51
|
Hakulinen N, Rouvinen J. Three-dimensional structures of laccases. Cell Mol Life Sci 2015; 72:857-68. [PMID: 25586561 PMCID: PMC11113281 DOI: 10.1007/s00018-014-1827-5] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 12/30/2014] [Indexed: 10/24/2022]
Abstract
Laccases are phenol oxidases that belong to the family of multi-copper oxidases and the superfamily of cupredoxins. A number of potential industrial applications for laccases have led to intensive structure-function studies and an increased amount of crystal structures has been solved. The objective of this review is to summarize and analyze available crystal structures of laccases. The experimental crystallographic data are now easily available from the websites and electron density maps can be used for the interpretation of the structural models. The crystal structures can give valuable insights into the functional mechanisms and may serve as the basis for the development of laccases for industrial applications.
Collapse
Affiliation(s)
- N Hakulinen
- Department of Chemistry, University of Eastern Finland, Joensuu Campus, PO Box 111, 80101, Joensuu, Finland,
| | | |
Collapse
|
52
|
Martins LO, Durão P, Brissos V, Lindley PF. Laccases of prokaryotic origin: enzymes at the interface of protein science and protein technology. Cell Mol Life Sci 2015; 72:911-22. [PMID: 25572294 PMCID: PMC11113980 DOI: 10.1007/s00018-014-1822-x] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 12/30/2014] [Indexed: 10/24/2022]
Abstract
The ubiquitous members of the multicopper oxidase family of enzymes oxidize a range of aromatic substrates such as polyphenols, methoxy-substituted phenols, amines and inorganic compounds, concomitantly with the reduction of molecular dioxygen to water. This family of enzymes can be broadly divided into two functional classes: metalloxidases and laccases. Several prokaryotic metalloxidases have been described in the last decade showing a robust activity towards metals, such as Cu(I), Fe(II) or Mn(II) and have been implicated in the metal metabolism of the corresponding microorganisms. Many laccases, with a superior efficiency for oxidation of organic compounds when compared with metals, have also been identified and characterized from prokaryotes, playing roles that more closely conform to those of intermediary metabolism. This review aims to present an update of current knowledge on prokaryotic multicopper oxidases, with a special emphasis on laccases, anticipating their enormous potential for industrial and environmental applications.
Collapse
Affiliation(s)
- Lígia O Martins
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, 2781-901, Oeiras, Portugal,
| | | | | | | |
Collapse
|
53
|
Wijekoon CJK, Young TR, Wedd AG, Xiao Z. CopC Protein from Pseudomonas fluorescens SBW25 Features a Conserved Novel High-Affinity Cu(II) Binding Site. Inorg Chem 2015; 54:2950-9. [DOI: 10.1021/acs.inorgchem.5b00031] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Chathuri J. K. Wijekoon
- School
of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Tessa R. Young
- School
of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Anthony G. Wedd
- School
of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Zhiguang Xiao
- School
of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
54
|
Sugimoto Y, Kitazumi Y, Tsujimura S, Shirai O, Yamamoto M, Kano K. Electrostatic interaction between an enzyme and electrodes in the electric double layer examined in a view of direct electron transfer-type bioelectrocatalysis. Biosens Bioelectron 2015; 63:138-144. [DOI: 10.1016/j.bios.2014.07.025] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Revised: 07/11/2014] [Accepted: 07/11/2014] [Indexed: 11/25/2022]
|
55
|
Cortes L, Wedd AG, Xiao Z. The functional roles of the three copper sites associated with the methionine-rich insert in the multicopper oxidase CueO fromE. coli. Metallomics 2015; 7:776-85. [DOI: 10.1039/c5mt00001g] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The methionine-rich insert in the multicopper oxidase CueO fromE. coliaccommodates three copper sites that play distinct but related roles in Cu(i) extraction and oxidation and that induce robust cuprous oxidase activity under physiologically relevant conditions.
Collapse
Affiliation(s)
- Laura Cortes
- School of Chemistry and The Bio21 Molecular Science and Biotechnology Institute
- University of Melbourne
- ParkvilleAustralia
| | - Anthony G. Wedd
- School of Chemistry and The Bio21 Molecular Science and Biotechnology Institute
- University of Melbourne
- ParkvilleAustralia
| | - Zhiguang Xiao
- School of Chemistry and The Bio21 Molecular Science and Biotechnology Institute
- University of Melbourne
- ParkvilleAustralia
| |
Collapse
|
56
|
Agbo P, Heath JR, Gray HB. Modeling Dioxygen Reduction at Multicopper Oxidase Cathodes. J Am Chem Soc 2014; 136:13882-7. [DOI: 10.1021/ja5077519] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Peter Agbo
- Beckman Institute, Noyes
Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125, United States
| | - James R. Heath
- Beckman Institute, Noyes
Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125, United States
| | - Harry B. Gray
- Beckman Institute, Noyes
Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
57
|
Moshkov KA, Zaitsev VN, Grishina TV, Stefanov VE. Multinuclear blue copper-proteins: the evolutionary design. J EVOL BIOCHEM PHYS+ 2014. [DOI: 10.1134/s0022093014030016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
58
|
Singh D, Sharma KK, Dhar MS, Virdi JS. Molecular modeling and docking of novel laccase from multiple serotype of Yersinia enterocolitica suggests differential and multiple substrate binding. Biochem Biophys Res Commun 2014; 449:157-62. [DOI: 10.1016/j.bbrc.2014.05.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 05/03/2014] [Indexed: 10/25/2022]
|
59
|
Atmospheric N deposition increases bacterial laccase-like multicopper oxidases: implications for organic matter decay. Appl Environ Microbiol 2014; 80:4460-8. [PMID: 24837374 DOI: 10.1128/aem.01224-14] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Anthropogenic release of biologically available nitrogen (N) has increased dramatically over the last 150 years, which can alter the processes controlling carbon (C) storage in terrestrial ecosystems. In a northern hardwood forest ecosystem located in Michigan in the United States, nearly 20 years of experimentally increased atmospheric N deposition has reduced forest floor decay and increased soil C storage. This change occurred concomitantly with compositional changes in Basidiomycete fungi and in Actinobacteria, as well as the downregulation of fungal lignocelluloytic genes. Recently, laccase-like multicopper oxidases (LMCOs) have been discovered among bacteria which can oxidize β-O-4 linkages in phenolic compounds (e.g., lignin and humic compounds), resulting in the production of dissolved organic carbon (DOC). Here, we examined how nearly 2 decades of experimental N deposition has affected the abundance and composition of saprotrophic bacteria possessing LMCO genes. In our experiment, LMCO genes were more abundant in the forest floor under experimental N deposition whereas the abundances of bacteria and fungi were unchanged. Experimental N deposition also led to less-diverse, significantly altered bacterial and LMCO gene assemblages, with taxa implicated in organic matter decay (i.e., Actinobacteria, Proteobacteria) accounting for the majority of compositional changes. These results suggest that experimental N deposition favors bacteria in the forest floor that harbor the LMCO gene and represents a plausible mechanism by which anthropogenic N deposition has reduced decomposition, increased soil C storage, and accelerated phenolic DOC production in our field experiment. Our observations suggest that future rates of atmospheric N deposition could fundamentally alter the physiological potential of soil microbial communities.
Collapse
|
60
|
Solomon EI, Heppner DE, Johnston EM, Ginsbach JW, Cirera J, Qayyum M, Kieber-Emmons MT, Kjaergaard CH, Hadt RG, Tian L. Copper active sites in biology. Chem Rev 2014; 114:3659-853. [PMID: 24588098 PMCID: PMC4040215 DOI: 10.1021/cr400327t] [Citation(s) in RCA: 1170] [Impact Index Per Article: 106.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
| | - David E. Heppner
- Department of Chemistry, Stanford University, Stanford, CA, 94305
| | | | - Jake W. Ginsbach
- Department of Chemistry, Stanford University, Stanford, CA, 94305
| | - Jordi Cirera
- Department of Chemistry, Stanford University, Stanford, CA, 94305
| | - Munzarin Qayyum
- Department of Chemistry, Stanford University, Stanford, CA, 94305
| | | | | | - Ryan G. Hadt
- Department of Chemistry, Stanford University, Stanford, CA, 94305
| | - Li Tian
- Department of Chemistry, Stanford University, Stanford, CA, 94305
| |
Collapse
|
61
|
Kataoka K, Sakurai T. Role of Hydrogen Bond Connecting Ligands for Substrate and Type I Copper in Copper(I) Oxidase CueO. CHEM LETT 2013. [DOI: 10.1246/cl.130422] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Kunishige Kataoka
- Graduate School of Natural Science and Technology, Kanazawa University
| | - Takeshi Sakurai
- Graduate School of Natural Science and Technology, Kanazawa University
| |
Collapse
|
62
|
Molecular dynamics study of the structural basis of dysfunction and the modulation of reactive oxygen species generation by pathogenic mutants of human dihydrolipoamide dehydrogenase. Arch Biochem Biophys 2013; 538:145-55. [PMID: 24012808 DOI: 10.1016/j.abb.2013.08.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 08/09/2013] [Accepted: 08/26/2013] [Indexed: 12/15/2022]
Abstract
Human dihydrolipoamide dehydrogenase (LADH, E3) is a component in the pyruvate-, alpha-ketoglutarate- and branched-chain ketoacid dehydrogenase complexes and in the glycine cleavage system. The pathogenic mutations of LADH cause severe metabolic disturbances, called E3 deficiency that often involve cardiological and neurological symptoms and premature death. Our laboratory has recently shown that some of the known pathogenic mutations augment the reactive oxygen species (ROS) generation capacity of LADH, which may contribute to the clinical presentations. A recent report concluded that elevated oxidative stress generated by the above mutants turns the lipoic acid cofactor on the E2 subunits dysfunctional. In the present contribution we generated by molecular dynamics (MD) simulation the conformation of LADH that is proposed to be compatible with ROS generation. We propose here for the first time the structural changes, which are likely to turn the physiological LADH conformation to its ROS-generating conformation. We also created nine of the pathogenic mutants of the ROS-generating conformation and again used MD simulation to detect structural changes that the mutations induced in this LADH conformation. We propose the structural changes that may lead to the modulation in ROS generation of LADH by the pathogenic mutations.
Collapse
|
63
|
Butterfield CN, Soldatova AV, Lee SW, Spiro TG, Tebo BM. Mn(II,III) oxidation and MnO2 mineralization by an expressed bacterial multicopper oxidase. Proc Natl Acad Sci U S A 2013; 110:11731-5. [PMID: 23818588 PMCID: PMC3718108 DOI: 10.1073/pnas.1303677110] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Reactive Mn(IV) oxide minerals are ubiquitous in the environment and control the bioavailability and distribution of many toxic and essential elements and organic compounds. Their formation is thought to be dependent on microbial enzymes, because spontaneous Mn(II) to Mn(IV) oxidation is slow. Several species of marine Bacillus spores oxidize Mn(II) on their exosporium, the outermost layer of the spore, encrusting them with Mn(IV) oxides. Molecular studies have identified the mnx (Mn oxidation) genes, including mnxG, encoding a putative multicopper oxidase (MCO), as responsible for this two-electron oxidation, a surprising finding because MCOs only catalyze single-electron transfer reactions. Characterization of the enzymatic mechanism has been hindered by the lack of purified protein. By purifying active protein from the mnxDEFG expression construct, we found that the resulting enzyme is a blue (absorption maximum 590 nm) complex containing MnxE, MnxF, and MnxG proteins. Further, by analyzing the Mn(II)- and (III)-oxidizing activity in the presence of a Mn(III) chelator, pyrophosphate, we found that the complex facilitates both electron transfers from Mn(II) to Mn(III) and from Mn(III) to Mn(IV). X-ray absorption spectroscopy of the Mn mineral product confirmed its similarity to Mn(IV) oxides generated by whole spores. Our results demonstrate that Mn oxidation from soluble Mn(II) to Mn(IV) oxides is a two-step reaction catalyzed by an MCO-containing complex. With the purification of active Mn oxidase, we will be able to uncover its mechanism, broadening our understanding of Mn mineral formation and the bioinorganic capabilities of MCOs.
Collapse
Affiliation(s)
- Cristina N. Butterfield
- Division of Environmental and Biomolecular Systems, Institute of Environmental Health, Oregon Health and Science University, Beaverton, OR 97006; and
| | | | - Sung-Woo Lee
- Division of Environmental and Biomolecular Systems, Institute of Environmental Health, Oregon Health and Science University, Beaverton, OR 97006; and
| | - Thomas G. Spiro
- Department of Chemistry, University of Washington, Seattle, WA 98195
| | - Bradley M. Tebo
- Division of Environmental and Biomolecular Systems, Institute of Environmental Health, Oregon Health and Science University, Beaverton, OR 97006; and
| |
Collapse
|
64
|
Laccase versus laccase-like multi-copper oxidase: a comparative study of similar enzymes with diverse substrate spectra. PLoS One 2013; 8:e65633. [PMID: 23755261 PMCID: PMC3670849 DOI: 10.1371/journal.pone.0065633] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 04/26/2013] [Indexed: 11/19/2022] Open
Abstract
Laccases (EC 1.10.3.2) are multi-copper oxidases that catalyse the one-electron oxidation of a broad range of compounds including substituted phenols, arylamines and aromatic thiols to the corresponding radicals. Owing to their broad substrate range, copper-containing laccases are versatile biocatalysts, capable of oxidizing numerous natural and non-natural industry-relevant compounds, with water as the sole by-product. In the present study, 10 of the 11 multi-copper oxidases, hitherto considered to be laccases, from fungi, plant and bacterial origin were compared. A substrate screen of 91 natural and non-natural compounds was recorded and revealed a fairly broad but distinctive substrate spectrum amongst the enzymes. Even though the enzymes share conserved active site residues we found that the substrate ranges of the individual enzymes varied considerably. The EC classification is based on the type of chemical reaction performed and the actual name of the enzyme often refers to the physiological substrate. However, for the enzymes studied in this work such classification is not feasible, even more so as their prime substrates or natural functions are mainly unknown. The classification of multi-copper oxidases assigned as laccases remains a challenge. For the sake of simplicity we propose to introduce the term "laccase-like multi-copper oxidase" (LMCO) in addition to the term laccase that we use exclusively for the enzyme originally identified from the sap of the lacquer tree Rhus vernicifera.
Collapse
|
65
|
Classen T, Pietruszka J, Schuback SM. A new multicopper oxidase from Gram-positive bacterium Rhodococcus erythropolis with activity modulating methionine rich tail. Protein Expr Purif 2013; 89:97-108. [PMID: 23485678 DOI: 10.1016/j.pep.2013.02.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 02/06/2013] [Accepted: 02/08/2013] [Indexed: 11/17/2022]
Abstract
Multicopper oxidases are involved in a wide variety of physiological tasks in nature. They are part of the lignin formation/decomposition system in plants and fungi. In bacteria they are part of developmental processes and the heavy metal resistance apparatus. A well characterised example is the copper tolerance protein CueO of Escherichia coli (CueO(EC)). Here, we report the heterologous expression of the apo- and holo-form of CueO(RE), a homologue to CueO(EC) from Rhodococcus erythropolis. Upon incubation with copper(II) ions, low active apo-CueO(RE) was converted into the active holo-CueO(RE) in vivo. The holo-form was physico-chemically characterised using a copper(I) BCA complex and the model substrate 2,6-dimethoxyphenol. The spectroscopic and catalytic properties are different from CueO(EC), revealing a high catalytic efficiency (k(cat)/K(m)) of 115 min(-1)mM(-1) with physiological K(m) of 80 μM for the cuprous oxidase activity. At the C-terminus of CueO(RE) a methionine rich tail region was identified which can be found in a variety of actinobacteria. Chimeras of the E. coli and R. erythropolis enzymes were constructed to investigate the influence of this tail regarding kinetic parameters. It was shown that the tail did not have the same function as the corresponding methionine rich loop in CueO(EC). However, it modulated the kinetic properties of the enzyme.
Collapse
Affiliation(s)
- Thomas Classen
- Insitut für Bioorganische Chemie, Heinrich-Heine-Universität Düsseldorf im Forschungszentrum Jülich, D-52426 Jülich, Germany
| | | | | |
Collapse
|
66
|
Rulíšek L, Ryde U. Theoretical studies of the active-site structure, spectroscopic and thermodynamic properties, and reaction mechanism of multicopper oxidases. Coord Chem Rev 2013. [DOI: 10.1016/j.ccr.2012.04.019] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
67
|
Fang W, Fang Z, Zhou P, Chang F, Hong Y, Zhang X, Peng H, Xiao Y. Evidence for lignin oxidation by the giant panda fecal microbiome. PLoS One 2012; 7:e50312. [PMID: 23209704 PMCID: PMC3508987 DOI: 10.1371/journal.pone.0050312] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 10/18/2012] [Indexed: 11/19/2022] Open
Abstract
The digestion of lignin and lignin-related phenolic compounds from bamboo by giant pandas has puzzled scientists because of the lack of lignin-degrading genes in the genome of the bamboo-feeding animals. We constructed a 16S rRNA gene library from the microorganisms derived from the giant panda feces to identify the possibility for the presence of potential lignin-degrading bacteria. Phylogenetic analysis showed that the phylotypes of the intestinal bacteria were affiliated with the phyla Proteobacteria (53%) and Firmicutes (47%). Two phylotypes were affiliated with the known lignin-degrading bacterium Pseudomonas putida and the mangrove forest bacteria. To test the hypothesis that microbes in the giant panda gut help degrade lignin, a metagenomic library of the intestinal bacteria was constructed and screened for clones that contained genes encoding laccase, a lignin-degrading related enzyme. A multicopper oxidase gene, designated as lac51, was identified from a metagenomic clone. Sequence analysis and copper content determination indicated that Lac51 is a laccase rather than a metallo-oxidase and may work outside its original host cell because it has a TAT-type signal peptide and a transmembrane segment at its N-terminus. Lac51 oxidizes a variety of lignin-related phenolic compounds, including syringaldazine, 2,6-dimethoxyphenol, ferulic acid, veratryl alcohol, guaiacol, and sinapinic acid at conditions that simulate the physiologic environment in giant panda intestines. Furthermore, in the presence of 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), syringic acid, or ferulic acid as mediators, the oxidative ability of Lac51 on lignin was promoted. The absorbance of lignin at 445 nm decreased to 36% for ABTS, 51% for syringic acid, and 51% for ferulic acid after incubation for 10 h. Our findings demonstrate that the intestinal bacteria of giant pandas may facilitate the oxidation of lignin moieties, thereby clarifying the digestion of bamboo lignin by the animal.
Collapse
Affiliation(s)
- Wei Fang
- School of Life Sciences, Anhui University, Hefei, Anhui, China
- Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, Anhui, China
| | - Zemin Fang
- School of Life Sciences, Anhui University, Hefei, Anhui, China
- Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, Anhui, China
| | - Peng Zhou
- School of Life Sciences, Anhui University, Hefei, Anhui, China
- Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, Anhui, China
| | - Fei Chang
- School of Life Sciences, Anhui University, Hefei, Anhui, China
- Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, Anhui, China
| | - Yuzhi Hong
- School of Life Sciences, Anhui University, Hefei, Anhui, China
- Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, Anhui, China
| | - Xuecheng Zhang
- School of Life Sciences, Anhui University, Hefei, Anhui, China
- Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, Anhui, China
| | - Hui Peng
- School of Life Sciences, Anhui University, Hefei, Anhui, China
- Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, Anhui, China
| | - Yazhong Xiao
- School of Life Sciences, Anhui University, Hefei, Anhui, China
- Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, Anhui, China
- * E-mail:
| |
Collapse
|
68
|
Fang ZM, Li TL, Chang F, Zhou P, Fang W, Hong YZ, Zhang XC, Peng H, Xiao YZ. A new marine bacterial laccase with chloride-enhancing, alkaline-dependent activity and dye decolorization ability. BIORESOURCE TECHNOLOGY 2012; 111:36-41. [PMID: 22377476 DOI: 10.1016/j.biortech.2012.01.172] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Revised: 01/25/2012] [Accepted: 01/27/2012] [Indexed: 05/21/2023]
Abstract
A bacterial laccase gene designated as lac21 was screened from a marine microbial metagenomic library of the South China Sea based on sequence screening strategy. The protein encoded by lac21 shared less than 40% sequence identities with all of the laccases found. Lac21, which was recombinantly expressed in Escherichia coli, showed high activity toward syringaldazine at an optimum pH of 7.5 and temperature of 45°C. Lac21 was stable at pH values ranging from 5.5 to 9.0 and temperatures lower than 40°C. Interestingly, chloride enhanced the laccase activity, with concomitant increase in substrate affinity. Furthermore, Lac21 has high decolorization capability toward azo dyes in the absence of redox mediators, with 80% of Reactive Deep Blue M-2GE (50mg/L) being decolorized by 15U/L enzyme after 24h incubation at 20°C. These unusual properties demonstrate that the new bacterial laccase Lac21 has potentials in specific industrial or environmental applications.
Collapse
Affiliation(s)
- Ze-Min Fang
- School of Life Sciences, Anhui University, Hefei, Anhui 230039, China
| | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Shamsipur M, Shanehasz M, Khajeh K, Mollania N, Kazemi SH. A novel quantum dot–laccase hybrid nanobiosensor for low level determination of dopamine. Analyst 2012; 137:5553-9. [DOI: 10.1039/c2an36035g] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
70
|
Silva CS, Durão P, Fillat A, Lindley PF, Martins LO, Bento I. Crystal structure of the multicopper oxidase from the pathogenic bacterium Campylobacter jejuniCGUG11284: characterization of a metallo-oxidase. Metallomics 2012; 4:37-47. [DOI: 10.1039/c1mt00156f] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
71
|
Galai S, Lucas-Elio P, Marzouki M, Sanchez-Amat A. Molecular cloning of a copper-dependent laccase from the dye-decolorizing strain Stenotrophomonas maltophilia AAP56. J Appl Microbiol 2011; 111:1394-405. [DOI: 10.1111/j.1365-2672.2011.05164.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
72
|
Bioinformatic analysis reveals high diversity of bacterial genes for laccase-like enzymes. PLoS One 2011; 6:e25724. [PMID: 22022440 PMCID: PMC3192119 DOI: 10.1371/journal.pone.0025724] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Accepted: 09/09/2011] [Indexed: 11/19/2022] Open
Abstract
Fungal laccases have been used in various fields ranging from processes in wood and paper industries to environmental applications. Although a few bacterial laccases have been characterized in recent years, prokaryotes have largely been neglected as a source of novel enzymes, in part due to the lack of knowledge about the diversity and distribution of laccases within Bacteria. In this work genes for laccase-like enzymes were searched for in over 2,200 complete and draft bacterial genomes and four metagenomic datasets, using the custom profile Hidden Markov Models for two- and three-domain laccases. More than 1,200 putative genes for laccase-like enzymes were retrieved from chromosomes and plasmids of diverse bacteria. In 76% of the genes, signal peptides were predicted, indicating that these bacterial laccases may be exported from the cytoplasm, which contrasts with the current belief. Moreover, several examples of putatively horizontally transferred bacterial laccase genes were described. Many metagenomic sequences encoding fragments of laccase-like enzymes could not be phylogenetically assigned, indicating considerable novelty. Laccase-like genes were also found in anaerobic bacteria, autotrophs and alkaliphiles, thus opening new hypotheses regarding their ecological functions. Bacteria identified as carrying laccase genes represent potential sources for future biotechnological applications.
Collapse
|
73
|
Singh SK, Roberts SA, McDevitt SF, Weichsel A, Wildner GF, Grass GB, Rensing C, Montfort WR. Crystal structures of multicopper oxidase CueO bound to copper(I) and silver(I): functional role of a methionine-rich sequence. J Biol Chem 2011; 286:37849-57. [PMID: 21903583 DOI: 10.1074/jbc.m111.293589] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The multicopper oxidase CueO oxidizes toxic Cu(I) and is required for copper homeostasis in Escherichia coli. Like many proteins involved in copper homeostasis, CueO has a methionine-rich segment that is thought to be critical for copper handling. How such segments function is poorly understood. Here, we report the crystal structure of CueO at 1.1 Å with the 45-residue methionine-rich segment fully resolved, revealing an N-terminal helical segment with methionine residues juxtaposed for Cu(I) ligation and a C-terminal highly mobile segment rich in methionine and histidine residues. We also report structures of CueO with a C500S mutation, which leads to loss of the T1 copper, and CueO with six methionines changed to serine. Soaking C500S CueO crystals with Cu(I), or wild-type CueO crystals with Ag(I), leads to occupancy of three sites, the previously identified substrate-binding site and two new sites along the methionine-rich helix, involving methionines 358, 362, 368, and 376. Mutation of these residues leads to a ∼4-fold reduction in k(cat) for Cu(I) oxidation. Ag(I), which often appears with copper in nature, strongly inhibits CueO oxidase activities in vitro and compromises copper tolerance in vivo, particularly in the absence of the complementary copper efflux cus system. Together, these studies demonstrate a role for the methionine-rich insert of CueO in the binding and oxidation of Cu(I) and highlight the interplay among cue and cus systems in copper and silver homeostasis.
Collapse
Affiliation(s)
- Satish K Singh
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, USA
| | | | | | | | | | | | | | | |
Collapse
|
74
|
Decolorization of indigo carmine by laccase displayed on Bacillus subtilis spores. Enzyme Microb Technol 2011; 49:100-4. [DOI: 10.1016/j.enzmictec.2011.03.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Revised: 02/20/2011] [Accepted: 03/18/2011] [Indexed: 11/17/2022]
|
75
|
Kallio JP, Gasparetti C, Andberg M, Boer H, Koivula A, Kruus K, Rouvinen J, Hakulinen N. Crystal structure of an ascomycete fungal laccase from Thielavia arenaria - common structural features of asco-laccases. FEBS J 2011; 278:2283-95. [PMID: 21535408 DOI: 10.1111/j.1742-4658.2011.08146.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Juha P Kallio
- Department of Chemistry, University of Eastern Finland, Joensuu, Finland
| | | | | | | | | | | | | | | |
Collapse
|
76
|
Srnec M, Ryde U, Rulíšek L. Reductive cleavage of the O–O bond in multicopper oxidases: a QM/MM and QM study. Faraday Discuss 2011; 148:41-53; discussion 97-108. [DOI: 10.1039/c004476h] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
77
|
Abstract
Both the essentiality and toxicity of transition metals are exploited as part of mammalian immune defenses against bacterial infection. Salmonella serovars continue to cause serious medical and veterinary problems worldwide and detecting deficiency and excess of different metal ions (such as copper, iron, zinc, manganese, nickel, and cobalt) is fundamental to their virulence. This involves multiple DNA-binding metal-responsive transcription factors that discriminate between elements and trigger expression of genes that mediate appropriate responses to metal fluxes. This review focuses on the metal stresses encountered by Salmonella during infection and the roles of the different metal-sensing regulatory proteins and their target genes in adapting to these changing metal levels. Current knowledge regarding the mechanisms of metal-regulated gene expression and the structural features of sensory metal binding sites are described. In addition, the principles governing the ability of the different sensors to detect specific metals within a cell to control cytosolic metal levels are also discussed. These proteins represent potential targets for the development of new therapeutic approaches.
Collapse
|
78
|
Abstract
Multi-copper oxidases are a large family of enzymes prevalent in all three domains of life. They couple the one-electron oxidation of substrate to the four-electron reduction of dioxygen to water and feature at least four Cu atoms, traditionally divided into three sites: T1, T2, and (binuclear) T3. The T1 site catalyzes substrate oxidation while a trinuclear cluster (comprising combined T2 and T3 centres) catalyzes the reduction of dioxygen. Substrate oxidation at the T1 Cu site occurs via an outer-sphere mechanism and consequently substrate specificities are determined primarily by the nature of a substrate docking/oxidation (SDO) site associated with the T1 Cu centre. Many of these enzymes ‘moonlight’, i.e. display broad specificities towards many different substrates and may have multiple cellular functions. A sub-set are robust catalysts for the oxidation of low-valent transition metal ions such as FeII, CuI, and MnII and are termed ‘metallo-oxidases’. They play essential roles in nutrient metal uptake and homeostasis, with the ferroxidase ceruloplasmin being a prominent member. Their SDO sites are tailored to facilitate specific binding and facile oxidation of these low-valent metal ions and this is the focus of this review.
Collapse
|
79
|
Kataoka K, Hirota S, Maeda Y, Kogi H, Shinohara N, Sekimoto M, Sakurai T. Enhancement of Laccase Activity through the Construction and Breakdown of a Hydrogen Bond at the Type I Copper Center in Escherichia coli CueO and the Deletion Mutant Δα5−7 CueO. Biochemistry 2010; 50:558-65. [DOI: 10.1021/bi101107c] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kunishige Kataoka
- Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa 920-1192, Japan
| | - Shun Hirota
- Graduate School of Materials Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Yasuo Maeda
- Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa 920-1192, Japan
| | - Hiroki Kogi
- Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa 920-1192, Japan
| | - Naoya Shinohara
- Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa 920-1192, Japan
| | - Madoka Sekimoto
- Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa 920-1192, Japan
| | - Takeshi Sakurai
- Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa 920-1192, Japan
| |
Collapse
|
80
|
Zeng J, Lin X, Zhang J, Li X, Wong MH. Oxidation of polycyclic aromatic hydrocarbons by the bacterial laccase CueO from E. coli. Appl Microbiol Biotechnol 2010; 89:1841-9. [PMID: 21120471 DOI: 10.1007/s00253-010-3009-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Revised: 11/04/2010] [Accepted: 11/15/2010] [Indexed: 10/18/2022]
Abstract
Laccases produced by white rot fungi are capable of rapidly oxidizing benzo[a]pyrene. We hypothesize that the polycyclic aromatic hydrocarbon (PAH)-degrading bacteria producing laccase can enhance the degree of benzo[a]pyrene mineralization. However, fungal laccases are glycoproteins which cannot be glycosylated in bacteria, and there is no evidence to show that bacterial laccases can oxidize benzo[a]pyrene. In this study, the in vitro oxidation of PAHs by crude preparations of the bacterial laccase, CueO, from Escherichia coli was investigated. The results revealed that the crude CueO catalyzed the oxidation of anthracene and benzo[a]pyrene in the same way as the fungal laccase from Trametes versicolor, but showed specific characteristics such as thermostability and copper dependence. In the presence of 2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid), high amounts of anthracene and benzo[a]pyrene, 80% and 97%, respectively, were transformed under optimal conditions of 60°C, pH 5, and 5 mmol l(-1) CuCl(2) after a 24-h incubation period. Other PAHs including fluorene, acenaphthylene, phenanthrene, and benzo[a]anthracene were also oxidized by the crude CueO. These findings indicated the potential application of prokaryotic laccases in enhancing the mineralization of benzo[a]pyrene by PAH-degrading bacteria.
Collapse
Affiliation(s)
- Jun Zeng
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, People's Republic of China
| | | | | | | | | |
Collapse
|
81
|
Vancoillie S, Chalupský J, Ryde U, Solomon EI, Pierloot K, Neese F, Rulísek L. Multireference ab initio calculations of g tensors for trinuclear copper clusters in multicopper oxidases. J Phys Chem B 2010; 114:7692-702. [PMID: 20469875 DOI: 10.1021/jp103098r] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
EPR spectroscopy has proven to be an indispensable tool in elucidating the structure of metal sites in proteins. In recent years, experimental EPR data have been complemented by theoretical calculations, which have become a standard tool of many quantum chemical packages. However, there have only been a few attempts to calculate EPR g tensors for exchange-coupled systems with more than two spins. In this work, we present a quantum chemical study of structural, electronic, and magnetic properties of intermediates in the reaction cycle of multicopper oxidases and of their inorganic models. All these systems contain three copper(II) ions bridged by hydroxide or O(2-) anions and their ground states are antiferromagnetically coupled doublets. We demonstrate that only multireference methods, such as CASSCF/CASPT2 or MRCI can yield qualitatively correct results (compared to the experimental values) and consider the accuracy of the calculated EPR g tensors as the current benchmark of quantum chemical methods. By decomposing the calculated g tensors into terms arising from interactions of the ground state with the various excited states, the origin of the zero-field splitting is explained. The results of the study demonstrate that a truly quantitative prediction of the g tensors of exchange-coupled systems is a great challenge to contemporary theory. The predictions strongly depend on small energy differences that are difficult to predict with sufficient accuracy by any quantum chemical method that is applicable to systems of the size of our target systems.
Collapse
Affiliation(s)
- Steven Vancoillie
- Department of Chemistry, University of Leuven, Celestijnenlaan 200F, B-3001 Heverlee-Leuven, Belgium
| | | | | | | | | | | | | |
Collapse
|
82
|
Mizutani K, Toyoda M, Sagara K, Takahashi N, Sato A, Kamitaka Y, Tsujimura S, Nakanishi Y, Sugiura T, Yamaguchi S, Kano K, Mikami B. X-ray analysis of bilirubin oxidase from Myrothecium verrucaria at 2.3 A resolution using a twinned crystal. Acta Crystallogr Sect F Struct Biol Cryst Commun 2010; 66:765-70. [PMID: 20606269 PMCID: PMC2898457 DOI: 10.1107/s1744309110018828] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Accepted: 05/20/2010] [Indexed: 11/10/2022]
Abstract
Bilirubin oxidase (BOD), a multicopper oxidase found in Myrothecium verrucaria, catalyzes the oxidation of bilirubin to biliverdin. Oxygen is the electron acceptor and is reduced to water. BOD is used for diagnostic analysis of bilirubin in serum and has attracted considerable attention as an enzymatic catalyst for the cathode of biofuel cells that work under neutral conditions. Here, the crystal structure of BOD is reported for the first time. Blue bipyramid-shaped crystals of BOD obtained in 2-methyl-2,4-pentanediol (MPD) and ammonium sulfate solution were merohedrally twinned in space group P6(3). Structure determination was achieved by the single anomalous diffraction (SAD) method using the anomalous diffraction of Cu atoms and synchrotron radiation and twin refinement was performed in the resolution range 33-2.3 A. The overall organization of BOD is almost the same as that of other multicopper oxidases: the protein is folded into three domains and a total of four copper-binding sites are found in domains 1 and 3. Although the four copper-binding sites were almost identical to those of other multicopper oxidases, the hydrophilic Asn residue (at the same position as a hydrophobic residue such as Leu in other multicopper oxidases) very close to the type I copper might contribute to the characteristically high redox potential of BOD.
Collapse
Affiliation(s)
- Kimihiko Mizutani
- Laboratory of Applied Structural Biology, Division of Applied Life Sciences, The Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Mohammadian M, Fathi-Roudsari M, Mollania N, Badoei-Dalfard A, Khajeh K. Enhanced expression of a recombinant bacterial laccase at low temperature and microaerobic conditions: purification and biochemical characterization. J Ind Microbiol Biotechnol 2010; 37:863-9. [PMID: 20473548 DOI: 10.1007/s10295-010-0734-5] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Accepted: 04/26/2010] [Indexed: 11/27/2022]
Abstract
Laccases (benzenediol oxygen oxidoreductase; EC 1.10.3.2) have many biotechnological applications because of their oxidation ability towards a wide range of phenolic compounds. Within recent years, researchers have been highly interested in the identification and characterization of laccases from bacterial sources. In this study, we have isolated and cloned a gene encoding laccase (CotA) from Bacillus sp. HR03 and then expressed it under microaerobic conditions and decreased temperature in order to obtain high amounts of soluble protein. The laccase was purified and its biochemical properties were investigated using three common laccase substrates, 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) (ABTS), syringaldazine (SGZ) and 2,6-dimethoxyphenol (2,6-DMP). K(M) and k(cat) were calculated 535 microM and 127 s(-1) for ABTS, 53 microM and 3 s(-1) for 2, 6-DMP and 5 microM and 20 s(-1) for SGZ when the whole reactions were carried out at room temperature. Laccase activity was also studied when the enzyme was preincubated at 70 and 80 degrees C. With SGZ as the substrate, the activity was increased three-fold after 50 min preincubation at 70 degrees C and 2.4-fold after 10 min preincubation at 80 degrees C. Preincubation of the enzyme in 70 degrees C for 30 min raised the activity four-fold with ABTS as the substrate. Also, L-dopa was used as a substrate. The enzyme was able to oxidize L-dopa with the K(M) and k(cat) of 1,493 microM and 194 s(-1), respectively.
Collapse
Affiliation(s)
- Mahdi Mohammadian
- Department of Biochemistry, Faculty of Biological Science, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran
| | | | | | | | | |
Collapse
|
84
|
Frelet-Barrand A, Boutigny S, Kunji ERS, Rolland N. Membrane protein expression in Lactococcus lactis. Methods Mol Biol 2010; 601:67-85. [PMID: 20099140 DOI: 10.1007/978-1-60761-344-2_5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Membrane proteins play key roles in cellular physiology, and they are important drug targets. Approximately 25% of all genes identified in sequenced genomes are known to encode membrane proteins; however, the majority have no assigned function. Although the resolution of soluble protein structure has entered the high-throughput stage, only 100 high-resolution structures of membrane proteins have been described until now. Lactococcus lactis is a gram-positive lactic bacterium that has been used traditionally in food fermentations, but it is now used widely in biotechnology for large-scale overproduction of heterologously expressed proteins. Various expression vectors based on either constitutive or inducible promoters exist. The nisin-inducible controlled gene expression (NICE) system is the most suitable for recombinant membrane protein expression allowing for fine control of gene expression based on the autoregulation mechanism of the bacteriocin nisin. Recombinant membrane proteins can be produced with affinity tags for efficient detection and purification from crude membrane protein extracts. The purpose of this chapter is to provide a detailed protocol for the expression of membrane proteins and their detection using the Strep-tag II affinity tag in L. lactis.
Collapse
Affiliation(s)
- Annie Frelet-Barrand
- Laboratoire de Physiologie Cellulaire Végétale, CNRS (UMR-5168)/CEA/INRA (UMR-1200), Université Joseph Fourier, iRTSV, CEA-Grenoble, France.
| | | | | | | |
Collapse
|
85
|
The multi-copper-ion oxidase CueO of Salmonella enterica serovar Typhimurium is required for systemic virulence. Infect Immun 2010; 78:2312-9. [PMID: 20231415 DOI: 10.1128/iai.01208-09] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Salmonella enterica serovar Typhimurium possesses a multi-copper-ion oxidase (multicopper oxidase), CueO (also known as CuiD), a periplasmic enzyme known to be required for resistance to copper ions. CueO from S. Typhimurium was expressed as a recombinant protein in Escherichia coli, and the purified protein exhibited a high cuprous oxidase activity. We have characterized an S. Typhimurium cueO mutant and confirmed that it is more sensitive to copper ions. Using a murine model of infection, it was observed that the cueO mutant was significantly attenuated, as indicated by reduced recovery of bacteria from liver and spleen, although there was no significant difference in recovery from Peyer's patches and mesenteric lymph nodes. However, the intracellular survival of the cueO mutant in unprimed or gamma-interferon-primed murine macrophages was not statistically different from that of wild-type Salmonella, suggesting that additional host factors are involved in clearance of the cueO mutant. Unlike a cueO mutant from E. coli, the S. Typhimurium cueO mutant did not show greater sensitivity to hydrogen peroxide and its sensitivity to copper ions was not affected by siderophores. Similarly, the S. Typhimurium cueO mutant was not rescued from copper ion toxicity by addition of the branched-chain amino acids and leucine.
Collapse
|
86
|
Djoko KY, Chong LX, Wedd AG, Xiao Z. Reaction Mechanisms of the Multicopper Oxidase CueO from Escherichia coli Support Its Functional Role as a Cuprous Oxidase. J Am Chem Soc 2010; 132:2005-15. [DOI: 10.1021/ja9091903] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Karrera Y. Djoko
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Lee Xin Chong
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Anthony G. Wedd
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Zhiguang Xiao
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
87
|
Kosman DJ. Multicopper oxidases: a workshop on copper coordination chemistry, electron transfer, and metallophysiology. J Biol Inorg Chem 2009; 15:15-28. [PMID: 19816718 DOI: 10.1007/s00775-009-0590-9] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Accepted: 09/15/2009] [Indexed: 01/01/2023]
Abstract
Multicopper oxidases (MCOs) are unique among copper proteins in that they contain at least one each of the three types of biologic copper sites, type 1, type 2, and the binuclear type 3. MCOs are descended from the family of small blue copper proteins (cupredoxins) that likely arose as a complement to the heme-iron-based cytochromes involved in electron transport; this event corresponded to the aerobiosis of the biosphere that resulted in the conversion of Fe(II) to Fe(III) as the predominant redox state of this essential metal and the solubilization of copper from Cu(2)S to Cu(H(2)O)( n ) (2+). MCOs are encoded in genomes in all three kingdoms and play essential roles in the physiology of essentially all aerobes. With four redox-active copper centers, MCOs share with terminal copper-heme oxidases the ability to catalyze the four-electron reduction of O(2) to two molecules of water. The electron transfers associated with this reaction are both outer and inner sphere in nature and their mechanisms have been fairly well established. A subset of MCO proteins exhibit specificity for Fe(2+), Cu(+), and/or Mn(2+) as reducing substrates and have been designated as metallooxidases. These enzymes, in particular the ferroxidases found in all fungi and metazoans, play critical roles in the metal metabolism of the expressing organism.
Collapse
Affiliation(s)
- Daniel J Kosman
- Department of Biochemistry, The University at Buffalo, NY 14214, USA.
| |
Collapse
|
88
|
Kallio JP, Auer S, Jänis J, Andberg M, Kruus K, Rouvinen J, Koivula A, Hakulinen N. Structure-function studies of a Melanocarpus albomyces laccase suggest a pathway for oxidation of phenolic compounds. J Mol Biol 2009; 392:895-909. [PMID: 19563811 DOI: 10.1016/j.jmb.2009.06.053] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Revised: 06/11/2009] [Accepted: 06/14/2009] [Indexed: 10/20/2022]
Abstract
Melanocarpus albomyces laccase crystals were soaked with 2,6-dimethoxyphenol, a common laccase substrate. Three complex structures from different soaking times were solved. Crystal structures revealed the binding of the original substrate and adducts formed by enzymatic oxidation of the substrate. The dimeric oxidation products were identified by mass spectrometry. In the crystals, a 2,6-dimethoxy-p-benzoquinone and a C-O dimer were observed, whereas a C-C dimer was the main product identified by mass spectrometry. Crystal structures demonstrated that the substrate and/or its oxidation products were bound in the pocket formed by residues Ala191, Pro192, Glu235, Leu363, Phe371, Trp373, Phe427, Leu429, Trp507 and His508. Substrate and adducts were hydrogen-bonded to His508, one of the ligands of type 1 copper. Therefore, this surface-exposed histidine most likely has a role in electron transfer by laccases. Based on our mutagenesis studies, the carboxylic acid residue Glu235 at the bottom of the binding site pocket is also crucial in the oxidation of phenolics. Glu235 may be responsible for the abstraction of a proton from the OH group of the substrate and His508 may extract an electron. In addition, crystal structures revealed a secondary binding site formed through weak dimerization in M. albomyces laccase molecules. This binding site most likely exists only in crystals, when the Phe427 residues are packed against each other.
Collapse
Affiliation(s)
- J P Kallio
- Department of Chemistry, University of Joensuu, P.O. Box 111, FIN-80101 Joensuu, Finland
| | | | | | | | | | | | | | | |
Collapse
|
89
|
Shao X, Gao Y, Jiang M, Li L. Deletion and site-directed mutagenesis of laccase from Shigella dysenteriae results in enhanced enzymatic activity and thermostability. Enzyme Microb Technol 2009. [DOI: 10.1016/j.enzmictec.2008.12.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
90
|
Development of a generic approach to native metalloproteomics: application to the quantitative identification of soluble copper proteins in Escherichia coli. J Biol Inorg Chem 2009; 14:631-40. [DOI: 10.1007/s00775-009-0477-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2008] [Accepted: 01/24/2009] [Indexed: 10/21/2022]
|
91
|
The Escherichia coli cell division protein and model Tat substrate SufI (FtsP) localizes to the septal ring and has a multicopper oxidase-like structure. J Mol Biol 2008; 386:504-19. [PMID: 19135451 PMCID: PMC2661564 DOI: 10.1016/j.jmb.2008.12.043] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2008] [Revised: 12/13/2008] [Accepted: 12/17/2008] [Indexed: 11/20/2022]
Abstract
The Escherichia coli protein SufI (FtsP) has recently been proposed to be a component of the cell division apparatus. The SufI protein is also in widespread experimental use as a model substrate in studies of the Tat (twin arginine translocation) protein transport system. We have used SufI-GFP (green fluorescent protein) fusions to show that SufI localizes to the septal ring in the dividing cell. We have also determined the structure of SufI by X-ray crystallography to a resolution of 1.9 A. SufI is structurally related to the multicopper oxidase superfamily but lacks metal cofactors. The structure of SufI suggests it serves a scaffolding rather than an enzymatic role in the septal ring and reveals regions of the protein likely to be involved in the protein-protein interactions required to assemble SufI at the septal ring.
Collapse
|
92
|
A Multicopper oxidase (Cj1516) and a CopA homologue (Cj1161) are major components of the copper homeostasis system of Campylobacter jejuni. J Bacteriol 2008; 190:8075-85. [PMID: 18931123 DOI: 10.1128/jb.00821-08] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Metal ion homeostasis mechanisms in the food-borne human pathogen Campylobacter jejuni are poorly understood. The Cj1516 gene product is homologous to the multicopper oxidase CueO, which is known to contribute to copper tolerance in Escherichia coli. Here we show, by optical absorbance and electron paramagnetic resonance spectroscopy, that purified recombinant Cj1516 contains both T1 and trinuclear copper centers, which are characteristic of multicopper oxidases. Inductively coupled plasma mass spectrometry revealed that the protein contained approximately six copper atoms per polypeptide. The presence of an N-terminal "twin arginine" signal sequence suggested a periplasmic location for Cj1516, which was confirmed by the presence of p-phenylenediamine (p-PD) oxidase activity in periplasmic fractions of wild-type but not Cj1516 mutant cells. Kinetic studies showed that the pure protein exhibited p-PD, ferroxidase, and cuprous oxidase activities and was able to oxidize an analogue of the bacterial siderophore anthrachelin (3,4-dihydroxybenzoate), although no iron uptake impairment was observed in a Cj1516 mutant. However, this mutant was very sensitive to increased copper levels in minimal media, suggesting a role in copper tolerance. This was supported by increased expression of the Cj1516 gene in copper-rich media. A mutation in a second gene, the Cj1161c gene, encoding a putative CopA homologue, was also found to result in copper hypersensitivity, and a Cj1516 Cj1161c double mutant was found to be more copper sensitive than either single mutant. These observations and the apparent lack of alternative copper tolerance systems suggest that Cj1516 (CueO) and Cj1161 (CopA) are major proteins involved in copper homeostasis in C. jejuni.
Collapse
|
93
|
Djoko KY, Xiao Z, Wedd AG. Copper resistance in E. coli: the multicopper oxidase PcoA catalyzes oxidation of copper(I) in Cu(I)Cu(II)-PcoC. Chembiochem 2008; 9:1579-82. [PMID: 18536063 DOI: 10.1002/cbic.200800100] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Karrera Y Djoko
- School of Chemistry and Bio21 Research Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | | | | |
Collapse
|
94
|
Samygina VR, Sokolov AV, Pulina MO, Bartunik HD, Vasil’ev VB. X-ray diffraction study of highly purified human ceruloplasmin. CRYSTALLOGR REP+ 2008. [DOI: 10.1134/s1063774508040172] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
95
|
CueO-immobilized porous carbon electrode exhibiting improved performance of electrochemical reduction of dioxygen to water. Electrochim Acta 2008. [DOI: 10.1016/j.electacta.2008.03.037] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
96
|
Cloning and characterization of a new laccase from Bacillus licheniformis catalyzing dimerization of phenolic acids. Appl Microbiol Biotechnol 2008; 79:217-24. [DOI: 10.1007/s00253-008-1417-2] [Citation(s) in RCA: 178] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2008] [Revised: 02/12/2008] [Accepted: 02/13/2008] [Indexed: 11/26/2022]
|
97
|
Shleev S, Wang Y, Gorbacheva M, Christenson A, Haltrich D, Ludwig R, Ruzgas T, Gorton L. Direct Heterogeneous Electron Transfer Reactions ofBacillus halodurans Bacterial Blue Multicopper Oxidase. ELECTROANAL 2008. [DOI: 10.1002/elan.200704116] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
98
|
Dick GJ, Podell S, Johnson HA, Rivera-Espinoza Y, Bernier-Latmani R, McCarthy JK, Torpey JW, Clement BG, Gaasterland T, Tebo BM. Genomic insights into Mn(II) oxidation by the marine alphaproteobacterium Aurantimonas sp. strain SI85-9A1. Appl Environ Microbiol 2008; 74:2646-58. [PMID: 18344346 PMCID: PMC2394881 DOI: 10.1128/aem.01656-07] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2007] [Accepted: 03/02/2008] [Indexed: 01/06/2023] Open
Abstract
Microbial Mn(II) oxidation has important biogeochemical consequences in marine, freshwater, and terrestrial environments, but many aspects of the physiology and biochemistry of this process remain obscure. Here, we report genomic insights into Mn(II) oxidation by the marine alphaproteobacterium Aurantimonas sp. strain SI85-9A1, isolated from the oxic/anoxic interface of a stratified fjord. The SI85-9A1 genome harbors the genetic potential for metabolic versatility, with genes for organoheterotrophy, methylotrophy, oxidation of sulfur and carbon monoxide, the ability to grow over a wide range of O(2) concentrations (including microaerobic conditions), and the complete Calvin cycle for carbon fixation. Although no growth could be detected under autotrophic conditions with Mn(II) as the sole electron donor, cultures of SI85-9A1 grown on glycerol are dramatically stimulated by addition of Mn(II), suggesting an energetic benefit from Mn(II) oxidation. A putative Mn(II) oxidase is encoded by duplicated multicopper oxidase genes that have a complex evolutionary history including multiple gene duplication, loss, and ancient horizontal transfer events. The Mn(II) oxidase was most abundant in the extracellular fraction, where it cooccurs with a putative hemolysin-type Ca(2+)-binding peroxidase. Regulatory elements governing the cellular response to Fe and Mn concentration were identified, and 39 targets of these regulators were detected. The putative Mn(II) oxidase genes were not among the predicted targets, indicating that regulation of Mn(II) oxidation is controlled by other factors yet to be identified. Overall, our results provide novel insights into the physiology and biochemistry of Mn(II) oxidation and reveal a genome specialized for life at the oxic/anoxic interface.
Collapse
Affiliation(s)
- Gregory J Dick
- Department of Environmental and Biomolecular Systems, OGI School of Science & Engineering, Oregon Health & Sciences University, 20000 NW Walker Rd., Beaverton, OR 97006, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Hakulinen N, Andberg M, Kallio J, Koivula A, Kruus K, Rouvinen J. A near atomic resolution structure of a Melanocarpus albomyces laccase. J Struct Biol 2008; 162:29-39. [PMID: 18249560 DOI: 10.1016/j.jsb.2007.12.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2007] [Revised: 11/28/2007] [Accepted: 12/12/2007] [Indexed: 11/17/2022]
Affiliation(s)
- N Hakulinen
- Department of Chemistry, University of Joensuu, Yliopistonkatu 7, P.O. Box 111, FIN-80101 Joensuu, Finland.
| | | | | | | | | | | |
Collapse
|
100
|
Zhukhlistova NE, Zhukova YN, Lyashenko AV, Zaĭtsev VN, Mikhaĭlov AM. Three-dimensional organization of three-domain copper oxidases: A review. CRYSTALLOGR REP+ 2008. [DOI: 10.1134/s1063774508010124] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|