51
|
Specificity and reactivity in menaquinone biosynthesis: the structure of Escherichia coli MenD (2-succinyl-5-enolpyruvyl-6-hydroxy-3-cyclohexadiene-1-carboxylate synthase). J Mol Biol 2008; 384:1353-68. [PMID: 18983854 DOI: 10.1016/j.jmb.2008.10.048] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Revised: 10/13/2008] [Accepted: 10/14/2008] [Indexed: 11/21/2022]
Abstract
The thiamine diphosphate (ThDP) and metal-ion-dependent enzyme 2-succinyl-5-enolpyruvyl-6-hydroxy-3-cyclohexadiene-1-carboxylate synthase, or MenD, catalyze the Stetter-like conjugate addition of alpha-ketoglutarate with isochorismate to release 2-succinyl-5-enolpyruvyl-6-hydroxy-3-cyclohexadiene-1-carboxylate and carbon dioxide. This reaction represents the first committed step for biosynthesis of menaquinone, or vitamin K2, a key cofactor for electron transport in bacteria and a metabolite for posttranslational modification of proteins in mammals. The medium-resolution structure of MenD from Escherichia coli (EcMenD) in complex with its cofactor and Mn2+ has been determined in two related hexagonal crystal forms. The subunit displays the typical three-domain structure observed for ThDP-dependent enzymes in which two of the domains bind and force the cofactor into a configuration that supports formation of a reactive ylide. The structures reveal a stable dimer-of-dimers association in agreement with gel filtration and analytical ultracentrifugation studies and confirm the classification of MenD in the pyruvate oxidase family of ThDP-dependent enzymes. The active site, created by contributions from a pair of subunits, is highly basic with a pronounced hydrophobic patch. These features, formed by highly conserved amino acids, match well to the chemical properties of the substrates. A model of the covalent intermediate formed after reaction with the first substrate alpha-ketoglutarate and with the second substrate isochorismate positioned to accept nucleophilic attack has been prepared. This, in addition to structural and sequence comparisons with putative MenD orthologues, provides insight into the specificity and reactivity of MenD and allows a two-stage reaction mechanism to be proposed.
Collapse
|
52
|
Jiang M, Chen X, Guo ZF, Cao Y, Chen M, Guo Z. Identification and characterization of (1R,6R)-2-succinyl-6-hydroxy-2,4-cyclohexadiene-1-carboxylate synthase in the menaquinone biosynthesis of Escherichia coli. Biochemistry 2008; 47:3426-34. [PMID: 18284213 DOI: 10.1021/bi7023755] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Menaquinone is a lipid-soluble molecule that plays an essential role as an electron carrier in the respiratory chain of many bacteria. We have previously shown that its biosynthesis in Escherichia coli involves a new intermediate, 2-succinyl-5-enolpyruvyl-6-hydroxy-3-cyclohexene-1-carboxylate (SEPHCHC), and requires an additional enzyme to convert this intermediate into (1 R,6 R)-2-succinyl-6-hydroxy-2,4-cyclohexadiene-1-carboxylate (SHCHC). Here, we report the identification and characterization of MenH (or YfbB), an enzyme previously proposed to catalyze a late step in menaquinone biosynthesis, as the SHCHC synthase. The synthase catalyzes a proton abstraction reaction that results in 2,5-elimination of pyruvate from SEPHCHC and the formation of SHCHC. It is an efficient enzyme ( k cat/ K M = 2.0 x 10 (7) M (-1) s (-1)) that provides a smaller transition-state stabilization than other enzymes catalyzing proton abstraction from carbon acids. Despite its lack of the proposed thioesterase activity, the SHCHC synthase is homologous to the well-characterized C-C bond hydrolase MhpC. The crystallographic structure of the Vibrio cholerae MenH protein closely resembles that of MhpC and contains a Ser-His-Asp triad typical of serine proteases. Interestingly, this triad is conserved in all MenH proteins and is essential for the SHCHC synthase activity. Mutational analysis found that the catalytic efficiency of the E. coli protein is reduced by 1.4 x 10 (3), 2.1 x 10 (5), and 9.3 x 10 (3) folds when alanine replaces serine, histidine, and aspartate of the triad, respectively. These results show that the SHCHC synthase is closely related to alpha/beta hydrolases but catalyzes a reaction mechanistically distinct from all known hydrolase reactions.
Collapse
Affiliation(s)
- Ming Jiang
- Department of Chemistry, Center for Cancer Research, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong Special Administrative Region (SAR), China
| | | | | | | | | | | |
Collapse
|
53
|
Tomioka H. Development of new antituberculous agents based on new drug targets and structure–activity relationship. Expert Opin Drug Discov 2007; 3:21-49. [DOI: 10.1517/17460441.3.1.21] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
54
|
Geders TW, Gu L, Mowers JC, Liu H, Gerwick WH, Håkansson K, Sherman DH, Smith JL. Crystal Structure of the ECH2 Catalytic Domain of CurF from Lyngbya majuscula. J Biol Chem 2007; 282:35954-63. [DOI: 10.1074/jbc.m703921200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
55
|
Fielding EN, Widboom PF, Bruner SD. Substrate recognition and catalysis by the cofactor-independent dioxygenase DpgC. Biochemistry 2007; 46:13994-4000. [PMID: 18004875 DOI: 10.1021/bi701148b] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The enzyme DpgC belongs to a small class of oxygenases not dependent on accessory cofactors for activity. DpgC is in the biosynthetic pathway for the nonproteinogenic amino acid 3,5-dihydroxyphenylglycine in actinomycetes bacteria responsible for the production of the vancomycin/teicoplanin family of antibiotic natural products. The X-ray structure of DpgC [Widboom, P. W., Fielding, E. N., Liu, Y., and Bruner, S. D. (2007) Nature 447, 342-345] confirmed the absence of cofactors and defined a novel hydrophobic dioxygen binding pocket adjacent to a bound substrate analogue. In this paper, the role specific amino acids play in substrate recognition and catalysis is examined through biochemical and structural characterization of site-specific enzyme mutations and alternate substrates. The results establish the importance of three amino acids, Arg254, Glu299, and Glu189, in the chemistry of DpgC. Arg254 and Glu189 join to form a specific contact with one of the phenolic hydroxyls of the substrate, and this interaction plays a key role in both substrate recognition and catalysis. The X-ray crystal structure of Arg254Lys was determined to address the role this residue plays in the chemistry. In addition, characterization of alternate substrate analogues demonstrates the presence and position of phenol groups are necessary for both enzyme recognition and downstream oxidation chemistry. Overall, this work defines the mechanism of substrate recognition and specificity by the cofactor-independent dioxygenase DpgC.
Collapse
Affiliation(s)
- Elisha N Fielding
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, USA
| | | | | |
Collapse
|
56
|
Ulaganathan V, Agacan MF, Buetow L, Tulloch LB, Hunter WN. Structure of Staphylococcus aureus1,4-dihydroxy-2-naphthoyl-CoA synthase (MenB) in complex with acetoacetyl-CoA. Acta Crystallogr Sect F Struct Biol Cryst Commun 2007; 63:908-13. [PMID: 18007038 PMCID: PMC2339762 DOI: 10.1107/s1744309107047720] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2007] [Accepted: 09/28/2007] [Indexed: 11/10/2022]
Abstract
Vitamin K(2), or menaquinone, is an essential cofactor for many organisms and the enzymes involved in its biosynthesis are potential antimicrobial drug targets. One of these enzymes, 1,4-dihydroxy-2-naphthoyl-CoA synthase (MenB) from the pathogen Staphylococcus aureus, has been obtained in recombinant form and its quaternary structure has been analyzed in solution. Cubic crystals of the enzyme allowed a low-resolution structure (2.9 A) to be determined. The asymmetric unit consists of two subunits and a crystallographic threefold axis of symmetry generates a hexamer consistent with size-exclusion chromatography. Analytical ultracentrifugation indicates the presence of six states in solution, monomeric through to hexameric, with the dimer noted as being particularly stable. MenB displays the crotonase-family fold with distinct N- and C-terminal domains and a flexible segment of structure around the active site. The smaller C-terminal domain plays an important role in oligomerization and also in substrate binding. The presence of acetoacetyl-CoA in one of the two active sites present in the asymmetric unit indicates how part of the substrate binds and facilitates comparisons with the structure of Mycobacterium tuberculosis MenB.
Collapse
Affiliation(s)
- Venkatasubramanian Ulaganathan
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Tayside, Scotland
| | - Mark F. Agacan
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Tayside, Scotland
| | - Lori Buetow
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Tayside, Scotland
| | - Lindsay B. Tulloch
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Tayside, Scotland
| | - William N. Hunter
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Tayside, Scotland
| |
Collapse
|
57
|
Jiang M, Chen M, Cao Y, Yang Y, Sze KH, Chen X, Guo Z. Determination of the stereochemistry of 2-succinyl-5-enolpyruvyl-6-hydroxy-3- cyclohexene-1-carboxylate, a key intermediate in menaquinone biosynthesis. Org Lett 2007; 9:4765-7. [PMID: 17956107 DOI: 10.1021/ol702126m] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The turnover product of the committed step of menaquinone biosynthesis was isolated and determined to be (1R,2S,5S,6S)-2-succinyl-5-enolpyruvyl-6-hydroxy-3-cyclohexene-1-carboxylate. Structural determination of this key intermediate represents a critical step to complete elucidation of the biosynthetic pathway.
Collapse
Affiliation(s)
- Ming Jiang
- Department of Chemistry, Center for Cancer Research, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | | | | | | | | | | | | |
Collapse
|
58
|
Jiang M, Cao Y, Guo ZF, Chen M, Chen X, Guo Z. Menaquinone biosynthesis in Escherichia coli: identification of 2-succinyl-5-enolpyruvyl-6-hydroxy-3-cyclohexene-1-carboxylate as a novel intermediate and re-evaluation of MenD activity. Biochemistry 2007; 46:10979-89. [PMID: 17760421 DOI: 10.1021/bi700810x] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Menaquinone is an electron carrier in the respiratory chain of Escherichia coli during anaerobic growth. Its biosynthesis involves (1R,6R)-2-succinyl-6-hydroxy-2,4-cyclohexadiene-1-carboxylic acid (SHCHC) as an intermediate, which is believed to be derived from isochorismate and 2-ketoglutarate by one of the biosynthetic enzymes-MenD. However, we found that the genuine MenD product is 2-succinyl-5-enolpyruvyl-6-hydroxy-3-cyclohexene-1-carboxylic acid (SEPHCHC), rather than SHCHC. This is supported by the following findings: (i) isochorismate consumption and SHCHC formation are not synchronized in the enzymic reaction, (ii) the rate of SHCHC formation is independent of the enzyme concentration, (iii) SHCHC is not formed in weakly acidic or neutral solutions in which the isochorismate substrate is readily consumed by MenD, and (iv) the MenD turnover product, formed under conditions disabling SHCHC formation, possesses spectroscopic characteristics consistent with the structure of SEPHCHC and spontaneously undergoes 2,5-elimination to form SHCHC and pyruvate in weakly basic solutions. Two properties of the intermediate, ultraviolet transparency and chemical instability, provide a rationale for the fact that SHCHC has been consistently mistaken as the MenD product. In accordance with these findings, MenD was rediscovered to be a highly efficient enzyme with a high second-order rate constant and should be renamed SEPHCHC synthase. Intriguingly, the enzymatic activity responsible for conversion of SEPHCHC into SHCHC appears not to associate with any of the known enzymes in menaquinone biosynthesis but is present in the crude extract of E. coli K12, suggesting that a genuine SHCHC synthase remains to be identified to fully elucidate the ubiquitous biosynthetic pathway.
Collapse
Affiliation(s)
- Ming Jiang
- Department of Chemistry, Center for Cancer Research, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | | | | | | | | | | |
Collapse
|
59
|
Kurosu M, Narayanasamy P, Biswas K, Dhiman R, Crick DC. Discovery of 1,4-dihydroxy-2-naphthoate [corrected] prenyltransferase inhibitors: new drug leads for multidrug-resistant gram-positive pathogens. J Med Chem 2007; 50:3973-5. [PMID: 17658779 PMCID: PMC2591091 DOI: 10.1021/jm070638m] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Since utilization of menaquinone in the electron transport system is a characteristic of Gram-positive organisms, the 1,4-dihydroxy-2-naphthoate prenyltransferase (MenA) inhibitors 1a and 2a act as selective antibacterial agents against organisms such as methicillin-resistant Stapylococcus aureus (MRSA), Staphylococcus epidermidis (MRSE), and Mycobacterium spp. Growth of drug-resistant Gram-positive organisms was sensitive to the MenA inhibitors, indicating that menaquinone synthesis is a valid new drug target in Gram-positive organisms.
Collapse
Affiliation(s)
- Michio Kurosu
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, 1682 Campus Delivery, Fort Collins, Colorado 80523-1682, USA.
| | | | | | | | | |
Collapse
|
60
|
Kolappan S, Zwahlen J, Zhou R, Truglio JJ, Tonge PJ, Kisker C. Lysine 190 is the catalytic base in MenF, the menaquinone-specific isochorismate synthase from Escherichia coli: implications for an enzyme family. Biochemistry 2007; 46:946-53. [PMID: 17240978 DOI: 10.1021/bi0608515] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Menaquinone biosynthesis is initiated by the conversion of chorismate to isochorismate, a reaction that is catalyzed by the menaquinone-specific isochorismate synthase, MenF. The catalytic mechanism of MenF has been probed using a combination of structural and biochemical studies, including the 2.5 A structure of the enzyme, and Lys190 has been identified as the base that activates water for nucleophilic attack at the chorismate C2 carbon. MenF is a member of a larger family of Mg2+ dependent chorismate binding enzymes catalyzing distinct chorismate transformations. The studies reported here extend the mechanism recently proposed for this enzyme family by He et al.: He, Z., Stigers Lavoie, K. D., Bartlett, P. A., and Toney, M. D. (2004) J. Am. Chem. Soc. 126, 2378-85.
Collapse
Affiliation(s)
- Subramaniapillai Kolappan
- Department of Pharmacological Sciences and Center for Structural Biology, Stony Brook University, Stony Brook, New York 11794-5115, USA
| | | | | | | | | | | |
Collapse
|
61
|
Mouttaki H, Nanny MA, McInerney MJ. Cyclohexane carboxylate and benzoate formation from crotonate in Syntrophus aciditrophicus. Appl Environ Microbiol 2007; 73:930-8. [PMID: 17158621 PMCID: PMC1800762 DOI: 10.1128/aem.02227-06] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2006] [Accepted: 11/29/2006] [Indexed: 11/20/2022] Open
Abstract
The anaerobic, syntrophic bacterium Syntrophus aciditrophicus grown in pure culture produced 1.4 +/- 0.24 mol of acetate and 0.16 +/- 0.02 mol of cyclohexane carboxylate per mole of crotonate metabolized. [U-13C]crotonate was metabolized to [1,2-(13)C]acetate and [1,2,3,4,5,7-(13)C]cyclohexane carboxylate. Cultures grown with unlabeled crotonate and [13C]sodium bicarbonate formed [6-(13)C]cyclohexane carboxylate. Trimethylsilyl (TMS) derivatives of cyclohexane carboxylate, cyclohex-1-ene carboxylate, benzoate, pimelate, glutarate, 3-hydroxybutyrate, and acetoacetate were detected as intermediates by comparison of retention times and mass spectral profiles to authentic standards. With [U-(13)C]crotonate, the m/z-15 ion of TMS-derivatized glutarate, 3-hydroxybutyrate, and acetoacetate each increased by +4 mass units, and the m/z-15 ion of TMS-derivatized pimelate, cyclohex-1-ene carboxylate, benzoate, and cyclohexane carboxylate each increased by +6 mass units. With [13C]sodium bicarbonate and unlabeled crotonate, the m/z-15 ion of TMS derivatives of glutarate, pimelate, cyclohex-1-ene carboxylate, benzoate, and cyclohexane carboxylate each increased by +1 mass unit, suggesting that carboxylation occurred after the synthesis of a four-carbon intermediate. With [1,2-(13)C]acetate and unlabeled crotonate, the m/z-15 ion of TMS-derivatized 3-hydroxybutyrate, acetoacetate, and glutarate each increased by +0, +2, and +4 mass units, respectively, and the m/z-15 ion of TMS-derivatized pimelate, cyclohex-1-ene carboxylate, benzoate, cyclohexane carboxylate, and 2-hydroxycyclohexane carboxylate each increased by +0, +2, +4, and +6 mass units. The data are consistent with a pathway for cyclohexane carboxylate formation involving the condensation of two-carbon units derived from crotonate degradation with CO2 addition, rather than the use of the intact four-carbon skeleton of crotonate.
Collapse
Affiliation(s)
- Housna Mouttaki
- Department of Botany and Microbiology, University of Oklahoma, 770 Van Vleet Oval, Norman, OK 73019, USA
| | | | | |
Collapse
|
62
|
Kanaujia SP, Ranjani CV, Jeyakanthan J, Baba S, Kuroishi C, Ebihara A, Shinkai A, Kuramitsu S, Shiro Y, Sekar K, Yokoyama S. Cloning, expression, purification, crystallization and preliminary X-ray crystallographic study of DHNA synthetase from Geobacillus kaustophilus. Acta Crystallogr Sect F Struct Biol Cryst Commun 2007; 63:103-5. [PMID: 17277450 PMCID: PMC2330136 DOI: 10.1107/s1744309106056521] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2006] [Accepted: 12/30/2006] [Indexed: 11/10/2022]
Abstract
The aerobic Gram-positive bacterium Geobacillus kaustophilus is a bacillus species that was isolated from deep-sea sediment from the Mariana Trench. 1,4-Dihydroxy-2-naphthoate (DHNA) synthetase plays a vital role in the biosynthesis of menaquinone (vitamin K(2)) in this bacterium. DHNA synthetase from Geobacillus kaustophilus was crystallized in the orthorhombic space group C222(1), with unit-cell parameters a = 77.01, b = 130.66, c = 131.69 A. The crystal diffracted to a resolution of 2.2 A. Preliminary studies and molecular-replacement calculations reveal the presence of three monomers in the asymmetric unit.
Collapse
Affiliation(s)
- Shankar Prasad Kanaujia
- Bioinformatics Centre (Centre of Excellence in Structural Biology and Biocomputing), Indian Institute of Science, Bangalore 560 012, India
| | - Chellamuthu Vasuki Ranjani
- Bioinformatics Centre (Centre of Excellence in Structural Biology and Biocomputing), Indian Institute of Science, Bangalore 560 012, India
| | | | - Seiki Baba
- RIKEN SPring-8 Center, Harima Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
- Department of Biology, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Chizu Kuroishi
- RIKEN SPring-8 Center, Harima Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | - Akio Ebihara
- RIKEN SPring-8 Center, Harima Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | - Akeo Shinkai
- RIKEN SPring-8 Center, Harima Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | - Seiki Kuramitsu
- RIKEN SPring-8 Center, Harima Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
- Department of Biology, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Yoshitsugu Shiro
- RIKEN SPring-8 Center, Harima Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | - Kanagaraj Sekar
- Bioinformatics Centre (Centre of Excellence in Structural Biology and Biocomputing), Indian Institute of Science, Bangalore 560 012, India
- Supercomputer Education and Research Centre, Indian Institute of Science, Bangalore 560 012, India
- Correspondence e-mail: ,
| | - Shigeyuki Yokoyama
- RIKEN SPring-8 Center, Harima Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
- RIKEN Genomic Sciences Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
- Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Correspondence e-mail: ,
| |
Collapse
|
63
|
Levy ED, Pereira-Leal JB, Chothia C, Teichmann SA. 3D complex: a structural classification of protein complexes. PLoS Comput Biol 2006; 2:e155. [PMID: 17112313 PMCID: PMC1636673 DOI: 10.1371/journal.pcbi.0020155] [Citation(s) in RCA: 259] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2006] [Accepted: 10/05/2006] [Indexed: 11/18/2022] Open
Abstract
Most of the proteins in a cell assemble into complexes to carry out their function. It is therefore crucial to understand the physicochemical properties as well as the evolution of interactions between proteins. The Protein Data Bank represents an important source of information for such studies, because more than half of the structures are homo- or heteromeric protein complexes. Here we propose the first hierarchical classification of whole protein complexes of known 3-D structure, based on representing their fundamental structural features as a graph. This classification provides the first overview of all the complexes in the Protein Data Bank and allows nonredundant sets to be derived at different levels of detail. This reveals that between one-half and two-thirds of known structures are multimeric, depending on the level of redundancy accepted. We also analyse the structures in terms of the topological arrangement of their subunits and find that they form a small number of arrangements compared with all theoretically possible ones. This is because most complexes contain four subunits or less, and the large majority are homomeric. In addition, there is a strong tendency for symmetry in complexes, even for heteromeric complexes. Finally, through comparison of Biological Units in the Protein Data Bank with the Protein Quaternary Structure database, we identified many possible errors in quaternary structure assignments. Our classification, available as a database and Web server at http://www.3Dcomplex.org, will be a starting point for future work aimed at understanding the structure and evolution of protein complexes. The millions of genes sequenced over the past decade correspond to a much smaller set of protein structural domains, or folds—probably only a few thousand. Since structural data is being accumulated at a fast pace, classifications of domains such as SCOP help significantly in understanding the sequence–structure relationship. More recently, classifications of interacting domain pairs address the relationship between sequence divergence and domain–domain interaction. One level of description that has yet to be investigated is the protein complex level, which is the physiologically relevant state for most proteins within the cell. Here, Levy and colleagues propose a classification scheme for protein complexes, which will allow a better understanding of their structural properties and evolution.
Collapse
Affiliation(s)
- Emmanuel D Levy
- Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom.
| | | | | | | |
Collapse
|
64
|
|
65
|
Sleeman MC, Sorensen JL, Batchelar ET, McDonough MA, Schofield CJ. Structural and Mechanistic Studies on Carboxymethylproline Synthase (CarB), a Unique Member of the Crotonase Superfamily Catalyzing the First Step in Carbapenem Biosynthesis. J Biol Chem 2005; 280:34956-65. [PMID: 16096274 DOI: 10.1074/jbc.m507196200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The first step in the biosynthesis of the medicinally important carbapenem family of beta-lactam antibiotics is catalyzed by carboxymethylproline synthase (CarB), a unique member of the crotonase superfamily. CarB catalyzes formation of (2S,5S)-carboxymethylproline [(2S,5S)-t-CMP] from malonyl-CoA and l-glutamate semialdehyde. In addition to using a cosubstrate, CarB catalyzes C-C and C-N bond formation processes as well as an acyl-coenzyme A hydrolysis reaction. We describe the crystal structure of CarB in the presence and absence of acetyl-CoA at 2.24 A and 3.15 A resolution, respectively. The structures reveal that CarB contains a conserved oxy-anion hole probably required for decarboxylation of malonyl-CoA and stabilization of the resultant enolate. Comparison of the structures reveals that conformational changes (involving His(229)) in the cavity predicted to bind l-glutamate semialdehyde occur on (co)substrate binding. Mechanisms for the formation of the carboxymethylproline ring are discussed in the light of the structures and the accompanying studies using isotopically labeled substrates; cyclization via 1,4-addition is consistent with the observed labeling results (providing that hydrogen exchange at the C-6 position of carboxymethylproline does not occur). The side chain of Glu(131) appears to be positioned to be involved in hydrolysis of the carboxymethylproline-CoA ester intermediate. Labeling experiments ruled out the possibility that hydrolysis proceeds via an anhydride in which water attacks a carbonyl derived from Glu(131), as proposed for 3-hydroxyisobutyryl-CoA hydrolase. The structural work will aid in mutagenesis studies directed at altering the selectivity of CarB to provide intermediates for the production of clinically useful carbapenems.
Collapse
Affiliation(s)
- Mark C Sleeman
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, United Kingdom
| | | | | | | | | |
Collapse
|
66
|
Hubbard PA, Yu W, Schulz H, Kim JJP. Domain swapping in the low-similarity isomerase/hydratase superfamily: the crystal structure of rat mitochondrial Delta3, Delta2-enoyl-CoA isomerase. Protein Sci 2005; 14:1545-55. [PMID: 15883186 PMCID: PMC2253373 DOI: 10.1110/ps.041303705] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Two monofunctional Delta(3), Delta(2)-enoyl-CoA isomerases, one in mitochondria (mECI) and the other in both mitochondria and peroxisomes (pECI), belong to the low-similarity isomerase/hydratase superfamily. Both enzymes catalyze the movement of a double bond from C3 to C2 of an unsaturated acyl-CoA substrate for re-entry into the beta-oxidation pathway. Mutagenesis has shown that Glu165 of rat mECI is involved in catalysis; however, the putative catalytic residue in yeast pECI, Glu158, is not conserved in mECI. To elucidate whether Glu165 of mECI is correctly positioned for catalysis, the crystal structure of rat mECI has been solved. Crystal packing suggests the enzyme is trimeric, in contrast to other members of the superfamily, which appear crystallographically to be dimers of trimers. The polypeptide fold of mECI, like pECI, belongs to a subset of this superfamily in which the C-terminal domain of a given monomer interacts with its own N-terminal domain. This differs from that of crotonase and 1,4-dihydroxy-2-naphtoyl-CoA synthase, whose C-terminal domains are involved in domain swapping with an adjacent monomer. The structure confirms Glu165 as the putative catalytic acid/base, positioned to abstract the pro-R proton from C2 and reprotonate at C4 of the acyl chain. The large tunnel-shaped active site cavity observed in the mECI structure explains the relative substrate promiscuity in acyl-chain length and stereochemistry. Comparison with the crystal structure of pECI suggests the catalytic residues from both enzymes are spatially conserved but not in their primary structures, providing a powerful reminder of how catalytic residues cannot be determined solely by sequence alignments.
Collapse
Affiliation(s)
- Paul A Hubbard
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | | | | | |
Collapse
|
67
|
Gerratana B, Arnett SO, Stapon A, Townsend CA. Carboxymethylproline synthase from Pectobacterium carotorova: a multifaceted member of the crotonase superfamily. Biochemistry 2005; 43:15936-45. [PMID: 15595850 DOI: 10.1021/bi0483662] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The simplest carbapenem antibiotic, (5R)-carbapen-2-em-3-carboxylic acid, is biosynthesized from primary metabolites in Pectobacterium carotorova by the action of three enzymes, carboxymethylproline synthase (hereafter named CarB), carbapenam synthetase, and carbapenem synthase. CarB, a member of the crotonase superfamily, catalyzes the formation of (2S,5S)-5-carboxymethylproline from malonyl-CoA and l-pyrroline-5-carboxylate. In this study we show that, in addition, CarB catalyzes the independent decarboxylation of malonyl-CoA and methylmalonyl-CoA and the hydrolysis of CoA esters such as acetyl-CoA and propionyl-CoA. The steady-state rate constants for these reactions are reported. We have identified the intermediates in the CarB reactions with l-pyrroline-5-carboxylate and malonyl-CoA or methylmalonyl-CoA as the CoA esters of (2S,5S)-5-carboxymethylproline and (2S,5S)-6-methyl-5-carboxymethylproline, respectively. The data provided indicate that these intermediates partition between completing turnover and dissociating from the enzyme. On the basis of the steady-state rate constants measured for the CarB-catalyzed hydrolysis of synthetic (2S,5S)-5-carboxymethylprolyl-CoA and for the CarB reaction with malonyl-CoA and l-pyrroline-5-carboxylate, we have calculated the rate constants for each step of these reactions. The results identify CarB as a particularly interesting member of the crotonase superfamily that combines in one net reaction three activities of this superfamily, decarboxylation, C-C bond formation, and CoA ester hydrolysis.
Collapse
Affiliation(s)
- Barbara Gerratana
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, USA
| | | | | | | |
Collapse
|
68
|
Partanen ST, Novikov DK, Popov AN, Mursula AM, Hiltunen JK, Wierenga RK. The 1.3 A crystal structure of human mitochondrial Delta3-Delta2-enoyl-CoA isomerase shows a novel mode of binding for the fatty acyl group. J Mol Biol 2004; 342:1197-208. [PMID: 15351645 DOI: 10.1016/j.jmb.2004.07.039] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2004] [Revised: 07/02/2004] [Accepted: 07/06/2004] [Indexed: 11/18/2022]
Abstract
The crystal structure of Delta3-Delta2-enoyl-CoA isomerase from human mitochondria (hmEci), complexed with the substrate analogue octanoyl-CoA, has been refined at 1.3 A resolution. This enzyme takes part in the beta-oxidation of unsaturated fatty acids by converting both cis-3 and trans-3-enoyl-CoA esters (with variable length of the acyl group) to trans-2-enoyl-CoA. hmEci belongs to the hydratase/isomerase (crotonase) superfamily. Most of the enzymes belonging to this superfamily are hexamers, but hmEci is shown to be a trimer. The mode of binding of the ligand, octanoyl-CoA, shows that the omega-end of the acyl group binds in a hydrophobic tunnel formed by residues of the loop preceding helix H4 as well as by side-chains of the kinked helix H9. From the structure of the complex it can be seen that Glu136 is the only catalytic residue. The importance of Glu136 for catalysis is confirmed by mutagenesis studies. A cavity analysis shows the presence of two large, adjacent empty hydrophobic cavities near the active site, which are shaped by side-chains of helices H1, H2, H3 and H4. The structure comparison of hmEci with structures of other superfamily members, in particular of rat mitochondrial hydratase (crotonase) and yeast peroxisomal enoyl-CoA isomerase, highlights the variable mode of binding of the fatty acid moiety in this superfamily.
Collapse
Affiliation(s)
- Sanna T Partanen
- Biocenter Oulu and Department of Biochemistry, University of Oulu, PO Box 3000, FIN-90014 University of Oulu, Finland
| | | | | | | | | | | |
Collapse
|
69
|
Eberhard ED, Gerlt JA. Evolution of function in the crotonase superfamily: the stereochemical course of the reaction catalyzed by 2-ketocyclohexanecarboxyl-CoA hydrolase. J Am Chem Soc 2004; 126:7188-9. [PMID: 15186151 DOI: 10.1021/ja0482381] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Members of the mechanistically diverse enoyl-CoA hydratase (crotonase) superfamily catalyze reactions that involve stabilization of an enolate anion derived from an acyl thioester of coenzyme A. 2-Ketocyclohexanecarboxyl-CoA hydrolase (BadI), found in a pathway for anaerobic degradation of benzoate by Rhodopseudomonas palustris, is a member of the crotonase superfamily that catalyzes a reverse Dieckmann reaction in which the substrate is hydrolyzed to pimelyl-CoA. The substrate is the configurationally labile 2S-ketocyclohexanecarboxyl-CoA, and in 2H2O solvent hydrogen is incorporated into the 2-proS position of the pimelyl-CoA product. Therefore, the stereochemical course of the BadI-catalyzed reaction is inversion. This information is important for understanding the roles of active-site functional groups in the active site of BadI as well as in the active sites of the homologous 1,4-dihydroxynaphthoyl-CoA synthases that catalyze a forward Dieckmann reaction.
Collapse
Affiliation(s)
- Ellen D Eberhard
- Department of Biochemistry, University of Illinois, Urbana, Illinois 61801, USA
| | | |
Collapse
|
70
|
Leonard PM, Grogan G. Structure of 6-Oxo Camphor Hydrolase H122A Mutant Bound to Its Natural Product, (2S,4S)-α-Campholinic Acid. J Biol Chem 2004; 279:31312-7. [PMID: 15138275 DOI: 10.1074/jbc.m403514200] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The crotonase homolog, 6-oxo camphor hydrolase (OCH), catalyzes the desymmetrization of bicyclic beta-diketones to optically active keto acids via an enzymatic retro-Claisen reaction, resulting in the cleavage of a carbon-carbon bond. We have previously reported the structure of OCH (Whittingham, J. L., Turkenburg, J. P., Verma, C. S., Walsh, M. A., and Grogan, G. (2003) J. Biol. Chem. 278, 1744-1750), which suggested the involvement of five residues, His-45, His-122, His-145, Asp-154, and Glu-244, in catalysis. Here we report mutation studies on OCH that reveal that H145A and D154N mutants of OCH have greatly reduced values of k(cat)/K(m) derived from a very large increase in K(m) for the native substrate, 6-oxo camphor. In addition, H122A has a greatly reduced value of k(cat), and its K(m) is five times that of the wild-type. The location of the active site is confirmed by the 1.9-A structure of the H122A mutant of OCH complexed with the minor diastereoisomer of (2S,4S)-alpha-campholinic acid, the natural product of the enzyme. This shows the pendant acetate of the product hydrogen bonded to a His-145/Asp-154 dyad and the endocyclic carbonyl of the cyclopentane ring hydrogen bonded to Trp-40. The results are suggestive of a base-catalyzed mechanism of C-C bond cleavage and provide clues to the origin of prochiral selectivity by the enzyme and to the recruitment of the crotonase fold for alternate modes of transition state stabilization to those described for other crotonase superfamily members.
Collapse
Affiliation(s)
- Philip M Leonard
- York Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York YO10 5YW, United Kingdom
| | | |
Collapse
|
71
|
Bhakta S, Besra GS, Upton AM, Parish T, Sholto-Douglas-Vernon C, Gibson KJC, Knutton S, Gordon S, DaSilva RP, Anderton MC, Sim E. Arylamine N-acetyltransferase is required for synthesis of mycolic acids and complex lipids in Mycobacterium bovis BCG and represents a novel drug target. ACTA ACUST UNITED AC 2004; 199:1191-9. [PMID: 15117974 PMCID: PMC2211905 DOI: 10.1084/jem.20031956] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mycolic acids represent a major component of the unique cell wall of mycobacteria. Mycolic acid biosynthesis is inhibited by isoniazid, a key frontline antitubercular drug that is inactivated by mycobacterial and human arylamine N-acetyltransferase (NAT). We show that an in-frame deletion of Mycobacterium bovis BCG nat results in delayed entry into log phase, altered morphology, altered cell wall lipid composition, and increased intracellular killing by macrophages. In particular, deletion of nat perturbs biosynthesis of mycolic acids and their derivatives and increases susceptibility of M. bovis BCG to antibiotics that permeate the cell wall. Phenotypic traits are fully complemented by introduction of Mycobacterium tuberculosis nat. We infer from our findings that NAT is critical to normal mycolic acid synthesis and hence other derivative cell wall components and represents a novel target for antituberculosis therapy. In addition, this is the first report of an endogenous role for NAT in mycobacteria.
Collapse
Affiliation(s)
- Sanjib Bhakta
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|