51
|
Artemisinin and Derivatives-Based Hybrid Compounds: Promising Therapeutics for the Treatment of Cancer and Malaria. Molecules 2021; 26:molecules26247521. [PMID: 34946603 PMCID: PMC8707619 DOI: 10.3390/molecules26247521] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 08/18/2021] [Accepted: 08/24/2021] [Indexed: 01/12/2023] Open
Abstract
Cancer and malaria are major health conditions around the world despite many strategies and therapeutics available for their treatment. The most used strategy for the treatment of these diseases is the administration of therapeutic drugs, which suffer from several shortcomings. Some of the pharmacological limitations associated with these drugs are multi-drug resistance, drug toxicity, poor biocompatibility and bioavailability, and poor water solubility. The currently ongoing preclinical studies have demonstrated that combination therapy is a potent approach that can overcome some of the aforementioned limitations. Artemisinin and its derivatives have been reported to exhibit potent efficacy as anticancer and antimalarial agents. This review reports hybrid compounds containing artemisinin scaffolds and their derivatives with promising therapeutic effects for the treatment of cancer and malaria.
Collapse
|
52
|
Guo Q, Li L, Hou S, Yuan Z, Li C, Zhang W, Zheng L, Li X. The Role of Iron in Cancer Progression. Front Oncol 2021; 11:778492. [PMID: 34858857 PMCID: PMC8631356 DOI: 10.3389/fonc.2021.778492] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 10/15/2021] [Indexed: 01/19/2023] Open
Abstract
Iron is an essential trace element for the human body, and its deficiency or excess can induce a variety of biological processes. Plenty of evidences have shown that iron metabolism is closely related to the occurrence and development of tumors. In addition, iron plays an important role in cell death, which is very important for the development of potential strategies for tumor treatment. Here, we reviewed the latest research about iron metabolism disorders in various types of tumors, the functions and properties of iron in ferroptosis and ferritinophagy, and new opportunities for iron-based on treatment methods for tumors, providing more information regarding the prevention and treatment of tumors.
Collapse
Affiliation(s)
- Qianqian Guo
- Department of Pharmacy, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Liwen Li
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Shanshan Hou
- Department of Pharmacy, Zhejiang Pharmaceutical College, Ningbo, China
| | - Ziqiao Yuan
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Chenhui Li
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Wenzhou Zhang
- Department of Pharmacy, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Lufeng Zheng
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xiaoman Li
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
53
|
Valashedi MR, Nikoo A, Najafi-Ghalehlou N, Tomita K, Kuwahara Y, Sato T, Roushandeh AM, Roudkenar MH. Pharmacological Targeting of Ferroptosis in Cancer Treatment. Curr Cancer Drug Targets 2021; 22:108-125. [PMID: 34856903 DOI: 10.2174/1568009621666211202091523] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/13/2021] [Accepted: 10/15/2021] [Indexed: 01/17/2023]
Abstract
Ferroptosis is a non-apoptotic mode of Regulated Cell Death (RCD) driven by excessive accumulation of toxic lipid peroxides and iron overload. Ferroptosis could be triggered by inhibiting the antioxidant defense system and accumulating iron-dependent Reactive Oxygen Species (ROS) that react with polyunsaturated fatty acids in abundance. Emerging evidence over the past few years has revealed that ferroptosis is of great potential in inhibiting growth and metastasis and overcoming tumor cell resistance. Thus, targeting this form of cell death could be perceived as a potentially burgeoning approach in cancer treatment. This review briefly presents the underlying mechanisms of ferroptosis and further aims to discuss various types of existing drugs and natural compounds that could be potentially repurposed for targeting ferroptosis in tumor cells. This, in turn, will provide critical perspectives on future studies concerning ferroptosis-based cancer therapy.
Collapse
Affiliation(s)
- Mehdi Rabiee Valashedi
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht. Iran
| | - Amirsadegh Nikoo
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht. Iran
| | - Nima Najafi-Ghalehlou
- Department of Medical Laboratory Sciences, Faculty of Paramedicine, Tabriz University of Medical Sciences, Tabriz. Iran
| | - Kazuo Tomita
- Department of Applied Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima. Japan
| | - Yoshikazu Kuwahara
- Department of Applied Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima. Iran
| | - Tomoaki Sato
- Department of Applied Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima. Iran
| | - Amaneh Mohammadi Roushandeh
- Department of Applied Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima. Iran
| | - Mehryar Habibi Roudkenar
- Department of Applied Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima. Iran
| |
Collapse
|
54
|
Cosialls E, El Hage R, Dos Santos L, Gong C, Mehrpour M, Hamaï A. Ferroptosis: Cancer Stem Cells Rely on Iron until "to Die for" It. Cells 2021; 10:cells10112981. [PMID: 34831207 PMCID: PMC8616391 DOI: 10.3390/cells10112981] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/29/2021] [Accepted: 10/29/2021] [Indexed: 12/13/2022] Open
Abstract
Cancer stem cells (CSCs) are a distinct subpopulation of tumor cells with stem cell-like features. Able to initiate and sustain tumor growth and mostly resistant to anti-cancer therapies, they are thought responsible for tumor recurrence and metastasis. Recent accumulated evidence supports that iron metabolism with the recent discovery of ferroptosis constitutes a promising new lead in the field of anti-CSC therapeutic strategies. Indeed, iron uptake, efflux, storage and regulation pathways are all over-engaged in the tumor microenvironment suggesting that the reprogramming of iron metabolism is a crucial occurrence in tumor cell survival. In particular, recent studies have highlighted the importance of iron metabolism in the maintenance of CSCs. Furthermore, the high concentration of iron found in CSCs, as compared to non-CSCs, underlines their iron addiction. In line with this, if iron is an essential macronutrient that is nevertheless highly reactive, it represents their Achilles’ heel by inducing ferroptosis cell death and therefore providing opportunities to target CSCs. In this review, we first summarize our current understanding of iron metabolism and its regulation in CSCs. Then, we provide an overview of the current knowledge of ferroptosis and discuss the role of autophagy in the (regulation of) ferroptotic pathways. Finally, we discuss the potential therapeutic strategies that could be used for inducing ferroptosis in CSCs to treat cancer.
Collapse
Affiliation(s)
- Emma Cosialls
- Institut Necker-Enfants Malades (INEM), Inserm U1151-CNRS UMR 8253, Université Paris Descartes-Sorbonne Paris Cité, F-75993 Paris, France; (E.C.); (R.E.H.); (L.D.S.)
| | - Rima El Hage
- Institut Necker-Enfants Malades (INEM), Inserm U1151-CNRS UMR 8253, Université Paris Descartes-Sorbonne Paris Cité, F-75993 Paris, France; (E.C.); (R.E.H.); (L.D.S.)
| | - Leïla Dos Santos
- Institut Necker-Enfants Malades (INEM), Inserm U1151-CNRS UMR 8253, Université Paris Descartes-Sorbonne Paris Cité, F-75993 Paris, France; (E.C.); (R.E.H.); (L.D.S.)
| | - Chang Gong
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Guangzhou 510120, China;
| | - Maryam Mehrpour
- Institut Necker-Enfants Malades (INEM), Inserm U1151-CNRS UMR 8253, Université Paris Descartes-Sorbonne Paris Cité, F-75993 Paris, France; (E.C.); (R.E.H.); (L.D.S.)
- Correspondence: (M.M.); (A.H.)
| | - Ahmed Hamaï
- Institut Necker-Enfants Malades (INEM), Inserm U1151-CNRS UMR 8253, Université Paris Descartes-Sorbonne Paris Cité, F-75993 Paris, France; (E.C.); (R.E.H.); (L.D.S.)
- Correspondence: (M.M.); (A.H.)
| |
Collapse
|
55
|
Guo X, Yang N, Ji W, Zhang H, Dong X, Zhou Z, Li L, Shen HM, Yao SQ, Huang W. Mito-Bomb: Targeting Mitochondria for Cancer Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007778. [PMID: 34510563 DOI: 10.1002/adma.202007778] [Citation(s) in RCA: 147] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 06/12/2021] [Indexed: 05/22/2023]
Abstract
Cancer has been one of the most common life-threatening diseases for a long time. Traditional cancer therapies such as surgery, chemotherapy (CT), and radiotherapy (RT) have limited effects due to drug resistance, unsatisfactory treatment efficiency, and side effects. In recent years, photodynamic therapy (PDT), photothermal therapy (PTT), and chemodynamic therapy (CDT) have been utilized for cancer treatment owing to their high selectivity, minor resistance, and minimal toxicity. Accumulating evidence has demonstrated that selective delivery of drugs to specific subcellular organelles can significantly enhance the efficiency of cancer therapy. Mitochondria-targeting therapeutic strategies are promising for cancer therapy, which is attributed to the essential role of mitochondria in the regulation of cancer cell apoptosis, metabolism, and more vulnerable to hyperthermia and oxidative damage. Herein, the rational design, functionalization, and applications of diverse mitochondria-targeting units, involving organic phosphine/sulfur salts, quaternary ammonium (QA) salts, peptides, transition-metal complexes, guanidinium or bisguanidinium, as well as mitochondria-targeting cancer therapies including PDT, PTT, CDT, and others are summarized. This review aims to furnish researchers with deep insights and hints in the design and applications of novel mitochondria-targeting agents for cancer therapy.
Collapse
Affiliation(s)
- Xiaolu Guo
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, China
| | - Naidi Yang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, China
| | - Wenhui Ji
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, China
| | - Hang Zhang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, China
| | - Xiao Dong
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
| | - Zhiqiang Zhou
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, China
| | - Lin Li
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, China
| | - Han-Ming Shen
- Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Shao Q Yao
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, China
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China
| |
Collapse
|
56
|
Bader S, Wilmers J, Ontikatze T, Ritter V, Jendrossek V, Rudner J. Loss of pro-apoptotic Bax and Bak increases resistance to dihydroartemisinin-mediated cytotoxicity in normoxia but not in hypoxia in HCT116 colorectal cancer cells. Free Radic Biol Med 2021; 174:157-170. [PMID: 34403740 DOI: 10.1016/j.freeradbiomed.2021.08.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/04/2021] [Accepted: 08/12/2021] [Indexed: 02/07/2023]
Abstract
Tumor hypoxia is a major biological factor that drives resistance to chemotherapy and radiotherapy. We previously demonstrated that the pro-oxidative drug dihydroartemisinin (DHA) efficiently targeted normoxic and hypoxic cancer cells. Although well studied in normoxia, the mechanism behind DHA-mediated cytotoxicity in hypoxia is insufficiently explored. Here, we analyzed the effect of DHA in HCT116 wild type (wt) cells and in HCT116 Bax-/-Baksh cells with a defective intrinsic apoptosis pathway. Normoxic HCT116 wt cells underwent apoptosis shortly after treatment with DHA. Autophagy-associated cell death contributes to short-term cytotoxicity of DHA in normoxia. These cells switched to an apoptosis- and autophagy-independent cell death after treatment with DHA in hypoxia and displayed similar long-term survival in response to DHA in normoxia and hypoxia. In HCT116 Bax-/-Baksh cells, DHA induced cell cycle arrest shortly after treatment irrespective of oxygen levels. Later, HCT116 Bax-/-Baksh cells induced a delayed cell death after treatment with DHA in hypoxia followed by return to normoxia, while treatment with DHA in normoxia was hardly toxic. We identified lower glutathione levels in hypoxic HCT116 cells which correlated with higher lipid peroxidation after treatment with DHA. Moreover, insufficient expression of Bax/Bak counteracted hypoxia-mediated downregulation of mitochondrial function, thereby adding to DHA-induced ROS production and lipid peroxidation in hypoxia. In summary, DHA-mediated cytotoxicity in normoxia depended on Bax/Bak expression, while cytotoxicity after treatment with DHA in hypoxia was regulated independently of Bax/Bak in HCT116 colorectal cancer cells.
Collapse
Affiliation(s)
- Sina Bader
- Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Julia Wilmers
- Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Teona Ontikatze
- Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Violetta Ritter
- Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Verena Jendrossek
- Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Justine Rudner
- Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, Essen, Germany.
| |
Collapse
|
57
|
Ali A, Shafarin J, Abu Jabal R, Aljabi N, Hamad M, Sualeh Muhammad J, Unnikannan H, Hamad M. Ferritin heavy chain (FTH1) exerts significant antigrowth effects in breast cancer cells by inhibiting the expression of c-MYC. FEBS Open Bio 2021; 11:3101-3114. [PMID: 34551213 PMCID: PMC8564339 DOI: 10.1002/2211-5463.13303] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/19/2021] [Accepted: 09/21/2021] [Indexed: 12/24/2022] Open
Abstract
Overexpression of ferritin heavy chain (FTH1) often associates with good prognosis in breast cancer (BCa), particularly in the triple‐negative subtype (triple‐negative breast cancer). However, the mechanism by which FTH1 exerts its possible tumor suppressor effects in BCa is not known. Here, we examined the bearing of FTH1 silencing or overexpression on several aspects of BCa cell growth in vitro. FTH1 silencing promoted cell growth and mammosphere formation, increased c‐MYC expression, and reduced cell sensitivity to chemotherapy. In contrast, FTH1 overexpression inhibited cell growth, decreased c‐MYC expression, and sensitized cancer cells to chemotherapy; silencing of c‐MYC recapitulated the effects of FTH1 overexpression. These findings show for the first time that FTH1 suppresses tumor growth by inhibiting the expression of key oncogenes, such as c‐MYC.
Collapse
Affiliation(s)
- Amjad Ali
- Research Institute for Medical and Health SciencesUniversity of SharjahUnited Arab Emirates
| | - Jasmin Shafarin
- Research Institute for Medical and Health SciencesUniversity of SharjahUnited Arab Emirates
| | - Rola Abu Jabal
- Department of Basic Medical SciencesCollege of MedicineUniversity of SharjahUnited Arab Emirates
| | - Nour Aljabi
- Department of Basic Medical SciencesCollege of MedicineUniversity of SharjahUnited Arab Emirates
| | - Mohamad Hamad
- Research Institute for Medical and Health SciencesUniversity of SharjahUnited Arab Emirates
- Department of Medical Laboratory SciencesCollege of Health SciencesUniversity of SharjahUnited Arab Emirates
| | - Jibran Sualeh Muhammad
- Research Institute for Medical and Health SciencesUniversity of SharjahUnited Arab Emirates
- Department of Basic Medical SciencesCollege of MedicineUniversity of SharjahUnited Arab Emirates
| | - Hema Unnikannan
- Research Institute for Medical and Health SciencesUniversity of SharjahUnited Arab Emirates
| | - Mawieh Hamad
- Research Institute for Medical and Health SciencesUniversity of SharjahUnited Arab Emirates
- Department of Medical Laboratory SciencesCollege of Health SciencesUniversity of SharjahUnited Arab Emirates
| |
Collapse
|
58
|
Chen BC, Lu JJ, Jiang N, Ma XR, Li RT, Ye RR. Synthesis, characterization and antitumor mechanism investigation of ruthenium(II) polypyridyl complexes with artesunate moiety. J Biol Inorg Chem 2021; 26:909-918. [PMID: 34545414 DOI: 10.1007/s00775-021-01901-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 09/08/2021] [Indexed: 12/14/2022]
Abstract
Six artesunate (ART) conjugated ruthenium(II) complexes (Ru(II)-ART conjugates) with the formula [Ru(N^N)2bpy(4-CH3-4'-CH2OART)](PF6)2 (Ru-ART-1-3) and [Ru(N^N)2bpy(4-CH2OART-4'-CH2OART)](PF6)2 (Ru-ART-4-6) (N^N = 2,2'-bipyridine (bpy, in Ru-ART-1 and Ru-ART-4), 1,10-phenanthroline (phen, in Ru-ART-2 and Ru-ART-5) and 4,7-diphenyl-1,10-phenanthroline (DIP, in Ru-ART-3 and Ru-ART-6)), were synthesized and characterized. Among them, Ru-ART-1-3 and Ru-ART-4-6 carry one and two ART moieties, respectively. Ru-ART-3 and Ru-ART-6 exhibit better cytotoxicity among six Ru(II)-ART conjugates. These two complexes can be effectively taken up by human cervical carcinoma (HeLa) cells. In addition, they selectively kill cancer cell lines while mildly affect normal cells. Mechanism studies have shown that HeLa cells treated with Ru-ART-3 and Ru-ART-6 show typical apoptotic characteristics (morphology changes, mitochondrial dysfunction, caspase cascade, etc.). On the other hand, the up regulation of Beclin-1 and conversion of LC3-I to LC3-II note the appearance of autophagy. As a result, Ru-ART-3 and Ru-ART-6 induce autophagy-dependent cell apoptosis via mitochondrial dysfunction and reactive oxygen species (ROS) accumulation. In this work, six artesunate (ART) conjugated ruthenium(II) complexes (Ru(II)-ART conjugates) have been synthesized and characterized. Among them, Ru-ART-3 and Ru-ART-6 exhibit better cytotoxicity. Mechanism studies have shown that HeLa cells treated with Ru-ART-3 and Ru-ART-6 show typical apoptotic characteristics (morphology changes, mitochondrial dysfunction, caspase cascade, etc.). On the other hand, the up regulation of Beclin-1 and conversion of LC3-I to LC3-II note the appearance of autophagy.
Collapse
Affiliation(s)
- Bi-Chun Chen
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China
| | - Jun-Jian Lu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China
| | - Ning Jiang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China
| | - Xiu-Rong Ma
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China
| | - Rong-Tao Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China
| | - Rui-Rong Ye
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China.
| |
Collapse
|
59
|
Dong S, Li X, Jiang W, Chen Z, Zhou W. Current understanding of ferroptosis in the progression and treatment of pancreatic cancer. Cancer Cell Int 2021; 21:480. [PMID: 34503532 PMCID: PMC8427874 DOI: 10.1186/s12935-021-02166-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/19/2021] [Indexed: 12/20/2022] Open
Abstract
Pancreatic cancer is a highly malignant tumour of the digestive tract. Despite advances in treatment, its 5-year survival rate remains low, and its prognosis is the worst among all cancers; innovative therapeutic methods are needed. Ferroptosis is a form of regulatory cell death driven by iron accumulation and lipid peroxidation. Recent studies have found that ferroptosis plays an important role in the development and treatment response of tumours, particularly pancreatic cancer. This article reviews the current understanding of the mechanism of ferroptosis and ferroptosis-related treatment in pancreatic cancer.
Collapse
Affiliation(s)
- Shi Dong
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Xin Li
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Wenkai Jiang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Zhou Chen
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Wence Zhou
- Department of General Surgery, Gansu Province, The First Hospital of Lanzhou University, No. 1, Donggang West Road, Chengguan District, Lanzhou City, 730000, China.
| |
Collapse
|
60
|
Du J, Wang X, Li Y, Ren X, Zhou Y, Hu W, Zhou C, Jing Q, Yang C, Wang L, Li H, Fang L, Zhou Y, Tong X, Wang Y. DHA exhibits synergistic therapeutic efficacy with cisplatin to induce ferroptosis in pancreatic ductal adenocarcinoma via modulation of iron metabolism. Cell Death Dis 2021; 12:705. [PMID: 34262021 PMCID: PMC8280115 DOI: 10.1038/s41419-021-03996-y] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 06/29/2021] [Accepted: 07/06/2021] [Indexed: 02/07/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an extremely lethal cancer with limited treatment options. Cisplatin (DDP) is used as a mainstay of chemotherapeutic agents in combination with other drugs or radiotherapy for PDAC therapy. However, DDP exhibits severe side-effects that can lead to discontinuation of therapy, and the acquired drug resistance of tumor cells presents serious clinical obstacles. Therefore, it is imperative to develop a more effective and less toxic therapeutic strategy. We and others have previously discovered that dihydroartemisinin (DHA) represents a safe and promising therapeutic agent to preferentially induce cancer cell ferroptosis. In the present study, we find that DHA could intensively strengthen the cytotoxicity of DDP and significantly reduce its effective concentrations both in vitro and in vivo. Combination of DHA and DDP synergistically inhibits the proliferation and induces DNA damage of PDAC cells. Mechanically, the combinative treatment impairs mitochondrial homeostasis, characterized by destroyed mitochondrial morphology, decreased respiratory capacity, reduced ATP production, and accumulated mitochondria-derived ROS. Further studies show that ferroptosis contributes to the cytotoxic effects in PDAC cells under the challenge of DHA and DDP, together with catastrophic accumulation of free iron and unrestricted lipid peroxidation. Moreover, pharmacologic depleting of the free iron reservoir or reconstituted expression of FTH contributes to the tolerance of DHA/DDP-induced ferroptosis, while iron addition accelerates the ferroptotic cell death. In summary, these results provide experimental evidence that DHA acts synergistically with DDP and renders PDAC cells vulnerable to ferroptosis, which may act as a promising therapeutic strategy.
Collapse
Affiliation(s)
- Jing Du
- Laboratory Medicine Center, Department of Laboratory Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Xu Wang
- Laboratory Medicine Center, Department of Laboratory Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Yanchun Li
- Department of Central Laboratory, Affiliated Hangzhou first people's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China
| | - Xueying Ren
- Laboratory Medicine Center, Department of Laboratory Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Yi Zhou
- Laboratory Medicine Center, Department of Laboratory Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Wanye Hu
- Bengbu Medical College, Bengbu, Anhui, 233000, China
| | - Chaoting Zhou
- Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Qiangan Jing
- Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Chen Yang
- Laboratory Medicine Center, Department of Laboratory Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Luyang Wang
- Laboratory Medicine Center, Department of Laboratory Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Huanjuan Li
- Laboratory Medicine Center, Department of Laboratory Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Lijuan Fang
- Department of Laboratory Medicine, Hangzhou Ninth People's Hospital, Hangzhou, Zhejiang, 310014, China
| | - Yonglie Zhou
- Laboratory Medicine Center, Department of Laboratory Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China.
| | - Xiangmin Tong
- Laboratory Medicine Center, Department of Laboratory Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China.
- Bengbu Medical College, Bengbu, Anhui, 233000, China.
- Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China.
- Phase I Clinical Research Center, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China.
| | - Ying Wang
- Bengbu Medical College, Bengbu, Anhui, 233000, China.
- Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China.
- Phase I Clinical Research Center, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China.
| |
Collapse
|
61
|
Ali ANM, Saeed NAHAAH, Omear HA. The Anticancer Properties of Artemisia aucheri Boiss Extract on HT29 Colon Cancer Cells. J Gastrointest Cancer 2021; 52:113-119. [PMID: 31907764 DOI: 10.1007/s12029-019-00354-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Colon cancer is one of the most common cancers in the world, and efforts toward its treatment have not been completely successful. In recent years, more attention has been focused on herbal medicine (HM) due to their anticancer and cytotoxic properties. This study investigated the anticancer and antioxidant effects of Artemisia aucheri (A. aucheri) Boiss extract against HT29 colon cancer cells compared with HEK239 natural cells. METHODS This study was performed on human HT29 colon cancer cells. Various doses of 0, 10, 100, 500, and 1000 μg/ml of A. aucheri extract were subjected to cells at specified time intervals. After treatment, the trypan blue test was employed to determine the viability of the cells. MTT and annexin tests were used to determine cell viability and the apoptosis induced by the extract. Malondialdehyde (MDA) testing was applied to investigate the antioxidant properties of the extract on fatty acids. Data analysis was performed using SPSS version 22. One-way ANOVA and paired comparison tests were employed for data analysis. RESULTS The highest cytotoxicity effect of A. aucheri extract was observed at 1000 μg/ml (80.63 ± 3.66) being dose-dependent compared with the control in both cell lines (p < 0.001). Additionally, the survival rate of HT29 (IC50 = 57.88 μg/ml) and HEK (IC50 = 295 μg/ml) cancer cells decreased with increasing concentration of A. aucheri (the lowest cell viability was at 1000 μg/ml). Furthermore, the induction of membrane lipid peroxidation was significantly higher in HT29 compared with the control (p < 0.001). Another cytotoxic mechanism for the extract was the induction of apoptosis being significantly higher in HT29 colon cancer cells compared with the control group (p < 0.001). CONCLUSION Cytotoxic effects of A. aucheri extract were dose-dependent. This HM exerted cytotoxic effects against HT29 cells through the induction of membrane lipid peroxidation and apoptosis.
Collapse
|
62
|
Plays M, Müller S, Rodriguez R. Chemistry and biology of ferritin. Metallomics 2021; 13:6244244. [PMID: 33881539 PMCID: PMC8083198 DOI: 10.1093/mtomcs/mfab021] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 04/09/2021] [Indexed: 02/07/2023]
Abstract
Iron is an essential element required by cells and has been described as a key player in ferroptosis. Ferritin operates as a fundamental iron storage protein in cells forming multimeric assemblies with crystalline iron cores. We discuss the latest findings on ferritin structure and activity and its link to cell metabolism and ferroptosis. The chemistry of iron, including its oxidation states, is important for its biological functions, its reactivity, and the biology of ferritin. Ferritin can be localized in different cellular compartments and secreted by cells with a variety of functions depending on its spatial context. Here, we discuss how cellular ferritin localization is tightly linked to its function in a tissue-specific manner, and how impairment of iron homeostasis is implicated in diseases, including cancer and coronavirus disease 2019. Ferritin is a potential biomarker and we discuss latest research where it has been employed for imaging purposes and drug delivery.
Collapse
Affiliation(s)
- Marina Plays
- Chemical Biology of Cancer Laboratory, Institut Curie, 26 rue d'Ulm, 75005 Paris, France.,Centre national de la recherche scientifique UMR 3666, Paris, France.,Institut national de la santé et de la recherche médicale U1143, Paris, France.,PSL Université Paris, Paris, France
| | - Sebastian Müller
- Chemical Biology of Cancer Laboratory, Institut Curie, 26 rue d'Ulm, 75005 Paris, France.,Centre national de la recherche scientifique UMR 3666, Paris, France.,Institut national de la santé et de la recherche médicale U1143, Paris, France.,PSL Université Paris, Paris, France
| | - Raphaël Rodriguez
- Chemical Biology of Cancer Laboratory, Institut Curie, 26 rue d'Ulm, 75005 Paris, France.,Centre national de la recherche scientifique UMR 3666, Paris, France.,Institut national de la santé et de la recherche médicale U1143, Paris, France.,PSL Université Paris, Paris, France
| |
Collapse
|
63
|
Li Z, Zhu YT, Xiang M, Qiu JL, Luo SQ, Lin F. Enhanced lysosomal function is critical for paclitaxel resistance in cancer cells: reversed by artesunate. Acta Pharmacol Sin 2021; 42:624-632. [PMID: 32704040 DOI: 10.1038/s41401-020-0445-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 05/15/2020] [Indexed: 12/13/2022] Open
Abstract
The mechanism underlying the resistance of cancer cells to chemotherapeutic drug varies with different cancer cells. Recent evidence shows that lysosomal function is associated with drug resistance of cancer cells. Artesunate, a derivative of artemisinin, displays broad antitumor activity and direct cytotoxicity on various tumor cells. Our previous study shows that artesunate increases autophagosome accumulation, while significantly decreases autolysosome number in cancer cells, suggesting that artesunate might impair the lysosomal function. In this study, we investigated the effects of artesunate on lysosomal function and its relationship with chemotherapeutic drug resistance in cancer cells. We found that the lysosomal function was significantly enhanced in two drug-resistant (A549/TAX and A549/DDP) cells. Furthermore, we showed that the enhanced lysosomal function by overexpression of transcription factor EB (TFEB) significantly increased MCF-7 cells resistance to doxorubicin (DOX), whereas the decreased lysosomal function by TFEB-knockdown or lysosome inhibitor chloroquine increased MCF-7 cells sensitivity to DOX. Treatment of A549/TAX cells with artesunate (2.5-50 μM) dose-dependently inhibited lysosomal function and the clearance of dysfunctional mitochondria, and induced cell apoptosis. Moreover, we demonstrated that artesunate exerted more potent inhibition on the resistant (A549/TAX and MCF-7/ADR) cells with higher activity of lysosomal function. Our results suggest that artesunate or other inhibitors of lysosomal function would be potential in the treatment of cancer cells with drug resistance caused by the enhanced lysosomal function.
Collapse
|
64
|
Bonfim LT, Bahia MDO. In Vitro Assessment of Cytoprotective Effects of CANOVA against Cell Death Induced by the Anti-malarial Artesunate - A Preliminary Experiment. HOMEOPATHY 2021; 110:174-179. [PMID: 33662994 DOI: 10.1055/s-0040-1722234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
BACKGROUND Artesunate (ATS) is a semi-synthetic compound derived from artemisinin, which is widely accepted in the treatment of malaria. However, there is evidence that ATS, under certain in vitro conditions, induces several impairments to normal cell functions. Canova (CA) is a Brazilian homeopathic formulation indicated for patients with depressed immune system. CA shows both in vitro and in vivo protective effects against mutagenic/carcinogenic compounds. Therefore, we aimed to assess in vitro the cytoprotective effects of CA against the cytotoxicity of ATS in Vero cells. METHODS Viability of Vero cells exposed to ATS was assessed by MTT assay, whereas the anti-cytotoxic effect of CA was evaluated by apoptosis and necrosis quantification with fluorescent dyes. RESULTS After 24 hours of ATS treatment, a reduction in cell viability was observed at 32 and 64 µg/mL, the latter being statistically significant (p < 0.05) in relation to the negative control. The concentration of 64 µg/mL was chosen for the subsequent experiments. ATS significantly induced both apoptosis and necrosis in Vero cells in relation to controls (p < 0.01). We also observed a statistically significant decrease in the number of apoptotic cells observed in the CA 16% + ATS co-treatment compared with ATS treatment (p < 0.01). Treatment with CA alone also had no influence on either type of cell death. CONCLUSION Our results demonstrated that ATS is cytotoxic in the assessed conditions. However, such cytotoxicity was attenuated when the cells were treated simultaneously with ATS and CA.
Collapse
Affiliation(s)
- Laís Teixeira Bonfim
- Laboratory of Human Cytogenetic, Institute of Biological Sciences, Federal University of Pará (UFPA), Belém, Pará, Brazil
| | - Marcelo de Oliveira Bahia
- Laboratory of Human Cytogenetic, Institute of Biological Sciences, Federal University of Pará (UFPA), Belém, Pará, Brazil
| |
Collapse
|
65
|
Jiang Z, Wang Z, Chen L, Zhang C, Liao F, Wang Y, Wang Y, Luo P, Luo M, Shi C. Artesunate induces ER-derived-ROS-mediated cell death by disrupting labile iron pool and iron redistribution in hepatocellular carcinoma cells. Am J Cancer Res 2021; 11:691-711. [PMID: 33791148 PMCID: PMC7994160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 12/16/2020] [Indexed: 06/12/2023] Open
Abstract
Aberrant iron homeostasis is a typical characteristic of Hepatocellular carcinoma (HCC), and perturbation of iron metabolism is an effective strategy for HCC therapy. However, there are few safe and effective targeting agents available in clinical practices. The artemisinin and its derivatives have shown potential anti-cancer activity by disturbing cellular iron homeostasis, but the specific mechanism is still unclear. In this study, we demonstrate that Artesunate (ART), a water-soluble anti-malaria agent in clinical use, can regulate the labile iron pool (LIP) and effectively induce ROS-dependent cell death in multiple HCC cells. Mechanistically, ART increases the LIP by promoting lysosomal degradation of iron-storage protein ferritin through acidizing lysosomes. Then the accumulation of labile iron in the endoplasmic reticulum (ER) promotes excessive reactive oxygen species (ROS) production and severe ER disruption, which leads to cell death. Our results provide a new understanding of how ART modulates iron metabolism in HCC cells at the subcellular level, demonstrate the significance of endoplasmic reticulum as iron-vulnerability of HCC cells. More importantly, our findings suggest ART is a safe and potential anti-HCC agent via disturbing iron homeostasis.
Collapse
Affiliation(s)
- Zhongyong Jiang
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University) Chongqing 400038, China
| | - Ziwen Wang
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University) Chongqing 400038, China
| | - Long Chen
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University) Chongqing 400038, China
| | - Chi Zhang
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University) Chongqing 400038, China
| | - Fengying Liao
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University) Chongqing 400038, China
| | - Yawei Wang
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University) Chongqing 400038, China
| | - Yang Wang
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University) Chongqing 400038, China
| | - Peng Luo
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University) Chongqing 400038, China
| | - Min Luo
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University) Chongqing 400038, China
| | - Chunmeng Shi
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University) Chongqing 400038, China
| |
Collapse
|
66
|
Wang ZX, Ma J, Li XY, Wu Y, Shi H, Chen Y, Lu G, Shen HM, Lu GD, Zhou J. Quercetin induces p53-independent cancer cell death through lysosome activation by the transcription factor EB and Reactive Oxygen Species-dependent ferroptosis. Br J Pharmacol 2021; 178:1133-1148. [PMID: 33347603 DOI: 10.1111/bph.15350] [Citation(s) in RCA: 112] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 11/25/2020] [Accepted: 12/07/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND PURPOSE Cancer cells exhibit more dependence on iron and enhanced sensitivity to iron-dependent, programmed cell death (ferroptosis) than normal cells. Quercetin exerts anti-cancer effects, but the underlying molecular mechanism is largely unknown. In this study, we aimed to investigate the involvement of lysosome function and ferroptosis in the anti-cancer potential of quercetin. EXPERIMENTAL APPROACH We used MTT assays and DNA content analysis to evaluate the cytotoxicity, colony formation assay to investigate cell proliferation, and flow cytometry and confocal microscopy to detect lysosomal acidification and protease enzyme activity. Western blotting, cell subfractionation, RT-PCR and siRNA transfection were used to establish molecular mechanisms of action. KEY RESULTS Quercetin is known to promote p53-independent cell death in various cancer cell lines. Although quercetin induces autophagy, genetic silencing of Atg7 fails to affect quercetin-induced cell death. In contrast, both lysosome inhibitors and knockdown of the transcription factor EB can prevent quercetin-induced cell death, suggesting the involvement of lysosome. Next, quercetin is found to induce lysosomal activation sequentially through nuclear translocation of EB and transcriptional activation of lysosomal genes. Notably, quercetin promoted lysosome-dependent ferritin degradation and free iron release. This action and quercetin-induced ROS generation synergistically resulted in lipid peroxidation and ferroptosis. Furthermore, Bid may link ferroptosis with apoptosis to cause cell death. CONCLUSION AND IMPLICATIONS Quercetin induced EB-mediated lysosome activation and increased ferritin degradation leading to ferroptosis and Bid-involved apoptosis. Results from this study may expand our current knowledge about the mechanism of quercetin as an anti-cancer agent.
Collapse
Affiliation(s)
- Zi-Xuan Wang
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, Guangxi Province, China
| | - Jing Ma
- Department of Physiology, School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi Province, China
| | - Xin-Yu Li
- Department of Physiology, School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi Province, China
| | - Yong Wu
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, Guangxi Province, China
| | - Huan Shi
- Department of Physiology, School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi Province, China
| | - Yao Chen
- Department of Physiology, School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi Province, China
| | - Guang Lu
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Han-Ming Shen
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Faculty of Health Sciences, University of Macau, Macau, China
| | - Guo-Dong Lu
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, Guangxi Province, China.,Ministry of Education of China, Key Laboratory of High-incidence-Tumor Prevention & Treatment (Guangxi Medical University), Nanning, Guangxi Province, China.,Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Jing Zhou
- Department of Physiology, School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi Province, China.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
67
|
Artesunate synergizes with sorafenib to induce ferroptosis in hepatocellular carcinoma. Acta Pharmacol Sin 2021; 42:301-310. [PMID: 32699265 DOI: 10.1038/s41401-020-0478-3] [Citation(s) in RCA: 163] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 07/06/2020] [Indexed: 02/07/2023] Open
Abstract
Sorafenib is the first-line medication for advanced hepatocellular carcinoma (HCC), but it can only extend limited survival. It is imperative to find a combination strategy to increase sorafenib efficacy. Artesunate is such a preferred candidate, because artesunate is clinically well-tolerated and more importantly both drugs can induce ferroptosis through different mechanisms. In this study we investigated the combined effect of sorafenib and artesunate in inducing ferroptosis of HCC and elucidated the involved molecular mechanisms. We showed that artesunate greatly enhanced the anticancer effects of low dose of sorafenib against Huh7, SNU-449, and SNU-182 HCC cell lines in vitro and against Huh7 cell xenograft model in Balb/c nude mice. The combination index method confirmed that the combined effect of sorafenib and artesunate was synergistic. Compared with the treatment with artesunate or sorafenib alone, combined treatment induced significantly exacerbated lipid peroxidation and ferroptosis, which was blocked by N-acetyl cysteine and ferroptosis inhibitors liproxstatin-1 and deferoxamine mesylate, but not by inhibitors of other types of cell death (z-VAD, necrostatin-1 and belnacasan). In Huh7 cells, we demonstrated that the combined treatment induced oxidative stress and lysosome-mediated ferritinophagy, two essential aspects of ferroptosis. Sorafenib at low dose mainly caused oxidative stress through mitochondrial impairments and SLC7A11-invovled glutathione depletion. Artesunate-induced lysosome activation synergized with sorafenib-mediated pro-oxidative effects by promoting sequential reactions including lysosomal cathepsin B/L activation, ferritin degradation, lipid peroxidation, and consequent ferroptosis. Taken together, artesunate could be repurposed to sensitize sorafenib in HCC treatment. The combined treatment can be easily translated into clinical applications.
Collapse
|
68
|
Wu KJ, Wu C, Chen F, Cheng SS, Ma DL, Leung CH. Time-Resolved Luminescent High-Throughput Screening Platform for Lysosomotropic Compounds in Living Cells. ACS Sens 2021; 6:166-174. [PMID: 33356166 DOI: 10.1021/acssensors.0c02046] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Lysosomes are membrane-bound organelles that regulate protein degradation and cellular organelle recycling. Homeostatic alteration by lysosomotropic compounds has been suggested as a potential approach for the treatment of cancer. However, because of the high false-negative rate resulting from strong fluorescent background noise, few luminescent high-throughput screening methods for lysosomotropic compounds have been developed for cancer therapy. Imidazole is a five-membered heterocycle that can act within the acidic interior of lysosomes. To develop an efficient lysosomotropic compound screening system, we introduced an imidazole group to iridium-based complexes and designed a long-lifetime lysosomal probe to monitor lysosomal activity in living cells. By integrating time-resolved emission spectroscopy (TRES) with the novel iridium-based lysosomal probe, a high-throughput screening platform capable of overcoming background fluorescent interference in living cells was developed for discovering lysosomotropic drugs. As a proof-of-concept, 400 FDA/EMA-approved drugs were screened using the TRES system, revealing five compounds as potential lysosomotropic agents. Significantly, the most promising potent lysosomotropic compound (mitoxantrone) identified in this work would have showed less activity if screened using a commercial lysosomal probe because of interference from the intrinsic fluorescence of mitoxantrone. We anticipate that this TRES-based high-throughput screening system could facilitate the development of more lysosomotropic drugs by avoiding false results arising from the intrinsic fluorescence of both bioactive compounds and/or the cell background.
Collapse
Affiliation(s)
- Ke-Jia Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao 999078, China
| | - Chun Wu
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong 999077, China
| | - Feng Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao 999078, China
| | - Sha-Sha Cheng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao 999078, China
| | - Dik-Lung Ma
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong 999077, China
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao 999078, China
| |
Collapse
|
69
|
Wu Z, Zhong M, Liu Y, Xiong Y, Gao Z, Ma J, Zhuang G, Hong X. Application of natural products for inducing ferroptosis in tumor cells. Biotechnol Appl Biochem 2021; 69:190-197. [PMID: 33393679 DOI: 10.1002/bab.2096] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 12/25/2020] [Indexed: 01/17/2023]
Abstract
Ferroptosis is a regulated cell death pathway based on the deposition of lipid-based reactive oxygen species (L-ROS) in the presence of iron ions. The term was first coined in 2012 by Dixon. Decreased glutathione (GSH) synthesis and low glutathione-dependent antioxidant peroxidase 4 (GPX4) activity are the major causes of ferroptosis. Sensitivity to ferroptosis for example in tumor cells may be further enhanced by high cellular iron concentrations and/or high p53 levels. Therefore, driving ferroptosis in tumor cells could be a new way to treat tumors. Thus far, natural products have played considerable roles in antitumor research and treatment, and some drugs, such as paclitaxel, have proven beneficial in many cancer patients. According to current research, natural products can induce ferroptosis when used alone or in conjunction with other cancer therapies. This review mainly elaborates the main mechanism of ferroptosis and the regulating effects of some natural products on ferroptosis, aiming to create a new space for the research and development of novel anticancer drugs.
Collapse
Affiliation(s)
- Zhengxin Wu
- School of Medicine, Guangxi University, Nanning, People's Republic of China
| | - Mengya Zhong
- Institute of Gastrointestinal Oncology, School of Medicine, Xiamen University, Xiamen, People's Republic of China.,Department of Gastrointestinal Surgery, Zhongshan Hospital, Xiamen University, Xiamen, People's Republic of China
| | - Yu Liu
- Institute of Gastrointestinal Oncology, School of Medicine, Xiamen University, Xiamen, People's Republic of China.,Department of Gastrointestinal Surgery, Zhongshan Hospital, Xiamen University, Xiamen, People's Republic of China
| | - Yubo Xiong
- Institute of Gastrointestinal Oncology, School of Medicine, Xiamen University, Xiamen, People's Republic of China.,Department of Gastrointestinal Surgery, Zhongshan Hospital, Xiamen University, Xiamen, People's Republic of China
| | - Zhi Gao
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Medical University, Nanning, People's Republic of China
| | - Jingsong Ma
- Institute of Gastrointestinal Oncology, School of Medicine, Xiamen University, Xiamen, People's Republic of China.,Department of Gastrointestinal Surgery, Zhongshan Hospital, Xiamen University, Xiamen, People's Republic of China
| | - Guohong Zhuang
- Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Organ Transplantation Institute of Xiamen University, Xiamen University, Xiamen, People's Republic of China
| | - Xuehui Hong
- Institute of Gastrointestinal Oncology, School of Medicine, Xiamen University, Xiamen, People's Republic of China.,Department of Gastrointestinal Surgery, Zhongshan Hospital, Xiamen University, Xiamen, People's Republic of China
| |
Collapse
|
70
|
Ivanova D, Yaneva Z, R. Bakalova RB, Semkova S, Zhelev Z. The antimalaria drug artemisinin displays strong cytotoxic effect on leukaemia lymphocytes in combination with vitamin C and pro-vitamin K3. BULGARIAN JOURNAL OF VETERINARY MEDICINE 2021. [DOI: 10.15547/bjvm.2019-0134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
This study investigated the anticancer effect of the anti-parasitic drug artemisinin in combination with two redox modulators: vitamin C and pro-vitamin K3 (C/K3) The experiments were conducted on leukaemia cells Jurkat. Cells were treated with either artemisinin or C/K3 alone and with all three compounds. Cell proliferation and viability were analysed using trypan blue stating and automated cell counting. The results showed that artemisinin (>10 mM) suppressed cell proliferation activity, but did not induce cell death up to 500 mM. The drug demonstrated a clear cytostatic effect at concentrations 250- 500 mM – Jurkat cells did not proliferate, but were alive. The combination C/K3 (200:2, 300:3 mM/mM) applied alone did not affect cell proliferation and viability. Vitamins C/K3 in concentration ratio 500:5 (μM/mM) decreased cell proliferation activity by ~10%. The triple combination artemisinin/C/K3 manifested synergistic anti-proliferative effects at all concentration ratios analysed. This synergistic effect increased with increasing C/K3 concentration. Based on literature data, it was assumed that the anti-proliferative effect of the triple combination was mediated by changes in the redox-homeostasis of cancer cells. The C/K3 redox system likely acted on cancer mitochondria and increased superoxide production and activation of pro-apoptotic signals, specific for cancer cells. On the other hand, artemisinin could generate hydroxyl radicals as a result of activation of Fenton reactions, depleting intracellular reducing equivalents. Both redox mechanisms lead to activation of signal pathways for induction of cancer cell death.
Collapse
Affiliation(s)
- D. Ivanova
- Department of Pharmacology, Animal Physiology and Physiological Chemistry, Faculty of Veterinary Medicine, Trakia University, Stara Zagora, Bulgaria
| | - Z. Yaneva
- Department of Pharmacology, Animal Physiology and Physiological Chemistry, Faculty of Veterinary Medicine, Trakia University, Stara Zagora, Bulgaria
| | - R. Bakalova R. Bakalova
- Department of Molecular Imaging and Theranostics, National Institute of Radiological Sciences (NIRS)
| | - S. Semkova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Zh. Zhelev
- Department of Medicinal Chemistry and Biochemistry, Faculty of Medicine, Trakia University, Stara Zagora, Bulgaria
| |
Collapse
|
71
|
Duarte D, Vale N. New Trends for Antimalarial Drugs: Synergism between Antineoplastics and Antimalarials on Breast Cancer Cells. Biomolecules 2020; 10:E1623. [PMID: 33271968 PMCID: PMC7761440 DOI: 10.3390/biom10121623] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 11/28/2020] [Accepted: 11/29/2020] [Indexed: 12/13/2022] Open
Abstract
Chemotherapy plays a key role in breast cancer therapy, but drug resistance and unwanted side effects make the treatment less effective. We propose a new combination model that combines antineoplastic drugs and antimalarials for breast cancer therapy. Cytotoxic effects of two antineoplastic agents alone and in combination with several antimalarials on MCF-7 tumor cell line was evaluated. Different concentrations in a fixed ratio were added to the cultured cells and incubated for 48 h. Cell viability was evaluated using MTT and SRB assays. Synergism was evaluated using the Chou-Talalay method. The results indicate doxorubicin (DOX) and paclitaxel (PTX) alone at concentrations of their IC50 and higher are cell growth inhibitors. Mefloquine, artesunate, and chloroquine at concentrations of their IC50 demonstrate anti-cancer activity. In combination, almost all antimalarials demonstrate higher ability than DOX and PTX alone to decrease cell viability at concentrations of IC50 and lower than their IC50. The combination of chloroquine, artesunate and mefloquine with DOX and PTX was synergic (CI < 1). The combination of DOX and mefloquine after 48 h incubation demonstrated the highest cytotoxicity against MCF-7 cells, and the combination of DOX and artesunate was the most synergic. These results suggest antimalarials could act synergistically with DOX/PTX for breast cancer therapy.
Collapse
Affiliation(s)
- Diana Duarte
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Plácido da Costa, 4200-450 Porto, Portugal;
- Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Nuno Vale
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Plácido da Costa, 4200-450 Porto, Portugal;
- Faculty of Medicine, University of Porto, Al. Hernâni Monteiro, 4200-319 Porto, Portugal
| |
Collapse
|
72
|
Zhao PH, Ma ST, Hu JQ, Zheng BY, Ke MR, Huang JD. Artesunate-Based Multifunctional Nanoplatform for Photothermal/Photoinduced Thermodynamic Synergistic Anticancer Therapy. ACS APPLIED BIO MATERIALS 2020; 3:7876-7885. [PMID: 35019528 DOI: 10.1021/acsabm.0c01026] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Thermodynamic therapy (TDT), one that uses heat to activate thermosensitizers and produce reactive oxygen species (ROS), has recently emerged as an attractive approach for cancer therapy. However, the development of safe and efficient thermosensitizers for TDT remains a big challenge. Here, we have found that artesunate (ARS) could produce ROS upon heating. Based on this interesting result, we have designed and prepared a pH-sensitive liposomal nanoplatform (ICG-ARS@NPs) composed of indocyanine green (ICG) and ARS for photoinduced TDT as well as photothermal therapy (PTT). Under the slightly acidic conditions in tumor tissues, the pH-sensitive liposomal ICG-ARS@NPs were able to release their drug cargos. Upon near-infrared irradiation, the photothermal agent ICG generated in situ hyperthermia and triggered the thermal sensitizing activity of ARS to produce ROS, resulting in damage to cancer cells and tumor tissues. The heat-induced ROS generation of ARS was also confirmed both in vitro and in vivo. In addition, because of their specific tumor targeting and synergistic photothermal and thermodynamic effects, ICG-ARS@NPs exhibited highly efficient anticancer therapeutic efficacy in H22 tumor-bearing mice. We believe that this work will promote the exploration of TDT for cancer therapy as well as the application of the old drug, artemisinin.
Collapse
Affiliation(s)
- Peng-Hui Zhao
- College of Chemistry, State Key Laboratory of Photocatalysis on Energy and Environment, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou 350108, PR China
| | - Si-Tan Ma
- College of Chemistry, State Key Laboratory of Photocatalysis on Energy and Environment, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou 350108, PR China
| | - Jia-Qian Hu
- College of Chemistry, State Key Laboratory of Photocatalysis on Energy and Environment, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou 350108, PR China
| | - Bi-Yuan Zheng
- College of Chemistry, State Key Laboratory of Photocatalysis on Energy and Environment, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou 350108, PR China
| | - Mei-Rong Ke
- College of Chemistry, State Key Laboratory of Photocatalysis on Energy and Environment, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou 350108, PR China
| | - Jian-Dong Huang
- College of Chemistry, State Key Laboratory of Photocatalysis on Energy and Environment, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou 350108, PR China
| |
Collapse
|
73
|
Gravett AM, Dennis JL, Dalgleish AG, Copier J, Liu WM. The efficacy of chemotherapeutic drug combinations may be predicted by concordance of gene response to the single agents. Oncol Lett 2020; 20:321. [PMID: 33093925 PMCID: PMC7573875 DOI: 10.3892/ol.2020.12184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 07/10/2020] [Indexed: 11/24/2022] Open
Abstract
Determining the expression of genes in response to different classes of chemotherapeutic drugs may allow for a better understanding as to which may be used effectively in combination. In the present study, the human colorectal cancer cell line HCT116 was cultured with equi-active concentrations of a series of anti-cancer agents. Gene expression profiles were then measured by whole-genome microarray. Although each drug induced a unique signature of gene expression in tumour cells, there were marked similarities between certain drugs, even in those from different classes. For example, the antimalarial agent artesunate and the platinum-containing alkylating agent, oxaliplatin, produced a very similar mRNA expression pattern in HCT116 cells with ~14,000 genes being affected by the two drugs in the same way. Furthermore, the overall correlation of gene responses between two agents could predict whether their use in combination would lead to a greater or lesser effect on cell number, determined experimentally, than predicted by single agent experiments. The results indicated that even when working through different mechanisms, combining drugs that initiate a similar transcriptional response may constitute the best option for determining drug-combination strategies for the treatment of cancer.
Collapse
Affiliation(s)
- Andrew M Gravett
- Institute for Infection and Immunity, Department of Oncology, St. George's, University of London, London SW17 0RE, UK
| | - Jayne L Dennis
- Institute for Infection and Immunity, Department of Oncology, St. George's, University of London, London SW17 0RE, UK
| | - Angus G Dalgleish
- Institute for Infection and Immunity, Department of Oncology, St. George's, University of London, London SW17 0RE, UK
| | - John Copier
- Institute for Infection and Immunity, Department of Oncology, St. George's, University of London, London SW17 0RE, UK
| | - Wai M Liu
- Institute for Infection and Immunity, Department of Oncology, St. George's, University of London, London SW17 0RE, UK
| |
Collapse
|
74
|
Augustin Y, Staines HM, Krishna S. Artemisinins as a novel anti-cancer therapy: Targeting a global cancer pandemic through drug repurposing. Pharmacol Ther 2020; 216:107706. [PMID: 33075360 PMCID: PMC7564301 DOI: 10.1016/j.pharmthera.2020.107706] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 10/09/2020] [Accepted: 10/13/2020] [Indexed: 02/07/2023]
Abstract
Artemisinins are a unique class of antimalarial drugs with significant potential for drug repurposing for a wide range of diseases including cancer. Cancer is a leading cause of death globally and the majority of cancer related deaths occur in Low and Middle Income Countries (LMICs) where conventional treatment options are often limited by financial cost. Drug repurposing can significantly shorten new therapeutic discovery pathways, ensuring greater accessibility and affordability globally. Artemisinins have an excellent safety and tolerability profile as well as being affordable for deployment in Low and Middle Class Income Countries at around USD1 per daily dose. Robust, well designed clinical trials of artemisinin drug repurposing are indicated for a variety of different cancers and treatment settings.
Collapse
Affiliation(s)
- Yolanda Augustin
- Institute of Infection & Immunity, St George's University of London, United Kingdom
| | - Henry M Staines
- Institute of Infection & Immunity, St George's University of London, United Kingdom
| | - Sanjeev Krishna
- Institute of Infection & Immunity, St George's University of London, United Kingdom.
| |
Collapse
|
75
|
Wu Y, Yu C, Luo M, Cen C, Qiu J, Zhang S, Hu K. Ferroptosis in Cancer Treatment: Another Way to Rome. Front Oncol 2020; 10:571127. [PMID: 33102227 PMCID: PMC7546896 DOI: 10.3389/fonc.2020.571127] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 08/25/2020] [Indexed: 12/14/2022] Open
Abstract
Ferroptosis is a newly described type of programmed cell death and intensively related to both maintaining homeostasis and the development of diseases, especially cancers. Inducing ferroptosis leads to mitochondrial dysfunction and toxic lipid peroxidation in cells, which plays a pivotal role in suppressing cancer growth and progression. Here, we reviewed the existing studies about the molecular mechanisms of ferroptosis involved in different antitumor treatments, such as chemotherapy, targeted therapy, radiotherapy, and immunotherapy. We focused in particular on the distinct combinatorial therapeutic effects such as the synergistic sensitization effect and the drug-resistance reversal achieved when using ferroptosis inducers with conventional cancer therapy. Finally, we discussed the challenges and opportunities in clinical applications of ferroptosis. The application of nanotechnolgy and other novel technologies may provide a new direction in ferroptosis-driven cancer therapies.
Collapse
Affiliation(s)
- Yinan Wu
- Department of Breast Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Zhejiang University School of Medicine, Hangzhou, China
| | - Chengcheng Yu
- Department of Orthopedics, The Second Affiliated Hospital, College of Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Meng Luo
- Department of Breast Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Zhejiang University School of Medicine, Hangzhou, China
| | - Chen Cen
- Department of Breast Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Zhejiang University School of Medicine, Hangzhou, China
| | - Jili Qiu
- Department of Breast Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Zhejiang University School of Medicine, Hangzhou, China
| | - Suzhan Zhang
- The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Zhejiang University School of Medicine, Hangzhou, China
| | - Kaimin Hu
- Department of Breast Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
76
|
Zhou X, Zijlstra SN, Soto-Gamez A, Setroikromo R, Quax WJ. Artemisinin Derivatives Stimulate DR5-Specific TRAIL-Induced Apoptosis by Regulating Wildtype P53. Cancers (Basel) 2020; 12:E2514. [PMID: 32899699 PMCID: PMC7563660 DOI: 10.3390/cancers12092514] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/28/2020] [Accepted: 09/01/2020] [Indexed: 12/26/2022] Open
Abstract
Artemisinin derivatives, widely known as commercial anti-malaria drugs, may also have huge potential in treating cancer cells. It has been reported that artemisinin derivatives can overcome resistance to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis in liver and cervical cancer cells. In our study, we demonstrated that artesunate (ATS) and dihydroartemisinin (DHA) are more efficient in killing colon cancer cells compared to artemisinin (ART). ATS/DHA induces the expression of DR5 in a P53 dependent manner in HCT116 and DLD-1 cells. Both ATS and DHA overcome the resistance to DHER-induced apoptosis in HCT116, mainly through upregulating death receptor 5 (DR5). We also demonstrate that DHA sensitizes HCT116 cells to DHER-induced apoptosis via P53 regulated DR5 expression in P53 knockdown assays. Nevertheless, a lower effect was observed in DLD-1 cells, which has a single Ser241Phe mutation in the P53 DNA binding domain. Thus, the status of P53 could be one of the determinants of TRAIL resistance in some cancer cells. Finally, the combination treatment of DHA and the TRAIL variant DHER increases cell death in 3D colon cancer spheroid models, which shows its potential as a novel therapy.
Collapse
Affiliation(s)
| | | | | | | | - Wim J. Quax
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands; (X.Z.); (S.N.Z.); (A.S.-G.); (R.S.)
| |
Collapse
|
77
|
Affiliation(s)
- Andrew J Ghio
- US Environmental Protection Agency, Human Studies Facility, 104 Mason Farm Road, Chapel Hill, NC, 27599-7315, USA.
| |
Collapse
|
78
|
Kiani BH, Kayani WK, Khayam AU, Dilshad E, Ismail H, Mirza B. Artemisinin and its derivatives: a promising cancer therapy. Mol Biol Rep 2020; 47:6321-6336. [PMID: 32710388 DOI: 10.1007/s11033-020-05669-z] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 07/15/2020] [Indexed: 12/21/2022]
Abstract
The world is experiencing a cancer epidemic and an increase in the prevalence of the disease. Cancer remains a major killer, accounting for more than half a million deaths annually. There is a wide range of natural products that have the potential to treat this disease. One of these products is artemisinin; a natural product from Artemisia plant. The Nobel Prize for Medicine was awarded in 2015 for the discovery of artemisinin in recognition of the drug's efficacy. Artemisinin produces highly reactive free radicals by the breakdown of two oxygen atoms that kill cancerous cells. These cells sequester iron and accumulate as much as 1000 times in comparison with normal cells. Generally, chemotherapy is toxic to both cancerous cells and normal cells, while no significant cytotoxicity from artemisinin to normal cells has been found in more than 4000 case studies, which makes it far different than conventional chemotherapy. The pleiotropic response of artemisinin in cancer cells is responsible for growth inhibition by multiple ways including inhibition of angiogenesis, apoptosis, cell cycle arrest, disruption of cell migration, and modulation of nuclear receptor responsiveness. It is very encouraging that artemisinin and its derivatives are anticipated to be a novel class of broad-spectrum antitumor agents based on efficacy and safety. This review aims to highlight these achievements and propose potential strategies to develop artemisinin and its derivatives as a new class of cancer therapeutic agents.
Collapse
Affiliation(s)
- Bushra Hafeez Kiani
- Department of Biological Sciences, Faculty of Basic and Applied Sciences, International Islamic University, Islamabad, 44000, Pakistan.
| | - Waqas Khan Kayani
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Växtskyddsvägen 1, 23053, Alnarp, Sweden
| | - Asma Umer Khayam
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Erum Dilshad
- Department of Bioinformatics and Biosciences, Capital University of Science and Technology, Islamabad, Pakistan
| | - Hammad Ismail
- Department of Biochemistry and Molecular Biology, University of Gujrat, Gujrat, 50700, Pakistan
| | - Bushra Mirza
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| |
Collapse
|
79
|
Kong MY, Li LY, Lou YM, Chi HY, Wu JJ. Chinese herbal medicines for prevention and treatment of colorectal cancer: From molecular mechanisms to potential clinical applications. JOURNAL OF INTEGRATIVE MEDICINE-JIM 2020; 18:369-384. [PMID: 32758397 DOI: 10.1016/j.joim.2020.07.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 06/29/2020] [Indexed: 02/06/2023]
Abstract
Worldwide, colorectal cancer (CRC) is one of the most common malignant tumors, leading to immense social and economic burdens. Currently, the main treatments for CRC include surgery, chemotherapy, radiotherapy and immunotherapy. Despite advances in the diagnosis and treatment of CRC, the prognosis for CRC patients remains poor. Furthermore, the occurrence of side effects and toxicities severely limits the clinical use of these therapies. Therefore, alternative medications with high efficacy but few side effects are needed. An increasing number of modern pharmacological studies and clinical trials have supported the effectiveness of Chinese herbal medicines (CHMs) for the prevention and treatment of CRC. CHMs may be able to effectively reduce the risk of CRC, alleviate the adverse reactions caused by chemotherapy, and prolong the survival time of patients with advanced CRC. Studies of molecular mechanisms have provided deeper insight into the roles of molecules from CHMs in treating CRC. This paper summarizes the current understanding of the use of CHMs for the prevention and treatment of CRC, the main molecular mechanisms involved in these processes, the role of CHMs in modulating chemotherapy-induced adverse reactions, and CHM's potential role in epigenetic regulation of CRC. The current study provides beneficial information on the use of CHMs for the prevention and treatment of CRC in the clinic, and suggests novel directions for new drug discovery against CRC.
Collapse
Affiliation(s)
- Mu-Yan Kong
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong Province, China
| | - Le-Yan Li
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong Province, China
| | - Yan-Mei Lou
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong Province, China
| | - Hong-Yu Chi
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong Province, China
| | - Jin-Jun Wu
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong Province, China.
| |
Collapse
|
80
|
Sissoko A, Vásquez-Ocmín P, Maciuk A, Barbieri D, Neveu G, Rondepierre L, Grougnet R, Leproux P, Blaud M, Hammad K, Michel S, Lavazec C, Clain J, Houzé S, Duval R. A Chemically Stable Fluorescent Mimic of Dihydroartemisinin, Artemether, and Arteether with Conserved Bioactivity and Specificity Shows High Pharmacological Relevance to the Antimalarial Drugs. ACS Infect Dis 2020; 6:1532-1547. [PMID: 32267151 DOI: 10.1021/acsinfecdis.9b00430] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Three novel tracers designed as fluorescent surrogates of artemisinin-derived antimalarial drugs (i.e., dihydroartemisinin, artemether, arteether, and artemisone) were synthesized from dihydroartemisinin. One of these tracers, corresponding to a dihydroartemisinin/artemether/arteether mimic, showed a combination of excellent physicochemical and biological properties such as hydrolytic stability, high inhibitory potency against blood-stage parasites, similar ring-stage survival assay values than the clinical antimalarials, high cytopermeability and specific labeling of live P. falciparum cells, alkylation of heme, as well as specific covalent labeling of drug-sensitive and drug-resistant P. falciparum proteomes at physiological concentrations, consistent with a multitarget action of the drugs. Our study demonstrates that probes containing the complete structural core of clinical artemisinin derivatives can be stable in biochemical and cellular settings, and recapitulate the complex mechanisms of these frontline, yet threatened, antimalarial drugs.
Collapse
Affiliation(s)
- Abdoulaye Sissoko
- Université de Paris, MERIT, IRD, F-75006 Paris, France
- Laboratoire d’Excellence GR-Ex, Paris, France
| | | | - Alexandre Maciuk
- Université Paris-Saclay, CNRS, BioCIS, F-92290 Châtenay-Malabry, France
| | - Daniela Barbieri
- Laboratoire d’Excellence GR-Ex, Paris, France
- Université de Paris, U1016, INSERM, and UMR 8104,
CNRS, F-75014 Paris, France
| | - Gaëlle Neveu
- Laboratoire d’Excellence GR-Ex, Paris, France
- Université de Paris, U1016, INSERM, and UMR 8104,
CNRS, F-75014 Paris, France
| | - Laurine Rondepierre
- Université de Paris, MERIT, IRD, F-75006 Paris, France
- Laboratoire d’Excellence GR-Ex, Paris, France
| | | | | | - Magali Blaud
- Université de Paris, CiTCoM, CNRS, F-75006 Paris, France
| | - Karim Hammad
- Université de Paris, CiTCoM, CNRS, F-75006 Paris, France
| | - Sylvie Michel
- Université de Paris, CiTCoM, CNRS, F-75006 Paris, France
| | - Catherine Lavazec
- Laboratoire d’Excellence GR-Ex, Paris, France
- Université de Paris, U1016, INSERM, and UMR 8104,
CNRS, F-75014 Paris, France
| | - Jérôme Clain
- Université de Paris, MERIT, IRD, F-75006 Paris, France
- Laboratoire d’Excellence GR-Ex, Paris, France
| | - Sandrine Houzé
- Université de Paris, MERIT, IRD, F-75006 Paris, France
- CNR du Paludisme, AP-HP, Hôpital Bichat − Claude-Bernard, F-75018 Paris, France
| | - Romain Duval
- Université de Paris, MERIT, IRD, F-75006 Paris, France
- Laboratoire d’Excellence GR-Ex, Paris, France
| |
Collapse
|
81
|
Zhang Z, Zhou L, Xie N, Nice EC, Zhang T, Cui Y, Huang C. Overcoming cancer therapeutic bottleneck by drug repurposing. Signal Transduct Target Ther 2020; 5:113. [PMID: 32616710 PMCID: PMC7331117 DOI: 10.1038/s41392-020-00213-8] [Citation(s) in RCA: 268] [Impact Index Per Article: 67.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/03/2020] [Accepted: 06/04/2020] [Indexed: 02/06/2023] Open
Abstract
Ever present hurdles for the discovery of new drugs for cancer therapy have necessitated the development of the alternative strategy of drug repurposing, the development of old drugs for new therapeutic purposes. This strategy with a cost-effective way offers a rare opportunity for the treatment of human neoplastic disease, facilitating rapid clinical translation. With an increased understanding of the hallmarks of cancer and the development of various data-driven approaches, drug repurposing further promotes the holistic productivity of drug discovery and reasonably focuses on target-defined antineoplastic compounds. The "treasure trove" of non-oncology drugs should not be ignored since they could target not only known but also hitherto unknown vulnerabilities of cancer. Indeed, different from targeted drugs, these old generic drugs, usually used in a multi-target strategy may bring benefit to patients. In this review, aiming to demonstrate the full potential of drug repurposing, we present various promising repurposed non-oncology drugs for clinical cancer management and classify these candidates into their proposed administration for either mono- or drug combination therapy. We also summarize approaches used for drug repurposing and discuss the main barriers to its uptake.
Collapse
Affiliation(s)
- Zhe Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, 610041, Chengdu, China
| | - Li Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, 610041, Chengdu, China
| | - Na Xie
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, 610041, Chengdu, China
| | - Edouard C Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Tao Zhang
- The School of Biological Science and Technology, Chengdu Medical College, 610083, Chengdu, China.
- Department of Oncology, The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, 610051, Sichuan, China.
| | - Yongping Cui
- Cancer Institute, Peking University Shenzhen Hospital, Shenzhen Peking University-the Hong Kong University of Science and Technology (PKU-HKUST) Medical Center, and Cancer Institute, Shenzhen Bay Laboratory Shenzhen, 518035, Shenzhen, China.
- Department of Pathology & Shanxi Key Laboratory of Carcinogenesis and Translational Research on Esophageal Cancer, Shanxi Medical University, Taiyuan, 030001, Shanxi, China.
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, 610041, Chengdu, China.
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China.
| |
Collapse
|
82
|
Su Y, Zhao B, Zhou L, Zhang Z, Shen Y, Lv H, AlQudsy LHH, Shang P. Ferroptosis, a novel pharmacological mechanism of anti-cancer drugs. Cancer Lett 2020; 483:127-136. [DOI: 10.1016/j.canlet.2020.02.015] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/12/2020] [Accepted: 02/12/2020] [Indexed: 02/06/2023]
|
83
|
Kurzawa-Akanbi M, Keogh M, Tsefou E, Ramsay L, Johnson M, Keers S, Wsa Ochieng L, McNair A, Singh P, Khan A, Pyle A, Hudson G, Ince PG, Attems J, Burn J, Chinnery PF, Morris CM. Neuropathological and biochemical investigation of Hereditary Ferritinopathy cases with ferritin light chain mutation: Prominent protein aggregation in the absence of major mitochondrial or oxidative stress. Neuropathol Appl Neurobiol 2020; 47:26-42. [PMID: 32464705 DOI: 10.1111/nan.12634] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 04/17/2020] [Accepted: 05/19/2020] [Indexed: 01/19/2023]
Abstract
AIMS Neuroferritinopathy (NF) or hereditary ferritinopathy (HF) is an autosomal dominant movement disorder due to mutation in the light chain of the iron storage protein ferritin (FTL). HF is the only late-onset neurodegeneration with brain iron accumulation disorder and study of HF offers a unique opportunity to understand the role of iron in more common neurodegenerative syndromes. METHODS We carried out pathological and biochemical studies of six individuals with the same pathogenic FTL mutation. RESULTS CNS pathological changes were most prominent in the basal ganglia and cerebellar dentate, echoing the normal pattern of brain iron accumulation. Accumulation of ferritin and iron was conspicuous in cells with a phenotype suggesting oligodendrocytes, with accompanying neuronal pathology and neuronal loss. Neurons still survived, however, despite extensive adjacent glial iron deposition, suggesting neuronal loss is a downstream event. Typical age-related neurodegenerative pathology was not normally present. Uniquely, the extensive aggregates of ubiquitinated ferritin identified indicate that abnormal FTL can aggregate, reflecting the intrinsic ability of FTL to self-assemble. Ferritin aggregates were seen in neuronal and glial nuclei showing parallels with Huntington's disease. There was neither evidence of oxidative stress activation nor any significant mitochondrial pathology in the affected basal ganglia. CONCLUSIONS HF shows hallmarks of a protein aggregation disorder, in addition to iron accumulation. Degeneration in HF is not accompanied by age-related neurodegenerative pathology and the lack of evidence of oxidative stress and mitochondrial damage suggests that these are not key mediators of neurodegeneration in HF, casting light on other neurodegenerative diseases characterized by iron deposition.
Collapse
Affiliation(s)
- M Kurzawa-Akanbi
- Biosciences Institute, Newcastle University, International Centre for Life, Newcastle upon Tyne, UK.,Wolfson Building, Newcastle University, Newcastle upon Tyne, UK
| | - M Keogh
- Biosciences Institute, Newcastle University, International Centre for Life, Newcastle upon Tyne, UK.,Department of Neurology, Royal Victoria Infirmary, Newcastle upon Tyne, UK.,MRC Mitochondrial Biology Unit, Department of Clinical Neurosciences, Cambridge Biomedical Campus, Cambridge University, Cambridge, UK
| | - E Tsefou
- Wolfson Building, Newcastle University, Newcastle upon Tyne, UK
| | - L Ramsay
- Newcastle Brain Tissue Resource, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK.,Academic Unit of Pathology, Royal Hallamshire Hospital, Sheffield, UK
| | - M Johnson
- Newcastle Brain Tissue Resource, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - S Keers
- Newcastle Brain Tissue Resource, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - L Wsa Ochieng
- Wolfson Building, Newcastle University, Newcastle upon Tyne, UK
| | - A McNair
- Wolfson Building, Newcastle University, Newcastle upon Tyne, UK
| | - P Singh
- Wolfson Building, Newcastle University, Newcastle upon Tyne, UK
| | - A Khan
- Department of Neurology, Royal Victoria Infirmary, Newcastle upon Tyne, UK
| | - A Pyle
- Biosciences Institute, Newcastle University, International Centre for Life, Newcastle upon Tyne, UK
| | - G Hudson
- Biosciences Institute, Newcastle University, International Centre for Life, Newcastle upon Tyne, UK
| | - P G Ince
- Academic Unit of Pathology, Royal Hallamshire Hospital, Sheffield, UK
| | - J Attems
- Cellular Pathology, Royal Victoria Infirmary, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - J Burn
- Biosciences Institute, Newcastle University, International Centre for Life, Newcastle upon Tyne, UK.,Northern Genetics Service, Newcastle upon Tyne Hospitals NHS Foundation Trust, International Centre for Life, Newcastle upon Tyne, UK
| | - P F Chinnery
- Biosciences Institute, Newcastle University, International Centre for Life, Newcastle upon Tyne, UK.,MRC Mitochondrial Biology Unit, Department of Clinical Neurosciences, Cambridge Biomedical Campus, Cambridge University, Cambridge, UK
| | - C M Morris
- Wolfson Building, Newcastle University, Newcastle upon Tyne, UK.,Newcastle Brain Tissue Resource, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
84
|
Raha S, Kim SM, Lee HJ, Yumnam S, Saralamma VV, Ha SE, Lee WS, Kim GS. Naringin Induces Lysosomal Permeabilization and Autophagy Cell Death in AGS Gastric Cancer Cells. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2020; 48:679-702. [PMID: 32329644 DOI: 10.1142/s0192415x20500342] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Autophagy is a process of active programmed cell death, where a dying cell induces autophagosomes and subsequently regulated by degradative machinery. The aim of this study was to investigate the mechanism behind induction of autophagic cell death by Naringin flavonoid in AGS cancer cells. Growth inhibition of AGS cells showed downregulation of PI3K/Akt/mTOR signaling by Naringin treatment. Transmission electron microscopy observation showed swollen mitochondria and lysosome near peri-nuclear zone fused with autophagic vacuoles. Rapamycin pre-treatment with Naringin showed significant decrease in mTOR phosphorylation and increase in LC3B activation in AGS cells. Decrease in mTOR phosphorylation is associated with lysosomal function activation was observed by time-dependent treatment of Naringin. Induction of lysosomal membrane permeabilization (LMP) was observed by LAMP1 activation leading lysosomal cell death by releasing Cathepsin D from lysosomal lumen to cytosol. Naringin treated AGS cells showed up-regulating BH3 domain Bad, down-regulating Bcl-xL, and Bad phosphorylation and significant mitochondrial fluorescence intensity expression. Significant localization of mitochondria and LC3B activation was examined by person coefficient correlation. Activation of ERK1/2-p38 MAPKs and production of intracellular ROS has been observed over Naringin treatment. It has also been elucidated that pre-treatment with NAC inhibited mitochondria-LC3B colocalization, where ROS acted as upstream of ERK1/2-p38 MAPKs activation. Lysosomal cell death involvement has been evaluated by BAF A1 pre-treatment, inhibiting LAMP1, Cathepsin D, ROS, and blocking autophagolysosome in AGS cell death. Taken together, these findings show that, Naringin induced autophagy cell death involves LMP mediated lysosomal damage and BH3 protein Bad activation in AGS cancer cells.
Collapse
Affiliation(s)
- Suchismita Raha
- Research Institute of Life Science, College of Veterinary Medicine, Gyeongsang National University, Gazwa, Jinju 52828, Republic of Korea.,Department of Internal Medicine, Institute of Health Sciences, Gyeongsang National University, School of Medicine, 90 Chilam-dong, Jinju 52727, Republic of Korea
| | - Seong Min Kim
- Research Institute of Life Science, College of Veterinary Medicine, Gyeongsang National University, Gazwa, Jinju 52828, Republic of Korea
| | - Ho Jeong Lee
- Biological Resources Research Group, Bioenvironmental Science & Toxicology, Division, Gyeongnam Branch Institute, Korea Institute of Toxicology (KIT), 17 Jeigok-gil, Jinju 52834, Republic of Korea
| | - Silvia Yumnam
- Research Institute of Life Science, College of Veterinary Medicine, Gyeongsang National University, Gazwa, Jinju 52828, Republic of Korea.,College of Pharmacy, Gachon University, 191, Hambakmoero, Yeonsu-gu, Incheon 21936, Korea
| | - Venu VenkatarameGowda Saralamma
- Research Institute of Life Science, College of Veterinary Medicine, Gyeongsang National University, Gazwa, Jinju 52828, Republic of Korea
| | - Sang Eun Ha
- Research Institute of Life Science, College of Veterinary Medicine, Gyeongsang National University, Gazwa, Jinju 52828, Republic of Korea
| | - Won Sup Lee
- Research Institute of Life Science, College of Veterinary Medicine, Gyeongsang National University, Gazwa, Jinju 52828, Republic of Korea.,Department of Internal Medicine, Institute of Health Sciences, Gyeongsang National University, School of Medicine, 90 Chilam-dong, Jinju 52727, Republic of Korea
| | - Gon Sup Kim
- Research Institute of Life Science, College of Veterinary Medicine, Gyeongsang National University, Gazwa, Jinju 52828, Republic of Korea
| |
Collapse
|
85
|
Fan Z, Jiang B, Zhu Q, Xiang S, Tu L, Yang Y, Zhao Q, Huang D, Han J, Su G, Ge D, Hou Z. Tumor-Specific Endogenous Fe II-Activated, MRI-Guided Self-Targeting Gadolinium-Coordinated Theranostic Nanoplatforms for Amplification of ROS and Enhanced Chemodynamic Chemotherapy. ACS APPLIED MATERIALS & INTERFACES 2020; 12:14884-14904. [PMID: 32167740 DOI: 10.1021/acsami.0c00970] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Low drug payload and lack of tumor-targeting for chemodynamic therapy (CDT) result in an insufficient reactive oxygen species (ROS) generation, which seriously hinders its further clinical application. Therefore, how to improve the drug payload and tumor targeting for amplification of ROS and combine it with chemotherapy has been a huge challenge in CDT. Herein, methotrexate (MTX), gadolinium (Gd), and artesunate (ASA) were used as theranostic building blocks to be coordinately assembled into tumor-specific endogenous FeII-activated and magnetic resonance imaging (MRI)-guided self-targeting carrier-free nanoplatforms (NPs) for amplification of ROS and enhanced chemodynamic chemotherapy. The obtained ASA-MTX-GdIII NPs exhibited extremely high drug payload (∼96 wt %), excellent physiological stability, long circulating ability (half-time: ∼12 h), and outstanding tumor accumulation. Moreover, ASA-MTX-GdIII NPs could be specifically uptaken by tumor cells via folate (FA) receptors and subsequently be disassembled via lysosomal acidity-induced coordination breakage, resulting in drug burst release. Most strikingly, the produced ASA could be catalyzed by tumor-specific overexpressed endogenous FeII ions to generate sufficient ROS for enhancing the main chemodynamic efficacy, which could exert a synergistic effect with the assistant chemotherapy of MTX. Interestingly, ASA-MTX-GdIII NPs caused a lower ROS generation and toxicity on normal cell lines that seldom expressed endogenous FeII ions. Under MRI guidance with assistance of self-targeting, significantly superior synergistic tumor therapy was performed on FA receptor-overexpressed tumor-bearing mice with a higher ROS generation and an almost complete elimination of tumor. This work highlights ASA-MTX-GdIII NPs as an efficient chemodynamic-chemotherapeutic agent for MRI imaging and tumor theranostics.
Collapse
Affiliation(s)
- Zhongxiong Fan
- Department of Biomaterials, College of Materials, Research Center of Biomedical Engineering of Xiamen & Key Laboratory of Biomedical Engineering of Fujian Province & Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen 361005, China
| | - Beili Jiang
- Department of Biomaterials, College of Materials, Research Center of Biomedical Engineering of Xiamen & Key Laboratory of Biomedical Engineering of Fujian Province & Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen 361005, China
| | - Qixin Zhu
- School of Pharmaceutical Science, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361005, China
| | - Sijin Xiang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry & Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Li Tu
- Department of Biomaterials, College of Materials, Research Center of Biomedical Engineering of Xiamen & Key Laboratory of Biomedical Engineering of Fujian Province & Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen 361005, China
| | - Yifan Yang
- Department of Biomaterials, College of Materials, Research Center of Biomedical Engineering of Xiamen & Key Laboratory of Biomedical Engineering of Fujian Province & Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen 361005, China
| | - Qingliang Zhao
- Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361005, China
| | - Doudou Huang
- Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361005, China
| | - Jian Han
- School of Electronic Science and Engineering, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen 361005, China
| | - Guanghao Su
- Children's Hospital, Soochow University, Suzhou 215025, China
| | - Dongtao Ge
- Department of Biomaterials, College of Materials, Research Center of Biomedical Engineering of Xiamen & Key Laboratory of Biomedical Engineering of Fujian Province & Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen 361005, China
| | - Zhenqing Hou
- Department of Biomaterials, College of Materials, Research Center of Biomedical Engineering of Xiamen & Key Laboratory of Biomedical Engineering of Fujian Province & Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen 361005, China
| |
Collapse
|
86
|
A widespread role for SLC transmembrane transporters in resistance to cytotoxic drugs. Nat Chem Biol 2020; 16:469-478. [PMID: 32152546 PMCID: PMC7610918 DOI: 10.1038/s41589-020-0483-3] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 01/27/2020] [Indexed: 11/08/2022]
Abstract
Solute Carriers (SLCs) represent the largest family of transmembrane transporters in humans and constitute major determinants of cellular metabolism. Several SLCs have been shown to be required for the uptake of chemical compounds into cellular systems, but systematic surveys of transporter-drug relationships in human cells are currently lacking. We performed a series of genetic screens in a haploid human cell line against 60 cytotoxic compounds representative of the chemical space populated by approved drugs. By using an SLC-focused CRISPR/Cas9 library, we identified transporters whose absence induced resistance to the drugs tested. This included dependencies involving the transporters SLC11A2/SLC16A1 for artemisinin derivatives and SLC35A2/SLC38A5 for cisplatin. The functional dependence on SLCs observed for a significant proportion of the compounds screened suggests a widespread role for SLCs in the uptake and cellular activity of cytotoxic drugs and provides an experimentally validated set of SLC-drug associations for a number of clinically relevant compounds.
Collapse
|
87
|
Lee YS, Kalimuthu K, Seok Park Y, Makala H, Watkins SC, Choudry MHA, Bartlett DL, Tae Kwon Y, Lee YJ. Ferroptotic agent-induced endoplasmic reticulum stress response plays a pivotal role in the autophagic process outcome. J Cell Physiol 2020; 235:6767-6778. [PMID: 31985039 DOI: 10.1002/jcp.29571] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 01/13/2020] [Indexed: 01/17/2023]
Abstract
Ferroptosis has been reported as a unique form of cell death. However, in recent years, researchers have increasingly challenged the uniqueness of ferroptosis compared to other types of cell death. In this study, we examined whether ferroptosis shares cell death pathways with other types of cell death, especially autophagy, via the autophagic process. Here, we observed that ferroptosis inducers (artesunate [ART] and erastin [ERA]) and autophagy inducers (bortezomib [BOR] and XIE62-1004) led to autophagosome formation via the endoplasmic reticulum (ER) stress response. Unlike XIE62-1004, ART, ERA, and BOR, which affect glutathione production or utilization, induced oxidative stress responses-an increase in the levels of heme oxygenase-1 and lipid peroxidation. Oxidative stress responses were attenuated by deletion of autophagy-related gene-5 or treatment with autophagy inhibitors (bafilomycin and chloroquine). Our studies provide an overview of common death pathways-the ER stress response-associated autophagic process in ferroptosis and autophagy. We also highlight the role played by glutathione redox system in the outcome of the autophagic process.
Collapse
Affiliation(s)
- Young-Sun Lee
- Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Kalishwaralal Kalimuthu
- Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Yong Seok Park
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Hima Makala
- Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Simon C Watkins
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - M Haroon A Choudry
- Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - David L Bartlett
- Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Yong Tae Kwon
- Protein Metabolism Medical Research Center and Department of Biomedical Science, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Yong J Lee
- Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
88
|
Laleve A, Panozzo C, Kühl I, Bourand-Plantefol A, Ostojic J, Sissoko A, Tribouillard-Tanvier D, Cornu D, Burg A, Meunier B, Blondel M, Clain J, Bonnefoy N, Duval R, Dujardin G. Artemisinin and its derivatives target mitochondrial c-type cytochromes in yeast and human cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118661. [PMID: 31987792 DOI: 10.1016/j.bbamcr.2020.118661] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 01/17/2020] [Accepted: 01/23/2020] [Indexed: 12/27/2022]
Abstract
Artemisinin and its derivatives kill malaria parasites and inhibit the proliferation of cancer cells. In both processes, heme was shown to play a key role in artemisinin bioactivation. We found that artemisinin and clinical artemisinin derivatives are able to compensate for a mutation in the yeast Bcs1 protein, a key chaperon involved in biogenesis of the mitochondrial respiratory complex III. The equivalent Bcs1 variant causes an encephalopathy in human by affecting complex III assembly. We show that artemisinin derivatives decrease the content of mitochondrial cytochromes and disturb the maturation of the complex III cytochrome c1. This last effect is likely responsible for the compensation by decreasing the detrimental over-accumulation of the inactive pre-complex III observed in the bcs1 mutant. We further show that a fluorescent dihydroartemisinin probe rapidly accumulates in the mitochondrial network and targets cytochromes c and c1 in yeast, human cells and isolated mitochondria. In vitro this probe interacts with purified cytochrome c only under reducing conditions and we detect cytochrome c-dihydroartemisinin covalent adducts by mass spectrometry analyses. We propose that reduced mitochondrial c-type cytochromes act as both targets and mediators of artemisinin bioactivation in yeast and human cells.
Collapse
Affiliation(s)
- Anais Laleve
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France.
| | - Cristina Panozzo
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Inge Kühl
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Alexa Bourand-Plantefol
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Jelena Ostojic
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Abdoulaye Sissoko
- Université de Paris, MERIT, IRD, 4 Avenue de l'Observatoire, 75006 Paris, France
| | - Déborah Tribouillard-Tanvier
- Inserm UMR1078, Université de Bretagne Occidentale, Faculté de Médecine et des Sciences de la Santé; Etablissement Français du Sang (EFS) Bretagne; CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, 22 avenue Camille Desmoulins, 29200 Brest, France
| | - David Cornu
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Angélique Burg
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Brigitte Meunier
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Marc Blondel
- Inserm UMR1078, Université de Bretagne Occidentale, Faculté de Médecine et des Sciences de la Santé; Etablissement Français du Sang (EFS) Bretagne; CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, 22 avenue Camille Desmoulins, 29200 Brest, France
| | - Jerome Clain
- Université de Paris, MERIT, IRD, 4 Avenue de l'Observatoire, 75006 Paris, France
| | - Nathalie Bonnefoy
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Romain Duval
- Université de Paris, MERIT, IRD, 4 Avenue de l'Observatoire, 75006 Paris, France
| | - Geneviève Dujardin
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France.
| |
Collapse
|
89
|
Wang XJ, Chen JY, Fu LQ, Yan MJ. Recent advances in natural therapeutic approaches for the treatment of cancer. J Chemother 2020; 32:53-65. [PMID: 31928332 DOI: 10.1080/1120009x.2019.1707417] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Xue-Jun Wang
- Department of General Surgery, Chun’an First People’s Hospital (Zhejiang Provincial People's Hospital Chun’an Branch), Zhejiang Province, Hangzhou, China
| | - Jin-Yang Chen
- Research and Development Department, Zhejiang Healthfuture Institute for Cell-Based Applied Technology, Zhejiang Province, Hangzhou, China
| | - Luo-Qin Fu
- Department of General Surgery, Chun’an First People’s Hospital (Zhejiang Provincial People's Hospital Chun’an Branch), Zhejiang Province, Hangzhou, China
| | - Mei-Juan Yan
- Department of Anesthesiology, Zhejiang Provincial People’s Hospital (People’s Hospital of Hangzhou Medical College), Zhejiang Province, Hangzhou, China
| |
Collapse
|
90
|
Chen GQ, Benthani FA, Wu J, Liang D, Bian ZX, Jiang X. Artemisinin compounds sensitize cancer cells to ferroptosis by regulating iron homeostasis. Cell Death Differ 2020; 27:242-254. [PMID: 31114026 PMCID: PMC7205875 DOI: 10.1038/s41418-019-0352-3] [Citation(s) in RCA: 281] [Impact Index Per Article: 70.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/24/2019] [Accepted: 05/02/2019] [Indexed: 01/19/2023] Open
Abstract
The antimalarial drug artemisinin and its derivatives have been explored as potential anticancer agents, but their underlying mechanisms are controversial. In this study, we found that artemisinin compounds can sensitize cancer cells to ferroptosis, a new form of programmed cell death driven by iron-dependent lipid peroxidation. Mechanistically, dihydroartemisinin (DAT) can induce lysosomal degradation of ferritin in an autophagy-independent manner, increasing the cellular free iron level and causing cells to become more sensitive to ferroptosis. Further, by associating with cellular free iron and thus stimulating the binding of iron-regulatory proteins (IRPs) with mRNA molecules containing iron-responsive element (IRE) sequences, DAT impinges on IRP/IRE-controlled iron homeostasis to further increase cellular free iron. Importantly, in both in vitro and a mouse xenograft model in which ferroptosis was triggered in cancer cells by the inducible knockout of GPX4, we found that DAT can augment GPX4 inhibition-induced ferroptosis in a cohort of cancer cells that are otherwise highly resistant to ferroptosis. Collectively, artemisinin compounds can sensitize cells to ferroptosis by regulating cellular iron homeostasis. Our findings can be exploited clinically to enhance the effect of future ferroptosis-inducing cancer therapies.
Collapse
Affiliation(s)
- Guo-Qing Chen
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York City, NY, 10065, USA
| | - Fahad A Benthani
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York City, NY, 10065, USA
| | - Jiao Wu
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York City, NY, 10065, USA
- National Translational Science Center for Molecular Medicine, Department of Cell Biology, School of Basic Medicine, Air Force Medical University, Xi'an, 710032, China
| | - Deguang Liang
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York City, NY, 10065, USA
| | - Zhao-Xiang Bian
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.
| | - Xuejun Jiang
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York City, NY, 10065, USA.
| |
Collapse
|
91
|
Potential mechanism of ferroptosis in pancreatic cancer. Oncol Lett 2019; 19:579-587. [PMID: 31897173 PMCID: PMC6923864 DOI: 10.3892/ol.2019.11159] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 07/26/2019] [Indexed: 02/07/2023] Open
Abstract
Despite the incidence rates of pancreatic cancer being low worldwide, the mortality rates remain high. To date, there is no effective drug treatment for pancreatic cancer. Numerous signalling pathways and cytokines regulate the occurrence and development of pancreatic cancer. Ferroptosis is a non-traditional form of cell death resulting from iron-dependent lipid peroxide accumulation. Studies have demonstrated that ferroptosis is associated with a variety of different types of cancer, such as breast cancer, hepatocellular carcinoma and pancreatic cancer. The present study demonstrated that ferroptosis controls the growth and proliferation of pancreatic cancer, providing a new approach for the treatment of pancreatic cancer. Iron metabolism and reactive oxygen species metabolism are the key pathways involved in ferroptosis in pancreatic cancer. In addition, a number of regulators of ferroptosis, such as glutathione peroxidase 4 and the cystine/glutamate antiporter system Xc-, also play pivotal roles in the regulation of ferroptosis. In the present review, the regulatory mechanisms associated with ferroptosis in pancreatic cancer are summarized, alongside other associated forms of digestive system cancer. The treatment of ferroptosis-based diseases is also addressed.
Collapse
|
92
|
Chen CP, Chen K, Feng Z, Wen X, Sun H. Synergistic antitumor activity of artesunate and HDAC inhibitors through elevating heme synthesis via synergistic upregulation of ALAS1 expression. Acta Pharm Sin B 2019; 9:937-951. [PMID: 31649844 PMCID: PMC6804493 DOI: 10.1016/j.apsb.2019.05.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 05/08/2019] [Accepted: 05/10/2019] [Indexed: 12/31/2022] Open
Abstract
Artemisinin and its derivatives (ARTs) were reported to display heme-dependent antitumor activity. On the other hand, histone deacetylase inhibitors (HDACi) were known to be able to promote heme synthesis in erythroid cells. Nevertheless, the effect of HDACi on heme homeostasis in non-erythrocytes remains unknown. We envisioned that the combination of HDACi and artesunate (ARS) might have synergistic antitumor activity through modulating heme synthesis. In vitro studies revealed that combination of ARS and HDACi exerted synergistic tumor inhibition by inducing cell death. Moreover, this combination exhibited more effective antitumor activity than either ARS or HDACi monotherapy in xenograft models without apparent toxicity. Importantly, mechanistic studies revealed that HDACi coordinated with ARS to increase 5-aminolevulinate synthase (ALAS1) expression, and subsequent heme production, leading to enhanced cytotoxicity of ARS. Notably, knocking down ALAS1 significantly blunted the synergistic effect of ARS and HDACi on tumor inhibition, indicating a critical role of ALAS1 upregulation in mediating ARS cytotoxicity. Collectively, our study revealed the mechanism of synergistic antitumor action of ARS and HDACi. This finding indicates that modulation of heme synthesis pathway by the combination based on ARTs and other heme synthesis modulators represents a promising therapeutic approach to solid tumors.
Collapse
Key Words
- ALA, 5-aminolevulinic acid
- ALAD, 5-aminolevulinate dehydratase
- ALAS, 5-aminolevulinate synthase
- ALAS1
- ARS, artesunate
- ART, artemisinin
- Antitumor
- Artesunate
- CCK-8, cell counting kit 8
- CI, combination index
- CMCNa, carboxymethyl cellulose
- DHA, dihydroartemisinin
- DMAB, (dimethylamino)benzaldehyde
- FECH, ferrochelatase
- GSDME, gasdermin E
- HDAC inhibitor
- HDAC, histone deacetylase
- HDACi, HDAC inhibitor
- HMBS, hydroxymethylbilane synthase
- Heme
- KD, knockdown
- KO, knockout
- LBH589, panobinostat
- PDT, photodynamic therapy
- PI, propidium iodide
- PpIX, protoporphyrin IX
- ROS, reactive oxygen species
- SA, succinyl acetone
- SAHA, vorinostat
- WT, wild-type
- sgRNA, single guide RNA
Collapse
Affiliation(s)
| | | | | | | | - Hongbin Sun
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
93
|
Lv H, Shang P. The significance, trafficking and determination of labile iron in cytosol, mitochondria and lysosomes. Metallomics 2019; 10:899-916. [PMID: 29923582 DOI: 10.1039/c8mt00048d] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The labile iron pool (LIP) is a pool of chelatable and redox-active iron, not only essential for a wide variety of metabolic process, but also as a catalyst in the Fenton reaction, causing the release of hazardous reactive oxygen species (ROS) with potential for inducing oxidative stress and cell damage. The cellular LIP represents the entirety of every heterogenous sub-pool of iron, not only present in the cytosol, but also in mitochondria, lysosomes and the nucleus, which have all been detected and characterized by various fluorescent methods. Accumulated evidence indicates that alterations in the intracellular LIP can substantially contribute to a variety of injurious processes and initiate pathological development. Herein, we present our understanding of the role of the cellular LIP. To fully review the LIP, firstly, the significance of cellular labile iron in different subcellular compartments is presented. And then, the trafficking processes of cellular labile iron between/in cytosol, mitochondria and lysosomes are discussed in detail. Then, the recent progress in uncovering and assessing the cellular LIP by fluorescent methods have been noted. Overall, this summary may help to comprehensively envision the important physiological and pathological roles of the LIP and shed light on profiling the LIP in a real-time and nondestructive manner with fluorescent methods. Undoubtedly, with the advent and development of iron biology, a better understanding of iron, especially the LIP, may also enhance treatments for iron-related diseases.
Collapse
Affiliation(s)
- Huanhuan Lv
- School of Life Sciences, Northwestern Polytechnical University, Youyi Xilu 127, 7100072, Xi'an, Shaanxi, China
| | | |
Collapse
|
94
|
Mota TC, Garcia TB, Bonfim LT, Portilho AJS, Pinto CA, Burbano RMR, Bahia M. Markers of oxidative‐nitrosative stress induced by artesunate are followed by clastogenic and aneugenic effects and apoptosis in human lymphocytes. J Appl Toxicol 2019; 39:1405-1412. [DOI: 10.1002/jat.3826] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/02/2019] [Accepted: 05/02/2019] [Indexed: 12/23/2022]
Affiliation(s)
- Tatiane C. Mota
- Laboratory of Human Cytogenetic and Genetic Toxicology, Institute of Biological SciencesFederal University of Pará (UFPA) Belém‐ Pará Brazil
| | - Tarcyane B. Garcia
- Laboratory of Human Cytogenetic and Genetic Toxicology, Institute of Biological SciencesFederal University of Pará (UFPA) Belém‐ Pará Brazil
| | - Laís T. Bonfim
- Laboratory of Human Cytogenetic and Genetic Toxicology, Institute of Biological SciencesFederal University of Pará (UFPA) Belém‐ Pará Brazil
| | - Adrhyann J. S. Portilho
- Laboratory of Human Cytogenetic and Genetic Toxicology, Institute of Biological SciencesFederal University of Pará (UFPA) Belém‐ Pará Brazil
| | - Camila A. Pinto
- Laboratory of Human Cytogenetic and Genetic Toxicology, Institute of Biological SciencesFederal University of Pará (UFPA) Belém‐ Pará Brazil
| | - Rommel M. R. Burbano
- Laboratory of Human Cytogenetic and Genetic Toxicology, Institute of Biological SciencesFederal University of Pará (UFPA) Belém‐ Pará Brazil
| | - Marcelo Bahia
- Laboratory of Human Cytogenetic and Genetic Toxicology, Institute of Biological SciencesFederal University of Pará (UFPA) Belém‐ Pará Brazil
| |
Collapse
|
95
|
Sun X, Yan P, Zou C, Wong YK, Shu Y, Lee YM, Zhang C, Yang ND, Wang J, Zhang J. Targeting autophagy enhances the anticancer effect of artemisinin and its derivatives. Med Res Rev 2019; 39:2172-2193. [PMID: 30972803 DOI: 10.1002/med.21580] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 03/07/2019] [Accepted: 03/16/2019] [Indexed: 12/12/2022]
Abstract
Artemisinin and its derivatives, with their outstanding clinical efficacy and safety, represent the most effective and impactful antimalarial drugs. Apart from its antimalarial effect, artemisinin has also been shown to exhibit selective anticancer properties against multiple cancer types both in vitro and in vivo. Specifically, our previous studies highlighted the therapeutic effects of artemisinin on autophagy regulation. Autophagy is a well-conserved degradative process that recycles cytoplasmic contents and organelles in lysosomes to maintain cellular homeostasis. The deregulation of autophagy is often observed in cancer cells, where it contributes to tumor adaptation to nutrient-deficient tumor microenvironments. This review discusses recent advances in the anticancer properties of artemisinin and its derivatives via their regulation of autophagy, mitophagy, and ferritinophagy. In particular, we will discuss the mechanisms of artemisinin activation in cancer and novel findings regarding the role of artemisinin in regulating autophagy, which involves changes in multiple signaling pathways. More importantly, with increasing failure rates and the high cost of the development of novel anticancer drugs, the strategy of repurposing traditional therapeutic Chinese medicinal agents such as artemisinin to treat cancer provides a more attractive alternative. We believe that the topics covered here will be important in demonstrating the potential of artemisinin and its derivatives as safe and potent anticancer agents.
Collapse
Affiliation(s)
- Xin Sun
- Department of Oncology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Peiyi Yan
- Department of Clinical Laboratory, Shanghai Putuo District People's Hospital, Shanghai, China
| | - Chang Zou
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University, Shenzhen Public Service Platform on Tumor Precision Medicine and Molecular Diagnosis, Shenzhen People's Hospital, Shenzhen, China
| | - Yin-Kwan Wong
- Department of Pharmacology, Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yuhan Shu
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Yew Mun Lee
- Department of Pharmacology, Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Chongjing Zhang
- Institute of Material Medical, Peking Union Medical College, Beijing, China
| | - Nai-Di Yang
- Department of Pharmacology, Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jigang Wang
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University, Shenzhen Public Service Platform on Tumor Precision Medicine and Molecular Diagnosis, Shenzhen People's Hospital, Shenzhen, China.,Department of Pharmacology, Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.,Key Laboratory of Cardio-Cerebrovascular Disease Prevention & Therapy, Gannan Medical University, Ganzhou, China
| | - Jianbin Zhang
- Department of Oncology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
96
|
Recalcati S, Correnti M, Gammella E, Raggi C, Invernizzi P, Cairo G. Iron Metabolism in Liver Cancer Stem Cells. Front Oncol 2019; 9:149. [PMID: 30941302 PMCID: PMC6433741 DOI: 10.3389/fonc.2019.00149] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 02/22/2019] [Indexed: 12/15/2022] Open
Abstract
Cancer stem cells (CSC) which have been identified in several tumors, including liver cancer, represent a particular subpopulation of tumor cells characterized by properties similar to those of adult stem cells. Importantly, CSC are resistant to standard therapies, thereby leading to metastatic dissemination and tumor relapse. Given the increasing evidence that iron homeostasis is deregulated in cancer, here we describe the iron homeostasis alterations in cancer cells, particularly in liver CSC. We also discuss two paradoxically opposite iron manipulation-strategies for tumor therapy based either on iron chelation or iron overload-mediated oxidant production leading to ferroptosis. A better understanding of iron metabolism modifications occurring in hepatic tumors and particularly in liver CSC cells may offer new therapeutic options for this cancer, which is characterized by increasing incidence and unfavorable prognosis.
Collapse
Affiliation(s)
- Stefania Recalcati
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | | | - Elena Gammella
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Chiara Raggi
- Humanitas Clinical and Research Center, IRCCS, Rozzano, Italy.,Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Pietro Invernizzi
- Division of Gastroenterology, Department of Medicine and Surgery, Center for Autoimmune Liver Diseases, San Gerardo Hospital, University of Milano-Bicocca, Monza, Italy
| | - Gaetano Cairo
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| |
Collapse
|
97
|
Du J, Wang T, Li Y, Zhou Y, Wang X, Yu X, Ren X, An Y, Wu Y, Sun W, Fan W, Zhu Q, Wang Y, Tong X. DHA inhibits proliferation and induces ferroptosis of leukemia cells through autophagy dependent degradation of ferritin. Free Radic Biol Med 2019; 131:356-369. [PMID: 30557609 DOI: 10.1016/j.freeradbiomed.2018.12.011] [Citation(s) in RCA: 294] [Impact Index Per Article: 58.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 12/04/2018] [Accepted: 12/11/2018] [Indexed: 02/07/2023]
Abstract
Dihydroartemisinin (DHA) has been shown to be capable of inhibiting cancer growth, whereas it remains largely elusive that the underlying molecular mechanism of DHA induced acute myeloid leukemia (AML) cell death. In the present study, we examined the effects of DHA on the proliferation and ferroptosis of AML cells as well as to elucidate the underlying molecular mechanisms. We found that DHA strongly inhibited the viability of AML cell lines and arrest cell cycle at G0/G1 phase. Further studies found that DHA effectively induced AML cells ferroptosis, which was iron-dependent and accompanied by mitochondrial dysfunction. Mechanistically, DHA induced autophagy by regulating the activity of AMPK/mTOR/p70S6k signaling pathway, which accelerated the degradation of ferritin, increased the labile iron pool, promoted the accumulation of cellular ROS and eventually led to ferroptotic cell death. Over expression of ISCU (Iron-sulfur cluster assembly enzyme, a mitochondrial protein) significantly attenuated DHA induced ferroptosis by regulating iron metabolism, rescuing the mitochondrial function and increasing the level of GSH. Meanwhile, FTH reconstituted AML cells also exhibited the reduced lipid peroxides content and restored the DHA-induced ferroptosis. In summary, these results provide experimental evidences on the detailed mechanism of DHA-induced ferroptosis and reveal that DHA might represent a promising therapeutic agent to preferentially target AML cells.
Collapse
MESH Headings
- AMP-Activated Protein Kinases/genetics
- AMP-Activated Protein Kinases/metabolism
- Animals
- Antimalarials/pharmacology
- Antineoplastic Agents/pharmacology
- Apoferritins/genetics
- Apoferritins/metabolism
- Artemisinins/pharmacology
- Autophagy/drug effects
- Autophagy/genetics
- Cell Cycle/drug effects
- Cell Cycle/genetics
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Ferroptosis/drug effects
- Ferroptosis/genetics
- Gene Expression Regulation, Leukemic
- HL-60 Cells
- Humans
- Iron-Sulfur Proteins/genetics
- Iron-Sulfur Proteins/metabolism
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Membrane Potential, Mitochondrial/drug effects
- Mice
- Mice, Nude
- Mitochondria/drug effects
- Mitochondria/metabolism
- Mitochondria/pathology
- Proteolysis
- Reactive Oxygen Species/agonists
- Reactive Oxygen Species/metabolism
- Ribosomal Protein S6 Kinases, 70-kDa/genetics
- Ribosomal Protein S6 Kinases, 70-kDa/metabolism
- Signal Transduction
- THP-1 Cells
- TOR Serine-Threonine Kinases/genetics
- TOR Serine-Threonine Kinases/metabolism
- Tumor Burden/drug effects
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Jing Du
- Department of Laboratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Tongtong Wang
- Wangjiangshan Institute, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Yanchun Li
- Clinical Research Institute, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, China; The Second Clinical Medical School of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Yi Zhou
- Clinical Research Institute, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, China; The Second Clinical Medical School of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Xin Wang
- Clinical Research Institute, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Xingxing Yu
- Clinical Research Institute, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Xueying Ren
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310005, China
| | - Yihan An
- Clinical Research Institute, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Yi Wu
- Clinical Research Institute, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, China; Department of Haematology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Weidong Sun
- Clinical Research Institute, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Weimin Fan
- Clinical Research Institute, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, China; The Second Clinical Medical School of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Qiaojuan Zhu
- Clinical Research Institute, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Ying Wang
- Clinical Research Institute, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, China; Department of Blood Transfusion, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, China.
| | - Xiangmin Tong
- Department of Laboratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, China; Clinical Research Institute, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, China.
| |
Collapse
|
98
|
Moldogazieva NT, Lutsenko SV, Terentiev AA. Reactive Oxygen and Nitrogen Species-Induced Protein Modifications: Implication in Carcinogenesis and Anticancer Therapy. Cancer Res 2018; 78:6040-6047. [PMID: 30327380 DOI: 10.1158/0008-5472.can-18-0980] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 07/23/2018] [Accepted: 08/23/2018] [Indexed: 11/16/2022]
Abstract
Cancer is a complex disorder extremely dependent on its microenvironment and highly regulated by multiple intracellular and extracellular stimuli. Studies show that reactive oxygen and nitrogen species (RONS) play key roles in cancer initiation and progression. Accumulation of RONS caused by imbalance between RONS generation and activity of antioxidant system (AOS) has been observed in many cancer types. This leads to alterations in gene expression levels, signal transduction pathways, and protein quality control machinery, that is, processes that regulate cancer cell proliferation, migration, invasion, and apoptosis. This review focuses on the latest advancements evidencing that RONS-induced modifications of key redox-sensitive residues in regulatory proteins, that is, cysteine oxidation/S-sulfenylation/S-glutathionylation/S-nitrosylation and tyrosine nitration, represent important molecular mechanisms underlying carcinogenesis. The oxidative/nitrosative modifications cause alterations in activities of intracellular effectors of MAPK- and PI3K/Akt-mediated signaling pathways, transcription factors (Nrf2, AP-1, NFκB, STAT3, and p53), components of ubiquitin/proteasomal and autophagy/lysosomal protein degradation systems, molecular chaperones, and cytoskeletal proteins. Redox-sensitive proteins, RONS-generating enzymes, and AOS components can serve as targets for relevant anticancer drugs. Chemotherapeutic agents exert their action via RONS generation and induction of cancer cell apoptosis, while drug resistance associates with RONS-induced cancer cell survival; this is exploited in selective anticancer therapy strategies. Cancer Res; 78(21); 6040-7. ©2018 AACR.
Collapse
Affiliation(s)
- Nurbubu T Moldogazieva
- Department of Biotechnology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia.
| | - Sergey V Lutsenko
- Department of Biotechnology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Alexander A Terentiev
- Department of Biochemistry and Molecular Biology, N.I. Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
99
|
Zhang J, Sun X, Wang L, Wong YK, Lee YM, Zhou C, Wu G, Zhao T, Yang L, Lu L, Zhong J, Huang D, Wang J. Artesunate-induced mitophagy alters cellular redox status. Redox Biol 2018; 19:263-273. [PMID: 30196190 PMCID: PMC6128040 DOI: 10.1016/j.redox.2018.07.025] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 07/30/2018] [Accepted: 07/31/2018] [Indexed: 12/22/2022] Open
Abstract
Artesunate (ART) is a prominent anti-malarial with significant anti-cancer properties. Our previous studies showed that ART enhances lysosomal function and ferritin degradation, which was necessary for its anti-cancer properties. ART targeting to mitochondria also significantly improved its efficacy, but the effect of ART on mitophagy, an important cellular pathway that facilitates the removal of damaged mitochondria, remains unknown. Here, we first observed that ART mainly localizes in the mitochondria and its probe labeling revealed that it binds to a large number of mitochondrial proteins and causes mitochondrial fission. Second, we found that ART treatment leads to autophagy induction and the decrease of mitochondrial proteins. When autophagy is inhibited, the decrease of mitochondrial proteins could be reversed, indicating that the degradation of mitochondrial proteins is through mitophagy. Third, our results showed that ART treatment stabilizes the full-length form of PTEN induced putative kinase 1 (PINK1) on the mitochondria and activates the PINK1-dependent pathway. This in turn leads to the recruitment of Parkin, sequestosome 1 (SQSTM1), ubiquitin and microtubule-associated proteins 1A/1B light chain 3 (LC3) to the mitochondria and culminates in mitophagy. When PINK1 is knocked down, ART-induced mitophagy is markedly suppressed. Finally, we investigated the effect of mitophagy by ART on mitochondrial functions and found that knockdown of PINK1 alters the cellular redox status in ART-treated cells, which is accompanied with a significant decrease in glutathione (GSH) and increase in mitochondrial reactive oxidative species (mROS) and cellular lactate levels. Additionally, knockdown of PINK1 leads to a significant increase of mitochondrial depolarization and more cell apoptosis by ART, suggesting that mitophagy protects from ART-induced cell death. Taken together, our findings reveal the molecular mechanism that ART induces cytoprotective mitophagy through the PINK1-dependent pathway, suggesting that mitophagy inhibition could enhance the anti-cancer activity of ART.
Collapse
Affiliation(s)
- Jianbin Zhang
- Department of Oncology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, China; Clinical Research Institute, Key Laboratory of Tumor Molecular Diagnosis and Individual Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, China; Key Laboratory of Cardio-cerebrovascular disease prevention & therapy, Gannan Medical University, Ganzhou 341000, China.
| | - Xin Sun
- Department of Oncology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, China
| | - Liming Wang
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 117593, Singapore
| | - Yin Kwan Wong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 117593, Singapore; Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yew Mun Lee
- Department of Pharmacology, National University of Singapore, 117600, Singapore
| | - Chao Zhou
- Department of Oncology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, China
| | - Guoqing Wu
- Department of Oncology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, China
| | - Tongwei Zhao
- Department of Oncology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, China
| | - Liu Yang
- Clinical Research Institute, Key Laboratory of Tumor Molecular Diagnosis and Individual Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, China
| | - Liqin Lu
- Department of Oncology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, China
| | - Jianing Zhong
- Key Laboratory of Cardio-cerebrovascular disease prevention & therapy, Gannan Medical University, Ganzhou 341000, China
| | - Dongsheng Huang
- Clinical Research Institute, Key Laboratory of Tumor Molecular Diagnosis and Individual Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, China.
| | - Jigang Wang
- Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China; Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Department of Pharmacology, National University of Singapore, 117600, Singapore; Key Laboratory of Cardio-cerebrovascular disease prevention & therapy, Gannan Medical University, Ganzhou 341000, China.
| |
Collapse
|
100
|
Tang M, Chen Z, Wu D, Chen L. Ferritinophagy/ferroptosis: Iron-related newcomers in human diseases. J Cell Physiol 2018; 233:9179-9190. [PMID: 30076709 DOI: 10.1002/jcp.26954] [Citation(s) in RCA: 190] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 06/12/2018] [Indexed: 02/06/2023]
Abstract
Nuclear receptor coactivator 4 mediated ferritinophagy is an autophagic phenomenon that specifically involves ferritin to release intracellular free iron. Ferritinophagy is implicated in maintaining efficient erythropoiesis. Notably, ferritinophagy also plays a central role in driving some pathological processes, including Parkinson's disease (PD) and urinary tract infections. Some evidence has demonstrated that ferritinophagy is critical to induce ferroptosis. Ferroptosis is a newly nonapoptotic form of cell death, characterized by the accumulation of iron-based lipid reactive oxygen species. Ferroptosis plays an important role in inhibiting some types of cancers, such as hepatocellular carcinoma, pancreatic carcinoma, prostate cancer, and breast cancer. Conversely, the activation of ferroptosis accelerates neurodegeneration diseases, including PD and Alzheimer's disease. Therefore, in this review, we summarize the regulatory mechanisms related to ferritinophagy and ferroptosis. Moreover, the distinctive effects of ferritinophagy in human erythropoiesis and some pathologies, coupled with the promotive or inhibitory role of tumorous and neurodegenerative diseases mediated by ferroptosis, are elucidated. Obviously, activating or inhibiting ferroptosis could be exploited to achieve desirable therapeutic effects on diverse cancers and neurodegeneration diseases. Interrupting ferritinophagy to control iron level might provide a potentially therapeutic avenue to suppress urinary tract infections.
Collapse
Affiliation(s)
- Mingzhu Tang
- Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Zhe Chen
- Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Di Wu
- Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Linxi Chen
- Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| |
Collapse
|