51
|
Ashford AL, Oxley D, Kettle J, Hudson K, Guichard S, Cook SJ, Lochhead PA. A novel DYRK1B inhibitor AZ191 demonstrates that DYRK1B acts independently of GSK3β to phosphorylate cyclin D1 at Thr(286), not Thr(288). Biochem J 2014; 457:43-56. [PMID: 24134204 DOI: 10.1042/bj20130461] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
DYRK1B (dual-specificity tyrosine phosphorylation-regulated kinase 1B) is amplified in certain cancers and may be an oncogene; however, our knowledge of DYRK1B has been limited by the lack of selective inhibitors. In the present study we describe AZ191, a potent small molecule inhibitor that selectively inhibits DYRK1B in vitro and in cells. CCND1 (cyclin D1), a key regulator of the mammalian G1-S-phase transition, is phosphorylated on Thr(286) by GSK3β (glycogen synthase kinase 3β) to promote its degradation. DYRK1B has also been proposed to promote CCND1 turnover, but was reported to phosphorylate Thr(288) rather than Thr(286). Using in vitro kinase assays, phospho-specific immunoblot analysis and MS in conjunction with AZ191 we now show that DYRK1B phosphorylates CCND1 at Thr(286), not Thr(288), in vitro and in cells. In HEK (human embryonic kidney)-293 and PANC-1 cells (which exhibit DYRK1B amplification) DYRK1B drives Thr(286) phosphorylation and proteasome-dependent turnover of CCND1 and this is abolished by AZ191 or DYRK1B RNAi, but not by GSK3β inhibitors or GSK3β RNAi. DYRK1B expression causes a G1-phase cell-cycle arrest, but overexpression of CCND1 (wild-type or T286A) fails to overcome this; indeed, DYRK1B also promotes the expression of p21CIP1 (21 kDa CDK-interacting protein 1) and p27KIP1 (CDK-inhibitory protein 1). The results of the present study demonstrate for the first time that DYRK1B is a novel Thr(286)-CCND1 kinase that acts independently of GSK3β to promote CCND1 degradation. Furthermore, we anticipate that AZ191 may prove useful in defining further substrates and biological functions of DYRK1B.
Collapse
Affiliation(s)
- Anne L Ashford
- *Signalling Programme, The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, U.K
| | | | | | | | | | | | | |
Collapse
|
52
|
Tsioras K, Papastefanaki F, Politis PK, Matsas R, Gaitanou M. Functional Interactions between BM88/Cend1, Ran-binding protein M and Dyrk1B kinase affect cyclin D1 levels and cell cycle progression/exit in mouse neuroblastoma cells. PLoS One 2013; 8:e82172. [PMID: 24312406 PMCID: PMC3842983 DOI: 10.1371/journal.pone.0082172] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 10/31/2013] [Indexed: 12/22/2022] Open
Abstract
BM88/Cend1 is a neuronal-lineage specific modulator with a pivotal role in coordination of cell cycle exit and differentiation of neuronal precursors. In the current study we identified the signal transduction scaffolding protein Ran-binding protein M (RanBPM) as a BM88/Cend1 binding partner and showed that BM88/Cend1, RanBPM and the dual specificity tyrosine-phosphorylation regulated kinase 1B (Dyrk1B) are expressed in mouse brain as well as in cultured embryonic cortical neurons while RanBPM can form complexes with either of the two other proteins. To elucidate a potential mechanism involving BM88/Cend1, RanBPM and Dyrk1B in cell cycle progression/exit, we transiently co-expressed these proteins in mouse neuroblastoma Neuro 2a cells. We found that the BM88/Cend1-dependent or Dyrk1B-dependent down-regulation of cyclin D1 is reversed following their functional interaction with RanBPM. More specifically, functional interaction of RanBPM with either BM88/Cend1 or Dyrk1B stabilizes cyclin D1 in the nucleus and promotes 5-bromo-2'-deoxyuridine (BrdU) incorporation as a measure of enhanced cell proliferation. However, the RanBPM-dependent Dyrk1B cytosolic retention and degradation is reverted in the presence of Cend1 resulting in cyclin D1 destabilization. Co-expression of RanBPM with either BM88/Cend1 or Dyrk1B also had a negative effect on Neuro 2a cell differentiation. Our results suggest that functional interactions between BM88/Cend1, RanBPM and Dyrk1B affect the balance between cellular proliferation and differentiation in Neuro 2a cells and indicate that a potentially similar mechanism may influence cell cycle progression/exit and differentiation of neuronal precursors.
Collapse
Affiliation(s)
- Konstantinos Tsioras
- Laboratory of Cellular and Molecular Neurobiology, Hellenic Pasteur Institute, Athens, Greece
| | - Florentia Papastefanaki
- Laboratory of Cellular and Molecular Neurobiology, Hellenic Pasteur Institute, Athens, Greece
| | - Panagiotis K. Politis
- Center for Basic Research, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Rebecca Matsas
- Laboratory of Cellular and Molecular Neurobiology, Hellenic Pasteur Institute, Athens, Greece
| | - Maria Gaitanou
- Laboratory of Cellular and Molecular Neurobiology, Hellenic Pasteur Institute, Athens, Greece
| |
Collapse
|
53
|
Hu J, Deng H, Friedman EA. Ovarian cancer cells, not normal cells, are damaged by Mirk/Dyrk1B kinase inhibition. Int J Cancer 2013; 132:2258-69. [PMID: 23114871 PMCID: PMC3586305 DOI: 10.1002/ijc.27917] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Accepted: 10/05/2012] [Indexed: 01/12/2023]
Abstract
Prior studies had shown that the Mirk/dyrk1B gene is amplified/upregulated in about 75% of ovarian cancers, that protein levels of this kinase are elevated in quiescent G0 cells and that Mirk maintains tumor cells in quiescence by initiating rapid degradation of cyclin D isoforms and by phosphorylation of a member of the DREAM complex. Depletion of Mirk/dyrk1B led to increased cyclin D levels, an elevated reactive oxygen species (ROS) content and loss of viability. However, many normal cells in vivo are quiescent, and therefore, targeting a kinase found in quiescent cells might be problematic. In our study, Mirk kinase activity was found to be higher in ovarian cancer cells than in normal cells. Pharmacological inhibition of Mirk/dyrk1B kinase increased cyclin D levels both in quiescent normal diploid cells and in quiescent CDKN2A-negative ovarian cancer cells, but led to more active CDK4/cyclin D complexes in quiescent ovarian cancer cells, allowing them to escape G0/G1 quiescence, enter cycle with high ROS levels and undergo apoptosis. The ROS scavenger N-acetyl cysteine reduced both the amount of cleaved poly(ADP-ribose) polymerase (PARP) and the extent of cancer cell loss. In contrast, normal cells were spared because of their expression of cyclin directed kinase (CDK) inhibitors that blocked unregulated cycling. Quiescent early passage normal ovarian epithelial cells and two strains of quiescent normal diploid fibroblasts remained viable after the inhibition of Mirk/dyrk1B kinase, and the few cells that left G0/G1 quiescence were accumulated in G2+M. Thus, inhibition of Mirk kinase targeted quiescent ovarian cancer cells.
Collapse
Affiliation(s)
- Jing Hu
- Pathology Department, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | | | | |
Collapse
|
54
|
Friedman E. Mirk/dyrk1B Kinase in Ovarian Cancer. Int J Mol Sci 2013; 14:5560-75. [PMID: 23528858 PMCID: PMC3634458 DOI: 10.3390/ijms14035560] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 02/28/2013] [Accepted: 03/01/2013] [Indexed: 02/03/2023] Open
Abstract
Mirk/dyrk1B kinase is expressed in about 75% of resected human ovarian cancers and in most ovarian cancer cell lines with amplification in the OVCAR3 line. Mirk (minibrain-related kinase) is a member of the Minibrain/dyrk family of related serine/threonine kinases. Mirk maintains cells in a quiescent state by stabilizing the CDK inhibitor p27 and by inducing the breakdown of cyclin D isoforms. Mirk also stabilizes the DREAM complex, which maintains G0 quiescence by sequestering transcription factors needed to enter cycle. By entering a quiescent state, tumor cells can resist the nutrient deficiencies, hypoxic and acidic conditions within the tumor mass. Mirk maintains the viability of quiescent ovarian cancer cells by reducing intracellular levels of reactive oxygen species. CDKN2A-negative ovarian cancer cells treated with a Mirk kinase inhibitor escaped G0/G1 quiescence, entered cycle with high ROS levels and underwent apoptosis. The ROS scavenger N-acetyl cysteine reduced the extent of cancer cell loss. In contrast, the Mirk kinase inhibitor slightly reduced the fraction of G0 quiescent diploid epithelial cells and fibroblasts, and the majority of the cells pushed into cycle accumulated in G2 + M. Apoptotic sub-G0/G1 cells were not detected. Thus, normal cells were spared because of their expression of CDK inhibitors that blocked unregulated cycling and Mirk kinase inhibitor-treated normal diploid cells were about as viable as untreated controls.
Collapse
Affiliation(s)
- Eileen Friedman
- Pathology Department, Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA.
| |
Collapse
|
55
|
Gao J, Zhao Y, Lv Y, Chen Y, Wei B, Tian J, Yang Z, Kong F, Pang J, Liu J, Shi H. Mirk/Dyrk1B mediates G0/G1 to S phase cell cycle progression and cell survival involving MAPK/ERK signaling in human cancer cells. Cancer Cell Int 2013; 13:2. [PMID: 23311607 PMCID: PMC3575355 DOI: 10.1186/1475-2867-13-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 01/08/2013] [Indexed: 01/09/2023] Open
Abstract
Background Mirk/Dyrk1B contributes to G0 arrest by destabilization of cyclin D1 and stabilization of p27kip1 to maintain the viability of quiescent human cancer cells, and it could be negatively regulated by mitogenic-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) signaling. This study was performed to investigate the effect of Mirk/Dyrk1B on cell cycle and survival of human cancer cells involving MAPK/ERK signaling. Methods The correlations between Mirk/Dyrk1B expression and active ERK1/2 detected by western blot in both ovarian cancer and non-small cell lung cancer (NSCLC) cells were analyzed by simple regression. Mirk/Dyrk1B unique phosphopeptides with sites associated with Mirk/Dyrk1B protein were isolated and quantitated by liquid chromatography coupled to tandem mass/mass spectrometry (LC-MS/MS) proteomics analysis. The human cancer cells were treated with small interfering RNAs (siRNAs) and/or U0126, an inhibitor of MEK for indicated duration, followed by investigating the alterations of cell cycle and apoptosis as well as related proteins examined by flow cytometry and Western blot, respectively. Results Our study demonstrated the widely expressed Mirk/Dyrk1B proteins in the human cancer cells were positively correlated with the levels of activated ERK1/2. Moreover, Mirk/Dyrk1B protein expressions consistent with the tyrosine autophosphorylated levels in the human cancer cells were increased by U0126 or growth factor-depleted culture. Conversely, knockdown of Mirk/Dyrk1B by siRNA led to up-regulated activation of c-Raf-MEK-ERK1/2 pathway and subsequent changes in cell cycle proteins (cyclin D1, p27kip1), accompanied by increased growth rate and cells from G0/G1 into S of cell cycle which could be blocked by U0126 in a dose-dependent manner, indicating Mirk/Dyrk1B may sequester MAPK/ERK pathway, and vice versa. Whereas, combined Mirk siRNA and U0126 induced cell apoptosis in the human cancer cells. Conclusions These data together show that Mirk/Dyrk1B mediates cell cycle and survival via interacting with MAPK/ERK signals and simultaneous inhibition of both pathways may be a novel therapeutic target for human cancer.
Collapse
Affiliation(s)
- Jingchun Gao
- Department of Obstetrics & Gynecology, First Affiliated Hospital of Dalian Medical University, Zhongshan Road 222, Dalian, Liaoning 116011, China
| | - Yi Zhao
- Department of Oncology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, China
| | - Yunyi Lv
- Department of Obstetrics & Gynecology, First Affiliated Hospital of Dalian Medical University, Zhongshan Road 222, Dalian, Liaoning 116011, China
| | - Yamin Chen
- Department of Oncology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, China
| | - Bing Wei
- Department of Obstetrics & Gynecology, First Affiliated Hospital of Dalian Medical University, Zhongshan Road 222, Dalian, Liaoning 116011, China
| | - Jianxin Tian
- Department of Obstetrics & Gynecology, First Affiliated Hospital of Dalian Medical University, Zhongshan Road 222, Dalian, Liaoning 116011, China
| | - Zhihai Yang
- Department of Obstetrics & Gynecology, First Affiliated Hospital of Dalian Medical University, Zhongshan Road 222, Dalian, Liaoning 116011, China
| | - Fandou Kong
- Department of Obstetrics & Gynecology, First Affiliated Hospital of Dalian Medical University, Zhongshan Road 222, Dalian, Liaoning 116011, China
| | - Jian Pang
- Department of Obstetrics & Gynecology, First Affiliated Hospital of Dalian Medical University, Zhongshan Road 222, Dalian, Liaoning 116011, China
| | - Jiwei Liu
- Department of Oncology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, China
| | - Hong Shi
- Department of Obstetrics & Gynecology, First Affiliated Hospital of Dalian Medical University, Zhongshan Road 222, Dalian, Liaoning 116011, China
| |
Collapse
|
56
|
Suganthi M, Sangeetha G, Benson CS, Babu SD, Sathyavathy A, Ramadoss S, Ravi Sankar B. In vitro mechanisms involved in the regulation of cell survival by lithium chloride and IGF-1 in human hormone-dependent breast cancer cells (MCF-7). Toxicol Lett 2012; 214:182-91. [DOI: 10.1016/j.toxlet.2012.08.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Revised: 08/17/2012] [Accepted: 08/25/2012] [Indexed: 01/24/2023]
|
57
|
Becker W. Emerging role of DYRK family protein kinases as regulators of protein stability in cell cycle control. Cell Cycle 2012; 11:3389-94. [PMID: 22918246 PMCID: PMC3466549 DOI: 10.4161/cc.21404] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Dual-specificity tyrosine phosphorylation-regulated kinases (DYRKs) constitute an evolutionarily conserved family of protein kinases with key roles in the control of cell proliferation and differentiation. Members of the DYRK family phosphorylate many substrates, including critical regulators of the cell cycle. A recent report revealed that human DYRK2 acts as a negative regulator of G1/S transition by phosphorylating c-Jun and c-Myc, thereby inducing ubiquitination-mediated degradation. Other DYRKs also function as cell cycle regulators by modulating the turnover of their target proteins. DYRK1B can induce reversible cell arrest in a quiescent G0 state by targeting cyclin D1 for proteasomal degradation and stabilizing p27 (Kip1). The DYRK2 ortholog of C. elegans, MBK-2, triggers the proteasomal destruction of oocyte proteins after meiosis to allow the mitotic divisions in embryo development. This review summarizes the accumulating results that provide evidence for a general role of DYRKs in the regulation of protein stability.
Collapse
Affiliation(s)
- Walter Becker
- Institute of Pharmacology and Toxicology, Medical Faculty of the RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
58
|
Milton SG, Mathew OP, Yatsu FM, Ranganna K. Differential cellular and molecular effects of butyrate and trichostatin a on vascular smooth muscle cells. Pharmaceuticals (Basel) 2012; 5:925-43. [PMID: 24280698 PMCID: PMC3816648 DOI: 10.3390/ph5090925] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2012] [Revised: 08/22/2012] [Accepted: 08/23/2012] [Indexed: 12/19/2022] Open
Abstract
The histone deacetylase (HDAC) inhibitors, butyrate and trichostatin A (TSA), are epigenetic histone modifiers and proliferation inhibitors by downregulating cyclin D1, a positive cell cycle regulator, and upregulating p21Cip1 and INK family of proteins, negative cell cycle regulators. Our recent study indicated cyclin D1 upregulation in vascular smooth muscle cells (VSMC) that are proliferation-arrested by butyrate. Here we investigate whether cyclin D1 upregulation is a unique response of VSMC to butyrate or a general response to HDAC inhibitors (HDACi) by evaluating the effects of butyrate and TSA on VSMC. While butyrate and TSA inhibit VSMC proliferation via cytostatic and cytotoxic effects, respectively, they downregulate cdk4, cdk6, and cdk2, and upregulate cyclin D3, p21Cip1 and p15INK4B, and cause similar effects on key histone H3 posttranslational modifications. Conversely, cyclin D1 is upregulated by butyrate and inhibited by TSA. Assessment of glycogen synthase 3-dependent phosphorylation, subcellular localization and transcription of cyclin D1 indicates that differential effects of butyrate and TSA on cyclin D1 levels are linked to disparity in cyclin D1 gene expression. Disparity in butyrate- and TSA-induced cyclin D1 may influence transcriptional regulation of genes that are associated with changes in cellular morphology/cellular effects that these HDACi confer on VSMC, as a transcriptional modulator.
Collapse
Affiliation(s)
- Shirlette G. Milton
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, 3100 Cleburne St, Houston, TX 77004, USA; (S.G.M.); (O.P.M.)
| | - Omana P. Mathew
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, 3100 Cleburne St, Houston, TX 77004, USA; (S.G.M.); (O.P.M.)
| | - Frank M. Yatsu
- Department of Neurology, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (F.M.Y.)
| | - Kasturi Ranganna
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, 3100 Cleburne St, Houston, TX 77004, USA; (S.G.M.); (O.P.M.)
- Author to whom correspondence should be addressed; ; Tel.: +1-713-313-1886; Fax: +1-713-313-1091
| |
Collapse
|
59
|
Guerra E, Trerotola M, Aloisi AL, Tripaldi R, Vacca G, La Sorda R, Lattanzio R, Piantelli M, Alberti S. The Trop-2 signalling network in cancer growth. Oncogene 2012; 32:1594-600. [PMID: 22562244 DOI: 10.1038/onc.2012.151] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Our findings show that upregulation of a wild-type Trop-2 has a key controlling role in human cancer growth, and that tumour development is quantitatively driven by Trop-2 expression levels. However, little is known about the regulation of expression of the TROP2 gene. Hence, we investigated the TROP2 transcription control network. TROP2 expression was shown to depend on a highly interconnected web of transcription factors: TP63/TP53L, ERG, GRHL1/Get-1 (grainyhead-like epithelial transactivator), HNF1A/TCF-1 (T-cell factor), SPI1/PU.1, WT (Wilms' tumour)1, GLIS2, AIRE (autoimmune regulator), FOXM1 (forkhead box M1) and FOXP3, with HNF4A as the major network hub. TROP2 upregulation was shown to subsequently drive the expression and activation of CREB1 (cyclic AMP-responsive-element binding protein), Jun, NF-κB, Rb, STAT1 and STAT3 through induction of the cyclin D1 and ERK (extracellular signal regulated kinase)/MEK (MAPK/ERK kinase) pathways. Growth-stimulatory signalling through NF-κB, cyclin D1 and ERK was shown to require an intact Trop-2 cytoplasmic tail. Network hubs and interacting partners are co-expressed with Trop-2 in primary human tumours, supporting a role of this signalling network in cancer growth.
Collapse
Affiliation(s)
- E Guerra
- Unit of Cancer Pathology, Department of Oncology and Experimental Medicine and CeSI, Foundation University 'G. d'Annunzio', Chieti, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Liu Z, Brooks RS, Ciappio ED, Kim SJ, Crott JW, Bennett G, Greenberg AS, Mason JB. Diet-induced obesity elevates colonic TNF-α in mice and is accompanied by an activation of Wnt signaling: a mechanism for obesity-associated colorectal cancer. J Nutr Biochem 2011; 23:1207-13. [PMID: 22209007 DOI: 10.1016/j.jnutbio.2011.07.002] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Revised: 06/28/2011] [Accepted: 07/08/2011] [Indexed: 12/16/2022]
Abstract
Inflammation associated with obesity may play a role in colorectal carcinogenesis, but the underlying mechanism remains unclear. This study investigated whether the Wnt pathway, an intracellular signaling cascade that plays a critical role in colorectal carcinogenesis, is activated by obesity-induced elevation of the inflammatory cytokine tumor necrosis factor-alpha (TNF-α). Animal studies were conducted on C57BL/6 mice, and obesity was induced by utilizing a high-fat diet (60% kcal). An inflammation-specific microarray was performed, and results were confirmed with real-time polymerase chain reaction. The array revealed that diet-induced obesity increased the expression of TNF-α in the colon by 72% (P=.004) and that of interleukin-18 by 41% (P=.023). The concentration of colonic TNF-α protein, determined by ex vivo culture assay, was nearly doubled in the obese animals (P=.002). The phosphorylation of glycogen synthase kinase 3 beta (GSK3β), an important intermediary inhibitor of Wnt signaling and a potential target of TNF-α, was quantitated by immunohistochemistry. The inactivated (phosphorylated) form of GSK3β was elevated in the colonic mucosa of obese mice (P<.02). Moreover, β-catenin, the key effector of canonical Wnt signaling, was elevated in the colons of obese mice (P<.05), as was the expression of a downstream target gene, c-myc (P<.05). These data demonstrate that diet-induced obesity produces an elevation in colonic TNF-α and instigates a number of alterations of key components within the Wnt signaling pathway that are protransformational in nature. Thus, these observations offer evidence for a biologically plausible avenue, the Wnt pathway, by which obesity increases the risk of colorectal cancer.
Collapse
Affiliation(s)
- Zhenhua Liu
- Vitamins and Carcinogenesis Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111, USA.
| | | | | | | | | | | | | | | |
Collapse
|
61
|
Ewton DZ, Hu J, Vilenchik M, Deng X, Luk KC, Polonskaia A, Hoffman AF, Zipf K, Boylan JF, Friedman EA. Inactivation of mirk/dyrk1b kinase targets quiescent pancreatic cancer cells. Mol Cancer Ther 2011; 10:2104-14. [PMID: 21878655 PMCID: PMC3213302 DOI: 10.1158/1535-7163.mct-11-0498] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A major problem in the treatment of cancer arises from quiescent cancer cells that are relatively insensitive to most chemotherapeutic drugs and radiation. Such residual cancer cells can cause tumor regrowth or recurrence when they reenter the cell cycle. Earlier studies showed that levels of the serine/theronine kinase Mirk/dyrk1B are elevated up to 10-fold in quiescent G(0) tumor cells. Mirk uses several mechanisms to block cell cycling, and Mirk increases expression of antioxidant genes that decrease reactive oxygen species (ROS) levels and increase quiescent cell viability. We now show that a novel small molecule Mirk kinase inhibitor blocked tumor cells from undergoing reversible arrest in a quiescent G(0) state and enabled some cells to exit quiescence. The inhibitor increased cycling in Panc1, AsPc1, and SW620 cells that expressed Mirk, but not in HCT116 cells that did not. Mirk kinase inhibition elevated ROS levels and DNA damage detected by increased phosphorylation of the histone protein H2AX and by S-phase checkpoints. The Mirk kinase inhibitor increased cleavage of the apoptotic proteins PARP and caspase 3, and increased tumor cell kill several-fold by gemcitabine and cisplatin. A phenocopy of these effects occurred following Mirk depletion, showing drug specificity. In previous studies Mirk knockout or depletion had no detectable effect on normal tissue, suggesting that the Mirk kinase inhibitor could have a selective effect on cancer cells expressing elevated levels of Mirk kinase.
Collapse
Affiliation(s)
- Daina Z. Ewton
- Pathology Department, SUNY Upstate Medical Univ., Syracuse, NY
| | - Jing Hu
- Pathology Department, SUNY Upstate Medical Univ., Syracuse, NY
| | - Maria Vilenchik
- Discovery Oncology, Discovery Chemistry and Discovery Technologies, Hoffmann-La Roche, Nutley, NJ
| | - Xiaobing Deng
- Pathology Department, SUNY Upstate Medical Univ., Syracuse, NY
| | - Kin-chun Luk
- Discovery Oncology, Discovery Chemistry and Discovery Technologies, Hoffmann-La Roche, Nutley, NJ
| | - Ann Polonskaia
- Discovery Oncology, Discovery Chemistry and Discovery Technologies, Hoffmann-La Roche, Nutley, NJ
| | - Ann F. Hoffman
- Discovery Oncology, Discovery Chemistry and Discovery Technologies, Hoffmann-La Roche, Nutley, NJ
| | - Karen Zipf
- Discovery Oncology, Discovery Chemistry and Discovery Technologies, Hoffmann-La Roche, Nutley, NJ
| | - John F. Boylan
- Discovery Oncology, Discovery Chemistry and Discovery Technologies, Hoffmann-La Roche, Nutley, NJ
| | | |
Collapse
|
62
|
Hu J, Nakhla H, Friedman E. Transient arrest in a quiescent state allows ovarian cancer cells to survive suboptimal growth conditions and is mediated by both Mirk/dyrk1b and p130/RB2. Int J Cancer 2011; 129:307-18. [PMID: 20857490 DOI: 10.1002/ijc.25692] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Accepted: 09/07/2010] [Indexed: 01/12/2023]
Abstract
Some ovarian cancer cells in vivo are in a reversible quiescent state where they can contribute to cancer spread under favorable growth conditions. The serine/threonine kinase Mirk/dyrk1B was expressed in each of seven ovarian cancer cell lines and in 21 of 28 resected human ovarian cancers, and upregulated in 60% of the cancers. Some ovarian cancer cells were found in a G0 quiescent state, with the highest fraction in a line with an amplified Mirk gene. Suboptimal culture conditions increased the G0 fraction in SKOV3 and TOV21G, but not OVCAR4 cultures. Less than half as many OVCAR4 cells survived under suboptimal culture conditions as shown by total cell numbers, dye exclusion viability studies, and assay of cleaved apoptotic marker proteins. G0 arrest in TOV21G and SKOV3 cells led to increased levels of Mirk, the CDK inhibitor p27, p130/Rb2, and p130/Rb2 complexed with E2F4. The G0 arrest was transient, and cells exited G0 when fresh nutrients were supplied. Depletion of p130/Rb2 reduced the G0 fraction, increased cell sensitivity to serum-free culture and to cisplatin, and reduced Mirk levels. Mirk contributed to G0 arrest by destabilization of cyclin D1. In TOV21G cells, but not in normal diploid fibroblasts, Mirk depletion led to increased apoptosis and loss of viability. Because Mirk is expressed at low levels in most normal adult tissues, the elevated Mirk protein levels in ovarian cancers may present a novel therapeutic target, in particular for quiescent tumor cells which are difficult to eradicate by conventional therapies targeting dividing cells.
Collapse
Affiliation(s)
- Jing Hu
- Pathology Department, Upstate Medical University, State University of New York, Syracuse, New York 13210, USA
| | | | | |
Collapse
|
63
|
Guo ZY, Hao XH, Tan FF, Pei X, Shang LM, Jiang XL, Yang F. The elements of human cyclin D1 promoter and regulation involved. Clin Epigenetics 2011; 2:63-76. [PMID: 22704330 PMCID: PMC3365593 DOI: 10.1007/s13148-010-0018-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2010] [Accepted: 12/07/2010] [Indexed: 02/07/2023] Open
Abstract
Cyclin D1 is a cell cycle machine, a sensor of extracellular signals and plays an important role in G1-S phase progression. The human cyclin D1 promoter contains multiple transcription factor binding sites such as AP-1, NF-қB, E2F, Oct-1, and so on. The extracellular signals functions through the signal transduction pathways converging at the binding sites to active or inhibit the promoter activity and regulate the cell cycle progression. Different signal transduction pathways regulate the promoter at different time to get the correct cell cycle switch. Disorder regulation or special extracellular stimuli can result in cell cycle out of control through the promoter activity regulation. Epigenetic modifications such as DNA methylation and histone acetylation may involved in cyclin D1 transcriptional regulation.
Collapse
Affiliation(s)
- Zhi-Yi Guo
- Experimental and Research Center, Hebei United University, № 57 JianShe South Road, TangShan, Hebei 063000 People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
64
|
Aranda S, Laguna A, de la Luna S. DYRK family of protein kinases: evolutionary relationships, biochemical properties, and functional roles. FASEB J 2011; 25:449-62. [PMID: 21048044 DOI: 10.1096/fj.10-165837] [Citation(s) in RCA: 233] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Dual-specificity tyrosine-regulated kinases (DYRKs) comprise a family of protein kinases within the CMGC group of the eukaryotic kinome. Members of the DYRK family are found in 4 (animalia, plantae, fungi, and protista) of the 5 main taxa or kingdoms, and all DYRK proteins studied to date share common structural, biochemical, and functional properties with their ancestors in yeast. Recent work on DYRK proteins indicates that they participate in several signaling pathways critical for developmental processes and cell homeostasis. In this review, we focus on the DYRK family of proteins from an evolutionary, biochemical, and functional point of view and discuss the most recent, relevant, and controversial contributions to the study of these kinases.
Collapse
Affiliation(s)
- Sergi Aranda
- Center for Genomic Regulation, University Pompeu Fabra, Barcelona, Spain
| | | | | |
Collapse
|
65
|
Park J, Oh Y, Yoo L, Jung MS, Song WJ, Lee SH, Seo H, Chung KC. Dyrk1A phosphorylates p53 and inhibits proliferation of embryonic neuronal cells. J Biol Chem 2010; 285:31895-906. [PMID: 20696760 PMCID: PMC2951261 DOI: 10.1074/jbc.m110.147520] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2010] [Revised: 07/14/2010] [Indexed: 02/03/2023] Open
Abstract
Down syndrome (DS) is associated with many neural defects, including reduced brain size and impaired neuronal proliferation, highly contributing to the mental retardation. Those typical characteristics of DS are closely associated with a specific gene group "Down syndrome critical region" (DSCR) on human chromosome 21. Here we investigated the molecular mechanisms underlying impaired neuronal proliferation in DS and, more specifically, a regulatory role for dual-specificity tyrosine-(Y) phosphorylation-regulated kinase 1A (Dyrk1A), a DSCR gene product, in embryonic neuronal cell proliferation. We found that Dyrk1A phosphorylates p53 at Ser-15 in vitro and in immortalized rat embryonic hippocampal progenitor H19-7 cells. In addition, Dyrk1A-induced p53 phosphorylation at Ser-15 led to a robust induction of p53 target genes (e.g. p21(CIP1)) and impaired G(1)/G(0)-S phase transition, resulting in attenuated proliferation of H19-7 cells and human embryonic stem cell-derived neural precursor cells. Moreover, the point mutation of p53-Ser-15 to alanine rescued the inhibitory effect of Dyrk1A on neuronal proliferation. Accordingly, brains from embryonic DYRK1A transgenic mice exhibited elevated levels of Dyrk1A, Ser-15 (mouse Ser-18)-phosphorylated p53, and p21(CIP1) as well as impaired neuronal proliferation. These findings suggest that up-regulation of Dyrk1A contributes to altered neuronal proliferation in DS through specific phosphorylation of p53 at Ser-15 and subsequent p21(CIP1) induction.
Collapse
Affiliation(s)
- Joongkyu Park
- From the Department of Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749
| | - Yohan Oh
- From the Department of Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749
| | - Lang Yoo
- From the Department of Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749
| | - Min-Su Jung
- the Graduate Program in Neuroscience, Institute for Brain Science and Technology, Inje University, Busan 633-146
| | - Woo-Joo Song
- the Graduate Program in Neuroscience, Institute for Brain Science and Technology, Inje University, Busan 633-146
| | - Sang-Hun Lee
- the Department of Biochemistry, College of Medicine, Hanyang University, Seoul 133-791, and
| | - Hyemyung Seo
- the Division of Molecular and Life Sciences, College of Sciences and Technology, Hanyang University, Ansan-si, Gyeonggi-do 426-791, Republic of Korea
| | - Kwang Chul Chung
- From the Department of Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749
| |
Collapse
|
66
|
Hu J, Friedman E. Depleting Mirk Kinase Increases Cisplatin Toxicity in Ovarian Cancer Cells. Genes Cancer 2010; 1:803-811. [PMID: 21113238 DOI: 10.1177/1947601910377644] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cisplatin-based regimens are the standard of care for epithelial carcinoma of the ovary. Since cisplatin is known to increase intracellular levels of toxic reactive oxygen species (ROS), an increase in cisplatin toxicity selectively in cancer cells could result from further increasing the cisplatin-elevated ROS levels by targeting antioxidant genes upregulated in ovarian cancers. The serine/threonine kinase Mirk/dyrk1B is a transcriptional co-activator which increased the expression of the antioxidant genes superoxide dismutase 2 and ferroxidase in ovarian cancer cells. As a result, depletion of Mirk increased cellular ROS levels in each of 4 ovarian cancer cell lines. Mirk depletion averaged only about 4 fold, yet combined with cisplatin treatment enabled low levels of drug to increase ROS to toxic levels in both SKOV3 and TOV21G ovarian cancer cells. Lowering ROS levels by treatment with N-acetyl cysteine limited cisplatin toxicity, resulting in higher cell numbers and decreased cleavage of the apoptotic proteins PARP and caspase 3. Mirk has also been shown to block cells in G1 by inducing proteolysis of cyclin D1. Mirk depletion increased cyclin D1 levels in 3 of 4 ovarian cancer cell lines, implying that some Mirk depleted cells could more readily enter cycle, potentially increasing their sensitivity to cisplatin. Since Mirk is upregulated in a large subset of human ovarian cancers, but is expressed at low levels in most normal tissues, and embryonic knockout of Mirk results in viable and fertile mice, targeting Mirk may sensitize ovarian cancers to lower levels of cisplatin, while sparing normal tissues.
Collapse
Affiliation(s)
- Jing Hu
- Pathology Department, Upstate Medical University, Syracuse, New York, 13210
| | | |
Collapse
|
67
|
Yabut O, Domogauer J, D'Arcangelo G. Dyrk1A overexpression inhibits proliferation and induces premature neuronal differentiation of neural progenitor cells. J Neurosci 2010; 30:4004-14. [PMID: 20237271 PMCID: PMC3842457 DOI: 10.1523/jneurosci.4711-09.2010] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2009] [Revised: 01/19/2010] [Accepted: 01/27/2010] [Indexed: 01/08/2023] Open
Abstract
Dyrk1A is a member of the mammalian Dyrk [dual-specificity tyrosine-(Y)-phosphorylation regulated kinase] family of protein kinases that is expressed at high levels in the brain, but its role in the development and function of this organ is not well understood. The human DYRK1A gene is located on trisomic chromosome 21 in Down syndrome (DS) patients, leading to its overexpression. Dyrk1A is also overexpressed in animal models of DS and in gene-specific transgenic mice that consistently exhibit cognitive impairment. To elucidate the cellular and molecular mechanisms that are affected by increased levels of Dyrk1A in the developing brain, we overexpressed this kinase in the embryonic mouse neocortex using the in utero electroporation technique. We found that Dyrk1A overexpression inhibits neural cell proliferation and promotes premature neuronal differentiation in the developing cerebral cortex without affecting cell fate and layer positioning. These effects are dependent on the Dyrk1A kinase activity and are mediated by the nuclear export and degradation of cyclin D1. This study identifies specific Dyrk1A-induced mechanisms that disrupt the normal process of corticogenesis and possibly contribute to cognitive impairment observed in DS patients and animal models.
Collapse
Affiliation(s)
- Odessa Yabut
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, and
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas 77030
| | - Jason Domogauer
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, and
| | - Gabriella D'Arcangelo
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, and
| |
Collapse
|
68
|
Jin K, Ewton DZ, Park S, Hu J, Friedman E. Mirk regulates the exit of colon cancer cells from quiescence. J Biol Chem 2009; 284:22916-25. [PMID: 19542220 PMCID: PMC2755699 DOI: 10.1074/jbc.m109.035519] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Revised: 06/18/2009] [Indexed: 01/12/2023] Open
Abstract
Mirk/Dyrk1B is a serine/threonine kinase widely expressed in colon cancers. Serum starvation induced HD6 colon carcinoma cells to enter a quiescent G0 state, characterized by a 2N DNA content and a lower RNA content than G1 cells. Compared with cycling cells, quiescent cells exhibited 16-fold higher levels of the retinoblastoma protein p130/Rb2, which sequesters E2F4 to block entry into G1, 10-fold elevated levels of the CDK inhibitor p27kip1, and 10-fold higher levels of Mirk. However, depletion of Mirk did not prevent entry into G0, but enabled quiescent HD6, SW480, and colo320 colon carcinoma cells to acquire some biochemical characteristics of G1 cells, including increased levels of cyclin D1 and cyclin D3 because of slower turnover, increased activity of their CDK4/cyclin D complexes, and increased phosphorylation and decreased E2F4 sequestering ability of the CDK4 target, p130/Rb2. As a result, depletion of Mirk allowed some cells to escape quiescence and enabled cells released from quiescence to traverse G1 more quickly. The kinase activity of Mirk was increased by the chemotherapeutic drug 5-fluorouracil (5-FU). Treatment of p53 mutant colon cancer cells with 5-FU led to an elongated G1 in a Mirk-dependent manner, as G1 was shortened by ectopic overexpression of cyclin D1 mutated at the Mirk phosphorylation site (T288A), but not by wild-type cyclin D1. Mirk, through regulating cyclin D turnover, and the CDK inhibitor p27, as shown by depletion studies, functioned independently and additively to regulate the exit of tumor cells from quiescence.
Collapse
Affiliation(s)
- Kideok Jin
- From the Pathology Department, Upstate Medical University of the State University of New York, Syracuse, New York 13210
| | - Daina Z. Ewton
- From the Pathology Department, Upstate Medical University of the State University of New York, Syracuse, New York 13210
| | - Sunju Park
- From the Pathology Department, Upstate Medical University of the State University of New York, Syracuse, New York 13210
| | - Jing Hu
- From the Pathology Department, Upstate Medical University of the State University of New York, Syracuse, New York 13210
| | - Eileen Friedman
- From the Pathology Department, Upstate Medical University of the State University of New York, Syracuse, New York 13210
| |
Collapse
|
69
|
He LM, Sartori DJ, Teta M, Opare-Addo LM, Rankin MM, Long SY, Diehl JA, Kushner JA. Cyclin D2 protein stability is regulated in pancreatic beta-cells. Mol Endocrinol 2009; 23:1865-75. [PMID: 19628581 DOI: 10.1210/me.2009-0057] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The molecular determinants of beta-cell mass expansion remain poorly understood. Cyclin D2 is the major D-type cyclin expressed in beta-cells, essential for adult beta-cell growth. We hypothesized that cyclin D2 could be actively regulated in beta-cells, which could allow mitogenic stimuli to influence beta-cell expansion. Cyclin D2 protein was sharply increased after partial pancreatectomy, but cyclin D2 mRNA was unchanged, suggesting posttranscriptional regulatory mechanisms influence cyclin D2 expression in beta-cells. Consistent with this hypothesis, cyclin D2 protein stability is powerfully regulated in fibroblasts. Threonine 280 of cyclin D2 is phosphorylated, and this residue critically limits D2 stability. We derived transgenic (tg) mice with threonine 280 of cyclin D2 mutated to alanine (T280A) or wild-type cyclin D2 under the control of the insulin promoter. Cyclin D2 T280A protein was expressed at much higher levels than wild-type cyclin D2 protein in beta-cells, despite equivalent expression of tg mRNAs. Cyclin D2 T280A tg mice exhibited a constitutively nuclear cyclin D2 localization in beta-cells, and increased cyclin D2 stability in islets. Interestingly, threonine 280-mutant cyclin D2 tg mice had greatly reduced beta-cell apoptosis, with suppressed expression of proapoptotic genes. Suppressed beta-cell apoptosis in threonine 280-mutant cyclin D2 tg mice resulted in greatly increased beta-cell area in aged mice. Taken together, these data indicate that cyclin D2 is regulated by protein stability in pancreatic beta-cells, that signals that act upon threonine 280 limit cyclin D2 stability in beta-cells, and that threonine 280-mutant cyclin D2 overexpression prolongs beta-cell survival and augments beta-cell mass expansion.
Collapse
Affiliation(s)
- Lu Mei He
- Division of Endocrinology and Diabetes, Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | | | |
Collapse
|
70
|
Deng X, Ewton DZ, Friedman E. Mirk/Dyrk1B maintains the viability of quiescent pancreatic cancer cells by reducing levels of reactive oxygen species. Cancer Res 2009; 69:3317-24. [PMID: 19351855 PMCID: PMC2669831 DOI: 10.1158/0008-5472.can-08-2903] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The kinase Mirk/dyrk1B mediated the clonogenic growth of pancreatic cancer cells in earlier studies. It is now shown that Mirk levels increased 7-fold in SU86.86 pancreatic cancer cells when over a third of the cells were accumulated in a quiescent G(0) state, defined by Hoechst/Pyronin Y staining. Depletion of Mirk by a doxycycline-inducible short hairpin RNA increased the G(0) fraction to approximately 50%, suggesting that Mirk provided some function in G(0). Mirk reduced the levels of reactive oxygen species (ROS) in quiescent cultures of SU86.86 cells and of Panc1 cells by increasing transcription of the antioxidant genes ferroxidase, superoxide dismutase (SOD)2, and SOD3. These genes were functional antioxidant genes in pancreatic cancer cells because ectopic expression of SOD2 and ferroxidase in Mirk-depleted cells lowered ROS levels. Quiescent pancreatic cancer cells quickly lost viability when depleted of Mirk because of elevated ROS levels, exhibiting up to 4-fold less colony-forming activity and 4-fold less capability for dye exclusion. As a result, reduction of ROS by N-acetyl cysteine led to more viable cells. Mirk also destabilizated cyclin D1 and D3 in quiescent cells. Thus, quiescent pancreatic cancer cells depleted of Mirk became less viable because they were damaged by ROS, and had increased levels of G(1) cyclins to prime cells to escape quiescence.
Collapse
Affiliation(s)
- Xiaobing Deng
- Pathology Department, Upstate Medical University, State University of New York, Syracuse, New York 13210, USA
| | | | | |
Collapse
|
71
|
Takahashi-Yanaga F, Sasaguri T. Drug development targeting the glycogen synthase kinase-3beta (GSK-3beta)-mediated signal transduction pathway: inhibitors of the Wnt/beta-catenin signaling pathway as novel anticancer drugs. J Pharmacol Sci 2009; 109:179-83. [PMID: 19179804 DOI: 10.1254/jphs.08r28fm] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Accumulating evidence suggests that the Wnt/beta-catenin signaling pathway is often involved in oncogenesis and cancer development. Accordingly, a novel anticancer drug can be developed using inhibitors of this pathway. However, at present, there is no selective inhibitor of this pathway available as a therapeutic agent. Although all the components of the Wnt/beta-catenin signaling pathway can be a target for drug development, glycogen synthase kinase-3beta (GSK-3beta), in particular, may be a good target because GSK-3beta is an essential component of the pathway, and activation of this kinase results in the inhibition of the Wnt signaling pathway. We found that the differentiation-inducing factors (DIFs), putative morphogens for Dictyostelium discoideum, inhibit the Wnt/beta-catenin signaling pathway via the activation of GSK-3beta, resulting in the cell-cycle arrest of human cancer cell lines. In this review, we summarize our recent findings on the antiproliferative effect of DIFs and show the possibility for development of a novel anticancer drug from DIFs and their derivatives.
Collapse
Affiliation(s)
- Fumi Takahashi-Yanaga
- Department of Clinical Pharmacology, Faculty of Medical Sciences, Kyushu University, Japan.
| | | |
Collapse
|
72
|
Choo DW, Baek HJ, Motoyama N, Cho KH, Kim HS, Kim SS. ATM is required for rapid degradation of cyclin D1 in response to gamma-irradiation. Biochem Biophys Res Commun 2008; 378:847-50. [PMID: 19071090 DOI: 10.1016/j.bbrc.2008.11.132] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Accepted: 11/30/2008] [Indexed: 11/17/2022]
Abstract
The cellular response to DNA damage induced by gamma-irradiation activates cell-cycle arrest to permit DNA repair and to prevent replication. Cyclin D1 is the key molecule for transition between the G1 and S phases of the cell-cycle, and amplification or overexpression of cyclin D1 plays pivotal roles in the development of several human cancers. To study the regulation of cyclin D1 in the DNA-damaged condition, we analyzed the proteolytic regulation of cyclin D1 expression upon gamma-irradiation. Upon gamma-irradiation, a rapid reduction in cyclin D1 levels was observed prior to p53 stabilization, indicating that the stability of cyclin D1 is controlled in a p53-independent manner. Further analysis revealed that irradiation facilitated ubiquitination of cyclin D1 and that a proteasome inhibitor blocked cyclin D1 degradation under the same conditions. Interestingly, after mutation of threonine residue 286 of cyclin D1, which is reported to be the GSK-3beta phosphorylation site, the mutant protein showed resistance to irradiation-induced proteolysis although inhibitors of GSK-3beta failed to prevent cyclin D1 degradation. Rather, ATM inhibition markedly prevented cyclin D1 degradation induced by gamma-irradiation. Our data indicate that communication between ATM and cyclin D1 may be required for maintenance of genomic integrity achieved by rapid arrest of the cell-cycle, and that disruption of this crosstalk may increase susceptibility to cancer.
Collapse
Affiliation(s)
- Dong Wan Choo
- Radiation Medicine Branch, National Cancer Center, Goyang-si, Gyeonggi-do, South Korea
| | | | | | | | | | | |
Collapse
|
73
|
ERK1/2 and p38 cooperate to delay progression through G1 by promoting cyclin D1 protein turnover. Cell Signal 2008; 20:1986-94. [DOI: 10.1016/j.cellsig.2008.07.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Accepted: 07/07/2008] [Indexed: 02/07/2023]
|
74
|
Schnier JB, Nishi K, Harley WR, Gorin FA. An acidic environment changes cyclin D1 localization and alters colony forming ability in gliomas. J Neurooncol 2008; 89:19-26. [PMID: 18404250 DOI: 10.1007/s11060-008-9591-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2007] [Accepted: 03/28/2008] [Indexed: 11/30/2022]
Abstract
The human glioma cell lines, U87 and T98G, were evaluated for their ability to survive and form colonies in an acidic environment of pH(ext) 6.0. In contrast to U87, which showed an 80-90% survival rate, only 40% of T98G cells survived 6 days at pH(ext) 6.0 and lost their colony forming ability when returned to a normocidic environment. Although both U87 and T98G cells maintain an intracellular pH (pH(i)) of 7.0 at pH(ext) 6.0 and arrest mostly in G1 phase of the cell cycle, only T98G demonstrated a major loss of cyclin D1 that was prevented by the proteasome inhibitor MG132. Colony forming ability was restored by stably transfecting T98G cells with a cyclin D1-expressing plasmid. Both U87 and T98G cells demonstrated increased cytoplasmic localization of cyclin D1 during exposure at pH(ext) 6.0. Upon prolonged (24 h) incubation at pH(ext) 6.0, nuclear cyclin D1 was nearly absent in T98G in contrast to U87 cells. Thus, an acidic environment triggers cytoplasmic localization and proteasomal degradation of cyclin D1.
Collapse
Affiliation(s)
- Joachim B Schnier
- Department of Biochemistry and Molecular Medicine, University of California-Davis, One Shields Ave, Davis, CA 95616, USA.
| | | | | | | |
Collapse
|
75
|
Takahashi-Yanaga F, Sasaguri T. GSK-3beta regulates cyclin D1 expression: a new target for chemotherapy. Cell Signal 2008; 20:581-9. [PMID: 18023328 DOI: 10.1016/j.cellsig.2007.10.018] [Citation(s) in RCA: 208] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2007] [Accepted: 10/16/2007] [Indexed: 11/26/2022]
Abstract
Cyclin D1 is known as a proto-oncogene whose gene amplification and protein overexpression are frequently observed in tumor cells. It acts as a mitogenic signal sensor and is expressed as a delayed-early response to many mitogenic signals. Cyclin-dependent kinases (CDKs) 4 and 6 are cyclin D1 binding partners, and activated cyclin D1/CDK4 and cyclin D1/CDK6 complex phosphorylate the retinoblastoma protein to induce the expression of target genes essential for S phase entry, resulting in facilitation of the progression from G1 to S phase. As well as acting as a positive regulator of the cell cycle, cyclin D1 is known to bind and modulate the actions of several transcription factors. Since the protein level of cyclin D1 reflects cell cycle progression, the rates of protein production and degradation are strictly regulated. Glycogen synthase kinase-3beta (GSK-3beta), a serine/threonine protein kinase, has been shown to play an important role in the determination of cyclin D1 expression level by regulating mRNA transcription and protein degradation. This review highlights the regulatory mechanisms of cyclin D1 expression level, with special attention to the involvement of GSK-3beta.
Collapse
Affiliation(s)
- Fumi Takahashi-Yanaga
- Department of Clinical Pharmacology, Faculty of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan.
| | | |
Collapse
|
76
|
Takahashi-Yanaga F, Sasaguri T. The Wnt/beta-catenin signaling pathway as a target in drug discovery. J Pharmacol Sci 2007; 104:293-302. [PMID: 17721040 DOI: 10.1254/jphs.cr0070024] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
The cell signaling cascades provoked by Wnt proteins (the Wnt signaling pathways), which are well conserved through evolution, play crucial roles to maintain homeostasis of a variety of tissues such as skin, blood, intestine, and brain, as well as to regulate proliferation, morphology, motility, and fate of cells during embryonic development. Among these pathways, the signal transduction through beta-catenin (the Wnt/beta-catenin signaling pathway) has been most intensively studied because this signal regulates the expression of a number of genes essential for cell proliferation and differentiation and also this pathway is perturbed in a number of diseases such as cancers, bone diseases, and cardiovascular diseases. However, there is no therapeutic agents that can selectively modulate the Wnt/beta-catenin signaling pathway, although some existing drugs (e.g., non-steroidal anti-inflammatory drugs, vitamins, and imatinib mesylate) have been suggested to inhibit this pathway. Here we provide an overview of the Wnt/beta-catenin signaling pathway: its roles in physiology and pathology and the possibility as a target in development of new drugs.
Collapse
Affiliation(s)
- Fumi Takahashi-Yanaga
- Department of Clinical Pharmacology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | | |
Collapse
|
77
|
Kim H, Jo C, Jang BG, Oh U, Jo SA. Oncostatin M induces growth arrest of skeletal muscle cells in G1 phase by regulating cyclin D1 protein level. Cell Signal 2007; 20:120-9. [PMID: 17976956 DOI: 10.1016/j.cellsig.2007.09.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2007] [Revised: 09/22/2007] [Accepted: 09/25/2007] [Indexed: 01/14/2023]
Abstract
Oncostatin M (OSM), an IL-6 family cytokine, either inhibits or enhances the growth of cells depending on cell type. Here, we report that OSM inhibits proliferation of skeletal muscle cells by blocking cell cycle progression from G(1) to S phase. OSM treatment significantly reduced levels of cyclin D1 protein and phosphorylation of retinoblastoma protein (Rb) at Ser-795, a CDK4-specific phosphorylation site. The OSM-induced cyclin D1 reduction correlated with decreased amount of the cyclin D1/p27 Kip1 complex and increased amounts of the CDK2/p27 Kip1 complex, resulting in inhibition of CDK2 activity. Results obtained with lactacystin, a proteasome inhibitor, demonstrated that cyclin D1 reduction occurred through ubiquitin/proteasome proteolysis. In addition, activation of STAT3, but not STAT1, is likely to regulate OSM-induced cyclin D1 reduction. Dominant negative (DN)-STAT3 blocked OSM-induced cyclin D1 reduction, and constitutively active-STAT3 also induced cyclin D1 reduction. These results suggest that OSM arrests skeletal muscle cell growth at the G1/S checkpoint and that this response occurs by an ubiquitin/proteasome-dependent cyclin D1 protein reduction which is regulated by STAT3.
Collapse
Affiliation(s)
- Hyuck Kim
- Division of Brain Disease, Center for Biomedical Sciences, National Institute of Health, Seoul 122-701, Republic of Korea
| | | | | | | | | |
Collapse
|
78
|
Abstract
Mirk/Dyrk1B is a member of a conserved family of serine/threonine kinases which are activated by intramolecular tyrosine phosphorylation, and which mediate differentiation in different tissues-Mirk in skeletal muscle, Dyrk1A in the brain, etc. One role of Mirk in skeletal muscle differentiation is to block cycling myoblasts in the G0 quiescent state by modification of cell cycle regulators, while another role of Mirk is to limit apoptosis in fusing myoblasts. Amplification of the Mirk gene, upregulation of Mirk expression and/or constitutive activation of this kinase have been observed in several different types of cancer. If coupled with a stress condition such as serum starvation which induces a quiescent state, depletion of Mirk by RNA interference using either synthetic duplex RNAi's or pSilencer-encoded RNAi's have decreased colony formation of different cancer cell lines and enhanced apoptosis induced by chemotherapeutic drugs. Mirk is activated by phosphorylation by the stress-activated SAPK kinases MKK3 and MKK6. Our working hypothesis is that Mirk is activated by this pathway in response to various stresses, and then acts as a checkpoint kinase to arrest damaged tumor cells in a quiescent state and allow cellular repair. Pharmacological inhibition of Mirk may enhance the anti-tumor effect of chemotherapeutic drugs.
Collapse
Affiliation(s)
- Eileen Friedman
- Pathology Department, Upstate Medical University, State University of New York, 750 East Adams Street, Syracuse, New York, USA.
| |
Collapse
|
79
|
Menon SG, Sarsour EH, Kalen AL, Venkataraman S, Hitchler MJ, Domann FE, Oberley LW, Goswami PC. Superoxide signaling mediates N-acetyl-L-cysteine-induced G1 arrest: regulatory role of cyclin D1 and manganese superoxide dismutase. Cancer Res 2007; 67:6392-9. [PMID: 17616699 DOI: 10.1158/0008-5472.can-07-0225] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Thiol antioxidants, including N-acetyl-L-cysteine (NAC), are widely used as modulators of the intracellular redox state. We investigated the hypothesis that NAC-induced reactive oxygen species (ROS) signaling perturbs cellular proliferation by regulating the cell cycle regulatory protein cyclin D1 and the ROS scavenging enzyme Mn-superoxide dismutase (MnSOD). When cultured in media containing NAC, mouse fibroblasts showed G(1) arrest with decreased cyclin D1 protein levels. The absence of a NAC-induced G(1) arrest in fibroblasts overexpressing cyclin D1 (or a nondegradable mutant of cyclin D1-T286A) indicates that cyclin D1 regulates this G(1) arrest. A delayed response to NAC exposure was an increase in both MnSOD protein and activity. NAC-induced G(1) arrest is exacerbated in MnSOD heterozygous fibroblasts. Results from electron spin resonance spectroscopy and flow cytometry measurements of dihydroethidine fluorescence showed an approximately 2-fold to 3-fold increase in the steady-state levels of superoxide (O(2)(*-)) in NAC-treated cells compared with control. Scavenging of O(2)(*-) with Tiron reversed the NAC-induced G(1) arrest. These results show that an O(2)(*-) signaling pathway regulates NAC-induced G(1) arrest by decreasing cyclin D1 protein levels and increasing MnSOD activity.
Collapse
Affiliation(s)
- Sarita G Menon
- Department of Microbiology and Immunology, State University of New York at Buffalo School of Medicine, Buffalo, New York, USA
| | | | | | | | | | | | | | | |
Collapse
|
80
|
Alao JP. The regulation of cyclin D1 degradation: roles in cancer development and the potential for therapeutic invention. Mol Cancer 2007; 6:24. [PMID: 17407548 PMCID: PMC1851974 DOI: 10.1186/1476-4598-6-24] [Citation(s) in RCA: 618] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2007] [Accepted: 04/02/2007] [Indexed: 12/15/2022] Open
Abstract
Cyclin D1 is an important regulator of cell cycle progression and can function as a transcriptionl co-regulator. The overexpression of cyclin D1 has been linked to the development and progression of cancer. Deregulated cyclin D1 degradation appears to be responsible for the increased levels of cyclin D1 in several cancers. Recent findings have identified novel mechanisms involved in the regulation of cyclin D1 stability. A number of therapeutic agents have been shown to induce cyclin D1 degradation. The therapeutic ablation of cyclin D1 may be useful for the prevention and treatment of cancer. In this review, current knowledge on the regulation of cyclin D1 degradation is discussed. Novel insights into cyclin D1 degradation are also discussed in the context of ablative therapy. A number of unresolved questions regarding the regulation of cellular cyclin D1 levels are also addressed.
Collapse
Affiliation(s)
- John P Alao
- Department of Cell and Molecular Biology, Lundberg Laboratory, Gothenburg University, Gothenburg, Sweden.
| |
Collapse
|
81
|
Nurtjahja-Tjendraputra E, Fu D, Phang JM, Richardson DR. Iron chelation regulates cyclin D1 expression via the proteasome: a link to iron deficiency-mediated growth suppression. Blood 2006; 109:4045-54. [PMID: 17197429 DOI: 10.1182/blood-2006-10-047753] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Iron (Fe) plays an important role in proliferation, and Fe deficiency results in G(1)/S arrest. Despite this, the precise role of Fe in cell-cycle control remains unclear. Cyclin D1 plays a critical function in G(1) progression by interacting with cyclin-dependent kinases. Previously, we examined the effect of Fe depletion on the expression of cell-cycle control molecules and identified a marked decrease in cyclin D1 protein, although the mechanism involved was unknown. In this study, we showed that cyclin D1 was regulated posttranscriptionally by Fe depletion. Iron chelation of cells in culture using desferrioxamine (DFO) or 2-hydroxy-1-naphthylaldehyde isonicotinoyl hydrazone (311) decreased cyclin D1 protein levels after 14 hours and was rescued by the addition of Fe. Cyclin D1 half-life in control cells was 80 +/- 15 minutes (n = 5), while in chelator-treated cells it was significantly (P < .008) decreased to 38 +/- 3 minutes (n = 5). Proteasomal inhibitors rescued the Fe chelator-mediated decrease in cyclin D1 protein, suggesting the role of the proteasome. In Fe-replete cells, cyclin D1 was degraded in an ubiquitin-dependent manner, while Fe depletion induced a ubiquitin-independent pathway. This is the first report linking Fe depletion-mediated growth suppression at G(1)/S to a mechanism inducing cyclin D1 proteolysis.
Collapse
Affiliation(s)
- Effie Nurtjahja-Tjendraputra
- Iron Metabolism and Chelation Program, Department of Pathology, University of Sydney, New South Wales 2006, Australia
| | | | | | | |
Collapse
|
82
|
Takahashi-Yanaga F, Mori J, Matsuzaki E, Watanabe Y, Hirata M, Miwa Y, Morimoto S, Sasaguri T. Involvement of GSK-3beta and DYRK1B in differentiation-inducing factor-3-induced phosphorylation of cyclin D1 in HeLa cells. J Biol Chem 2006; 281:38489-97. [PMID: 17046823 DOI: 10.1074/jbc.m605205200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Differentiation-inducing factors (DIFs) are putative morphogens that induce cell differentiation in Dictyostelium discoideum. We previously reported that DIF-3 activates glycogen synthase kinase-3beta (GSK-3beta), resulting in the degradation of cyclin D1 in HeLa cells. In this study, we investigated the effect of DIF-3 on cyclin D1 mutants (R29Q, L32A, T286A, T288A, and T286A/T288A) to clarify the precise mechanisms by which DIF-3 degrades cyclin D1 in HeLa cells. We revealed that T286A, T288A, and T286A/T288A mutants were resistant to DIF-3-induced degradation compared with wild-type cyclin D1, indicating that the phosphorylation of Thr(286) and Thr(288) were critical for cyclin D1 degradation induced by DIF-3. Indeed, DIF-3 markedly elevated the phosphorylation level of cyclin D1, and mutations introduced to Thr(286) and/or Thr(288) prevented the phosphorylation induced by DIF-3. Depletion of endogenous GSK-3beta and dual-specificity tyrosine phosphorylation regulated kinase 1B (DYRK1B) by RNA interference attenuated the DIF-3-induced cyclin D1 phosphorylation and degradation. The effect of DIF-3 on DYRK1B activity was examined and we found that DIF-3 also activated this kinase. Further, we found that not only GSK-3beta but also DYRK1B modulates cyclin D1 subcellular localization by the phosphorylation of Thr(288). These results suggest that DIF-3 induces degradation of cyclin D1 through the GSK-3beta- and DYRK1B-mediated threonine phosphorylation in HeLa cells.
Collapse
Affiliation(s)
- Fumi Takahashi-Yanaga
- Department of Clinical Pharmacology, Faculty of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
83
|
Yang K, Guo Y, Stacey WC, Harwalkar J, Fretthold J, Hitomi M, Stacey DW. Glycogen synthase kinase 3 has a limited role in cell cycle regulation of cyclin D1 levels. BMC Cell Biol 2006; 7:33. [PMID: 16942622 PMCID: PMC1592484 DOI: 10.1186/1471-2121-7-33] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2006] [Accepted: 08/30/2006] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND The expression level of cyclin D1 plays a vital role in the control of proliferation. This protein is reported to be degraded following phosphorylation by glycogen synthase kinase 3 (GSK3) on Thr-286. We recently showed that phosphorylation of Thr-286 is responsible for a decline in cyclin D1 levels during S phase, an event required for efficient DNA synthesis. These studies were undertaken to test the possibility that phosphorylation by GSK3 is responsible for the S phase specific decline in cyclin D1 levels, and that this event is regulated by the phosphatidylinositol 3-kinase (PI3K)/AKT signaling pathway which controls GSK3. RESULTS We found, however, that neither PI3K, AKT, GSK3, nor proliferative signaling activity in general is responsible for the S phase decline in cyclin D1 levels. In fact, the activity of these signaling kinases does not vary through the cell cycle of proliferating cells. Moreover, we found that GSK3 activity has little influence over cyclin D1 expression levels during any cell cycle phase. Inhibition of GSK3 activity by siRNA, LiCl, or other chemical inhibitors failed to influence cyclin D1 phosphorylation on Thr-286, even though LiCl efficiently blocked phosphorylation of beta-catenin, a known substrate of GSK3. Likewise, the expression of a constitutively active GSK3 mutant protein failed to influence cyclin D1 phosphorylation or total protein expression level. CONCLUSION Because we were unable to identify any proliferative signaling molecule or pathway which is regulated through the cell cycle, or which is able to influence cyclin D1 levels, we conclude that the suppression of cyclin D1 levels during S phase is regulated by cell cycle position rather than signaling activity. We propose that this mechanism guarantees the decline in cyclin D1 levels during each S phase; and that in so doing it reduces the likelihood that simple over expression of cyclin D1 can lead to uncontrolled cell growth.
Collapse
Affiliation(s)
- Ke Yang
- From the Department of Molecular Genetics, The Lerner Research Institute, The Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland OH, USA
| | - Yang Guo
- From the Department of Molecular Genetics, The Lerner Research Institute, The Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland OH, USA
| | - William C Stacey
- The Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Jyoti Harwalkar
- From the Department of Molecular Genetics, The Lerner Research Institute, The Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland OH, USA
| | - Jonathan Fretthold
- From the Department of Molecular Genetics, The Lerner Research Institute, The Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland OH, USA
| | - Masahiro Hitomi
- From the Department of Molecular Genetics, The Lerner Research Institute, The Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland OH, USA
| | - Dennis W Stacey
- From the Department of Molecular Genetics, The Lerner Research Institute, The Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland OH, USA
| |
Collapse
|
84
|
Kinstrie R, Lochhead P, Sibbet G, Morrice N, Cleghon V. dDYRK2 and Minibrain interact with the chromatin remodelling factors SNR1 and TRX. Biochem J 2006; 398:45-54. [PMID: 16671894 PMCID: PMC1525014 DOI: 10.1042/bj20060159] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The DYRKs (dual specificity tyrosine phosphorylation-regulated kinases) are a conserved family of protein kinases that autophosphorylate a tyrosine residue in their activation loop by an intra-molecular mechanism and phosphorylate exogenous substrates on serine/threonine residues. Little is known about the identity of true substrates for DYRK family members and their binding partners. To address this question, we used full-length dDYRK2 (Drosophila DYRK2) as bait in a yeast two-hybrid screen of a Drosophila embryo cDNA library. Of 14 independent dDYRK2 interacting clones identified, three were derived from the chromatin remodelling factor, SNR1 (Snf5-related 1), and three from the essential chromatin component, TRX (trithorax). The association of dDYRK2 with SNR1 and TRX was confirmed by co-immunoprecipitation studies. Deletion analysis showed that the C-terminus of dDYRK2 modulated the interaction with SNR1 and TRX. DYRK family member MNB (Minibrain) was also found to co-precipitate with SNR1 and TRX, associations that did not require the C-terminus of the molecule. dDYRK2 and MNB were also found to phosphorylate SNR1 at Thr102 in vitro and in vivo. This phosphorylation required the highly conserved DH-box (DYRK homology box) of dDYRK2, whereas the DH-box was not essential for phosphorylation by MNB. This is the first instance of phosphorylation of SNR1 or any of its homologues and implicates the DYRK family of kinases with a role in chromatin remodelling.
Collapse
Affiliation(s)
- Ross Kinstrie
- *The Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, Scotland, U.K
| | - Pamela A. Lochhead
- *The Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, Scotland, U.K
| | - Gary Sibbet
- *The Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, Scotland, U.K
| | - Nick Morrice
- †MRC Protein Phosphorylation Unit, School of Life Sciences, MSI/WTB Complex, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland, U.K
| | - Vaughn Cleghon
- *The Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, Scotland, U.K
- To whom correspondence should be addressed (email )
| |
Collapse
|
85
|
Abstract
In recent years, the intracellular oxidation-reduction (redox) state has gained increasing attention as a critical mediator of cell signaling, gene expression changes and proliferation. This review discusses the evidence for a redox cycle (i.e., fluctuation in the cellular redox state) regulating the cell cycle. The presence of redox-sensitive motifs (cysteine residues, metal co-factors in kinases and phosphatases) in several cell cycle regulatory proteins indicate periodic oscillations in intracellular redox state could play a central role in regulating progression from G0/G1 to S to G2 and M cell cycle phases. Fluctuations in the intracellular redox state during cell cycle progression could represent a fundamental mechanism linking oxidative metabolic processes to cell cycle regulatory processes. Proliferative disorders are central to a variety of human pathophysiological conditions thought to involve oxidative stress. Therefore, a more complete understanding of redox control of the cell cycle could provide a biochemical rationale for manipulating aberrant cell proliferation.
Collapse
Affiliation(s)
- S G Menon
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa, Iowa City, IA 52242, USA
| | | |
Collapse
|
86
|
Låhne HU, Kloster MM, Lefdal S, Blomhoff HK, Naderi S. Degradation of cyclin D3 independent of Thr-283 phosphorylation. Oncogene 2006; 25:2468-76. [PMID: 16331257 DOI: 10.1038/sj.onc.1209278] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Cyclin D3 has been shown to play a major role in the regulation of cell cycle progression in lymphocytes. It is therefore important to understand the mechanisms involved in the regulation of this protein. We have previously shown that both basal and cAMP-induced degradation of cyclin D3 in Reh cells is dependent on Thr-283 phosphorylation by glycogen synthase kinase-3beta (GSK-3beta). We now provide evidence of an alternative mechanism being involved in the regulation of cyclin D3 degradation. Treatment of lymphoid cells with okadaic acid (OA), an inhibitor of protein phosphatases 1 and 2A (PP1 and PP2A), induces rapid phosphorylation and proteasomal degradation of cyclin D3. This degradation is not inhibited by the GSK-3beta inhibitors lithium or Kenpaullone, or by substitution of Thr-283 with Ala on cyclin D3, indicating that cyclin D3 can be degraded independently of Thr-283 phosphorylation and GSK-3beta activity. Interestingly, in vitro experiments revealed that PP1, but not PP2A, was able to dephosphorylate cyclin D3 efficiently, and PP1 was found to associate with His-tagged cyclin D3. These results support the hypothesis that PP1 constitutively keeps cyclin D3 in a stable, dephosphorylated state, and that treatment of cells with OA leads to phosphorylation and degradation of cyclin D3 through inhibition of PP1.
Collapse
Affiliation(s)
- H U Låhne
- Department of Biochemistry, Institute of Basic Medical Sciences, University of Oslo, P.O. Box 1112 Blindern, Oslo, Norway
| | | | | | | | | |
Collapse
|
87
|
Mercer SE, Ewton DZ, Shah S, Naqvi A, Friedman E. Mirk/Dyrk1b mediates cell survival in rhabdomyosarcomas. Cancer Res 2006; 66:5143-50. [PMID: 16707437 DOI: 10.1158/0008-5472.can-05-1539] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Rhabdomyosarcoma is the most common sarcoma in children and is difficult to treat if the primary tumor is nonresectable or if the disease presents with metastases. The function of the serine/threonine kinase Mirk was investigated in this cancer. Mirk has both growth arrest and survival functions in terminally differentiating skeletal myoblasts. Maintenance of Mirk growth arrest properties would cause down-regulation of Mirk in transformed myoblasts. Alternatively, Mirk expression would be retained if rhabdomyosarcoma cells used Mirk survival capability. Mirk expression was significant in 12 of 16 clinical cases of rhabdomyosarcoma. Mirk was detected in each rhabdomyosarcoma cell line examined. Mirk was a functional kinase in each of three rhabdomyosarcoma cell lines, where it proved to be more active than in C2C12 skeletal myoblasts. Mirk mediated survival of the majority of clonogenic rhabdomyosarcoma cells. Knockdown of Mirk by RNA interference reduced the fraction of RD and of Rh30 rhabdomyosarcoma cells capable of colony formation 3- to 4-fold in multiple experiments. Depletion of Mirk induced cell death by apoptosis, as shown by increased numbers of terminal deoxynucleotidyl transferase-mediated nick-end labeling-positive cells and by increased binding of Annexin V. Mirk is a stress-activated kinase that mediates expression of contractile proteins in differentiating myoblasts, but Mirk is not essential for muscle formation in the embryo. It is likely that Mirk also facilitates survival of satellite cell-derived rhabdomyoblasts in regenerating skeletal muscle and aids their differentiation. This survival function is maintained in rhabdomyosarcoma, where Mirk may be a novel therapeutic target.
Collapse
Affiliation(s)
- Stephen E Mercer
- Department of Pathology, Upstate Medical University, State University of New York, Syracuse, New York 13210, USA
| | | | | | | | | |
Collapse
|
88
|
Deng X, Ewton DZ, Li S, Naqvi A, Mercer SE, Landas S, Friedman E. The kinase Mirk/Dyrk1B mediates cell survival in pancreatic ductal adenocarcinoma. Cancer Res 2006; 66:4149-58. [PMID: 16618736 DOI: 10.1158/0008-5472.can-05-3089] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Ductal adenocarcinoma of the pancreas is almost uniformly lethal as this cancer is invariably detected at an advanced stage and is resistant to treatment. The serine/threonine kinase Mirk/Dyrk1B has been shown to be antiapoptotic in rhabdomyosarcomas. We have now investigated whether Mirk might mediate survival in another cancer in which Mirk is widely expressed, pancreatic ductal adenocarcinoma. Mirk was an active kinase in each pancreatic cancer cell line where it was detected. Mirk knockdown by RNA interference (RNAi) reduced the clonogenicity of Panc1 pancreatic cancer cells 4-fold and decreased tumor cell number, showing that Mirk mediates survival in these cells. Mirk knockdown by synthetic duplex RNAis in Panc1, AsPc1, and SU86.86 pancreatic cancer cells induced apoptosis and enhanced the apoptosis induced by gemcitibine. Mirk knockdown did not increase the abundance or activation of Akt. However, four of five pancreatic carcinoma cell lines exhibited either elevated Mirk activity or elevated Akt activity, suggesting that pancreatic cancer cells primarily rely on Mirk or Akt for survival signaling. Mirk protein was detected by immunohistochemistry in 25 of 28 cases (89%) of pancreatic ductal adenocarcinoma, with elevated expression in 11 cases (39%). Increased expression of Mirk was seen in pancreatic carcinomas compared with primary cultures of normal ductal epithelium by serial analysis of gene expression and by immunohistochemistry. Thus, Mirk is a survival factor for pancreatic ductal adenocarcinoma. Because knockout of Mirk does not cause embryonic lethality, Mirk is not essential for normal cell growth and may represent a novel therapeutic target.
Collapse
Affiliation(s)
- Xiaobing Deng
- Department of Pathology, Upstate Medical University, State University of New York, Syracuse, New York 13210, USA
| | | | | | | | | | | | | |
Collapse
|
89
|
Fasanaro P, Magenta A, Zaccagnini G, Cicchillitti L, Fucile S, Eusebi F, Biglioli P, Capogrossi MC, Martelli F. Cyclin D1 degradation enhances endothelial cell survival upon oxidative stress. FASEB J 2006; 20:1242-4. [PMID: 16603604 DOI: 10.1096/fj.05-4695fje] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The understanding of endothelial cell responses to oxidative stress may provide insights into aging mechanisms and into the pathogenesis of numerous cardiovascular diseases. In this study, we examined the regulation and the functional role of cyclin D1, a crucial player in cell proliferation and survival. On H2O2 treatment, endothelial cells showed a rapid down-modulation of cyclin D1. Other D-cyclins were similarly regulated, and this decrease was also observed after exposure to other oxidative stress-inducing stimuli, namely 1,3-bis (2 chloroethyl)-1 nitrosourea treatment and ischemia. H2O2 treatment induced cyclin D1 ubiquitination followed by proteasome degradation. Phospholipase C inhibition prevented cyclin D1 degradation, and its activation triggered cyclin D1 down-modulation in the absence of oxidative stress. Activated phospholipase C generates inositol-1,4,5-trisphosphate (IP3) and Ca2+ release from internal stores. We found that both IP3-receptor inhibition and intracellular Ca2+ chelation prevented cyclin D1 degradation induced by oxidative stress. Furthermore, Ca2+ increase was transduced by Ca2+/calmodulin-dependent protein kinase (CaMK). In fact, H2O2 stimulated CaMK activity, CaMK inhibitors prevented H2O2-induced cyclin D1 down-modulation, and CaMK overexpression induced cyclin D1 degradation. Finally, overriding of cyclin D1 down-modulation via its forced overexpression or via CaMK inhibition increased cell sensitivity to H2O2-induced apoptotic cell death. Thus, cyclin D1 degradation enhances endothelial cell survival on oxidative stress.
Collapse
Affiliation(s)
- Pasquale Fasanaro
- Istituto Dermopatico dell'Immacolata-IRCCS, Via dei Monti di Creta 104, Rome 00167, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Alao JP, Stavropoulou AV, Lam EWF, Charles Coombes R, Vigushin DM. Histone deacetylase inhibitor, trichostatin A induces ubiquitin-dependent cyclin D1 degradation in MCF-7 breast cancer cells. Mol Cancer 2006; 5:8. [PMID: 16504004 PMCID: PMC1397858 DOI: 10.1186/1476-4598-5-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2005] [Accepted: 02/20/2006] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Cyclin D1 is an important regulator of G1-S phase cell cycle transition and has been shown to be important for breast cancer development. GSK3beta phosphorylates cyclin D1 on Thr-286, resulting in enhanced ubiquitylation, nuclear export and degradation of the cyclin in the cytoplasm. Recent findings suggest that the development of small-molecule cyclin D1 ablative agents is of clinical relevance. We have previously shown that the histone deacetylase inhibitor trichostatin A (TSA) induces the rapid ubiquitin-dependent degradation of cyclin D1 in MCF-7 breast cancer cells prior to repression of cyclin D1 gene (CCND1) transcription. TSA treatment also resulted in accumulation of polyubiquitylated GFP-cyclin D1 species and reduced levels of the recombinant protein within the nucleus. RESULTS Here we provide further evidence for TSA-induced ubiquitin-dependent degradation of cyclin D1 and demonstrate that GSK3beta-mediated nuclear export facilitates this activity. Our observations suggest that TSA treatment results in enhanced cyclin D1 degradation via the GSK3beta/CRM1-dependent nuclear export/26S proteasomal degradation pathway in MCF-7 cells. CONCLUSION We have demonstrated that rapid TSA-induced cyclin D1 degradation in MCF-7 cells requires GSK3beta-mediated Thr-286 phosphorylation and the ubiquitin-dependent 26S proteasome pathway. Drug induced cyclin D1 repression contributes to the inhibition of breast cancer cell proliferation and can sensitize cells to CDK and Akt inhibitors. In addition, anti-cyclin D1 therapy may be highly specific for treating human breast cancer. The development of potent and effective cyclin D1 ablative agents is therefore of clinical relevance. Our findings suggest that HDAC inhibitors may have therapeutic potential as small-molecule cyclin D1 ablative agents.
Collapse
Affiliation(s)
- John P Alao
- Department of Cancer Medicine, Cancer Cell Biology Section, Imperial College, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
| | - Alexandra V Stavropoulou
- Department of Cancer Medicine, Cancer Cell Biology Section, Imperial College, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
| | - Eric W-F Lam
- Department of Cancer Medicine, Cancer Cell Biology Section, Imperial College, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
| | - R Charles Coombes
- Department of Cancer Medicine, Cancer Cell Biology Section, Imperial College, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
| | - David M Vigushin
- Department of Cancer Medicine, Cancer Cell Biology Section, Imperial College, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
| |
Collapse
|
91
|
Alao JP, Gamble SC, Stavropoulou AV, Pomeranz KM, Lam EWF, Coombes RC, Vigushin DM. The cyclin D1 proto-oncogene is sequestered in the cytoplasm of mammalian cancer cell lines. Mol Cancer 2006; 5:7. [PMID: 16503970 PMCID: PMC1388232 DOI: 10.1186/1476-4598-5-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2005] [Accepted: 02/17/2006] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The cyclin D1 proto-oncogene is an important regulator of G1 to S-phase transition and an important cofactor for several transcription factors in numerous cell types. Studies on neonatal cardiomyocytes and postmitotic neurons indicate that the activity of cyclin D1 may be regulated through its cytoplasmic sequestration. We have demonstrated previously, that TSA induces the ubiquitin-dependent degradation of cyclin D1 in MCF-7 breast cancer cells. Additional studies were initiated in order to further investigate the effect of TSA on cyclin D1 regulation using sub-cellular fractionation techniques. RESULTS Our studies revealed cyclin D1 to be localized predominantly within the cytoplasmic fraction of all cell lines tested. These observations were confirmed by confocal microscopy. GSK3beta was found to be localized within both the nucleus and cytoplasm throughout the cell cycle. Inhibition of GSK3beta or CRM1-dependent nuclear export resulted in only modest nuclear accumulation, suggesting that the cytoplasmic localization of cyclin D1 results from the inhibition of its nuclear import. CONCLUSION We have shown by several different experimental approaches, that cyclin D1 is in fact a predominantly cytoplasmic protein in mammalian cancer cell lines. Recent studies have shown that the cytoplasmic sequestration of cyclin D1 prevents apoptosis in neuronal cells. Our results suggest that cytoplasmic sequestration may additionally serve to regulate cyclin D1 activity in mammalian cancer cells.
Collapse
Affiliation(s)
- John P Alao
- Department of Cancer Medicine, Cancer Cell Biology Section, Imperial College, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
| | - Simon C Gamble
- Department of Cancer Medicine, Cancer Cell Biology Section, Imperial College, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
| | - Alexandra V Stavropoulou
- Department of Cancer Medicine, Cancer Cell Biology Section, Imperial College, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
| | - Karen M Pomeranz
- Department of Cancer Medicine, Cancer Cell Biology Section, Imperial College, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
| | - Eric W-F Lam
- Department of Cancer Medicine, Cancer Cell Biology Section, Imperial College, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
| | - R Charles Coombes
- Department of Cancer Medicine, Cancer Cell Biology Section, Imperial College, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
| | - David M Vigushin
- Department of Cancer Medicine, Cancer Cell Biology Section, Imperial College, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
| |
Collapse
|
92
|
Stitzel ML, Pellettieri J, Seydoux G. The C. elegans DYRK Kinase MBK-2 Marks Oocyte Proteins for Degradation in Response to Meiotic Maturation. Curr Biol 2005; 16:56-62. [PMID: 16338136 DOI: 10.1016/j.cub.2005.11.063] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2005] [Revised: 11/17/2005] [Accepted: 11/23/2005] [Indexed: 02/02/2023]
Abstract
The oocyte-to-embryo transition transforms a differentiated germ cell into a totipotent zygote capable of somatic development. In C. elegans, several oocyte proteins, including the meiotic katanin subunit MEI-1 and the oocyte maturation protein OMA-1, must be degraded during this transition . Degradation of MEI-1 and OMA-1 requires the dual-specificity YAK-1-related (DYRK) kinase MBK-2 . Here, we demonstrate that MBK-2 directly phosphorylates MEI-1 and OMA-1 in vitro and that this activity is essential for degradation in vivo. Phosphorylation of MEI-1 by MBK-2 reaches maximal levels after the meiotic divisions, immediately preceding MEI-1 degradation. MEI-1 phosphorylation and degradation still occur in spe-9 eggs, which undergo meiotic maturation and exit in the absence of fertilization . In contrast, MEI-1 phosphorylation and degradation are blocked in cell-cycle mutants that arrest during the meiotic divisions, and are accelerated in wee-1.3(RNAi) oocytes, which prematurely enter meiotic M phase (A. Golden, personal communication). A GFP:MBK-2 fusion relocalizes from the cortex to the cytoplasm during the meiotic divisions, and this relocalization also depends on cell-cycle progression. Our findings suggest that regulators of meiotic M phase activate a remodeling program, independently of fertilization, to prepare eggs for embryogenesis.
Collapse
Affiliation(s)
- Michael L Stitzel
- Howard Hughes Medical Institute and Department of Molecular Biology and Genetics, Johns Hopkins School of Medicine, 725 N. Wolfe St., PCTB 706, Baltimore, Maryland 21205, USA
| | | | | |
Collapse
|
93
|
Nishi Y, Lin R. DYRK2 and GSK-3 phosphorylate and promote the timely degradation of OMA-1, a key regulator of the oocyte-to-embryo transition in C. elegans. Dev Biol 2005; 288:139-49. [PMID: 16289132 DOI: 10.1016/j.ydbio.2005.09.053] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2005] [Revised: 09/27/2005] [Accepted: 09/27/2005] [Indexed: 11/23/2022]
Abstract
Oocyte maturation and fertilization initiates a dynamic and tightly regulated process in which a non-dividing oocyte is transformed into a rapidly dividing embryo. We have shown previously that two C. elegans CCCH zinc finger proteins, OMA-1 and OMA-2, have an essential and redundant function in oocyte maturation. Both OMA-1 and OMA-2 are expressed only in oocytes and 1-cell embryos, and need to be degraded rapidly after the first mitotic division for embryogenesis to proceed normally. We report here a distinct redundant function for OMA-1 and OMA-2 in the 1-cell embryo. Depletion of both oma-1 and oma-2 in embryos leads to embryonic lethality. We also show that OMA-1 protein is directly phosphorylated at T239 by the DYRK kinase MBK-2, and that phosphorylation at T239 is required both for OMA-1 function in the 1-cell embryo and its degradation after the first mitosis. OMA-1 phosphorylated at T239 is only detected within a short developmental window of 1-cell embryos, beginning soon after the proposed activation of MBK-2. Phosphorylation at T239 facilitates subsequent phosphorylation of OMA-1 by another kinase, GSK-3, at T339 in vitro. Phosphorylation at both T239 and T339 are essential for correctly-timed OMA-1 degradation in vivo. We propose that a series of precisely-timed phosphorylation events regulates both the activity and the timing of degradation for OMA proteins, thereby allowing restricted and distinct functions of OMA-1 and OMA-2 in the maturing oocyte and 1-cell embryo, ensuring a normal oocyte-to-embryo transition in C. elegans.
Collapse
Affiliation(s)
- Yuichi Nishi
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX 75390-9148, USA
| | | |
Collapse
|
94
|
Mori J, Takahashi-Yanaga F, Miwa Y, Watanabe Y, Hirata M, Morimoto S, Shirasuna K, Sasaguri T. Differentiation-inducing factor-1 induces cyclin D1 degradation through the phosphorylation of Thr286 in squamous cell carcinoma. Exp Cell Res 2005; 310:426-33. [PMID: 16153639 DOI: 10.1016/j.yexcr.2005.07.024] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2004] [Revised: 07/25/2005] [Accepted: 07/29/2005] [Indexed: 11/27/2022]
Abstract
Differentiation-inducing factors (DIFs) are morphogens which induce cell differentiation in Dictyostelium. We reported that DIF-1 and DIF-3 inhibit proliferation and induce differentiation in mammalian cells. In this study, we investigated the effect of DIF-1 on oral squamous cell carcinoma cell lines NA and SAS, well differentiated and poorly differentiated cell lines, respectively. Although DIF-1 did not induce the expression of cell differentiation makers in these cell lines, it inhibited the proliferation of NA and SAS in a dose-dependent manner by restricting the cell cycle in the G0/G1 phase. DIF-1 induced cyclin D1 degradation, but this effect was prevented by treatment with lithium chloride and SB216763, the inhibitors of glycogen synthase kinase-3beta (GSK-3beta). Depletion of endogenous GSK-3beta by RNA interference also attenuated the effect of DIF-1 on cyclin D1 degradation. Therefore, we investigated the effect of DIF-1 on GSK-3beta and found that DIF-1 dephosphorylated GSK-3beta on Ser9 and induced the nuclear translocation of GSK-3beta, suggesting that DIF-1 activated GSK-3beta. Then, we examined the effect of DIF-1 on cyclin D1 mutants (Thr286Ala, Thr288Ala, and Thr286/288Ala). We revealed that Thr286Ala and Thr286/288Ala mutants were highly resistant to DIF-1-induced degradation compared with wild-type cyclin D1, indicating that the phosphorylation of Thr286 was critical for cyclin D1 degradation induced by DIF-1. These results suggest that DIF-1 induces degradation of cyclin D1 through the GSK-3beta-mediated phosphorylation of Thr286.
Collapse
Affiliation(s)
- Jun Mori
- Department of Clinical Pharmacology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | | | |
Collapse
|
95
|
Kwak YT, Li R, Becerra CR, Tripathy D, Frenkel EP, Verma UN. IκB Kinase α Regulates Subcellular Distribution and Turnover of Cyclin D1 by Phosphorylation. J Biol Chem 2005; 280:33945-52. [PMID: 16103118 DOI: 10.1074/jbc.m506206200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
IkappaB kinases (IKKs), IKKalpha and IKKbeta, with a regulatory subunit IKKgamma/NEMO constitute a high molecular weight IKK complex that regulates NF-kappaB activity. Although IKKalpha and IKKbeta share structural and biochemical similarities, IKKalpha has been shown to have distinct biological roles. Here we show that IKKalpha plays a critical role in regulating cyclin D1 during the cell cycle. Analysis of IKKalpha-/- mouse embryo fibroblast cells showed that cyclin D1 is overexpressed and localized in the nucleus compared with parental mouse embryo fibroblasts. IKKalpha associates with and phosphorylates cyclin D1. Analysis on cyclin D1 mutants demonstrated that IKKalpha phosphorylates cyclin D1 at Thr286. Reconstitution of IKKalpha in knockout cells leads to nuclear export and increased degradation of cyclin D1. Further, RNAi-mediated knockdown of IKKalpha results in similar changes as observed in IKKalpha-/- cells. These results suggest a novel role of IKKalpha in regulating subcellular localization and proteolysis of cyclin D1 by phosphorylation of cyclin D1 at Thr286, the same residue earlier found to be a target for glycogen synthase kinase-3beta-induced phosphorylation.
Collapse
Affiliation(s)
- Youn-Tae Kwak
- University of Texas Southwestern Medical Center at Dallas [corrected] USA
| | | | | | | | | | | |
Collapse
|
96
|
Ma Y, Feng Q, Sekula D, Diehl JA, Freemantle SJ, Dmitrovsky E. Retinoid Targeting of Different D-Type Cyclins through Distinct Chemopreventive Mechanisms. Cancer Res 2005; 65:6476-83. [PMID: 16024653 DOI: 10.1158/0008-5472.can-05-0370] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
D-type cyclins (cyclins D1, D2, and D3) promote G1-S progression and are aberrantly expressed in cancer. We reported previously that all-trans-retinoic acid chemo-prevented carcinogenic transformation of human bronchial epithelial (HBE) cells through proteasomal degradation of cyclin D1. Retinoic acid is shown here to activate distinct mechanisms to regulate different D-type cyclins in HBE cells. Retinoic acid increased cyclin D2, decreased cyclin D3 and had no effect on cyclin D1 mRNA expression. Retinoic acid decreased cyclin D1 and cyclin D3 protein expression. Repression of cyclin D3 protein preceded that of cyclin D3 mRNA. Proteasomal inhibition prevented the early cyclin D3 degradation by retinoic acid. Threonine 286 (T286) mutation of cyclin D1 stabilized cyclin D1, but a homologous mutation of cyclin D3 affecting threonine 283 did not affect cyclin D3 stability, despite retinoic acid treatment. Lithium chloride and SB216763, both glycogen synthase kinase 3 (GSK3) inhibitors, inhibited retinoic acid repression of cyclin D1, but not cyclin D3 proteins. Notably, phospho-T286 cyclin D1 expression was inhibited by lithium chloride, implicating GSK3 in these effects. Expression of cyclin D1 and cyclin D3 was deregulated in retinoic acid-resistant HBE cells, directly implicating these species in retinoic acid response. D-type cyclins were independently targeted using small interfering RNAs. Repression of each D-type cyclin suppressed HBE growth. Repression of all D-type cyclins cooperatively suppressed HBE growth. Thus, retinoic acid repressed cyclin D1 and cyclin D3 through distinct mechanisms. GSK3 plays a key role in retinoid regulation of cyclin D1. Taken together, these findings highlight these cyclins as molecular pharmacologic targets for cancer chemoprevention.
Collapse
Affiliation(s)
- Yan Ma
- Department of Pharmacology and Toxicology, Norris Cotton Cancer Center, Dartmouth Medical School, Hanover, New Hampshire 03755, USA
| | | | | | | | | | | |
Collapse
|
97
|
Mercer SE, Ewton DZ, Deng X, Lim S, Mazur TR, Friedman E. Mirk/Dyrk1B mediates survival during the differentiation of C2C12 myoblasts. J Biol Chem 2005; 280:25788-801. [PMID: 15851482 PMCID: PMC1201501 DOI: 10.1074/jbc.m413594200] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The kinase Mirk/dyrk1B is essential for the differentiation of C2C12 myoblasts. Mirk reinforces the G0/G1 arrest state in which differentiation occurs by directly phosphorylating and stabilizing p27(Kip1) and destabilizing cyclin D1. We now demonstrate that Mirk is anti-apoptotic in myoblasts. Knockdown of endogenous Mirk by RNA interference activated caspase 3 and decreased myoblast survival by 75%, whereas transient overexpression of Mirk increased cell survival. Mirk exerts its anti-apoptotic effects during muscle differentiation at least in part through effects on the cell cycle inhibitor and pro-survival molecule p21(Cip1). Overexpression and RNA interference experiments demonstrated that Mirk phosphorylates p21 within its nuclear localization domain at Ser-153 causing a portion of the typically nuclear p21 to localize in the cytoplasm. Phosphomimetic GFP-p21-S153D was pancellular in both cycling C2C12 myoblasts and NIH3T3 cells. Endogenous Mirk in myotubes and overexpressed Mirk in NIH3T3 cells were able to cause the pancellular localization of wild-type GFP-p21 but not the nonphosphorylatable mutant GFP-p21-S153A. Translocation to the cytoplasm enables p21 to block apoptosis through inhibitory interaction with pro-apoptotic molecules. Phosphomimetic p21-S153D was more effective than wild-type p21 in blocking the activation of caspase 3. Transient expression of p21-S153D also increased myoblast viability in colony forming assays, whereas the p21-S153A mutant had no effect. This Mirk-dependent change in p21 intracellular localization is a natural part of myoblast differentiation. Endogenous p21 localized exclusively to the nuclei of proliferating myoblasts but was also found in the cytoplasm of post-mitotic multinucleated myotubes and adult human skeletal myofibers.
Collapse
Affiliation(s)
| | | | | | | | | | - Eileen Friedman
- Department of Pathology, Upstate Medical University, SUNY, Syracuse, New York 13210
| |
Collapse
|
98
|
Deng X, Ewton DZ, Mercer SE, Friedman E. Mirk/dyrk1B decreases the nuclear accumulation of class II histone deacetylases during skeletal muscle differentiation. J Biol Chem 2005; 280:4894-905. [PMID: 15546868 DOI: 10.1074/jbc.m411894200] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mirk/dyrk1B is a member of the dyrk/minibrain family of serine/threonine kinases that mediate the transition from growth to differentiation in lower eukaryotes and mammals. Depletion of endogenous Mirk from C2C12 myoblasts by RNA interference blocks skeletal muscle differentiation (Deng, X., Ewton, D., Pawlikowski, B., Maimone, M., and Friedman, E. (2003) J. Biol. Chem. 278, 41347-41354). We now demonstrate that knockdown of Mirk blocks transcription of the muscle regulatory factor myogenin. Co-expression of Mirk with MEF2C, but not MyoD or Myf5, enhanced activation of the myogenin promoter in a Mirk kinase-dependent manner. Mirk activated MEF2 not through direct phosphorylation of MEF2 but by phosphorylation of its inhibitors, the class II histone deacetylases (HDACs). MEF2 is sequestered by class II HDACs such as HDAC5 and MEF2-interacting transcriptional repressor (MITR). Mirk antagonized the inhibition of MEF2C by MITR, whereas kinase-inactive Mirk was ineffective. Mirk phosphorylates class II HDACs at a conserved site within the nuclear localization region, reducing their nuclear accumulation in a dose-dependent and kinase-dependent manner. Moreover, less mutant MITR phosphomimetic at the Mirk phosphorylation site localized in the nucleus than wild-type MITR. Regulation of class II HDACs occurs by multiple mechanisms. Others have shown that calcium signaling leads to phosphorylation of HDACs at 14-3-3-binding sites, blocking their association with MEF2 within the nucleus. Mirk provides another level of regulation. Mirk is induced within the initial 24 h of myogenic differentiation and enables MEF2 to transcribe the myogenin gene by decreasing the nuclear accumulation of class II HDACs.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Binding Sites
- Blotting, Northern
- Butyrates/pharmacology
- Cell Differentiation
- Cell Line
- Cell Nucleus/metabolism
- DNA/chemistry
- DNA-Binding Proteins/metabolism
- Dose-Response Relationship, Drug
- Down-Regulation
- Electrophoresis, Polyacrylamide Gel
- Gene Expression Regulation, Enzymologic
- Glutathione Transferase/metabolism
- Histone Deacetylases/metabolism
- Luciferases/metabolism
- MEF2 Transcription Factors
- Mice
- Mitogen-Activated Protein Kinases/biosynthesis
- Molecular Sequence Data
- Muscle Proteins/metabolism
- Muscle, Skeletal/cytology
- Muscle, Skeletal/metabolism
- MyoD Protein/metabolism
- Myogenic Regulatory Factor 5
- Myogenic Regulatory Factors/metabolism
- Myogenin/genetics
- Myogenin/metabolism
- NIH 3T3 Cells
- Oligonucleotide Array Sequence Analysis
- Phosphorylation
- Plasmids/metabolism
- Promoter Regions, Genetic
- Protein Serine-Threonine Kinases/biosynthesis
- Protein-Tyrosine Kinases/biosynthesis
- RNA Interference
- RNA, Messenger/metabolism
- RNA, Small Interfering/metabolism
- Recombinant Fusion Proteins/metabolism
- Sequence Homology, Amino Acid
- Subcellular Fractions
- Trans-Activators/metabolism
- Transcription Factors
- Transcription, Genetic
- Transfection
- Up-Regulation
- Dyrk Kinases
Collapse
Affiliation(s)
- Xiaobing Deng
- Department of Pathology, Upstate Medical University, State University of New York, Syracuse, New York 13210, USA
| | | | | | | |
Collapse
|
99
|
Skildum A, Faivre E, Lange CA. Progesterone receptors induce cell cycle progression via activation of mitogen-activated protein kinases. Mol Endocrinol 2004; 19:327-39. [PMID: 15486045 DOI: 10.1210/me.2004-0306] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Progestins induce proliferation of breast cancer cells and are implicated in the development of breast cancer. The effects of progestins are mediated by progesterone receptors (PRs), although it is unclear whether proliferative effects are delivered through activities as ligand-activated transcription factors or via activation of cytoplasmic kinases. We report that progestin induces S phase entry of T47D cells stably expressing either wild-type (wt) PR-B or a transcriptionally impaired PR-B harboring a point mutation at Ser294, a ligand-dependent and MAPK consensus phosphorylation site (S294A). Both wt and S294A PR are capable of activating p42/p44 MAPKs and promoting proliferation. However, cells expressing wt, but not S294A PR, exhibited enhanced proliferation in response to combined epidermal growth factor and progestin. S phase progression correlated with up-regulation of cyclin D1. The PR antagonist RU486 also induced MAPK activation, increased cyclin D1 expression, and stimulated S phase entry, which was blocked by inhibition of either p42/p44 or p38 MAPKs, whereas proliferation induced by R5020 was sensitive only to p42/p44 MAPK inhibition. MCF-7 cells stably expressing a mutant PR unable to bind c-Src and activate MAPK failed to support progestin-induced proliferation. These data suggest that PR mediate cell cycle progression primarily through activation of cytoplasmic kinases and independently of direct regulation of transcription, whereas the coordinate regulation of both aspects of PR action are required for enhanced proliferation in response to progestins in the presence of growth factors. Targeting the ability of steroid receptors to activate MAPKs may be beneficial for breast cancer patients.
Collapse
Affiliation(s)
- Andrew Skildum
- Department of Medicine, Division of Hematology, Oncology, and Transplantation, University of Minnesota Cancer Center, MMC 806, 420 Delaware Street SE, Minneapolis, Minnesota 55455, USA
| | | | | |
Collapse
|