51
|
Abele R, Tampé R. Modulation of the antigen transport machinery TAP by friends and enemies. FEBS Lett 2005; 580:1156-63. [PMID: 16359665 DOI: 10.1016/j.febslet.2005.11.048] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2005] [Revised: 11/18/2005] [Accepted: 11/21/2005] [Indexed: 12/12/2022]
Abstract
The transporter associated with antigen processing (TAP) is a key factor of the major histocompatibility complex (MHC) class I antigen presentation pathway. This ABC transporter translocates peptides derived mainly from proteasomal degradation from the cytosol into the ER lumen for loading onto MHC class I molecules. Manifold mechanisms have evolved to regulate TAP activity. During infection, TAP expression is upregulated by interferon-gamma. Furthermore, the assembly and stability of the transport complex is promoted by various auxiliary factors. However, tumors and viruses have developed sophisticated strategies to escape the immune surveillance by suppressing TAP function. The activity of TAP can be impaired on the transcriptional or translational level, by enhanced degradation or by inhibition of peptide translocation. In this review, we briefly summarize existing data concerning the regulation of the TAP complex.
Collapse
Affiliation(s)
- Rupert Abele
- Institute of Biochemistry, Biocenter, Goethe-University Frankfurt, Marie-Curie-Str. 9, D-60439 Frankfurt/M., Germany
| | | |
Collapse
|
52
|
Sharom FJ, Lugo MR, Eckford PDW. New Insights into the Drug Binding, Transport and Lipid Flippase Activities of the P-Glycoprotein Multidrug Transporter. J Bioenerg Biomembr 2005; 37:481-7. [PMID: 16691487 DOI: 10.1007/s10863-005-9496-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The MDR1 P-glycoprotein, an ATP-binding cassette (ABC) superfamily member that functions as an ATP-driven drug efflux pump, has been linked to resistance of human tumors to multiple chemotherapeutic agents. P-glycoprotein binds and actively transports a large variety of hydrophobic drugs and peptides. P-glycoprotein in reconstituted proteoliposomes is also an outwardly directed flippase for membrane phospholipids and simple glycosphinglipids. This review focuses on recent advances in our understanding of P-glycoprotein structure and function, particularly through the use of fluorescence spectroscopic approaches. Progress is being made towards understanding the structure of the transporter, especially the spatial relationship between the two nucleotide-binding domains. Exploration of the P-glycoprotein catalytic cycle using vanadate-trapped complexes has revealed that drug transport likely takes place by concerted conformational changes linked to relaxation of a high energy intermediate. Low resolution mapping of the protein using fluorescence resonance energy transfer showed that both the H and R drug-binding sites are located within the cytoplasmic leaflet. Two drugs can bind to the R-site simultaneously, suggesting that the protein contains a large flexible binding region.
Collapse
Affiliation(s)
- Frances J Sharom
- Department of Molecular and Cellular Biology, University of Guelph, Science Complex Room 2255, Guelph, Ontario, Canada.
| | | | | |
Collapse
|
53
|
Sia C, Weinem M. Genetic susceptibility to type 1 diabetes in the intracellular pathway of antigen processing - a subject review and cross-study comparison. Rev Diabet Stud 2005; 2:40-52. [PMID: 17491658 PMCID: PMC1762495 DOI: 10.1900/rds.2005.2.40] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Ligand binding grooves of MHC class I molecules are able to load a panel of endogenous peptides of varying length and sequence derived from self or foreign origin to activate or deactivate cytotoxic CD8(+) T cells. Peptides are assembled with class I molecules by pathways that are either dependent or independent of transport by ABC proteins (TAP) and degradation in the immunoproteasome by its subunits LMP2 and LMP7. Those peptides that require TAP and LMP treatment appear to be subject to control and optimization by TAP for proper customizing and efficient presentation. Therefore, allelic variations in the coding sequences of TAP and LMP were suspected for a long time to be responsible for improper antigen processing, interruption of self-peptide presentation and reduced cell surface expression of MHC class I molecules resulting in the activation of autoreactive CD8(+) T cells. In this article we reviewed the controversial findings regarding the role of TAP and LMP genes in autoimmune diabetes and reevaluated data of eleven separate studies in a cross-study analysis by genotype and HLA haplotype matching. We could confirm previous results by showing that TAP2*651-A/F and TAP2*687-A/A are significantly associated with disease, independently of linkage disequilibrium (LD). LMP2-R/H surprisingly seems to be primarily disease-conferring although a weak association with DR4 serotypes can be observed. Our analysis also suggests that LMP7-B/B, TAP1-A/A and TAP2*687-A/B are the protective genotypes and that these associations are not secondary to LD with DRB1. Consequently, intracellular antigen processing associated with TAP- and proteasome-dependent pathways seems to be a critical element in T cell selection for the retention of a balanced immunity.
Collapse
Affiliation(s)
- Charles Sia
- Department of Immunology, United Biomedical Inc., 25 Davids Drive, Hauppage, New York 11788, USA.
| | | |
Collapse
|
54
|
Wolters JC, Abele R, Tampé R. Selective and ATP-dependent translocation of peptides by the homodimeric ATP binding cassette transporter TAP-like (ABCB9). J Biol Chem 2005; 280:23631-6. [PMID: 15863492 DOI: 10.1074/jbc.m503231200] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The transporter associated with antigen processing (TAP)-like (TAPL, ABCB9) belongs to the ATP-binding cassette transporter family, which translocates a vast variety of solutes across membranes. The function of this half-size transporter has not yet been determined. Here, we show that TAPL forms a homodimeric complex, which translocates peptides across the membrane. Peptide transport strictly requires ATP hydrolysis. The transport follows Michaelis-Menten kinetics with low affinity and high capacity. Different nucleotides bind and energize the transport with a slight predilection for purine bases. The peptide specificity is very broad, ranging from 6-mer up to at least 59-mer peptides with a preference for 23-mers. Peptides are recognized via their backbone, including the free N and C termini as well as side chain interactions. Although related to TAP, TAPL is unique as far as its interaction partners, transport properties, and substrate specificities are concerned, thus excluding that TAPL is part of the peptide-loading complex in the classic route of antigen processing via major histocompatibility complex class I molecules.
Collapse
Affiliation(s)
- Justina Clarinda Wolters
- Institute of Biochemistry, Biocenter, Johann Wolfgang Goethe-University Frankfurt, Marie-Curie-Str. 9, D-60439 Frankfurt/M., Germany
| | | | | |
Collapse
|
55
|
Ehses S, Leonhardt RM, Hansen G, Knittler MR. Functional Role of C-Terminal Sequence Elements in the Transporter Associated with Antigen Processing. THE JOURNAL OF IMMUNOLOGY 2004; 174:328-39. [PMID: 15611256 DOI: 10.4049/jimmunol.174.1.328] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
TAP delivers antigenic peptides into the endoplasmic reticulum (ER) that are subsequently bound by MHC class I molecules. TAP consists of two subunits (TAP1 and TAP2), each with a transmembrane (TMD) and a nucleotide-binding (NBD) domain. The two TAP-NBDs have distinct biochemical properties and control different steps during the peptide translocation process. We noted previously that the nonhomologous C-terminal tails of rat TAP1 and TAP2 determine the distinct functions of TAP-NBD1 and -NBD2. To identify the sequence elements responsible for the asymmetrical NBD function, we constructed chimeric rat TAP variants in which we systematically exchanged sequence regions of different length between the two TAP-NBDs. Our fine-mapping studies demonstrate that a nonhomologous region containing the alpha6/beta10-loop in conjunction with the downstream switch region is directly responsible for the functional separation of the TAP-NBDs. The alpha6/beta10-loop determines the nonsynonymous nucleotide binding of NBD1 and NBD2, whereas the switch region seems to play a critical role in regulating the functional cross-talk between the structural domains of TAP. Based on our findings, we postulate that these two sequence elements build a minimal functional unit that controls the asymmetry of the two TAP-NBDs.
Collapse
Affiliation(s)
- Sarah Ehses
- Institute for Genetics, University of Cologne, Zülpicher Strasse 47, 50674 Cologne, Germany
| | | | | | | |
Collapse
|
56
|
Abstract
Abstract
Members of the ATP-binding cassette (ABC) superfamily are integral membrane proteins that hydrolyze ATP to drive transport. In the last two decades these proteins have been extensively characterized on a genetic and biochemical level, and in recent years high-resolution crystal structures of several nucleotide-binding domains and full-length transporters have extended our knowledge. Here we discuss the possible mechanisms of transport that have been derived from these crystal structures and the extensive available biochemical data.
Collapse
Affiliation(s)
- Chris van der Does
- Institute of Biochemistry, Biozentrum Frankfurt, Johann Wolfgang Goethe-University, Marie-Curie-Str. 9, D-60439 Frankfurt/Main, Germany
| | | |
Collapse
|
57
|
Higgins CF, Linton KJ. The ATP switch model for ABC transporters. Nat Struct Mol Biol 2004; 11:918-26. [PMID: 15452563 DOI: 10.1038/nsmb836] [Citation(s) in RCA: 527] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2004] [Accepted: 09/08/2004] [Indexed: 11/09/2022]
Abstract
ABC transporters mediate active translocation of a diverse range of molecules across all cell membranes. They comprise two nucleotide-binding domains (NBDs) and two transmembrane domains (TMDs). Recent biochemical, structural and genetic studies have led to the ATP-switch model in which ATP binding and ATP hydrolysis, respectively, induce formation and dissociation of an NBD dimer. This provides an exquisitely regulated switch that induces conformational changes in the TMDs to mediate membrane transport.
Collapse
Affiliation(s)
- Christopher F Higgins
- MRC Clinical Sciences Centre, Imperial College Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK.
| | | |
Collapse
|
58
|
Sauna ZE, Nandigama K, Ambudkar SV. Multidrug resistance protein 4 (ABCC4)-mediated ATP hydrolysis: effect of transport substrates and characterization of the post-hydrolysis transition state. J Biol Chem 2004; 279:48855-64. [PMID: 15364914 DOI: 10.1074/jbc.m408849200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Multidrug resistance protein 4 (MRP4/ABCC4), transports cyclic nucleoside monophosphates, nucleoside analog drugs, chemotherapeutic agents, and prostaglandins. In this study we characterize ATP hydrolysis by human MRP4 expressed in insect cells. MRP4 hydrolyzes ATP (Km, 0.62 mm), which is inhibited by orthovanadate and beryllium fluoride. However, unlike ATPase activity of P-glycoprotein, which is equally sensitive to both inhibitors, MRP4-ATPase is more sensitive to beryllium fluoride than to orthovanadate. 8-Azido[alpha-32P]ATP binds to MRP4 (concentration for half-maximal binding approximately 3 microm) and is displaced by ATP or by its non-hydrolyzable analog AMPPNP (concentrations for half-maximal inhibition of 13.3 and 308 microm). MRP4 substrates, the prostaglandins E1 and E2, stimulate ATP hydrolysis 2- to 3-fold but do not affect the Km for ATP. Several other substrates, azidothymidine, 9-(2-phosphonylmethoxyethyl)adenine, and methotrexate do not stimulate ATP hydrolysis but inhibit prostaglandin E2-stimulated ATP hydrolysis. Although both post-hydrolysis transition states MRP4.8-azido[alpha-32P]ADP.Vi and MRP4.8-azido[alpha-32P]ADP.beryllium fluoride can be generated, nucleotide trapping is approximately 4-fold higher with beryllium fluoride. The divalent cations Mg2+ and Mn2+ support comparable levels of nucleotide binding, hydrolysis, and trapping. However, Co2+ increases 8-azido[alpha-32P]ATP binding and beryllium fluoride-induced 8-azido[alpha-32P]ADP trapping but does not support steady-state ATP hydrolysis. ADP inhibits basal and prostaglandin E2-stimulated ATP hydrolysis (concentrations for half-maximal inhibition 0.19 and 0.25 mm, respectively) and beryllium fluoride-induced 8-azido[alpha-32P]ADP trapping, whereas Pi has no effect up to 20 mm. In aggregate, our results demonstrate that MRP4 exhibits substrate-stimulated ATP hydrolysis, and we propose a kinetic scheme suggesting that ADP release from the post-hydrolysis transition state may be the rate-limiting step during the catalytic cycle.
Collapse
Affiliation(s)
- Zuben E Sauna
- Laboratory of Cell Biology, Center for Cancer Research, NCI, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland 20892-4256, USA
| | | | | |
Collapse
|
59
|
Cesari M, Hoarau JJ, Caillens H, Robert C, Rouch C, Cadet F, Pabion M. Is TAP2*0102 allele involved in insulin-dependent diabetes mellitus (type 1) protection? Hum Immunol 2004; 65:783-93. [PMID: 15336779 DOI: 10.1016/j.humimm.2004.05.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2003] [Accepted: 05/27/2004] [Indexed: 11/19/2022]
Abstract
In this study, we have investigated the frequencies of TAP1 and TAP2 alleles in a group of 226 persons, living in La Reunion Island, consisting of 70 patients with insulin-dependent diabetes mellitus (IDDM) and most of their first degree relatives (i.e., 156 parents and full sibling subjects) and previously HLA DQB1, DQA1, and DRB1 genotyped. The population of this island is constituted by a particular structure of highly crossbreeding people. Interestingly, the new TAP2*0104 allele, previously discovered by our team in Reunion Island, was found to be increased in the IDDM population and the calculated HRR was relatively high (HRR = 3.3). This result seems to be due to a positive linkage disequilibrium between TAP2*0104 allele and the highly diabetogenous DQB1* 0201-DQA1* 0501-DRB1 0301 haplotype (HRR = 9), which suggests that TAP2*0104 cannot be considered as an additional predispositional factor, but more as a genetic susceptibility marker of IDDM. In addition, we show that minor alleles (TAP2D, *0102, *0103, *0104) are associated with a restricted number of HLA DQ-DR haplotypes and each of them exhibits a preferential linkage with one particular haplotype. In contrast with other alleles, and despite a HRR value close to 1, we show that TAP2*0102 allele contributes significantly to a drastic reduction of the diabetogenic effect of DQB1*0201-DQA1*0301.1-DRB*0701 haplotype. Indeed, this haplotype, which is usually preferentially transmitted to affected children, is dominantly transmitted to healthy children when it is associated with TAP2*0102. Therefore, this allele seems to contribute to genetic protection to IDDM.
Collapse
Affiliation(s)
- Maya Cesari
- Laboratoire de Biochimie et Génétique Moléculaire EA2526, Faculté des Sciences et Technologies, Université de la Réunion, La Réunion, France-DOM
| | | | | | | | | | | | | |
Collapse
|
60
|
Chen M, Abele R, Tampé R. Functional non-equivalence of ATP-binding cassette signature motifs in the transporter associated with antigen processing (TAP). J Biol Chem 2004; 279:46073-81. [PMID: 15322097 DOI: 10.1074/jbc.m404042200] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The transporter associated with antigen processing (TAP) is a key component of the cellular immune system. As a member of the ATP-binding cassette (ABC) superfamily, TAP hydrolyzes ATP to energize the transport of peptides from the cytosol into the lumen of the endoplasmic reticulum. TAP is composed of TAP1 and TAP2, each containing a transmembrane domain and a nucleotide-binding domain (NBD). Here we investigated the role of the ABC signature motif (C-loop) on the functional non-equivalence of the NBDs, which contain a canonical C-loop (LSGGQ) for TAP1 and a degenerate C-loop (LAAGQ) for TAP2. Mutation of the leucine or glycine (LSGGQ) in TAP1 fully abolished peptide transport. However, TAP complexes with equivalent mutations in TAP2 still showed residual peptide transport activity. To elucidate the origin of the asymmetry of the NBDs of TAP, we further examined TAP complexes with exchanged C-loops. Strikingly, the chimera with two canonical C-loops showed the highest transport rate whereas the chimera with two degenerate C-loops had the lowest transport rate, demonstrating that the ABC signature motifs control peptide transport efficiency. All single site mutants and chimeras showed similar activities in peptide or ATP binding, implying that these mutations affect the ATPase activity of TAP. In addition, these results prove that the serine of the C-loop is not essential for TAP function but rather coordinates, together with other residues of the C-loop, the ATP hydrolysis in both nucleotide-binding sites.
Collapse
Affiliation(s)
- Min Chen
- Institute of Biochemistry, Biozentrum, Goethe-University Frankfurt, Marie-Curie-Strasse 9, D-60439 Frankfurt am Main, Germany
| | | | | |
Collapse
|
61
|
Abele R, Tampé R. The ABCs of Immunology: Structure and Function of TAP, the Transporter Associated with Antigen Processing. Physiology (Bethesda) 2004; 19:216-24. [PMID: 15304636 DOI: 10.1152/physiol.00002.2004] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The transporter associated with antigen processing (TAP) is essential for peptide delivery from the cytosol into the lumen of the endoplasmic reticulum (ER), where these peptides are loaded on major histocompatibility complex (MHC) I molecules. Loaded MHC I leave the ER and display their antigenic cargo on the cell surface to cytotoxic T cells. Subsequently, virus-infected or malignantly transformed cells can be eliminated. Here we discuss the structure, function, and mechanism of TAP as a central part of the peptide-loading complex. Furthermore, aspects of virus and tumor escape strategies are presented.
Collapse
Affiliation(s)
- Rupert Abele
- Institute of Biochemistry, Biozentrum Frankfurt, Johann Wolfgang Goethe-University, D-60439 Frankfurt am Main, Germany
| | | |
Collapse
|
62
|
Doeven MK, Abele R, Tampé R, Poolman B. The binding specificity of OppA determines the selectivity of the oligopeptide ATP-binding cassette transporter. J Biol Chem 2004; 279:32301-7. [PMID: 15169767 DOI: 10.1074/jbc.m404343200] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The purification and functional reconstitution of a five-component oligopeptide ATP-binding cassette transporter with a remarkably wide substrate specificity are described. High-affinity peptide uptake was dependent on liganded substrate-binding protein OppA, which interacts with the translocator OppBCDF with higher affinity than unliganded OppA. Transport screening with combinatorial peptide libraries revealed that (i) the Opp transporter is not selective with respect to amino acid side chains of the transported peptides; (ii) any peptide that can bind to OppA is transported via Opp, including very long peptides up to 35 residues long; and (iii) the binding specificity of OppA largely determines the overall transport selectivity.
Collapse
Affiliation(s)
- Mark K Doeven
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, The Netherlands
| | | | | | | |
Collapse
|
63
|
Bouabe H, Knittler MR. The distinct nucleotide binding states of the transporter associated with antigen processing (TAP) are regulated by the nonhomologous C-terminal tails of TAP1 and TAP2. ACTA ACUST UNITED AC 2004; 270:4531-46. [PMID: 14622282 DOI: 10.1046/j.1432-1033.2003.03848.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The transporter associated with antigen processing (TAP) delivers peptides into the lumen of the endoplasmic reticulum for binding onto major histocompatibility complex class I molecules. TAP comprises two polypeptides, TAP1 and TAP2, each with an N-terminal transmembrane domain and a C-terminal cytosolic nucleotide binding domain (NBD). The two NBDs have distinct intrinsic nucleotide binding properties. In the resting state of TAP, the NBD1 has a much higher binding activity for ATP than the NBD2, while the binding of ADP to the two NBDs is equivalent. To attribute the different nucleotide binding behaviour of NBD1 and NBD2 to specific sequences, we generated chimeric TAP1 and TAP2 polypeptides in which either the nonhomologous C-terminal tails downstream of the Walker B motif, or the core NBDs which are enclosed by the conserved Walker A and B motifs, were reciprocally exchanged. Our biochemical and functional studies on the different TAP chimeras show that the distinct nucleotide binding behaviour of TAP1 and TAP2 is controlled by the nonhomologous C-terminal tails of the two TAP chains. In addition, our data suggest that the C-terminal tail of TAP2 is required for a functional transporter by regulating ATP binding. Further experiments indicate that ATP binding to NBD2 is important because it prevents simultaneous uptake of ATP by TAP1. We propose that the C-terminal tails of TAP1 and TAP2 play a crucial regulatory role in the coordination of nucleotide binding and ATP hydrolysis by TAP.
Collapse
Affiliation(s)
- Hicham Bouabe
- Institute for Genetics, University of Cologne, Germany
| | | |
Collapse
|
64
|
Verdon G, Albers SV, van Oosterwijk N, Dijkstra BW, Driessen AJM, Thunnissen AMWH. Formation of the productive ATP-Mg2+-bound dimer of GlcV, an ABC-ATPase from Sulfolobus solfataricus. J Mol Biol 2003; 334:255-67. [PMID: 14607117 DOI: 10.1016/j.jmb.2003.08.065] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The ABC-ATPase GlcV from Sulfolobus solfataricus energizes an ABC transporter mediating glucose uptake. In ABC transporters, two ABC-ATPases are believed to form a head-to-tail dimer, with both monomers contributing conserved residues to each of the two productive active sites. In contrast, isolated GlcV, although active, behaves apparently as a monomer in the presence of ATP-Mg(2+), AMPPNP-Mg(2+) or ATP alone. To resolve the oligomeric state of the active form of GlcV, we analysed the effects of changing the putative catalytic base, residue E166, into glutamine or alanine. Both mutants are, to different extents, defective in ATP hydrolysis, and gel-filtration experiments revealed their dimerization in the presence of ATP-Mg(2+). Mutant E166Q forms dimers also in the presence of ATP alone, without Mg(2+), whereas dimerization of mutant E166A requires both ATP and Mg(2+). These results confirm earlier reports for other ABC-ATPases, but for the first time suggest the occurrence of a fast equilibrium between ATP-bound monomers and ATP-bound dimers. We further mutated two highly conserved residues of the ABC signature motif, S142 and G144, into alanine. The G144A mutant is completely inactive and fails to dimerize, indicating an essential role of this residue in stabilizing the productive dimeric state. Mutant S142A retained considerable activity, and was able to dimerize, thus implying that the interaction of the serine with ATP is not essential for dimerization and catalysis. Furthermore, although the E166A and G144A mutants each alone are inactive, they produce an active heterodimer, showing that disruption of one active site can be tolerated. Our data suggest that ABC-ATPases with partially degenerated catalytic machineries, as they occur in vivo, can still form productive dimers to drive transport.
Collapse
Affiliation(s)
- Grégory Verdon
- Laboratory of Biophysical Chemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
65
|
Koch J, Guntrum R, Heintke S, Kyritsis C, Tampé R. Functional dissection of the transmembrane domains of the transporter associated with antigen processing (TAP). J Biol Chem 2003; 279:10142-7. [PMID: 14679198 DOI: 10.1074/jbc.m312816200] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The transporter associated with antigen processing (TAP1/2) translocates cytosolic peptides of proteasomal degradation into the endoplasmic reticulum (ER) lumen. A peptide-loading complex of tapasin, major histocompatibility complex class I, and several auxiliary factors is assembled at the transporter to optimize antigen display to cytotoxic T-lymphocytes at the cell surface. The heterodimeric TAP complex has unique N-terminal domains in addition to a 6 + 6-transmembrane segment core common to most ABC transporters. Here we provide direct evidence that this core TAP complex is sufficient for (i) ER targeting, (ii) heterodimeric assembly within the ER membrane, (iii) peptide binding, (iv) peptide transport, and (v) specific inhibition by the herpes simplex virus protein ICP47 and the human cytomegalovirus protein US6. We show for the first time that the translocation pore of the transporter is composed of the predicted TM-(5-10) of TAP1 and TM-(4-9) of TAP2. Moreover, we demonstrate that the N-terminal domains of TAP1 and TAP2 are essential for recruitment of tapasin, consequently mediating assembly of the macromolecular peptide-loading complex.
Collapse
Affiliation(s)
- Joachim Koch
- Institute of Biochemistry, Biocenter, Johann Wolfgang Goethe-University Frankfurt, Germany
| | | | | | | | | |
Collapse
|