data show that human macrophages infected with HIV show an increased expression of TREM-1. In parallel, direct exposure to the HIV-related proteins Tat or gp120 induces TREM-1 expression in macrophages and confers anti-apoptotic attributes.NF-κB p65 silencing identified that these proteins induce TREM-1 in p65-dependent manner. TREM-1 silencing in macrophages exposed to HIV-related proteins led to increased caspase 3 activation and reduced Bcl-2 expression, rendering them susceptible to apotosis. These novel data reveal that TREM-1 may play a critical role in establishing HIV reservoir in macrophages by inhibiting apoptosis. Therefore, targeting TREM-1 could be a novel therapeutic approach to enhance clearance of the HIV reservoir, at least within the macrophage pools.
Collapse
|
54
|
Inflammation and Cancer: Extra- and Intracellular Determinants of Tumor-Associated Macrophages as Tumor Promoters. Mediators Inflamm 2017; 2017:9294018. [PMID: 28197019 PMCID: PMC5286482 DOI: 10.1155/2017/9294018] [Citation(s) in RCA: 146] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 12/26/2016] [Indexed: 02/08/2023] Open
Abstract
One of the hallmarks of cancer-related inflammation is the recruitment of monocyte-macrophage lineage cells to the tumor microenvironment. These tumor infiltrating myeloid cells are educated by the tumor milieu, rich in cancer cells and stroma components, to exert functions such as promotion of tumor growth, immunosuppression, angiogenesis, and cancer cell dissemination. Our review highlights the ontogenetic diversity of tumor-associated macrophages (TAMs) and describes their main phenotypic markers. We cover fundamental molecular players in the tumor microenvironment including extra- (CCL2, CSF-1, CXCL12, IL-4, IL-13, semaphorins, WNT5A, and WNT7B) and intracellular signals. We discuss how these factors converge on intracellular determinants (STAT3, STAT6, STAT1, NF-κB, RORC1, and HIF-1α) of cell functions and drive the recruitment and polarization of TAMs. Since microRNAs (miRNAs) modulate macrophage polarization key miRNAs (miR-146a, miR-155, miR-125a, miR-511, and miR-223) are also discussed in the context of the inflammatory myeloid tumor compartment. Accumulating evidence suggests that high TAM infiltration correlates with disease progression and overall poor survival of cancer patients. Identification of molecular targets to develop new therapeutic interventions targeting these harmful tumor infiltrating myeloid cells is emerging nowadays.
Collapse
|
55
|
Thankam FG, Dilisio MF, Dougherty KA, Dietz NE, Agrawal DK. Triggering receptor expressed on myeloid cells and 5'adenosine monophosphate-activated protein kinase in the inflammatory response: a potential therapeutic target. Expert Rev Clin Immunol 2016; 12:1239-1249. [PMID: 27266327 PMCID: PMC5158012 DOI: 10.1080/1744666x.2016.1196138] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
INTRODUCTION The events in the cellular and molecular signaling triggered during inflammation mitigate tissue healing. The metabolic check-point control mediated by 5'-adenosine monophosphate-activated protein kinase (AMPK) is crucial for switching the cells into an activated state capable of mediating inflammatory events. The cell metabolism involved in the inflammatory response represents a potential therapeutic target for the pharmacologic management of inflammation. Areas covered: In this article, a critical review is presented on triggering receptor expressed on myeloid cell (TREM) receptors and their role in the inflammatory responses, as well as homeostasis between different TREM molecules and their regulation. Additionally, we discussed the relationship between TREM and AMPK to identify novel targets to limit the inflammatory response. Literature search was carried out from the National Library of Medicine's Medline database (using PubMed as the search engine) and Google Scholar and identified relevant studies up to 30 March 2016 using inflammation, TREM, AMPK, as the key words. Expert commentary: The prevention of phenotype switching of immune cells during inflammation by targeting AMPK and TREM-1 could be beneficial for developing novel management strategies for inflammation and associated complications.
Collapse
Affiliation(s)
- Finosh G Thankam
- Department of Clinical & Translational Science, Creighton University School of Medicine, Omaha, NE, USA
| | - Matthew F. Dilisio
- Department of Orthopedic Surgery, Creighton University School of Medicine, Omaha, NE, USA
| | | | - Nicholas E. Dietz
- Department of Pathology, Creighton University School of Medicine, Omaha, NE, USA
| | - Devendra K. Agrawal
- Department of Clinical & Translational Science, Creighton University School of Medicine, Omaha, NE, USA
| |
Collapse
|
56
|
Hall SC, Agrawal DK. Toll-like receptors, triggering receptor expressed on myeloid cells family members and receptor for advanced glycation end-products in allergic airway inflammation. Expert Rev Respir Med 2016; 10:171-84. [PMID: 26678062 PMCID: PMC4955846 DOI: 10.1586/17476348.2016.1133303] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Asthma is a chronic disorder of the airways characterized by cellular infiltration, airway hyper-responsive and airway inflammation. Innate immune cells are the first line of defense against endogenous and exogenous signals in the airways and as such possess a diverse array of pattern recognition receptors. Toll-like receptors are crucial sentinels which when activated, can either promote or ameliorate the inflammatory response in predisposed individuals. The recently discovered triggering receptor expressed on myeloid cells family members are emerging mediators of inflammation. These receptors are believed to modulate inflammatory responses by collaborating with classic PRRs. Endogenous signals like HMGB-1, signaling through the receptor for advanced glycation end products, also promotes inflammation, however, its contribution to inflammation in the airways is not well known. Here, we discuss the role of each receptor in airway inflammation and highlight potential synergistic mechanisms, which contribute to disease pathogenesis in allergic asthma.
Collapse
Affiliation(s)
- Sannette C. Hall
- Department of Biomedical Science, Creighton University School of Medicine, Omaha, NE, USA
| | - Devendra K. Agrawal
- Department of Biomedical Science, Creighton University School of Medicine, Omaha, NE, USA
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, NE, USA
- Center for Clinical and Translational Science Creighton University School of Medicine, Omaha, NE, USA
| |
Collapse
|
57
|
Peng L, Zhou Y, Dong L, Chen RQ, Sun GY, Liu T, Ran WZ, Fang X, Jiang JX, Guan CX. TGF-β1 Upregulates the Expression of Triggering Receptor Expressed on Myeloid Cells 1 in Murine Lungs. Sci Rep 2016; 6:18946. [PMID: 26738569 PMCID: PMC4704059 DOI: 10.1038/srep18946] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 12/01/2015] [Indexed: 01/05/2023] Open
Abstract
Triggering receptor expressed on myeloid cells 1 (TREM-1) increases the expression of TGF-β family genes, which are known as profibrogenic cytokines in the pathogenesis of pulmonary fibrosis. In this study, we determined whether TGF-β1 regulated the expression of TREM-1 in a mouse model of pulmonary fibrosis. The expression of TGF-β1 and TREM-1 was increased on day 7, 14, and 21 after single intratracheal injection of bleomycin (BLM). And there was positive correlation between the expression of TGF-β1 and TREM-1. TGF-β1 increased expression of TREM-1 mRNA and protein in a time- and dose-dependent manner in mouse macrophages. The expression of the activator protein 1 (AP-1) was increased in lung tissues from mouse after BLM injection and in mouse macrophages after TGF-β1 treatment, respectively. TGF-β1 significantly increased the relative activity of luciferase in the cells transfected with plasmid contenting wild type-promoter of TREM-1. But TGF-β1 had no effect on the activity of luciferase in the cells transfected with a mutant-TREM1 plasmid carrying mutations in the AP-1 promoter binding site. In conclusion, we found the expression of TREM-1 was increased in lung tissues from mice with pulmonary fibrosis. TGF-β1 increased the expression of TREM-1 in mouse macrophages partly via the transcription factor AP-1.
Collapse
Affiliation(s)
- Li Peng
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Yong Zhou
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Liang Dong
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Rui-Qi Chen
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Guo-Ying Sun
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Tian Liu
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Wen-Zhuo Ran
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Xiang Fang
- Department of Neurology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Jian-Xin Jiang
- State Key Laboratory of Trauma, Burns, and Combined Injury, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Cha-Xiang Guan
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, China
| |
Collapse
|
58
|
Yuan Z, Syed M, Panchal D, Joo M, Bedi C, Lim S, Onyuksel H, Rubinstein I, Colonna M, Sadikot RT. TREM-1-accentuated lung injury via miR-155 is inhibited by LP17 nanomedicine. Am J Physiol Lung Cell Mol Physiol 2015; 310:L426-38. [PMID: 26684249 DOI: 10.1152/ajplung.00195.2015] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 12/11/2015] [Indexed: 01/01/2023] Open
Abstract
Triggering receptors expressed on myeloid cell-1 (TREM-1) is a superimmunoglobulin receptor expressed on myeloid cells. Synergy between TREM-1 and Toll-like receptor amplifies the inflammatory response; however, the mechanisms by which TREM-1 accentuates inflammation are not fully understood. In this study, we investigated the role of TREM-1 in a model of LPS-induced lung injury and neutrophilic inflammation. We show that TREM-1 is induced in lungs of mice with LPS-induced acute neutrophilic inflammation. TREM-1 knockout mice showed an improved survival after lethal doses of LPS with an attenuated inflammatory response in the lungs. Deletion of TREM-1 gene resulted in significantly reduced neutrophils and proinflammatory cytokines and chemokines, particularly IL-1β, TNF-α, and IL-6. Physiologically deletion of TREM-1 conferred an immunometabolic advantage with low oxygen consumption rate (OCR) sparing the respiratory capacity of macrophages challenged with LPS. Furthermore, we show that TREM-1 deletion results in significant attenuation of expression of miR-155 in macrophages and lungs of mice treated with LPS. Experiments with antagomir-155 confirmed that TREM-1-mediated changes were indeed dependent on miR-155 and are mediated by downregulation of suppressor of cytokine signaling-1 (SOCS-1) a key miR-155 target. These data for the first time show that TREM-1 accentuates inflammatory response by inducing the expression of miR-155 in macrophages and suggest a novel mechanism by which TREM-1 signaling contributes to lung injury. Inhibition of TREM-1 using a nanomicellar approach resulted in ablation of neutrophilic inflammation suggesting that TREM-1 inhibition is a potential therapeutic target for neutrophilic lung inflammation and acute respiratory distress syndrome (ARDS).
Collapse
Affiliation(s)
- Zhihong Yuan
- Department of Veterans Affairs, Atlanta Veterans Affairs Medical Center, Decatur, Georgia; Division of Pulmonary and Critical Care Medicine, Emory University, Atlanta, Georgia
| | - Mansoor Syed
- Division of Pulmonary and Critical Medicine, Yale University, New Haven, Connecticut
| | - Dipti Panchal
- Division of Pulmonary and Critical Care Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Myungsoo Joo
- Department of Immunology, Pusan University, Yangsan, Korea
| | - Chetna Bedi
- Department of Veterans Affairs, Atlanta Veterans Affairs Medical Center, Decatur, Georgia
| | - Sokbee Lim
- School of Pharmacy, University of Illinois at Chicago, Chicago, Illinois
| | - Hayat Onyuksel
- School of Pharmacy, University of Illinois at Chicago, Chicago, Illinois
| | - Israel Rubinstein
- Division of Pulmonary and Critical Care Medicine, University of Illinois at Chicago, Chicago, Illinois; Department of Veterans Affairs, Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois; and
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri
| | - Ruxana T Sadikot
- Department of Veterans Affairs, Atlanta Veterans Affairs Medical Center, Decatur, Georgia; Division of Pulmonary and Critical Care Medicine, Emory University, Atlanta, Georgia;
| |
Collapse
|
59
|
TREM-1 signaling promotes host defense during the early stage of infection with highly pathogenic Streptococcus suis. Infect Immun 2015; 83:3293-301. [PMID: 26056380 DOI: 10.1128/iai.00440-15] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 05/20/2015] [Indexed: 01/18/2023] Open
Abstract
Infection with highly pathogenic Streptococcus suis can cause septic shock, which is characterized by high levels of inflammatory cytokines and a high mortality rate. Our previous study indicated that TREM-1 (triggering receptor expressed on myeloid cells 1) was upregulated in swine spleen cells in response to S. suis infection. The role of TREM-1 signaling in enhancement of the proinflammatory response promoted us to examine its effect on the outcome of S. suis infection. In the present study, the recombinant extracellular domain of TREM-1 (rTREM-1) and an agonistic TREM-1 antibody were used to inhibit and activate TREM-1 signaling to evaluate its role in neutrophil activation, pathogen clearance, proinflammatory cytokine response, and the outcome of highly pathogenic S. suis infection in a mouse model. Blockage of TREM-1 signaling caused a more severe proinflammatory response to S. suis infection and increased the mortality rate, while its activation had the opposite effect. Blockage or activation of TREM-1 signaling lowered or raised the number of neutrophils in the blood, which correlated well with host clearance of S. suis. In conclusion, the TREM-1-mediated innate immune response played an essential role in the activation of neutrophils and S. suis clearance, which further reduced severe inflammation and finally benefited the outcome of the infection.
Collapse
|
60
|
Genua M, Rutella S, Correale C, Danese S. The triggering receptor expressed on myeloid cells (TREM) in inflammatory bowel disease pathogenesis. J Transl Med 2014; 12:293. [PMID: 25347935 PMCID: PMC4231187 DOI: 10.1186/s12967-014-0293-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 10/09/2014] [Indexed: 01/29/2023] Open
Abstract
The Triggering Receptors Expressed on Myeloid cells (TREM) are a family of cell-surface molecules that control inflammation, bone homeostasis, neurological development and blood coagulation. TREM-1 and TREM-2, the best-characterized receptors so far, play divergent roles in several infectious diseases. In the intestine, TREM-1 is highly expressed by macrophages, contributing to inflammatory bowel disease (IBD) pathogenesis. Contrary to current understanding, TREM-2 also promotes inflammation in IBD by fueling dendritic cell functions. This review will focus specifically on recent insights into the role of TREM proteins in IBD development, and discuss opportunities for novel treatment approaches.
Collapse
Affiliation(s)
- Marco Genua
- IBD Center, Humanitas Clinical and Research Hospital, Rozzano, Italy.
| | - Sergio Rutella
- Division of Translational Medicine, Research Branch, Sidra Medical & Research Center, Doha, Qatar.
| | - Carmen Correale
- IBD Center, Humanitas Clinical and Research Hospital, Rozzano, Italy.
| | - Silvio Danese
- IBD Center, Humanitas Clinical and Research Hospital, Rozzano, Italy.
| |
Collapse
|