51
|
Synthesis and evaluation of ferrocenoyl pentapeptide (Fc-KLVFF) as an inhibitor of Alzheimer's Aβ₁-₄₂ fibril formation in vitro. Bioorg Med Chem Lett 2011; 21:5818-21. [PMID: 21855336 DOI: 10.1016/j.bmcl.2011.07.111] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 07/14/2011] [Accepted: 07/28/2011] [Indexed: 11/22/2022]
Abstract
Aggregation and fibril formation of β-amyloid peptides (Aβ) is the key event in the pathogenesis of Alzheimer's disease. Many efforts have been made on the development of effective inhibitors to prevent Aβ fibril formation or disassemble the preformed Aβ fibrils. Peptide inhibitors with sequences homologous to the hydrophobic segments of Aβ can alter the aggregation pathway of Aβ, together with decrease of the cell toxicity. In this study, the conjugate of ferrocenoyl (Fc) with pentapeptide KLVFF (Fc-KLVFF), was synthesized by HBTU/HOBt protocol in solution. The inhibitory effect of Fc-KLVFF on Aβ(1-42) fibril formation was evaluated by thioflavin T fluorescence assay, and confirmed by atomic force microscopy (AFM) and transmission electron microscopy (TEM) analyses. Fc-KLVFF shows high inhibitory effect towards the fibril formation of Aβ(1-42). Additionally, the attachment of ferrocenoyl moiety onto peptides allows us to investigate the interaction between the inhibitor and Aβ(1-42) in real-time by electrochemical method. As expected, tethering of ferrocenoyl moiety onto pentapeptide shows improved lipophilicity and significant resistance towards proteolytic degradation compared to its parent peptide.
Collapse
|
52
|
Computational insights into the development of novel therapeutic strategies for Alzheimer's disease. Future Med Chem 2011; 1:119-35. [PMID: 21426072 DOI: 10.4155/fmc.09.10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND β-amyloidosis and oxidative stress have been implicated as root causes of Alzheimer's disease (AD). Current potential therapeutic strategies for the treatment of AD include inhibition of amyloid β (Aβ) production, stimulation of Aβ degradation and prevention of Aβ oligomerization. However, efforts in this direction are hindered by the lack of understanding of the biochemical processes occurring at the atomic level in AD. DISCUSSION A radically different approach to achieve this goal would be the application of comprehensive theoretical and computational techniques such as molecular dynamics, quantum mechanics, hybrid quantum mechanics/molecular mechanics, bioinformatics and rotational spectroscopy to investigate complex chemical and physical processes in β-amyloidosis and the oxidative stress mechanism. CONCLUSION Results obtained from these studies will provide an atomic level understanding of biochemical processes occurring in AD and advance efforts to develop effective therapeutic strategies for this disease.
Collapse
|
53
|
Soto-Ortega DD, Murphy BP, Gonzalez-Velasquez FJ, Wilson KA, Xie F, Wang Q, Moss MA. Inhibition of amyloid-β aggregation by coumarin analogs can be manipulated by functionalization of the aromatic center. Bioorg Med Chem 2011; 19:2596-602. [PMID: 21458277 DOI: 10.1016/j.bmc.2011.03.010] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Revised: 02/26/2011] [Accepted: 03/06/2011] [Indexed: 12/27/2022]
Abstract
Aggregation of the amyloid-β protein (Aβ) plays a pathogenic role in the progression of Alzheimer's disease, and small molecules that attenuate Aβ aggregation have been identified toward a therapeutic strategy that targets the disease's underlying cause. Compounds containing aromatic structures have been repeatedly reported as effective inhibitors of Aβ aggregation, but the functional groups that influence inhibition by these aromatic centers have been less frequently explored. The current study identifies analogs of naturally occurring coumarin as novel inhibitors of Aβ aggregation. Derivatization of the coumarin structure is shown to affect inhibitory capabilities and to influence the point at which an inhibitor intervenes within the nucleation dependent Aβ aggregation pathway. In particular, functional groups found within amyloid binding dyes, such as benzothiazole and triazole, can improve inhibition efficacy. Furthermore, inhibitor intervention at early or late stages within the amyloid aggregation pathway is shown to correlate with the ability of these functional groups to recognize and bind amyloid species that appear either early or late within the aggregation pathway. These results demonstrate that functionalization of small aromatic molecules with recognition elements can be used in the rational design of Aβ aggregation inhibitors to not only enhance inhibition but to also manipulate the inhibition mechanism.
Collapse
Affiliation(s)
- Deborah D Soto-Ortega
- Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, USA
| | | | | | | | | | | | | |
Collapse
|
54
|
Himeno E, Ohyagi Y, Ma L, Nakamura N, Miyoshi K, Sakae N, Motomura K, Soejima N, Yamasaki R, Hashimoto T, Tabira T, M. LaFerla F, Kira JI. Apomorphine treatment in Alzheimer mice promoting amyloid-β degradation. Ann Neurol 2011; 69:248-56. [DOI: 10.1002/ana.22319] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
55
|
Abstract
Analytical ultracentrifugation is a classical technique used to study the solution behavior of proteins. Experimentally determined sedimentation coefficients provide information regarding the size, shape, and interactions of biological macromolecules. Sedimentation velocity methods have been used to characterize the different aggregation states of amyloid oligomers and fibrils. This chapter first describes the theoretical background for sedimentation velocity analysis. It then provides experimental protocols for sedimentation velocity experiments using the analytical ultracentrifuge. Finally, this chapter describes the procedure used to analyze sedimentation velocity data to obtain the size distribution of amyloid fibrils and their oligomeric precursors.
Collapse
Affiliation(s)
- Chi Le Lan Pham
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
| | | | | |
Collapse
|
56
|
Quantitative structure-activity relationship analysis of β-amyloid aggregation inhibitors. J Comput Aided Mol Des 2010; 25:135-44. [PMID: 21165759 DOI: 10.1007/s10822-010-9405-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2010] [Accepted: 12/03/2010] [Indexed: 10/18/2022]
Abstract
Inhibiting the aggregation process of the β-amyloid peptide is a promising strategy in treating Alzheimer's disease. In this work, we have collected a dataset of 80 small molecules with known inhibition levels and utilized them to develop two comprehensive quantitative structure-activity relationship models: a Bayesian model and a decision tree model. These models have exhibited high predictive accuracy: 87% of the training and test sets using the Bayesian model and 89 and 93% of the training and test sets, respectively, by the decision tree model. Subsequently these models were used to predict the activities of several new potential β-amyloid aggregation inhibitors and these predictions were indeed validated by in vitro experiments. Key chemical features correlated with the inhibition ability were identified. These include the electro-topological state of carbonyl groups, AlogP and the number of hydrogen bond donor groups. The results demonstrate the feasibility of the developed models as tools for rapid screening, which could help in the design of novel potential drug candidates for Alzheimer's disease.
Collapse
|
57
|
Foderà V, Donald AM. Tracking the heterogeneous distribution of amyloid spherulites and their population balance with free fibrils. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2010; 33:273-282. [PMID: 21052765 DOI: 10.1140/epje/i2010-10665-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Accepted: 10/11/2010] [Indexed: 05/30/2023]
Abstract
The analysis of amyloidogenic systems reveals the appearance of distinct states of aggregation for amyloid fibrils. For different proteins and under specific experimental conditions, amyloid spherulites are recognized as a significant component occurring in several protein model systems used for in vitro fibrillation studies. In this work we have developed an approach to characterize solutions containing a mixture of amyloid spherulites and individual fibrils. Using bovine insulin as the model system, sedimentation kinetics for the amyloid aggregates were followed using a combination of UV-Vis spectroscopy and cross-polarized optical microscopy. Spherulites were identified as the species undergoing sedimentation. A simple mathematical approach allows the description of the kinetics in terms of decay time/rate distribution. Moreover, based on the sedimentation kinetics, a rough estimate of the balance between amyloid spherulites and individual fibrils can be provided. Fitting the experimental data with the proposed physico-chemical approach shows self-consistent results in reasonable agreement with quantitative imaging analysis previously reported. Our results provide new physical insights into the analysis of amyloidogenic systems, providing a method to characterize the heterogeneous distribution of amyloid spherulites and simultaneously distinguish spherulites and free fibril populations. Importantly, the method can be generally applied to the characterization of polydisperse solutions containing optically traceable spherical particles in the micrometric range.
Collapse
Affiliation(s)
- V Foderà
- Sector of Biological and Soft Systems, Department of Physics, Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, CB3 0HE, Cambridge, UK.
| | | |
Collapse
|
58
|
Wang Y, Clark TB, Goodson T. Two-photon and time-resolved fluorescence conformational studies of aggregation in amyloid peptides. J Phys Chem B 2010; 114:7112-20. [PMID: 20429591 DOI: 10.1021/jp101496y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The conformational changes associated with the aggregation of proteins are critical to the understanding of fundamental molecular events involved in early processes of neurodegenerative diseases. A detailed investigation of these processes requires the development of new approaches that allow for sensitive measurements of protein interactions. In this paper, we applied two-photon spectroscopy coupled with time-resolved fluorescence measurements to analyze amyloid peptide interactions through aggregation-dependent concentration effects. Labeled amyloid-beta peptide (TAMRA-Abeta1-42) was used in our investigation, and measurements of two-photon-excited fluorescence of the free and covalently conjugated peptide structure were carried out. The peptide secondary structure was correlated with a short fluorescence lifetime component, and this was associated with intramolecular interactions. Comparison of the fractional occupancy of the fluorescence lifetime measured at different excitation modes demonstrates the high sensitivity of the two-photon method in comparison to one-photon excitation (OPE). These results give strong justification for the development of fluorescence-lifetime-based multiphoton imaging and assays.
Collapse
Affiliation(s)
- Ying Wang
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | |
Collapse
|
59
|
Di Giovanni S, Eleuteri S, Paleologou KE, Yin G, Zweckstetter M, Carrupt PA, Lashuel HA. Entacapone and tolcapone, two catechol O-methyltransferase inhibitors, block fibril formation of alpha-synuclein and beta-amyloid and protect against amyloid-induced toxicity. J Biol Chem 2010; 285:14941-14954. [PMID: 20150427 DOI: 10.1074/jbc.m109.080390] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Parkinson disease (PD) is the second most common neurodegenerative disorder after Alzheimer disease (AD). There is considerable consensus that the increased production and/or aggregation of alpha-synuclein (alpha-syn) plays a central role in the pathogenesis of PD and related synucleinopathies. Current therapeutic strategies for treating PD offer mainly transient symptomatic relief and aim at the restitution of dopamine levels to counterbalance the loss of dopaminergic neurons. Therefore, the identification and development of drug-like molecules that block alpha-synuclein aggregation and prevent the loss of dopaminergic neurons are desperately needed to treat or slow the progression of PD. Here, we show that entacapone and tolcapone are potent inhibitors of alpha-syn and beta-amyloid (Abeta) oligomerization and fibrillogenesis, and they also protect against extracellular toxicity induced by the aggregation of both proteins. Comparison of the anti-aggregation properties of entacapone and tolcapone with the effect of five other catechol-containing compounds, dopamine, pyrogallol, gallic acid, caffeic acid, and quercetin on the oligomerization and fibrillization of alpha-syn and Abeta, demonstrate that the catechol moiety is essential for the anti-amyloidogenic activity. Our findings present the first characterization of the anti-amyloidogenic properties of tolcapone and entacapone against both alpha-synuclein and Abeta42 and highlight the potential of this class of nitro-catechol compounds as anti-amyloidogenic agents. Their inhibitory properties, mode of action, and structural properties suggest that they constitute promising lead compounds for further optimization.
Collapse
Affiliation(s)
- Saviana Di Giovanni
- Laboratory of Molecular Neurobiology and Neuroproteomics, Swiss Federal Institute of Technology Lausanne, SV-BMI-LMNN-AI2351, CH-1015 Lausanne, Switzerland
| | - Simona Eleuteri
- Laboratory of Molecular Neurobiology and Neuroproteomics, Swiss Federal Institute of Technology Lausanne, SV-BMI-LMNN-AI2351, CH-1015 Lausanne, Switzerland; Dipartimento di Biologia Evoluzionistica Sperimentale, Università di Bologna Via Selmi, 3, 40126 Bologna, Italy
| | - Katerina E Paleologou
- Laboratory of Molecular Neurobiology and Neuroproteomics, Swiss Federal Institute of Technology Lausanne, SV-BMI-LMNN-AI2351, CH-1015 Lausanne, Switzerland
| | - Guowei Yin
- Max-Planck Institute for Biophysical Chemistry, NMR-based Structural Biology, Am Fassberg 11, 37077 Goettingen, Germany
| | - Markus Zweckstetter
- Max-Planck Institute for Biophysical Chemistry, NMR-based Structural Biology, Am Fassberg 11, 37077 Goettingen, Germany; Deutsche Forschungsgemeinschaft Research Center for the Molecular Physiology of the Brain, Göttingen, Germany
| | - Pierre-Alain Carrupt
- School of Pharmaceutical Sciences, University of Geneva and University of Lausanne, Quai Ernest-Ansermet 30, CH-1211, Genève 4, Switzerland
| | - Hilal A Lashuel
- Laboratory of Molecular Neurobiology and Neuroproteomics, Swiss Federal Institute of Technology Lausanne, SV-BMI-LMNN-AI2351, CH-1015 Lausanne, Switzerland.
| |
Collapse
|
60
|
Baine M, Georgie DS, Shiferraw EZ, Nguyen TPT, Nogaj LA, Moffet DA. Inhibition of Abeta42 aggregation using peptides selected from combinatorial libraries. J Pept Sci 2009; 15:499-503. [PMID: 19562726 DOI: 10.1002/psc.1150] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Increasing evidence suggests that the aggregation of the small peptide Abeta42 plays an important role in the development of Alzheimer's disease. Inhibiting the initial aggregation of Abeta42 may be an effective treatment for preventing, or slowing, the onset of the disease. Using an in vivo screen based on the enzyme EGFP, we have searched through two combinatorially diverse peptide libraries to identify peptides capable of inhibiting Abeta42 aggregation. From this initial screen, three candidate peptides were selected and characterized. ThT studies indicated that the selected peptides were capable of inhibiting amyloid aggregation. Additional ThT studies showed that one of the selected peptides was capable of disaggregating preformed Abeta42 fibers.
Collapse
Affiliation(s)
- Michael Baine
- Department of Chemistry and Biochemistry, Loyola Marymount University, One LMU Drive, Los Angeles, CA 90045, USA
| | | | | | | | | | | |
Collapse
|
61
|
Abstract
The aggregation of numerous peptides or proteins has been linked to the onset of disease, including Abeta (amyloid beta-peptide) in AD (Alzheimer's disease), asyn (alpha-synuclein) in Parkinson's disease and amylin in Type 2 diabetes. Diverse amyloidogenic proteins can often be cut down to an SRE (self-recognition element) of as few as five residues that retains the ability to aggregate. SREs can be used as a starting point for aggregation inhibitors. In particular, N-methylated SREs can bind to a target on one side, but have hydrogen-bonding blocked on their methylated face, interfering with further assembly. We applied this strategy to develop Abeta toxicity inhibitors. Our compounds, and a range of compounds from the literature, were compared under the same conditions, using biophysical and toxicity assays. Two N-methylated D-peptide inhibitors with unnatural side chains were the most effective and can reverse Abeta-induced inhibition of LTP (long-term potentiation) at concentrations as low as 10 nM. An SRE in asyn (VAQKTV) was identified using solid-state NMR. When VAQKTV was N-methylated, it was able to disrupt asyn aggregation. N-methylated derivatives of the SRE of amylin are also able to inhibit amylin aggregation.
Collapse
|
62
|
Marsagishvili LG, Bobylev AG, Shpagina MD, Troshin PA, Podlubnaya ZA. Effect of fullerenes C60 on X-protein amyloids. Biophysics (Nagoya-shi) 2009. [DOI: 10.1134/s000635090902002x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
63
|
Davis TJ, Soto-Ortega DD, Kotarek JA, Gonzalez-Velasquez FJ, Sivakumar K, Wu L, Wang Q, Moss MA. Comparative study of inhibition at multiple stages of amyloid-beta self-assembly provides mechanistic insight. Mol Pharmacol 2009; 76:405-13. [PMID: 19483107 DOI: 10.1124/mol.109.055301] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The "amyloid cascade hypothesis," linking self-assembly of the amyloid-beta protein (Abeta) to the pathogenesis of Alzheimer's disease, has led to the emergence of inhibition of Abeta self-assembly as a prime therapeutic strategy for this currently unpreventable and devastating disease. The complexity of Abeta self-assembly, which involves multiple reaction intermediates related by nonlinear and interconnected nucleation and growth mechanisms, provides multiple points for inhibitor intervention. Although a number of small-molecule inhibitors of Abeta self-assembly have been identified, little insight has been garnered concerning the point at which these inhibitors intervene within the Abeta assembly process. In the current study, a julolidine derivative is identified as an inhibitor of Abeta self-assembly. To gain insight into the mechanistic action of this inhibitor, the inhibition of fibril formation from monomeric protein is assessed quantitatively and compared with the inhibition of two distinct mechanisms of growth for soluble Abeta aggregation intermediates. This compound is observed to significantly inhibit soluble aggregate growth by lateral association while having little effect on soluble aggregate elongation via monomer addition. In addition, inhibition of soluble Abeta aggregate association exhibits an IC(50) with a somewhat lower stoichiometric ratio than the IC(50) determined for inhibition of fibril formation from monomeric Abeta. This quantitative comparison of inhibition within multiple Abeta self-assembly assays suggests that this compound binds the lateral surface of on-pathway intermediates exhibiting a range of sizes to prevent their association with other aggregates, which is required for further assembly into mature fibrils.
Collapse
Affiliation(s)
- Timothy J Davis
- Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, USA
| | | | | | | | | | | | | | | |
Collapse
|
64
|
Nagel-Steger L, Demeler B, Meyer-Zaika W, Hochdörffer K, Schrader T, Willbold D. Modulation of aggregate size- and shape-distributions of the amyloid-beta peptide by a designed beta-sheet breaker. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2009; 39:415-22. [PMID: 19238376 DOI: 10.1007/s00249-009-0416-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2008] [Revised: 01/26/2009] [Accepted: 02/02/2009] [Indexed: 11/28/2022]
Abstract
A peptide with 42 amino acid residues (Abeta42) plays a key role in the pathogenesis of the Alzheimer's disease. It is highly prone to self aggregation leading to the formation of fibrils which are deposited in amyloid plaques in the brain of diseased individuals. In our study we established a method to analyze the aggregation behavior of the Abeta peptide with a combination of sedimentation velocity centrifugation and enhanced data evaluation software as implemented in the software package UltraScan. Important information which becomes accessible by this methodology is the s-value distribution and concomitantly also the shape-distribution of the Abeta peptide aggregates generated by self-association. With this method we characterized the aggregation modifying effect of a designed beta-sheet breaker molecule. This compound is built from three head-to-tail connected aminopyrazole moieties and represents a derivative of the already described Tripyrazole. By addition of this compound to a solution of the Abeta42 peptide the maximum of the s-value distribution was clearly shifted to smaller s-values as compared to solutions where only the vehicle DMSO was added. This shift to smaller s-values was stable for at least 7 days. The information about size- and shape-distributions present in aggregated Abeta42 solutions was confirmed by transmission electron microscopy and by measurement of amyloid formation by thioflavin T fluorescence.
Collapse
Affiliation(s)
- Luitgard Nagel-Steger
- Institute for Physical Biology, Geb.26.12.U1, Heinrich-Heine University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany.
| | | | | | | | | | | |
Collapse
|
65
|
Brovchenko I, Burri RR, Krukau A, Oleinikova A. Thermal expansivity of amyloid β16–22 peptides and their aggregates in water. Phys Chem Chem Phys 2009; 11:5035-40. [DOI: 10.1039/b820340g] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
66
|
Luque FA, Jaffe SL. The molecular and cellular pathogenesis of dementia of the Alzheimer's type an overview. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2009; 84:151-65. [PMID: 19501717 DOI: 10.1016/s0074-7742(09)00408-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
The pathogenesis of dementia of the Alzheimer's type (DAT) remains elusive. The neurodegeneration occurring in this disease has been traditionally believed to be the result of toxicity caused by the accumulation of insoluble amyloid-beta 42 (AB) aggregates, however recent research questions this thesis and has suggested other more convincing cellular and molecular mechanisms. Dysfunction of amyloid precursor protein metabolism, AB generation/aggregation and/or degredation/clearance, tau metabolism, protein trafficking, signal transduction, heavy metal homeostasis, acetylcholine and cholesterol metabolism, have all been implicated etiologically especially as to production of neurotoxic by-products occurring as a result of a specific process derangement. In this paper, these and other research directions are discussed as well as their implications for future therapies. The relationship of the proposed abnormal molecular and cellular processes to underlying genetic mutations is also scrutinized, all in an attempt to stimulate further insight into the pathogenesis of, and thus therapeutics for this increasingly prevalent disease.
Collapse
Affiliation(s)
- Francisco A Luque
- Department of Neurology, Louisiana State University School of Medicine-Shreveport, Shreveport, Louisiana 71103, USA
| | | |
Collapse
|
67
|
Song MS, Rauw G, Baker GB, Kar S. Memantine protects rat cortical cultured neurons against β-amyloid-induced toxicity by attenuating tau phosphorylation. Eur J Neurosci 2008; 28:1989-2002. [DOI: 10.1111/j.1460-9568.2008.06498.x] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
68
|
Camus MS, Dos Santos S, Chandravarkar A, Mandal B, Schmid AW, Tuchscherer G, Mutter M, Lashuel HA. Switch-Peptides: Design and Characterization of Controllable Super-Amyloid-Forming Host-Guest Peptides as Tools for Identifying Anti-Amyloid Agents. Chembiochem 2008; 9:2104-12. [DOI: 10.1002/cbic.200800245] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
69
|
Nitz M, Fenili D, Darabie AA, Wu L, Cousins JE, McLaurin J. Modulation of amyloid-β aggregation and toxicity by inosose stereoisomers. FEBS J 2008; 275:1663-74. [DOI: 10.1111/j.1742-4658.2008.06321.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
70
|
Abstract
Pharmacological treatment in Alzheimer's disease (AD) accounts for 10-20% of direct costs, and fewer than 20% of AD patients are moderate responders to conventional drugs (donepezil, rivastigmine, galantamine, memantine), with doubtful cost-effectiveness. Both AD pathogenesis and drug metabolism are genetically regulated complex traits in which hundreds of genes cooperatively participate. Structural genomics studies demonstrated that more than 200 genes might be involved in AD pathogenesis regulating dysfunctional genetic networks leading to premature neuronal death. The AD population exhibits a higher genetic variation rate than the control population, with absolute and relative genetic variations of 40-60% and 0.85-1.89%, respectively. AD patients also differ in their genomic architecture from patients with other forms of dementia. Functional genomics studies in AD revealed that age of onset, brain atrophy, cerebrovascular hemodynamics, brain bioelectrical activity, cognitive decline, apoptosis, immune function, lipid metabolism dyshomeostasis, and amyloid deposition are associated with AD-related genes. Pioneering pharmacogenomics studies also demonstrated that the therapeutic response in AD is genotype-specific, with apolipoprotein E (APOE) 4/4 carriers the worst responders to conventional treatments. About 10-20% of Caucasians are carriers of defective cytochrome P450 (CYP) 2D6 polymorphic variants that alter the metabolism and effects of AD drugs and many psychotropic agents currently administered to patients with dementia. There is a moderate accumulation of AD-related genetic variants of risk in CYP2D6 poor metabolizers (PMs) and ultrarapid metabolizers (UMs), who are the worst responders to conventional drugs. The association of the APOE-4 allele with specific genetic variants of other genes (e.g., CYP2D6, angiotensin-converting enzyme [ACE]) negatively modulates the therapeutic response to multifactorial treatments affecting cognition, mood, and behavior. Pharmacogenetic and pharmacogenomic factors may account for 60-90% of drug variability in drug disposition and pharmacodynamics. The incorporation of pharmacogenetic/pharmacogenomic protocols to AD research and clinical practice can foster therapeutics optimization by helping to develop cost-effective pharmaceuticals and improving drug efficacy and safety.
Collapse
Affiliation(s)
- Ramón Cacabelos
- EuroEspes Biomedical Research Center, Institute for CNS Disorders, Bergondo, Coruña, Spain
| |
Collapse
|
71
|
|
72
|
Spólnik P, Stopa B, Piekarska B, Jagusiak A, Konieczny L, Rybarska J, Król M, Roterman I, Urbanowicz B, Zięba-Palus J. The Use of Rigid, Fibrillar Congo Red Nanostructures for Scaffolding Protein Assemblies and Inducing the Formation of Amyloid-like Arrangement of Molecules. Chem Biol Drug Des 2007; 70:491-501. [DOI: 10.1111/j.1747-0285.2007.00589.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
73
|
Necula M, Breydo L, Milton S, Kayed R, van der Veer WE, Tone P, Glabe CG. Methylene Blue Inhibits Amyloid Aβ Oligomerization by Promoting Fibrillization. Biochemistry 2007; 46:8850-60. [PMID: 17595112 DOI: 10.1021/bi700411k] [Citation(s) in RCA: 172] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Amyloid plaques are hallmark neuropathological lesions in Alzheimer's disease, which consist of abnormally aggregated Abeta protein. Multiple Abeta aggregated species have been identified, and neurotoxicity appears to be correlated with the amount of nonfibrillar oligomers. Therefore, selective inhibition of Abeta oligomer formation has emerged as an attractive means of therapeutic intervention. To investigate whether small molecules can modulate aggregation to achieve selective inhibition of neurotoxic amyloid oligomers, Abeta aggregation was assayed in vitro in the presence of methylene blue, using immunoreactivity with the prefibrillar oligomer-specific antibody A11, transmission electron microscopy, and turbidity assays. Methylene blue inhibited oligomerization when used at substoichiometric concentrations relative to that of the Abeta monomer. Inhibition of Abeta oligomerization was achieved concomitant with promotion of fibrillization, suggesting that oligomer and fibril formation are distinct and competing pathways. Methylene blue-mediated promotion of fiber formation occurred via a dose-dependent decrease in the lag time and an increase in the fibrillization rate, consistent with promotion of both filament nucleation and elongation. Addition of methylene blue to preformed oligomers resulted in oligomer loss and promotion of fibrillization. The data show that Abeta oligomer formation is inhibited by promoting fibril formation, which suggests that the relative pathological significance of oligomers and fibrils may be tested in vivo using methylene blue. If Abeta oligomers represent the primary pathogenic species, then inhibition of this highly toxic species via promotion of formation of less toxic aggregates may be therapeutically useful.
Collapse
Affiliation(s)
- Mihaela Necula
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697, USA
| | | | | | | | | | | | | |
Collapse
|
74
|
Necula M, Kayed R, Milton S, Glabe CG. Small Molecule Inhibitors of Aggregation Indicate That Amyloid β Oligomerization and Fibrillization Pathways Are Independent and Distinct. J Biol Chem 2007; 282:10311-24. [PMID: 17284452 DOI: 10.1074/jbc.m608207200] [Citation(s) in RCA: 533] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Alzheimer disease is characterized by the abnormal aggregation of amyloid beta peptide into extracellular fibrillar deposits known as amyloid plaques. Soluble oligomers have been observed at early time points preceding fibril formation, and these oligomers have been implicated as the primary pathological species rather than the mature fibrils. A significant issue that remains to be resolved is whether amyloid oligomers are an obligate intermediate on the pathway to fibril formation or represent an alternate assembly pathway that may or may not lead to fiber formation. To determine whether amyloid beta oligomers are obligate intermediates in the fibrillization pathway, we characterized the mechanism of action of amyloid beta aggregation inhibitors in terms of oligomer and fibril formation. Based on their effects, the small molecules segregated into three distinct classes: compounds that inhibit oligomerization but not fibrillization, compounds that inhibit fibrillization but not oligomerization, and compounds that inhibit both. Several compounds selectively inhibited oligomerization at substoichiometric concentrations relative to amyloid beta monomer, with some active in the low nanomolar range. These results indicate that oligomers are not an obligate intermediate in the fibril formation pathway. In addition, these data suggest that small molecule inhibitors are useful for clarifying the mechanisms underlying protein aggregation and may represent potential therapeutic agents that target fundamental disease mechanisms.
Collapse
Affiliation(s)
- Mihaela Necula
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697, USA
| | | | | | | |
Collapse
|
75
|
Abstract
In experiments designed to characterize the basis of amyloid fibril stability through mutational analysis of the Abeta (1-40) molecule, fibrils exhibit consistent, significant structural malleability. In these results, and in other properties, amyloid fibrils appear to more resemble plastic materials generated from synthetic polymers than globular proteins. Thus, like synthetic polymers and plastics, amyloid fibrils exhibit both polymorphism, the ability of one polypeptide to form aggregates of different morphologies, and isomorphism, the ability of different polypeptides to grow into a fibrillar amyloid morphology. This view links amyloid with the prehistorical and 20th century use of proteins as starting materials to make films, fibers, and plastics, and with the classic protein fiber stretching experiments of the Astbury group. Viewing amyloids from the point of view of the polymer chemist may shed new light on a number of issues, such as the role of protofibrils in the mechanism of amyloid formation, the biological potency of fibrils, and the prospects for discovering inhibitors of amyloid fibril formation.
Collapse
Affiliation(s)
- Ronald Wetzel
- Graduate School of Medicine, University of Tennessee, Knoxville Tennessee 37920, USA.
| | | | | |
Collapse
|
76
|
Abstract
Previous investigations demonstrated that various aromatic compounds, many of which are known antioxidants, inhibit amyloid fibril formation. Yet, the mechanism of action of these compounds is not fully understood and contribution of their antioxidative potency has not been addressed. In recent publications, Ono et al. (2003, 2004) studied the anti-amyloid effects of 11 phenols on each of three consecutive processes: (1) seeding (formation) of nascent fibrils, (2) elongation (extension) of the fibrils, and (3) depolymerization (destabilization) of the formed assemblies. The aim of the present study was to evaluate the molecular mechanisms that mediate the effects of the studied inhibitors on each of these processes. Hierarchical clustering analyses indicated that the studied inhibitors can be categorized into three groups: 'slightly active' inhibitors, 'highly active' inhibitors and 'selective inhibitors' that differ markedly in their effects on these three stages. Analyses of the correlations between the effects of the studied compounds on the various stages of amyloid fibril formation, and their known physicochemical properties provided novel insights on the specific role of hydrophobic and aromatic interactions as well as the antioxidative potency on the process of amyloid fibril formation and dissociation. Specifically, the hydrophobic and/or aromatic character of the compounds makes the major contribution to the anti-formation and anti-extension effects, whereas the antioxidative potency relates mostly to the promotion of destabilization.
Collapse
Affiliation(s)
- Hila Shoval
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Israel
| | | | | |
Collapse
|
77
|
Abstract
Converging lines of evidence suggest that progressive accumulation of the amyloid beta-protein (A beta) plays a central role in the genesis of Alzheimer's disease, but it was long assumed that A beta had to be assembled into extracellular amyloid fibrils to exert its cytotoxic effects. Over the past decade, data have emerged from the use of synthetic A beta peptides, cell culture models, beta-amyloid precursor protein transgenic mice and human brain to suggest that pre-fibrillar, diffusible assemblies of A beta are also deleterious. Although the precise molecular identity of these soluble toxins remains unsettled, accumulating evidence suggests that soluble forms of A beta are indeed the proximate effectors of synapse loss and neuronal injury. Here we review recent progress in understanding the role of soluble oligomers in Alzheimer's disease.
Collapse
Affiliation(s)
- Dominic M Walsh
- Laboratory for Neurodegenerative Research, The Conway Institute, University College Dublin, Belfield, Dublin, Republic of Ireland.
| | | |
Collapse
|
78
|
Kodali R, Wetzel R. Polymorphism in the intermediates and products of amyloid assembly. Curr Opin Struct Biol 2007; 17:48-57. [PMID: 17251001 DOI: 10.1016/j.sbi.2007.01.007] [Citation(s) in RCA: 306] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2006] [Revised: 11/28/2006] [Accepted: 01/12/2007] [Indexed: 11/28/2022]
Abstract
Amyloid formation reactions exhibit two classes of polymorphisms: the metastable intermediates commonly observed during amyloid formation and the range of conformationally distinct mature fibrils often seen at the reaction endpoint. Although recent data suggest that spherical oligomers and protofibrils in most cases are not obligate intermediates of amyloid assembly, oligomeric states might sometimes serve as on-pathway intermediates. Mature amyloid polymorphs self-propagate as a result of the normally very high fidelity of amyloid elongation, giving rise to strain behavior and species barriers in prion phenomena. Oligomers, protofibrils and various polymorphic forms of mature amyloid fibrils seem to be distinguished by differences in atomic structure that give rise to differences in observed morphologies.
Collapse
Affiliation(s)
- Ravindra Kodali
- Department of Structural Biology, University of Pittsburgh School of Medicine, 2046 Biomedical Sciences Tower 3, 3501 Fifth Avenue, Pittsburgh, PA 15260, USA
| | | |
Collapse
|
79
|
Smith TJ, Stains CI, Meyer SC, Ghosh I. Inhibition of β-Amyloid Fibrillization by Directed Evolution of a β-Sheet Presenting Miniature Protein. J Am Chem Soc 2006; 128:14456-7. [PMID: 17090018 DOI: 10.1021/ja065557e] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We describe the directed evolution of a miniature beta-sheet protein for targeting beta-amyloid oligomers implicated in Alzheimer's disease. Circular dichroism spectroscopy, thermal denaturation experiments, and immunoglobulin binding assays established that our beta-amyloid-targeted miniature protein, TJ10, presents a well-folded thermostable beta-sheet. TJ10 was found to prevent beta-amyloid fibrillization at stoichiometric concentrations and was also an effective inhibitor at substoichiometric concentrations. Thus our results provide a new and potent beta-sheet chemical template for effectively targeting beta-amyloid while also demonstrating a general strategy for targeting proteins implicated in other amyloidogenic diseases.
Collapse
Affiliation(s)
- Thaddeus J Smith
- Department of Chemistry, University of Arizona, Tucson, Arizona 85721, USA
| | | | | | | |
Collapse
|
80
|
Carnini A, Eckenhoff MF, Eckenhoff RG. Interactions of volatile anesthetics with neurodegenerative-disease-associated proteins. Anesthesiol Clin 2006; 24:381-405. [PMID: 16927935 DOI: 10.1016/j.atc.2006.02.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The prevalence of the neurodegenerative disorders is increasing as life expectancy lengthens, and there exists concern that environmental influences may contribute to this increase. These disorders are varied in their clinical presentation, but appear to have a common biophysical initiation. At this level, it is both plausible and now proven that anesthetics can enhance aggregation of some disease-causing proteins. Although data in support of an interaction in animal models are still lacking, data from clinical studies indicate an association, which provides further cause for concern. Many opportunities exist for rapid progress at all levels on defining whether anesthetics do indeed contribute to the pathogenesis of these progressive, debilitating disorders.
Collapse
Affiliation(s)
- Anna Carnini
- Department of Anesthesiology and Critical Care, University of Pennsylvania Health Systems, 305 John Morgan Building, 3620 Hamilton Walk, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
81
|
Kim W, Kim Y, Min J, Kim DJ, Chang YT, Hecht MH. A high-throughput screen for compounds that inhibit aggregation of the Alzheimer's peptide. ACS Chem Biol 2006; 1:461-9. [PMID: 17168524 DOI: 10.1021/cb600135w] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Aggregation of the Alzheimer's peptide Abeta produces toxic multimeric species that play a key role in the development of Alzheimer's disease. Compounds that inhibit this aggregation may prove useful as therapeutic agents for the prevention or treatment of Alzheimer's disease. Although aggregation inhibitors may already exist in combinatorial libraries, finding these compounds in a cost-effective high-throughput manner poses an enormous challenge. To meet this challenge, we have developed a novel high-throughput screen capable of isolating inhibitors of Abeta aggregation from large libraries of inactive candidates. The screen uses a fusion of Abeta42 to GFP. In the absence of inhibition, the rapid misfolding and aggregation of Abeta42 causes the entire fusion protein to misfold, thereby preventing fluorescence. Compounds that inhibit Abeta42 aggregation enable GFP to fold into its native structure and be identified by the resulting fluorescent signal. By implementing the screen on a pilot library of triazine derivatives, we have identified several putative inhibitors. One of the selected compounds was studied in detail by a series of biochemical and biophysical methods. These studies confirmed that the selected compound inhibits aggregation of synthetic Abeta42 peptide. The fluorescence-based method described here is rapid and inexpensive and can be used to screen large libraries for inhibitors of Abeta42 aggregation and/or amyloidogenesis.
Collapse
Affiliation(s)
- Woojin Kim
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
| | | | | | | | | | | |
Collapse
|
82
|
Zhang HY, Yang DP, Ji HF. Naturally occurring multipotent anti-Alzheimer’s agents. Expert Opin Drug Discov 2006; 1:269-77. [DOI: 10.1517/17460441.1.3.269] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
83
|
Theoretical evaluation of flavonoids as multipotent agents to combat Alzheimer's disease. ACTA ACUST UNITED AC 2006. [DOI: 10.1016/j.theochem.2006.04.041] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
84
|
Porat Y, Abramowitz A, Gazit E. Inhibition of amyloid fibril formation by polyphenols: structural similarity and aromatic interactions as a common inhibition mechanism. Chem Biol Drug Des 2006; 67:27-37. [PMID: 16492146 DOI: 10.1111/j.1747-0285.2005.00318.x] [Citation(s) in RCA: 796] [Impact Index Per Article: 44.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The formation of well-ordered fibrillar protein deposits is common to a large group of amyloid-associated disorders. This group consists of several major human diseases such as Alzheimer's disease, Parkinson's disease, prion diseases, and type II diabetes. Currently, there is no approved therapeutic agent directed towards the formation of fibrillar assemblies, which have been recently shown to have a key role in the cytotoxic nature of amyloidogenic proteins. One important approach in the development of therapeutic agents is the use of small molecules that specifically and efficiently inhibit the aggregation process. Several small polyphenol molecules have been demonstrated to remarkably inhibit the formation of fibrillar assemblies in vitro and their associated cytotoxicity. Yet, the inhibition mechanism was mostly attributed to the antioxidative properties of these polyphenol compounds. Based on several observations demonstrating that polyphenols are capable of inhibiting amyloid fibril formation in vitro, regardless of oxidative conditions, and in view of their structural similarities we suggest an additional mechanism of action. This mechanism is assuming structural constraints and specific aromatic interactions, which direct polyphenol inhibitors to the amyloidogenic core. This proposed mechanism is highly relevant for future de novo inhibitors' design as therapeutic agents for the treatment of amyloid-associated diseases.
Collapse
Affiliation(s)
- Yair Porat
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | |
Collapse
|
85
|
Lee S, Carson K, Rice-Ficht A, Good T. Small heat shock proteins differentially affect Abeta aggregation and toxicity. Biochem Biophys Res Commun 2006; 347:527-33. [PMID: 16828710 DOI: 10.1016/j.bbrc.2006.06.128] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2006] [Accepted: 06/22/2006] [Indexed: 10/24/2022]
Abstract
beta-Amyloid (Abeta) is the primary protein component of senile plaques in Alzheimer's disease (AD) and has been implicated in neurotoxicity associated with the disease. Abeta aggregates readily in vitro and in vivo, and its toxicity has been linked to its aggregation state. Prevention of Abeta aggregation has been investigated as a means to prevent Abeta toxicity associated with AD. Recently we found that Hsp20 from Babesia bovis prevented both Abeta aggregation and toxicity [S. Lee, K. Carson, A. Rice-Ficht, T. Good, Hsp20, a novel alpha-crystallin, prevents Abeta fibril formation and toxicity, Protein Sci. 14 (2005) 593-601.]. In this work, we examined the mechanism of Hsp20 interaction with Abeta1-40 and compared its activity to that of other small heat shock proteins, carrot Hsp17.7 and human Hsp27. While all three small heat shock proteins were able to prevent Abeta aggregation, only Hsp20 was able to attenuate Abeta toxicity in cultured SH-SY5Y cells. Understanding the mechanism of the Hsp20-Abeta interaction may provide insights into the design of the next generation of Abeta aggregation and toxicity inhibitors.
Collapse
Affiliation(s)
- Sungmun Lee
- Department of Chemical Engineering, Texas A&M University, College Station, TX 77843-3122, USA
| | | | | | | |
Collapse
|
86
|
Deshpande A, Mina E, Glabe C, Busciglio J. Different conformations of amyloid beta induce neurotoxicity by distinct mechanisms in human cortical neurons. J Neurosci 2006; 26:6011-8. [PMID: 16738244 PMCID: PMC6675207 DOI: 10.1523/jneurosci.1189-06.2006] [Citation(s) in RCA: 381] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Characterization of soluble oligomeric amyloid beta (Abeta) species in the brains of Alzheimer's disease (AD) patients and transgenic models has raised the possibility that different conformations of Abeta may contribute to AD pathology via different mechanisms. To characterize the toxic effect of different Abeta conformations, we tested side by side the effect of well characterized Abeta oligomers (AbetaOs), Abeta-derived diffusible ligands (ADDLs), and fibrillar Abeta (Abetaf) preparations in human cortical neurons (HCNs). Both AbetaOs and ADDLs bind rapidly and with high affinity to synaptic contacts and cellular membranes. AbetaOs (5 microm) induced rapid and massive neuronal death. Calcium influx accelerated, but was not required for, AbetaO toxicity. AbetaOs elicited a stereotyped succession of cellular changes consistent with the activation of a mitochondrial death apoptotic pathway. At low concentrations AbetaOs caused chronic and subtler mitochondrial alterations but minimal cell death. ADDLs induced similar toxic changes as AbetaOs but on a fivefold longer time scale. Higher concentrations of Abetaf and longer incubation times were required to produce widespread neuritic dystrophy but modest HCN cell death. Thus various Abeta species may play relevant roles in AD, causing neurotoxicity by distinct non-overlapping mechanisms affecting neuronal function and viability over multiple time courses.
Collapse
|
87
|
Török M, Abid M, Mhadgut SC, Török B. Organofluorine Inhibitors of Amyloid Fibrillogenesis†. Biochemistry 2006; 45:5377-83. [PMID: 16618127 DOI: 10.1021/bi0601104] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The design and application of an effective, new class of organofluorine inhibitors of amyloid fibrillogenesis are described. Based on experimental evidence a core structure containing indol-3-yl, trifluoromethyl, hydroxyl, and carboxylic acid ester functions has been designed. Several substituted derivatives of this core structure have been synthesized, using various indole derivatives. While all inhibitor candidates have shown considerable effect (20-70% inhibition) in structure-activity relationship studies (inhibitor/Abeta = 10 ratio), several compounds have demonstrated excellent activity (93-96% inhibition). Using concentration dependence studies, the activity of the most active molecules have been quantified. These inhibitors practically completely block the fibril formation of Abeta(1)(-)(40), as shown by maximum inhibition values (IC(max) = 98-100%). The median inhibitor concentration values (IC(50) = 0.23-0.53 mol(inhibitor)/mol(A)(beta)) demonstrate favorable stoichiometry for the inhibition. The respective elimination of the functional groups from the core structure has resulted in a partial or complete loss of activity, indicating the significant role of each group. Experiments with these derivatives suggest the particular importance of the acidic hydroxyl group during peptide-inhibitor interaction.
Collapse
Affiliation(s)
- Marianna Török
- Michigan Technological University, 1400 Townsend Drive, Houghton, Michigan 49931, USA.
| | | | | | | |
Collapse
|
88
|
Abstract
The different aggregation states of amyloid oligomers and fibrils have been associated with distinct biological properties and disease pathologies. These various amyloid species are distinguished by their different molecular weights and sedimentation coefficients and can be consistently resolved, separated, and analyzed using sedimentation velocity techniques. We first describe the theoretical background and use of the preparative ultracentrifuge to separate amyloid fibrils and their oligomeric intermediates from monomeric subunits as well as the factors and limits involved in such methods. The approach can be used to monitor the kinetics of fibril formation as well as providing purified fractions for functional analysis. Secondly, we describe the use of analytical ultracentrifugation as a precise and robust system for monitoring the rate of sedimentation of amyloid fibrils under different solution conditions. Sedimentation velocity procedures to characterize the size, interactions, and tangling of amyloid fibrils as well as the binding of nonfibrillar components to form heterologous complexes are detailed.
Collapse
Affiliation(s)
- Yee-Foong Mok
- University of Melbourne, Biochemistry and Molecular Biology, Melbourne, Victoria, Australia
| | | |
Collapse
|
89
|
Berthelier V, Wetzel R. Screening for modulators of aggregation with a microplate elongation assay. Methods Enzymol 2006; 413:313-25. [PMID: 17046403 DOI: 10.1016/s0076-6879(06)13016-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Many protein misfolding or conformational diseases, a number of which are neurodegenerative, are associated with the presence of proteinaceous deposits in the form of amyloid/amyloid-like fibrils/aggregates in tissues. Little is known about the exact mechanisms by which fibrillar aggregates are formed and can impair cellular functions leading to cell death. Small molecules that can modulate aggregate formation and/or structure can be powerful tools for studying the aggregate assembly mechanism and toxicity and may also prove to be therapeutic. We describe here a microplate-based high-throughput screening assay for identification of such molecules. The assay is based on the ability of microplate-coated aggregates to grow by incorporating additional monomers. Compounds that influence the elongation reaction are selected as hits and are tested in dose-response experiments. We also discuss some additional experiments that can be used to characterize the modes of action of these aggregation modulators further.
Collapse
Affiliation(s)
- Valerie Berthelier
- University of Tennessee Medical Center-Graduate School of Medicine, Knoxville, TN, USA
| | | |
Collapse
|
90
|
Shi Y, Stouten PFW, Pillalamarri N, Barile L, Rosal RV, Teichberg S, Bu Z, Callaway DJE. Quantitative determination of the topological propensities of amyloidogenic peptides. Biophys Chem 2005; 120:55-61. [PMID: 16288953 DOI: 10.1016/j.bpc.2005.09.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2005] [Revised: 09/18/2005] [Accepted: 09/18/2005] [Indexed: 11/17/2022]
Abstract
One of the interesting puzzles of amyloid beta-peptide of Alzheimer's disease (Abeta) is that it appears to polymerize into amyloid fibrils in a parallel beta sheet topology, while smaller subsets of the peptide produce anti-parallel beta sheets. In order to target potential weak points of amyloid fibrils in a rational drug design effort, it would be helpful to understand the forces that drive this change. We have designed two peptides CHQKLVFFAEDYNGKDEAFFVLKQHW and CHQKLVFFAEDYNGKHQKLVFFAEDW that join the significant amyloidogenic Abeta (14-23) sequence HQKLVFFAED in parallel and anti-parallel topologies, respectively. (Here, the word "parallel" refers only to residue sequence and not backbone topology). The N-termini of the hairpins were labeled with the fluorescent dye 5-((((2-iodoacetyl)amino)ethyl)amino)naphthalene-1-sulfonic acid (IAEDANS), forming a fluorescence energy transfer donor-acceptor pair with the C-terminus tryptophan. Circular dichroism results show that the anti-parallel hairpin adopts a beta-sheet conformation, while the parallel hairpin is disordered. Fluorescent Resonance Energy Transfer (FRET) results show that the distance between the donor and the acceptor is significantly shorter in the anti-parallel topology than in the parallel topology. The fluorescence intensity of anti-parallel hairpin also displays a linear concentration dependence, indicating that the FRET observed in the anti-parallel hairpin is from intra-molecular interactions. The results thus provide a quantitative estimate of the relative topological propensities of amyloidogenic peptides. Our FRET and CD results show that beta sheets involving the essential Abeta (14-23) fragment, strongly prefer the anti-parallel topology. Moreover, we provide a quantitative estimate of the relative preference for these two topologies. Such analysis can be repeated for larger subsets of Abeta to determine quantitatively the relative degree of preference for parallel/anti-parallel topologies in given fragments of Abeta.
Collapse
Affiliation(s)
- Yuan Shi
- Institute for Medical Research, NS/LIJ, New York University School of Medicine, 350 Community Drive, Manhasset, New York, NY 11030, USA
| | | | | | | | | | | | | | | |
Collapse
|
91
|
Kim H, Park BS, Lee KG, Choi CY, Jang SS, Kim YH, Lee SE. Effects of naturally occurring compounds on fibril formation and oxidative stress of beta-amyloid. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2005; 53:8537-41. [PMID: 16248550 DOI: 10.1021/jf051985c] [Citation(s) in RCA: 212] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Beta-amyloid (betaA)-induced oxidative toxicity on neuronal cells is a principal route in Alzheimer's disease (AD), and its toxicity occurs after fibril formation. Inhibitory or promoting effects of naturally occurring compounds on betaA fibril formation were evaluated. Among 214 tested compounds, curcuminoids, flavone type flavonoids, and naphthoquinones were shown to be potent inhibitors of betaA fibrilization. The addition of the curcuminoids, curcumin, demethoxycurcumin, and bisdemethoxycurcumin strongly inhibited betaA fibril formation. Flavonoids such as quercetin, rhamnetin, and fisetin strongly inhibited betaA fibril formation. Limonoids, cinnamic acids, and catechins enhanced fibril formation in vitro. Anthothecol possessed the most enhancing activity on fibril formation of the compounds tested. On the other hand, it was found that curcuminoids showed cytotoxicity with the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide assay and did not protect HT22 murine neuroblastoma cells from betaA(25-35) insult. Two flavone type flavonoids, morin and quercetin, exhibited no cytotoxicity and strongly protected HT22 murine neuroblastoma cells from betaA(25-35) oxidative attack. Conclusively, morin or quercetin could be a key molecule for the development of therapeutics for AD.
Collapse
Affiliation(s)
- Hee Kim
- Digitalbiotech Inc., Sin Gil Dong 1227, An San City, Kyong Gi Do 425-839, Korea
| | | | | | | | | | | | | |
Collapse
|
92
|
Zhang HY. One-compound-multiple-targets strategy to combat Alzheimer's disease. FEBS Lett 2005; 579:5260-4. [PMID: 16194540 DOI: 10.1016/j.febslet.2005.09.006] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2005] [Revised: 09/08/2005] [Accepted: 09/08/2005] [Indexed: 12/12/2022]
Abstract
The present one-drug-one-target paradigm in drug discovery has been considered partially responsible for the more-funding-less-drug predicament in modern pharmaceutical industry. To hit the multiple targets implicated in complex diseases, two strategies, based on multicomponent or single-ingredient, are conceivable. Although the latter is more difficult to be fulfilled than the former, the recent progress made in the fight against Alzheimer's disease (AD) has brought us the first light of success of the latter strategy. In this review, both synthetic and natural multipotent agents are described, which hit two or more targets implicated in AD, e.g., acetylcholinesterase, monoamine oxidase, amyloid-beta, tau protein, metal ions and reactive oxygen species. Nevertheless, due to the potential risks in safety, absorbability and pharmacokinetics of synthetic multipotent agents, natural counterparts seem more promising in the future development.
Collapse
Affiliation(s)
- Hong-Yu Zhang
- Shandong Provincial Research Center for Bioinformatic Engineering and Technique, Center for Advanced Study, Shandong University of Technology, Zibo, PR China.
| |
Collapse
|
93
|
Li HT, Lin DH, Luo XY, Zhang F, Ji LN, Du HN, Song GQ, Hu J, Zhou JW, Hu HY. Inhibition of alpha-synuclein fibrillization by dopamine analogs via reaction with the amino groups of alpha-synuclein. Implication for dopaminergic neurodegeneration. FEBS J 2005; 272:3661-72. [PMID: 16008565 DOI: 10.1111/j.1742-4658.2005.04792.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Fibrillization of alpha-synuclein (alpha-Syn) is closely associated with the formation of Lewy bodies in neurons and dopamine (DA) is a potent inhibitor for the process, which is implicated in the causative pathogenesis of Parkinson's disease (PD). To elucidate any molecular mechanism that may have biological relevance, we tested the inhibitory abilities of DA and several analogs including chemically synthetic and natural polyphenols in vitro. The MS and NMR characterizations strongly demonstrate that DA and its analogs inhibit alpha-Syn fibrillization by a mechanism where the oxidation products (quinones) of DA analogs react with the amino groups of alpha-Syn chain, generating alpha-Syn-quinone adducts. It is likely that the amino groups of alpha-Syn undergo nucleophilic attack on the quinone moiety of DA analogs to form imino bonds. The covalently cross-linked alpha-Syn adducts by DA are primarily large molecular mass oligomers, while those by catechol and p-benzoquinone (or hydroquinone) are largely monomers or dimers. The DA quinoprotein retains the same cytotoxicity as the intact alpha-Syn, suggesting that the oligomeric intermediates are the major elements that are toxic to the neuronal cells. This finding implies that the reaction of alpha-Syn with DA is relevant to the selective dopaminergic loss in PD.
Collapse
Affiliation(s)
- Hong-Tao Li
- Key Laboratory of Proteomics, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Williams AD, Sega M, Chen M, Kheterpal I, Geva M, Berthelier V, Kaleta DT, Cook KD, Wetzel R. Structural properties of Abeta protofibrils stabilized by a small molecule. Proc Natl Acad Sci U S A 2005; 102:7115-20. [PMID: 15883377 PMCID: PMC1091746 DOI: 10.1073/pnas.0408582102] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2004] [Indexed: 11/18/2022] Open
Abstract
Metastable oligomeric and protofibrillar forms of amyloidogenic proteins have been implicated as on-pathway assembly intermediates in amyloid formation and as the major toxic species in a number of amyloid diseases including Alzheimer's disease. We describe here a chemical biology approach to structural analysis of Abeta protofibrils. Library screening yielded several molecules that stimulate Abeta aggregation. One of these compounds, calmidazolium chloride (CLC), rapidly and efficiently converts Abeta(1-40) monomers into clusters of protofibrils. As monitored by electron microscopy, these protofibrils persist for days when incubated in PBS at 37 degrees C, with a slow transition to fibrillar structures apparent only after several weeks. Like normal protofibrils, the CLC-Abeta aggregates exhibit a low thioflavin T response. Like Abeta fibrils, the clustered protofibrils bind the anti-amyloid Ab WO1. The CLC-Abeta aggregates exhibit the same protection from hydrogen-deuterium exchange as do protofibrils isolated from a spontaneous Abeta fibril formation reaction: approximately 12 of the 39 Abeta(1-40) backbone amide protons are protected from exchange in the protofibril, compared with approximately twice that number in amyloid fibrils. Scanning proline mutagenesis analysis shows that the Abeta molecule in these protofibrillar assemblies exhibits the same flexible N and C termini as do mature amyloid fibrils. The major difference in Abeta conformation between fibrils and protofibrils is added structural definition in the 22-29 segment in the fibril. Besides aiding structural analysis, compounds capable of facilitating oligomer and protofibril formation might have therapeutic potential, if they act to sequester Abeta in a form and/or location that cannot engage the toxic pathway.
Collapse
Affiliation(s)
- Angela D Williams
- Graduate School of Medicine, University of Tennessee, 1924 Alcoa Highway, Knoxville, TN 37920, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
95
|
Lee KH, Shin BH, Shin KJ, Kim DJ, Yu J. A hybrid molecule that prohibits amyloid fibrils and alleviates neuronal toxicity induced by beta-amyloid (1-42). Biochem Biophys Res Commun 2005; 328:816-23. [PMID: 15707952 DOI: 10.1016/j.bbrc.2005.01.030] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2005] [Indexed: 11/16/2022]
Abstract
Inhibition of oligomeric amyloid beta (Abeta) peptide or fibril formation has emerged as a major therapeutic target for developing new drugs for Alzheimer's disease. We focused on developing inhibitors by synthesizing hybrid molecules of ferulic acid and styryl benzene, which has been known as a fibril binder. Initially, cell-based assay was carried out to evaluate the effective compound. A selected effector, 1, alleviated the Abeta-induced neuronal toxicity in differentiated SH-SY5Y human neuroblastoma cells. The effector could also inhibit Abeta fibril formation, monitored by thioflavin T fluorescence intensity assay and transmitted electron microscopic images. A strong binding affinity of 1 to non-fibrous monomer-like Abeta, which was immobilized to a surface chip, was measured using a surface plasmon resonance technique. The data suggest that the effector shifts the equilibrium of multimeric Abeta, inhibiting the pathogenic oligomer or fibril formation.
Collapse
Affiliation(s)
- Kyung Hyun Lee
- Department of Chemistry and Education, Seoul National University, Seoul 151-742, Republic of Korea
| | | | | | | | | |
Collapse
|
96
|
De Felice FG, Vieira MNN, Saraiva LM, Figueroa-Villar JD, Garcia-Abreu J, Liu R, Chang L, Klein WL, Ferreira ST. Targeting the neurotoxic species in Alzheimer's disease: inhibitors of Abeta oligomerization. FASEB J 2005; 18:1366-72. [PMID: 15333579 DOI: 10.1096/fj.04-1764com] [Citation(s) in RCA: 155] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In the past two decades, a large body of evidence has established a causative role for the beta-amyloid peptide (Abeta) in Alzheimer's disease (AD). However, recent debate has focused on whether amyloid fibrils or soluble oligomers of Abeta are the main neurotoxic species that contribute to neurodegeneration and dementia. Considerable early evidence has indicated that amyloid fibrils are toxic, but some recent studies support the notion that Abeta oligomers are the primary neurotoxins. While this crucial aspect of AD pathogenesis remains controversial, effective therapeutic strategies should ideally target both oligomeric and fibrillar species of Abeta. Here, we describe the anti-amyloidogenic and neuroprotective actions of some di- and tri-substituted aromatic compounds. Inhibition of the formation of soluble Abeta oligomers was monitored using a specific antibody-based assay that discriminates between Abeta oligomers and monomers. Thioflavin T and electron microscopy were used to screen for inhibitors of fibril formation. Taken together, these results led to the identification of compounds that more effectively block Abeta oligomerization than fibrillization. It is significant that such compounds completely blocked the neurotoxicity of Abeta to rat hippocampal neurons in culture. These findings provide a basis for the development of novel small molecule Abeta inhibitors with potential applications in AD.
Collapse
Affiliation(s)
- Fernanda G De Felice
- Departamento de Bioquímica Médica, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21944-590, Brazil.
| | | | | | | | | | | | | | | | | |
Collapse
|
97
|
Demuro A, Mina E, Kayed R, Milton SC, Parker I, Glabe CG. Calcium Dysregulation and Membrane Disruption as a Ubiquitous Neurotoxic Mechanism of Soluble Amyloid Oligomers*♦. J Biol Chem 2005; 280:17294-300. [PMID: 15722360 DOI: 10.1074/jbc.m500997200] [Citation(s) in RCA: 765] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Increasing evidence suggests that amyloid peptides associated with a variety of degenerative diseases induce neurotoxicity in their intermediate oligomeric state, rather than as monomers or fibrils. To test this hypothesis and investigate the possible involvement of Ca2+ signaling disruptions in amyloid-induced cytotoxicity, we made homogeneous preparations of disease-related amyloids (Abeta, prion, islet amyloid polypeptide, polyglutamine, and lysozyme) in various aggregation states and tested their actions on fluo-3-loaded SH-SY5Y cells. Application of oligomeric forms of all amyloids tested (0.6-6 microg ml-1) rapidly (approximately 5 s) elevated intracellular Ca2+, whereas equivalent amounts of monomers and fibrils did not. Ca2+ signals evoked by Abeta42 oligomers persisted after depletion of intracellular Ca2+ stores, and small signals remained in Ca2+-free medium, indicating contributions from both extracellular and intracellular Ca2+ sources. The increased membrane permeability to Ca2+ cannot be attributed to activation of endogenous Ca2+ channels, because responses were unaffected by the potent Ca2+-channel blocker cobalt (20 microm). Instead, observations that Abeta42 and other oligomers caused rapid cellular leakage of anionic fluorescent dyes point to a generalized increase in membrane permeability. The resulting unregulated flux of ions and molecules may provide a common mechanism for oligomer-mediated toxicity in many amyloidogenic diseases, with dysregulation of Ca2+ ions playing a crucial role because of their strong trans-membrane concentration gradient and involvement in cell dysfunction and death.
Collapse
Affiliation(s)
- Angelo Demuro
- Department of Neurobiology and Behavior and Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697, USA
| | | | | | | | | | | |
Collapse
|
98
|
Ban T, Hoshino M, Takahashi S, Hamada D, Hasegawa K, Naiki H, Goto Y. Direct observation of Abeta amyloid fibril growth and inhibition. J Mol Biol 2005; 344:757-67. [PMID: 15533443 DOI: 10.1016/j.jmb.2004.09.078] [Citation(s) in RCA: 185] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2004] [Revised: 07/01/2004] [Accepted: 09/22/2004] [Indexed: 11/16/2022]
Abstract
Amyloid fibril formation is a phenomenon common to many proteins and peptides, including amyloid beta (Abeta) peptide associated with Alzheimer's disease. To clarify the mechanism of fibril formation and to create inhibitors, real-time monitoring of fibril growth is essential. Here, seed-dependent amyloid fibril growth of Abeta(1-40) was visualized in real-time at the single fibril level using total internal reflection fluorescence microscopy (TIRFM) combined with the binding of thioflavin T, an amyloid-specific fluorescence dye. The clear image and remarkable length of the fibrils enabled an exact analysis of the rate of growth of individual fibrils, indicating that the fibril growth was a highly cooperative process extending the fibril ends at a constant rate. It has been known that Abeta amyloid formation is a stereospecific reaction and the stability is affected by l/d-amino acid replacement. Focusing on these aspects, we designed several analogues of Abeta(25-35), a cytotoxic fragment of Abeta(1-40), consisting of l and d-amino acid residues, and examined their inhibitory effects by TIRFM. Some chimeric Abeta(25-35) peptides inhibited the fibril growth of Abeta(25-35) strongly, although they could not inhibit the growth of Abeta(1-40). The results suggest that a more rational design of stereospecific inhibitors, combined with real-time monitoring of fibril growth, will be useful to invent a potent inhibitor preventing the amyloid fibril growth of Abeta(1-40) and other proteins.
Collapse
Affiliation(s)
- Tadato Ban
- Institute for Protein Research, Osaka University and CREST, Japan Science and Technology Agency, Yamadaoka 3-2, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | |
Collapse
|
99
|
Schmuck C, Frey P, Heil M. Inhibition of Fibril Formation of Aβ by Guanidiniocarbonyl Pyrrole Receptors. Chembiochem 2005; 6:628-31. [PMID: 15719356 DOI: 10.1002/cbic.200400270] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Carsten Schmuck
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
| | | | | |
Collapse
|
100
|
Harris JR. The contribution of microscopy to the study of Alzheimer's disease, amyloid plaques and Abeta fibrillogenesis. Subcell Biochem 2005; 38:1-44. [PMID: 15709471 DOI: 10.1007/0-387-23226-5_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Abstract
A broad survey is presented in this chapter, dealing with the impact that microscopy has made to the study of Alzheimer's disease, amyloid plaques and amyloid-beta fibrillogenesis. This includes classical light microscopy and the modem immunolabelling and confocal microscopies, together with the contribution of transmission electron microscopy and atomic force microscopy. Whilst usefully standing alone, the individual microscopies often contribute most effectively when they are integrated with cellular, biophysical and molecular approaches.
Collapse
Affiliation(s)
- J Robin Harris
- Institute of Zoology, University of Mainz, D-55099 Mainz, Germany
| |
Collapse
|