51
|
Irradiation with heavy-ion particles changes the cellular distribution of human histone acetyltransferase HAT1. Mol Cell Biochem 2010; 339:271-84. [PMID: 20148353 DOI: 10.1007/s11010-010-0390-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Accepted: 01/25/2010] [Indexed: 12/16/2022]
Abstract
Hat1 was the first histone acetyltransferase identified; however, its biological function is still unclear. In this report, it is shown for the first time that human Hat1 has two isoforms. Isoform a has 418 amino acids (aa) and is localized exclusively in the nuclear matrix of normal human keratinocytes (NHKs). Isoform b has 334 aa and is located in the cytoplasm, the nucleoplasm, attached to the chromatin and to the nuclear matrix. Immunohistochemical analyses revealed that the bulk of Hat1 is confined to the nucleus, with much lesser amounts in the cytoplasm. Cells undergoing mitotic division have an elevated amount of Hat1 compared to those that are non-mitotic. Senescent cells, however, exhibit a higher concentration of Hat1 in the cytoplasm compare to proliferating cells and the amount of Hat1 in the nucleus decreases with the progression of senescence. NHKs exposed to hydrogen peroxide (H(2)O(2)) or to a beam of high mass and energy ion particles displayed bright nuclear staining for Hat1, a phenotype that was not observed in NHKs exposed to gamma-rays. We established that the enhanced nuclear staining for Hat1 in response to these treatments is regulated by the PI3K and the mitogen-activated protein kinase signaling pathways. Our observations clearly implicate Hat1 in the cellular response assuring the survival of the treated cells.
Collapse
|
52
|
Frechin M, Senger B, Brayé M, Kern D, Martin RP, Becker HD. Yeast mitochondrial Gln-tRNA(Gln) is generated by a GatFAB-mediated transamidation pathway involving Arc1p-controlled subcellular sorting of cytosolic GluRS. Genes Dev 2009; 23:1119-30. [PMID: 19417106 DOI: 10.1101/gad.518109] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
It is impossible to predict which pathway, direct glutaminylation of tRNA(Gln) or tRNA-dependent transamidation of glutamyl-tRNA(Gln), generates mitochondrial glutaminyl-tRNA(Gln) for protein synthesis in a given species. The report that yeast mitochondria import both cytosolic glutaminyl-tRNA synthetase and tRNA(Gln) has challenged the widespread use of the transamidation pathway in organelles. Here we demonstrate that yeast mitochondrial glutaminyl-tRNA(Gln) is in fact generated by a transamidation pathway involving a novel type of trimeric tRNA-dependent amidotransferase (AdT). More surprising is the fact that cytosolic glutamyl-tRNA synthetase ((c)ERS) is imported into mitochondria, where it constitutes the mitochondrial nondiscriminating ERS that generates the mitochondrial mischarged glutamyl-tRNA(Gln) substrate for the AdT. We show that dual localization of (c)ERS is controlled by binding to Arc1p, a tRNA nuclear export cofactor that behaves as a cytosolic anchoring platform for (c)ERS. Expression of Arc1p is down-regulated when yeast cells are switched from fermentation to respiratory metabolism, thus allowing increased import of (c)ERS to satisfy a higher demand of mitochondrial glutaminyl-tRNA(Gln) for mitochondrial protein synthesis. This novel strategy that enables a single protein to be localized in both the cytosol and mitochondria provides a new paradigm for regulation of the dynamic subcellular distribution of proteins between membrane-separated compartments.
Collapse
Affiliation(s)
- Mathieu Frechin
- UPR 9002, Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France
| | | | | | | | | | | |
Collapse
|
53
|
An easy assay for histone acetyltransferase activity using a PhosphorImager. Anal Biochem 2008; 383:296-300. [DOI: 10.1016/j.ab.2008.08.029] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2008] [Revised: 08/18/2008] [Accepted: 08/26/2008] [Indexed: 11/18/2022]
|
54
|
Saez A, Rodrigues A, Santiago J, Rubio S, Rodriguez PL. HAB1-SWI3B interaction reveals a link between abscisic acid signaling and putative SWI/SNF chromatin-remodeling complexes in Arabidopsis. THE PLANT CELL 2008; 20:2972-88. [PMID: 19033529 PMCID: PMC2613670 DOI: 10.1105/tpc.107.056705] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2007] [Revised: 10/30/2008] [Accepted: 11/05/2008] [Indexed: 05/18/2023]
Abstract
Abscisic acid (ABA) has an important role for plant growth, development, and stress adaptation. HYPERSENSITIVE TO ABA1 (HAB1) is a protein phosphatase type 2C that plays a key role as a negative regulator of ABA signaling; however, the molecular details of HAB1 action in this process are not known. A two-hybrid screen revealed that SWI3B, an Arabidopsis thaliana homolog of the yeast SWI3 subunit of SWI/SNF chromatin-remodeling complexes, is a prevalent interacting partner of HAB1. The interaction mapped to the N-terminal half of SWI3B and required an intact protein phosphatase catalytic domain. Bimolecular fluorescence complementation and coimmunoprecipitation assays confirmed the interaction of HAB1 and SWI3B in the nucleus of plant cells. swi3b mutants showed a reduced sensitivity to ABA-mediated inhibition of seed germination and growth and reduced expression of the ABA-responsive genes RAB18 and RD29B. Chromatin immunoprecipitation experiments showed that the presence of HAB1 in the vicinity of RD29B and RAB18 promoters was abolished by ABA, which suggests a direct involvement of HAB1 in the regulation of ABA-induced transcription. Additionally, our results uncover SWI3B as a novel positive regulator of ABA signaling and suggest that HAB1 modulates ABA response through the regulation of a putative SWI/SNF chromatin-remodeling complex.
Collapse
Affiliation(s)
- Angela Saez
- Instituto de Biologia Molecular y Celular de Plantas, Consejo Superior de Investigaciones Cientificas-Universidad Politecnica de Valencia, ES-46022 Valencia, Spain
| | | | | | | | | |
Collapse
|
55
|
Mersfelder EL, Parthun MR. Involvement of Hat1p (Kat1p) catalytic activity and subcellular localization in telomeric silencing. J Biol Chem 2008; 283:29060-8. [PMID: 18753131 DOI: 10.1074/jbc.m802564200] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previous studies have shown that loss of the type B histone acetyltransferase Hat1p leads to defects in telomeric silencing in Saccharomyces cerevisiae. We used this phenotype to explore a number of functional characteristics of this enzyme. To determine whether the enzymatic activity of Hat1p is necessary for its role in telomeric silencing, a structurally conserved glutamic acid residue (Glu-255) that has been proposed to be the enzymes catalytic base was mutated. Surprisingly neither this residue nor any other acidic residues near the enzymes active site were essential for enzymatic activity. This suggests that Hat1p differs from most histone acetyltransferases in that it does not use an acidic amino acid as a catalytic base. The effects of these Hat1p mutants on enzymatic activity correlated with their effects on telomeric silencing indicating that the ability of Hat1p to acetylate substrates is important for its in vivo function. Despite its presumed role in the acetylation of newly synthesized histones in the cytoplasm, Hat1p was found to be a predominantly nuclear protein. This subcellular localization of Hat1p is important for its in vivo function because a construct that prevents its accumulation in the nucleus caused defects in telomeric silencing similar to those seen with a deletion mutant. Therefore, the presence of catalytically active Hat1p in the cytoplasm is not sufficient to support normal telomeric silencing. Hence both enzymatic activity and nuclear localization are necessary characteristics of Hat1p function in telomeric silencing.
Collapse
Affiliation(s)
- Erica L Mersfelder
- Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | | |
Collapse
|
56
|
Drogaris P, Wurtele H, Masumoto H, Verreault A, Thibault P. Comprehensive Profiling of Histone Modifications Using a Label-Free Approach and Its Applications in Determining Structure−Function Relationships. Anal Chem 2008; 80:6698-707. [DOI: 10.1021/ac800739d] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Paul Drogaris
- Institut de Recherche en Immunologie et Cancer, Department of Chemistry, and Department of Pathology and Cell Biology, Université de Montréal, BP 6128, Station Centre-ville, Montréal, Canada, H3C 3J7, and Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Ten-noudai, Tsukuba, Ibaraki, Japan 305-8572
| | - Hugo Wurtele
- Institut de Recherche en Immunologie et Cancer, Department of Chemistry, and Department of Pathology and Cell Biology, Université de Montréal, BP 6128, Station Centre-ville, Montréal, Canada, H3C 3J7, and Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Ten-noudai, Tsukuba, Ibaraki, Japan 305-8572
| | - Hiroshi Masumoto
- Institut de Recherche en Immunologie et Cancer, Department of Chemistry, and Department of Pathology and Cell Biology, Université de Montréal, BP 6128, Station Centre-ville, Montréal, Canada, H3C 3J7, and Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Ten-noudai, Tsukuba, Ibaraki, Japan 305-8572
| | - Alain Verreault
- Institut de Recherche en Immunologie et Cancer, Department of Chemistry, and Department of Pathology and Cell Biology, Université de Montréal, BP 6128, Station Centre-ville, Montréal, Canada, H3C 3J7, and Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Ten-noudai, Tsukuba, Ibaraki, Japan 305-8572
| | - Pierre Thibault
- Institut de Recherche en Immunologie et Cancer, Department of Chemistry, and Department of Pathology and Cell Biology, Université de Montréal, BP 6128, Station Centre-ville, Montréal, Canada, H3C 3J7, and Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Ten-noudai, Tsukuba, Ibaraki, Japan 305-8572
| |
Collapse
|
57
|
Chaperone control of the activity and specificity of the histone H3 acetyltransferase Rtt109. Mol Cell Biol 2008; 28:4342-53. [PMID: 18458063 DOI: 10.1128/mcb.00182-08] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Acetylation of Saccharomyces cerevisiae histone H3 on K56 by the histone acetyltransferase (HAT) Rtt109 is important for repairing replication-associated lesions. Rtt109 purifies from yeast in complex with the histone chaperone Vps75, which stabilizes the HAT in vivo. A whole-genome screen to identify genes whose deletions have synthetic genetic interactions with rtt109Delta suggests Rtt109 has functions in addition to DNA repair. We show that in addition to its known H3-K56 acetylation activity, Rtt109 is also an H3-K9 HAT, and we show that Rtt109 and Gcn5 are the only H3-K9 HATs in vivo. Rtt109's H3-K9 acetylation activity in vitro is enhanced strongly by Vps75. Another histone chaperone, Asf1, and Vps75 are both required for acetylation of lysine 9 on H3 (H3-K9ac) in vivo by Rtt109, whereas H3-K56ac in vivo requires only Asf1. Asf1 also physically interacts with the nuclear Hat1/Hat2/Hif1 complex that acetylates H4-K5 and H4-K12. We suggest Asf1 is capable of assembling into chromatin H3-H4 dimers diacetylated on both H4-K5/12 and H3-K9/56.
Collapse
|
58
|
Abstract
Saccharomyces cerevisiae Hat1, together with Hat2 and Hif1, forms the histone acetyltransferase B (HAT-B) complex. Previous studies performed with synthetic N-terminal histone H4 peptides found that whereas the HAT-B complex acetylates only Lys12, recombinant Hat1 is able to modify Lys12 and Lys5. Here we demonstrate that both Lys12 and Lys5 of soluble, non-chromatin-bound histone H4 are in vivo targets of acetylation for the yeast HAT-B enzyme. Moreover, coimmunoprecipitation assays revealed that Lys12/Lys5-acetylated histone H4 is bound to the HAT-B complex in the soluble cell fraction. Both Hat1 and Hat2, but not Hif1, are required for the Lys12/Lys5-specific acetylation and for histone H4 binding. HAT-B-dependent acetylation of histone H4 was detected in the soluble fraction of cells at distinct cell cycle stages, and increased when cells accumulated excess histones. Strikingly, histone H3 was not found in any of the immunoprecipitates obtained with the different components of the HAT-B enzyme, indicating the possibility that histone H3 is not together with histone H4 in this complex. Finally, the exchange of Lys for Arg at position 12 of histone H4 did not interfere with histone H4 association with the complex, but prevented acetylation on Lys5 by the HAT-B enzyme, in vivo as well as in vitro.
Collapse
Affiliation(s)
- Ana Poveda
- Departament de Bioquímica i Biología Molecular, Universitat de València, Spain
| | | |
Collapse
|
59
|
Rocha W, Verreault A. Clothing up DNA for all seasons: Histone chaperones and nucleosome assembly pathways. FEBS Lett 2008; 582:1938-49. [PMID: 18343227 DOI: 10.1016/j.febslet.2008.03.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2008] [Accepted: 03/03/2008] [Indexed: 10/22/2022]
Abstract
In eukaryotes, the packaging of DNA into chromatin is essential for cell viability. Several important DNA metabolic events require the transient disruption of chromatin structure, but cells have evolved a number of elaborate pathways that operate throughout the cell cycle to prevent the deleterious effects of chromatin erosion. In this review, we describe a number of distinct nucleosome assembly pathways that function during DNA replication, transcription, cellular senescence and early embryogenesis. In addition, we illustrate some of the physiological consequences associated with defects in nucleosome assembly pathways.
Collapse
Affiliation(s)
- Walter Rocha
- Institut de Recherche en Immunologie et Cancérologie (IRIC), Département de Pathologie et de Biologie Cellulaire, Université de Montréal, B.P. 6128, Succursale Centre-Ville, Montréal (Qc), Canada H3C 3J7
| | | |
Collapse
|
60
|
Abstract
Hat1 is the sole known example of a type B histone acetyltransferase. While it has long been presumed that type B histone acetyltransferases participate in the acetylation of newly synthesized histones during the process of chromatin assembly, definitive evidence linking these enzymes to this process has been scarce. This review will discuss recent results that have begun to shed light on the roles of Hat1 and also address several outstanding questions relating to the cellular function of this enzyme.
Collapse
Affiliation(s)
- M R Parthun
- Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
61
|
Suter B, Pogoutse O, Guo X, Krogan N, Lewis P, Greenblatt JF, Rine J, Emili A. Association with the origin recognition complex suggests a novel role for histone acetyltransferase Hat1p/Hat2p. BMC Biol 2007; 5:38. [PMID: 17880717 PMCID: PMC2140264 DOI: 10.1186/1741-7007-5-38] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2007] [Accepted: 09/19/2007] [Indexed: 12/04/2022] Open
Abstract
Background Histone modifications have been implicated in the regulation of transcription and, more recently, in DNA replication and repair. In yeast, a major conserved histone acetyltransferase, Hat1p, preferentially acetylates lysine residues 5 and 12 on histone H4. Results Here, we report that a nuclear sub-complex consisting of Hat1p and its partner Hat2p interacts physically and functionally with the origin recognition complex (ORC). While mutational inactivation of the histone acetyltransferase (HAT) gene HAT1 alone does not compromise origin firing or initiation of DNA replication, a deletion in HAT1 (or HAT2) exacerbates the growth defects of conditional orc-ts mutants. Thus, the ORC-associated Hat1p-dependent histone acetyltransferase activity suggests a novel linkage between histone modification and DNA replication. Additional genetic and biochemical evidence points to the existence of partly overlapping histone H3 acetyltransferase activities in addition to Hat1p/Hat2p for proper DNA replication efficiency. Furthermore, we demonstrated a dynamic association of Hat1p with chromatin during S-phase that suggests a role of this enzyme at the replication fork. Conclusion We have found an intriguing new association of the Hat1p-dependent histone acetyltransferase in addition to its previously known role in nuclear chromatin assembly (Hat1p/Hat2p-Hif1p). The participation of a distinct Hat1p/Hat2p sub-complex suggests a linkage of histone H4 modification with ORC-dependent DNA replication.
Collapse
Affiliation(s)
- Bernhard Suter
- Program in Proteomics and Bioinformatics, Banting and Best Department of Medical Genetics, Department of Medical and Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular & Cell Biology, University of California, Berkeley, CA, USA
| | - Oxana Pogoutse
- Program in Proteomics and Bioinformatics, Banting and Best Department of Medical Genetics, Department of Medical and Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Xinghua Guo
- Program in Proteomics and Bioinformatics, Banting and Best Department of Medical Genetics, Department of Medical and Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Nevan Krogan
- Program in Proteomics and Bioinformatics, Banting and Best Department of Medical Genetics, Department of Medical and Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA
| | - Peter Lewis
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Jack F Greenblatt
- Program in Proteomics and Bioinformatics, Banting and Best Department of Medical Genetics, Department of Medical and Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Jasper Rine
- Department of Molecular & Cell Biology, University of California, Berkeley, CA, USA
| | - Andrew Emili
- Program in Proteomics and Bioinformatics, Banting and Best Department of Medical Genetics, Department of Medical and Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
62
|
Abstract
Histone acetylation regulates many cellular processes, and specific acetylation marks, either singly or in combination, produce distinct outcomes. For example, the acetylation pattern on newly synthesized histones is important for their assembly into nucleosomes by histone chaperones. Additionally, the degree of chromatin compaction and folding may be regulated by acetylation of histone H4 at lysine 16. Histone acetylation also regulates the formation of heterochromatin; deacetylation of H4 lysine 16 is important for spreading of heterochromatin components, whereas acetylation of this site serves as a barrier to this spreading. Finally, histone acetylation is critical for gene transcription, but recent results suggest that deacetylation of certain sites also plays an important role. There are many histone acetyltransferases (HATs) and deacetylases, with differing preferences for the various histone proteins and for specific sites on individual histones. Determining how these enzymes create distinct acetylation patterns and regulate the functional outcome is an important challenge.
Collapse
Affiliation(s)
- Mona D Shahbazian
- Department of Biological Chemistry, Geffen School of Medicine and the Molecular Biology Institute, University of California, Los Angeles, California 90095, USA
| | | |
Collapse
|
63
|
Ferreira TC, Hertzberg L, Gassmann M, Campos ÉG. The yeast genome may harbor hypoxia response elements (HRE). Comp Biochem Physiol C Toxicol Pharmacol 2007; 146:255-263. [PMID: 17035097 DOI: 10.1016/j.cbpc.2006.08.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2006] [Revised: 08/22/2006] [Accepted: 08/28/2006] [Indexed: 01/28/2023]
Abstract
The hypoxia-inducible factor-1 (HIF-1) is a heterodimeric transcription factor activated when cells are submitted to hypoxia. The heterodimer is composed of two subunits, HIF-1alpha and the constitutively expressed HIF-1beta. During normoxia, HIF-1alpha is degraded by the 26S proteasome, but hypoxia causes HIF-1alpha to be stabilized, enter the nucleus and bind to HIF-1beta, thus forming the active complex. The complex then binds to the regulatory sequences of various genes involved in physiological and pathological processes. The specific regulatory sequence recognized by HIF-1 is the hypoxia response element (HRE) that has the consensus sequence 5'BRCGTGVBBB3'. Although the basic transcriptional regulation machinery is conserved between yeast and mammals, Saccharomyces cerevisiae does not express HIF-1 subunits. However, we hypothesized that baker's yeast has a protein analogous to HIF-1 which participates in the response to changes in oxygen levels by binding to HRE sequences. In this study we screened the yeast genome for HREs using probabilistic motif search tools. We described 24 yeast genes containing motifs with high probability of being HREs (p-value<0.1) and classified them according to biological function. Our results show that S. cerevisiae may harbor HREs and indicate that a transcription factor analogous to HIF-1 may exist in this organism.
Collapse
Affiliation(s)
- Túlio César Ferreira
- Laboratório de Biologia Molecular, Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF, 70910-900, Brazil
| | - Libi Hertzberg
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel; Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Max Gassmann
- Institute of Veterinary Physiology, Vetsuisse Faculty and Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Winterthurerstrasse 260, CH-8057, Zurich, Switzerland
| | - Élida Geralda Campos
- Laboratório de Biologia Molecular, Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF, 70910-900, Brazil.
| |
Collapse
|
64
|
Blackwell JS, Wilkinson ST, Mosammaparast N, Pemberton LF. Mutational analysis of H3 and H4 N termini reveals distinct roles in nuclear import. J Biol Chem 2007; 282:20142-50. [PMID: 17507373 DOI: 10.1074/jbc.m701989200] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Core histones H3 and H4 are rapidly imported into the nucleus by members of the karyopherin (Kap)/importin family. We showed that H3 and H4 interact with Kap123p, histone acetyltransferase-B complex (HAT-B), and Asf1p in cytosol. In vivo analysis indicated that Kap123p is required for H3-mediated import, whereas H4 utilizes multiple Kaps including Kap123p. The evolutionary conservation of H3 and H4 cytoplasmic acetylation led us to analyze the role of acetylation in nuclear transport. We determined that lysine 14 is critical for H3 NLS function in vivo and demonstrated that mutation of H3 lysine 14 to the acetylation-mimic glutamine decreased association with Kap123p in vitro. Several lysines in the H4 NLS are important for its function. We showed that mutation of key lysines to glutamine resulted in a greater import defect than mutation to arginine, suggesting that positive charge promotes NLS function. Lastly we determined that six of ten N-terminal acetylation sites in H3 and H4 can be mutated to arginine, indicating that deposition acetylation is not absolutely necessary in vivo. However, the growth defect of these mutants suggests that acetylation does play an important role in import. These findings suggest a model where cytosolic histones bind import karyopherins prior to acetylation. Other factors are recruited to this complex such as HAT-B and Asf1p; these factors in turn promote acetylation. Acetylation may be important for modulating the interaction with transport factors and may play a role in the release of histones from karyopherins in the nucleus.
Collapse
Affiliation(s)
- Jeffrey S Blackwell
- Center for Cell Signaling, Department of Microbiology, University of Virginia Health Sciences Center, University of Virginia, Charlottesville, VA 22908, USA
| | | | | | | |
Collapse
|
65
|
Benson LJ, Phillips JA, Gu Y, Parthun MR, Hoffman CS, Annunziato AT. Properties of the Type B Histone Acetyltransferase Hat1. J Biol Chem 2007; 282:836-42. [PMID: 17052979 DOI: 10.1074/jbc.m607464200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Hat1 histone acetyltransferase catalyzes the acetylation of H4 at lysines 5 and 12, the same sites that are acetylated in newly synthesized histone H4. By performing histone acetyltransferase (HAT) assays on various synthetic H4 N-terminal peptides, we have examined the interactions between Hat1 and the H4 tail domain. It was found that acetylation requires the presence of positively charged amino acids at positions 8 and 16 of H4, positions that are normally occupied by lysine; however, lysine per se is not essential and can be replaced by arginine. In contrast, replacing Lys-8 and -16 of H4 with glutamines reduces acetylation to background levels. Similarly, phosphorylation of Ser-1 of the H4 tail depresses acetylation by both yeast Hat1p and the human HAT-B complex. These results strongly support the model proposed by Ramakrishnan and colleagues for the interaction between Hat1 and the H4 tail (Dutnall, R. N., Tafrov, S. T., Sternglanz, R., and Ramakrishnan, V. (1998) Cell 94, 427-438) and may have implications for the genetic analysis of histone acetylation. It was also found that Lys-12 of H4 is preferentially acetylated by human HAT-B, in further agreement with the proposed model of H4 tail binding. Finally, we have demonstrated that deletion of the hat1 gene from the fission yeast Schizosaccharomyces pombe causes increased sensitivity to the DNA-damaging agent methyl methanesulfonate in the absence of any additional mutations. This is in contrast to results obtained with a Saccharomyces cerevisiae hat1Delta strain, which must also carry mutations of the acetylatable lysines of H3 for heightened methyl methanesulfonate sensitivity to be observed. Thus, although the role of Hat1 in DNA damage repair is evolutionarily conserved, the ability of H3 acetylation to compensate for Hat1 deletion appears to be more variable.
Collapse
Affiliation(s)
- Laura J Benson
- Department of Biology, Boston College, Chestnut Hill, Massachusetts 02467, USA
| | | | | | | | | | | |
Collapse
|
66
|
Adkins MW, Carson JJ, English CM, Ramey CJ, Tyler JK. The histone chaperone anti-silencing function 1 stimulates the acetylation of newly synthesized histone H3 in S-phase. J Biol Chem 2006; 282:1334-40. [PMID: 17107956 DOI: 10.1074/jbc.m608025200] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Anti-silencing function 1 (Asf1) is a highly conserved chaperone of histones H3/H4 that assembles or disassembles chromatin during transcription, replication, and repair. We have found that budding yeast lacking Asf1 has greatly reduced levels of histone H3 acetylated at lysine 9. Lysine 9 is acetylated on newly synthesized budding yeast histone H3 prior to its assembly onto newly replicated DNA. Accordingly, we found that the vast majority of H3 Lys-9 acetylation peaked in S-phase, and this S-phase peak of H3 lysine 9 acetylation was absent in yeast lacking Asf1. By contrast, deletion of ASF1 has no effect on the S-phase specific peak of H4 lysine 12 acetylation; another modification carried by newly synthesized histones prior to chromatin assembly. We show that Gcn5 is the histone acetyltransferase responsible for the S-phase-specific peak of H3 lysine 9 acetylation. Strikingly, overexpression of Asf1 leads to greatly increased levels of H3 on acetylation on lysine 56 and Gcn5-dependent acetylation on lysine 9. Analysis of a panel of Asf1 mutations that modulate the ability of Asf1 to bind to histones H3/H4 demonstrates that the histone binding activity of Asf1 is required for the acetylation of Lys-9 and Lys-56 on newly synthesized H3. These results demonstrate that Asf1 does not affect the stability of the newly synthesized histones per se, but instead histone binding by Asf1 promotes the efficient acetylation of specific residues of newly synthesized histone H3.
Collapse
Affiliation(s)
- Melissa W Adkins
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado, Aurora, Colorado 80045, USA
| | | | | | | | | |
Collapse
|
67
|
Dehé PM, Dichtl B, Schaft D, Roguev A, Pamblanco M, Lebrun R, Rodríguez-Gil A, Mkandawire M, Landsberg K, Shevchenko A, Shevchenko A, Rosaleny LE, Tordera V, Chávez S, Stewart AF, Géli V. Protein Interactions within the Set1 Complex and Their Roles in the Regulation of Histone 3 Lysine 4 Methylation. J Biol Chem 2006; 281:35404-12. [PMID: 16921172 DOI: 10.1074/jbc.m603099200] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Set1 is the catalytic subunit and the central component of the evolutionarily conserved Set1 complex (Set1C) that methylates histone 3 lysine 4 (H3K4). Here we have determined protein/protein interactions within the complex and related the substructure to function. The loss of individual Set1C subunits differentially affects Set1 stability, complex integrity, global H3K4 methylation, and distribution of H3K4 methylation along active genes. The complex requires Set1, Swd1, and Swd3 for integrity, and Set1 amount is greatly reduced in the absence of the Swd1-Swd3 heterodimer. Bre2 and Sdc1 also form a heteromeric subunit, which requires the SET domain for interaction with the complex, and Sdc1 strongly interacts with itself. Inactivation of either Bre2 or Sdc1 has very similar effects. Neither is required for complex integrity, and their removal results in an increase of H3K4 mono- and dimethylation and a severe decrease of trimethylation at the 5' end of active coding regions but a decrease of H3K4 dimethylation at the 3' end of coding regions. Cells lacking Spp1 have a reduced amount of Set1 and retain a fraction of trimethylated H3K4, whereas cells lacking Shg1 show slightly elevated levels of both di- and trimethylation. Set1C associates with both serine 5- and serine 2-phosphorylated forms of polymerase II, indicating that the association persists to the 3' end of transcribed genes. Taken together, our results suggest that Set1C subunits stimulate Set1 catalytic activity all along active genes.
Collapse
Affiliation(s)
- Pierre-Marie Dehé
- Laboratoire d'InstabilitéduGénome et Cancérogénèse, Institut de Biologie Structurale et Microbiologie, CNRS, Marseille 13402, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Suka N, Nakashima E, Shinmyozu K, Hidaka M, Jingami H. The WD40-repeat protein Pwp1p associates in vivo with 25S ribosomal chromatin in a histone H4 tail-dependent manner. Nucleic Acids Res 2006; 34:3555-67. [PMID: 16855292 PMCID: PMC1524916 DOI: 10.1093/nar/gkl487] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The tails of core histones (H2A, H2B, H3 and H4) are critical for the regulation of chromatin dynamics. Each core histone tail is specifically recognized by various tail binding proteins. Here we screened for budding yeast histone H4-tail binding proteins in a protein differential display approach by two-dimensional gel electrophoresis (2DGE). To obtain highly enriched chromatin proteins, we used a Mg2+-dependent chromatin oligomerization technique. The Mg2+-dependent oligomerized chromatin from H4-tail deleted cells was compared with that from wild-type cells. We used mass spectrometry to identify 22 candidate proteins whose amounts were reduced in the oligomerized chromatin from the H4-tail deleted cells. A Saccharomyces Genome Database search revealed 10 protein complexes, each of which contained more than two candidate proteins. Interestingly, 7 out of the 10 complexes have the potential to associate with the H4-tail. We obtained in vivo evidence, by a chromatin immunoprecipitation assay, that one of the candidate proteins, Pwp1p, associates with the 25S ribosomal DNA (rDNA) chromatin in an H4-tail-dependent manner. We propose that the complex containing Pwp1p regulates the transcription of rDNA. Our results demonstrate that the protein differential display approach by 2DGE, using a histone-tail mutant, is a powerful method to identify histone-tail binding proteins.
Collapse
Affiliation(s)
| | | | | | | | - Hisato Jingami
- To whom correspondence should be addressed at Office of Graduate Courses for Integrated Research Training, Kyoto University Faculty of Medicine, Sakyo-Ku, Kyoto 606-8501, Japan. Tel: +81 75 753 9493; Fax: +81 75 753 9495;
| |
Collapse
|
69
|
Barman HK, Takami Y, Ono T, Nishijima H, Sanematsu F, Shibahara KI, Nakayama T. Histone acetyltransferase 1 is dispensable for replication-coupled chromatin assembly but contributes to recover DNA damages created following replication blockage in vertebrate cells. Biochem Biophys Res Commun 2006; 345:1547-57. [PMID: 16735025 DOI: 10.1016/j.bbrc.2006.05.079] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2006] [Accepted: 05/10/2006] [Indexed: 01/16/2023]
Abstract
Histone acetyltransferase 1 (HAT1) is implicated for diacetylation of Lys-5 and Lys-12 of newly synthesized histone H4, the biological significance of which remains unclear. To investigate the in vivo role of HAT1, we generated HAT1-deficient DT40 clone (HAT1(-/-)). HAT1(-/-) cells exhibited greatly reduced diacetylation levels of Lys-5 and Lys-12, and acetylation level of Lys-5 of cytosolic and chromatin histones H4, respectively. The in vitro nucleosome assembly assay and in vivo MNase digestion assay revealed that HAT1 and diacetylation of Lys-5 and Lys-12 of histone H4 are dispensable for replication-coupled chromatin assembly. HAT1(-/-) cells had mild growth defect, conferring sensitivities to methyl methanesulfonate and camptothecin that enforce replication blocks creating DNA double strand breaks. Such heightened sensitivities were associated with prolonged late-S/G2 phase. These results indicate that HAT1 participates in recovering replication block-mediated DNA damages, probably through chromatin modulation based on acetylation of Lys-5 and Lys-12 of histone H4.
Collapse
Affiliation(s)
- Hirak Kumar Barman
- Section of Biochemistry and Molecular Biology, Department of Medical Sciences, Miyazaki Medical College, Japan
| | | | | | | | | | | | | |
Collapse
|
70
|
Qin S, Parthun MR. Recruitment of the type B histone acetyltransferase Hat1p to chromatin is linked to DNA double-strand breaks. Mol Cell Biol 2006; 26:3649-58. [PMID: 16612003 PMCID: PMC1447429 DOI: 10.1128/mcb.26.9.3649-3658.2006] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Type B histone acetyltransferases are thought to catalyze the acetylation of the NH(2)-terminal tails of newly synthesized histones. Although Hat1p has been implicated in cellular processes, such as telomeric silencing and DNA damage repair, the underlying molecular mechanisms by which it functions remain elusive. In an effort to understand how Hat1p is involved in the process of DNA double-strand break (DSB) repair, we examined whether Hat1p is directly recruited to sites of DNA damage. Following induction of the endonuclease HO, which generates a single DNA DSB at the MAT locus, we found that Hat1p becomes associated with chromatin near the site of DNA damage. The nuclear Hat1p-associated histone chaperone Hif1p is also recruited to an HO-induced DSB with a similar distribution. In addition, while the acetylation of all four histone H4 NH(2)-terminal tail domain lysine residues is increased following DSB formation, only the acetylation of H4 lysine 12, the primary target of Hat1p activity, is dependent on the presence of Hat1p. Kinetic analysis of Hat1p localization indicates that it is recruited after the phosphorylation of histone H2A S129 and concomitant with the recombinational-repair factor Rad52p. Surprisingly, Hat1p is still recruited to chromatin in strains that cannot repair an HO-induced double-strand break. These results indicate that Hat1p plays a direct role in DNA damage repair and is responsible for specific changes in histone modification that occur during the course of recombinational DNA repair.
Collapse
Affiliation(s)
- Song Qin
- Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | | |
Collapse
|
71
|
Mersfelder EL, Parthun MR. The tale beyond the tail: histone core domain modifications and the regulation of chromatin structure. Nucleic Acids Res 2006; 34:2653-62. [PMID: 16714444 PMCID: PMC1464108 DOI: 10.1093/nar/gkl338] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Histone post-translational modifications occur, not only in the N-terminal tail domains, but also in the core domains. While modifications in the N-terminal tail function largely through the regulation of the binding of non-histone proteins to chromatin, based on their location in the nucleosome, core domain modifications may also function through distinct mechanisms involving structural alterations to the nucleosome. This article reviews the recent developments in regards to these novel histone modifications and discusses their important role in the regulation of chromatin structure.
Collapse
Affiliation(s)
| | - Mark R. Parthun
- To whom correspondence should be addressed. Tel: +1 614 292 6215; Fax: +1 614 292 4118;
| |
Collapse
|
72
|
Gunjan A, Paik J, Verreault A. The emergence of regulated histone proteolysis. Curr Opin Genet Dev 2006; 16:112-8. [PMID: 16510276 DOI: 10.1016/j.gde.2006.02.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2005] [Accepted: 02/13/2006] [Indexed: 01/18/2023]
Abstract
Proliferating cells need to synthesize large amounts of histones to rapidly package nascent DNA into nucleosomes. This is a challenging task for cells because changes in rates of DNA synthesis lead to an accumulation of excess histones, which interfere with many aspects of DNA metabolism. In addition, cells need to ensure that histone variants are incorporated at the correct chromosomal location. Recent discoveries have highlighted the importance of regulated histone proteolysis in preventing both the accumulation of excess histones and the mis-incorporation of histone variants at inappropriate loci.
Collapse
Affiliation(s)
- Akash Gunjan
- Florida State University College of Medicine, Department of Biomedical Sciences, 1115 West Call Street, Tallahassee, FL 32309-4300, USA
| | | | | |
Collapse
|
73
|
Kimura A, Matsubara K, Horikoshi M. A Decade of Histone Acetylation: Marking Eukaryotic Chromosomes with Specific Codes. ACTA ACUST UNITED AC 2005; 138:647-62. [PMID: 16428293 DOI: 10.1093/jb/mvi184] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Post-translational modification of histones, a major protein component of eukaryotic chromosomes, contributes to the epigenetic regulation of gene expression. Distinct patterns of histone modification are observed at specific chromosomal regions and affect various reactions on chromosomes (transcription, replication, repair, and recombination). Histone modification has long been proposed to have a profound effect on eukaryotic gene expression since its discovery in 1964. Verification of this idea, however, was difficult until the identification of enzymes responsible for histone modifications. Ten years ago (1995), histone acetyltransferases (HATs), which acetylate lysine residues in histone amino-terminal tail regions, were isolated. HATs are involved in the regulation of both promoter-specific transcription and long-range/chromosome-wide transcription. Analyses of HATs and other modification enzymes have revealed mechanisms of epigenetic regulation that are mediated by post-translational modifications of histones. Here we review some major advances in the field, with emphasis on the lysine specificity of the acetylation reaction and on the regulation of gene expression over broad regions.
Collapse
Affiliation(s)
- Akatsuki Kimura
- Laboratory of Developmental Biology, Institute of Molecular and Cellular Biosciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, Japan
| | | | | |
Collapse
|
74
|
Huang S, Zhou H, Katzmann D, Hochstrasser M, Atanasova E, Zhang Z. Rtt106p is a histone chaperone involved in heterochromatin-mediated silencing. Proc Natl Acad Sci U S A 2005; 102:13410-5. [PMID: 16157874 PMCID: PMC1224646 DOI: 10.1073/pnas.0506176102] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Epigenetic inheritance of heterochromatin structure is an important cellular process whose mechanism remains elusive. In this article, we describe the identification of nine enhancers of the silencing defect of a Saccharomyces cerevisiae-PCNA mutant by screening a library of approximately 4,700 viable yeast deletion mutants. Of the nine mutants identified, six (hir1, hir3, sas2, sas4, sas5, and sir1) were previously known to reduce silencing synergistically with a mutation in Cac1p, the large subunit of chromatin assembly factor 1 (CAF-1). The predicted gene products that are affected in three other mutants (nam7, msh2, and rtt106) have not been implicated previously in silencing. Characterization of the rtt106Delta allele revealed that it synergistically reduced heterochromatin silencing when combined with a mutation in Cac1p but not with a mutation in Asf1p (a histone H3 and H4 chaperone). Moreover, Rtt106p interacted with histones H3 and H4 both in vitro and in vivo, and it displayed a nucleosome assembly activity in vitro. Furthermore, Rtt106p interacts with CAF-1 physically through Cac1p. These biochemical and genetic data indicate that Rtt106p is a previously uncharacterized histone chaperone connecting S phase to epigenetic inheritance.
Collapse
Affiliation(s)
- Shengbing Huang
- Department of Biochemistry and Molecular Biology, Mayo Clinic, College of Medicine, 200 First Street SW, Rochester, MN 55905, USA
| | | | | | | | | | | |
Collapse
|
75
|
Dehé PM, Pamblanco M, Luciano P, Lebrun R, Moinier D, Sendra R, Verreault A, Tordera V, Géli V. Histone H3 lysine 4 mono-methylation does not require ubiquitination of histone H2B. J Mol Biol 2005; 353:477-84. [PMID: 16185711 DOI: 10.1016/j.jmb.2005.08.059] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2005] [Revised: 08/12/2005] [Accepted: 08/13/2005] [Indexed: 10/25/2022]
Abstract
The yeast Set1-complex catalyzes histone H3 lysine 4 (H3K4) methylation. Using N-terminal Edman sequencing, we determined that 50% of H3K4 is methylated and consists of roughly equal amounts of mono, di and tri-methylated H3K4. We further show that loss of either Paf1 of the Paf1 elongation complex, or ubiquitination of histone H2B, has only a modest effect on bulk histone mono-methylation at H3K4. Despite the fact that Set1 recruitment decreases in paf1delta cells, loss of Paf1 results in an increase of H3K4 mono-methylation at the 5' coding region of active genes, suggesting a Paf1-independent targeting of Set1. In contrast to Paf1 inactivation, deleting RTF1 affects H3K4 mono-methylation at the 3' coding region of active genes and results in a decrease of global H3K4 mono-methylation. Our results indicate that the requirements for mono-methylation are distinct from those for H3K4 di and tri-methylation, and point to differences among members of the Paf1 complex in the regulation of H3K4 methylation.
Collapse
Affiliation(s)
- Pierre-Marie Dehé
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires et Institut de Biologie Structurale et Microbiologie, CNRS, 31 chemin Joseph Aiguier, 13402, Marseille, Cedex 20, France
| | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Rosaleny LE, Antúnez O, Ruiz-García AB, Pérez-Ortín JE, Tordera V. YeastHAT1andHAT2deletions have different life-span and transcriptome phenotypes. FEBS Lett 2005; 579:4063-8. [PMID: 16023114 DOI: 10.1016/j.febslet.2005.06.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2005] [Revised: 06/07/2005] [Accepted: 06/11/2005] [Indexed: 10/25/2022]
Abstract
HAT-B is a yeast histone acetyltransferase composed of Hat1, Hat2 and Hif1 proteins. We demonstrate that a hat2 mutant or a hat1hat2 double mutant, but not a hat1 mutant, have an extended life-span. Transcriptome analysis shows that the single hat mutants are not very different from wild type. However, the comparison of the hat1 and hat2 transcriptomes shows that they are different. The hat1hat2 double mutant shows a transcriptional phenotype similar to that of the hat1 mutant but strongly enhanced. These results indicate that Hat2p could have additional functions in the cell to those of Hat1p.
Collapse
Affiliation(s)
- Lorena E Rosaleny
- Departament de Bioquímica i Biologia Molecular, Universitat de València, Dr. Moliner 50, E46100 Burjassot, Spain
| | | | | | | | | |
Collapse
|
77
|
Current awareness on yeast. Yeast 2004; 21:1133-40. [PMID: 15529464 DOI: 10.1002/yea.1095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
78
|
Franco AA, Kaufman PD. Histone deposition proteins: links between the DNA replication machinery and epigenetic gene silencing. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2004; 69:201-8. [PMID: 16117650 DOI: 10.1101/sqb.2004.69.201] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Affiliation(s)
- A A Franco
- Lawrence Berkeley National Laboratory and Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
| | | |
Collapse
|