51
|
Lombardi A, Grasso P, Moreno M, de Lange P, Silvestri E, Lanni A, Goglia F. Interrelated influence of superoxides and free fatty acids over mitochondrial uncoupling in skeletal muscle. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2008; 1777:826-33. [PMID: 18471434 DOI: 10.1016/j.bbabio.2008.04.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2007] [Revised: 03/21/2008] [Accepted: 04/14/2008] [Indexed: 10/22/2022]
Abstract
Mitochondrial uncoupling protein 3 (UCP(3))-mediated uncoupling has been postulated to depend on several factors, including superoxides, free fatty acids (FFAs), and fatty acid hydroperoxides and/or their derivatives. We investigated whether there is an interrelation between endogenous mitochondrial superoxides and fatty acids in inducing skeletal muscle mitochondrial uncoupling, and we speculated on the possible involvement of UCP(3) in this process. In the absence of FFAs, no differences in proton-leak kinetic were detected between succinate-energized mitochondria respiring in the absence or presence of rotenone, despite a large difference in complex I superoxide production. The addition of either arachidic acid or arachidonic acid induced an increase in proton-leak kinetic, with arachidonic acid having the more marked effect. The uncoupling effect of arachidic acid was independent of the presence of GDP, rotenone and vitamin E, while that of arachidonic acid was dependent on these factors. These data demonstrate that FFA and O(2-) play interrelated roles in inducing mitochondrial uncoupling, and we hypothesize that a likely formation of mitochondrial fatty acid hydroperoxides is a key event in the arachidonic acid-induced GDP-dependent inhibition of mitochondrial uncoupling.
Collapse
Affiliation(s)
- Assunta Lombardi
- Dipartimento delle Scienze Biologiche, Sezione Fisiologia, Università degli Studi di Napoli Federico II, Via Mezzocannone 8, 80134 Napoli, Italy
| | | | | | | | | | | | | |
Collapse
|
52
|
Ramsay T, Mitchell A. Impact of dietary protein content on uncoupling protein mRNA abundance in swine. Comp Biochem Physiol B Biochem Mol Biol 2008; 149:562-71. [DOI: 10.1016/j.cbpb.2007.11.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2007] [Revised: 11/08/2007] [Accepted: 11/08/2007] [Indexed: 11/26/2022]
|
53
|
Sigolo CAO, Di Mascio P, Kowaltowski AJ, Garcia CCM, Medeiros MHG. trans,trans-2,4-decadienal induces mitochondrial dysfunction and oxidative stress. J Bioenerg Biomembr 2008; 40:103-9. [DOI: 10.1007/s10863-008-9137-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2008] [Accepted: 02/27/2008] [Indexed: 01/08/2023]
|
54
|
Graier WF, Trenker M, Malli R. Mitochondrial Ca2+, the secret behind the function of uncoupling proteins 2 and 3? Cell Calcium 2008; 44:36-50. [PMID: 18282596 DOI: 10.1016/j.ceca.2008.01.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2007] [Revised: 01/07/2008] [Accepted: 01/07/2008] [Indexed: 12/20/2022]
Abstract
The underlying molecular action of the novel uncoupling proteins 2 and 3 (UCP2 and UCP3) is still under debate. The proteins have been implicated in many cell functions, including the regulation of insulin secretion and regulation of reactive oxygen species (ROS) generation. These effects have mainly been explained by suggesting that the proteins establish a proton leak through the inner mitochondrial membrane (IMM). However, accumulating data question this mechanism and suggest that UCP2 and UCP3 may play other roles, including carrying free fatty acids from the matrix towards the intermembrane space, or contributing to the mitochondrial Ca(2+) uniport. Accordingly, in this review we reflect on these actions of UCP2/UCP3 and discuss alternative explanations for the molecular mechanisms by which UCP2/UCP3 might contribute to aspects of cell function. Based on the potential role of UCP2/UCP3 in regulating mitochondrial Ca(2+) uptake, we propose a scheme whereby these proteins integrate Ca(2+)-dependent signal transduction and energy metabolism in order to meet the energy demand of the cell for its continuous response, adaptation, and stimulation to environmental input.
Collapse
Affiliation(s)
- Wolfgang F Graier
- Institute of Molecular Biology and Biochemistry, Molecular and Cellular Physiology Research Unit, Center of Molecular Medicine, Medical University of Graz, Harrachgasse 21/III, Graz, Austria.
| | | | | |
Collapse
|
55
|
Carreira RS, Miyamoto S, Di Mascio P, Gonçalves LM, Monteiro P, Providência LA, Kowaltowski AJ. Ischemic preconditioning enhances fatty acid-dependent mitochondrial uncoupling. J Bioenerg Biomembr 2007; 39:313-20. [PMID: 17917798 DOI: 10.1007/s10863-007-9093-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2007] [Accepted: 05/29/2007] [Indexed: 01/23/2023]
Abstract
This study tests the hypothesis that ischemic preconditioning (IP) changes fatty acid (FA)-dependent uncoupling between mitochondrial respiration and oxidative phosphorylation. We found that IP does not alter mitochondrial membrane integrity or FA levels, but enhances membrane potential decreases when FA are present, in an ATP-sensitive manner. FA hydroperoxides had equal effects in control and preconditioned mitochondria, and GTP did not abrogate the IP effect, suggesting uncoupling proteins were not involved. Conversely, thiol reductants and atractyloside, which inhibits the adenine nucleotide translocator, eliminated the differences in responses to FA. Together, our results suggest that IP leads to thiol oxidation and activation of the adenine nucleotide translocator, resulting in enhanced FA transport and mild mitochondrial uncoupling.
Collapse
Affiliation(s)
- Raquel S Carreira
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, Cidade Universitária, 05508-900 São Paulo, São Paulo, Brazil
| | | | | | | | | | | | | |
Collapse
|
56
|
Boudina S, Sena S, Theobald H, Sheng X, Wright JJ, Hu XX, Aziz S, Johnson JI, Bugger H, Zaha VG, Abel ED. Mitochondrial energetics in the heart in obesity-related diabetes: direct evidence for increased uncoupled respiration and activation of uncoupling proteins. Diabetes 2007; 56:2457-66. [PMID: 17623815 DOI: 10.2337/db07-0481] [Citation(s) in RCA: 451] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE In obesity and diabetes, myocardial fatty acid utilization and myocardial oxygen consumption (MVo(2)) are increased, and cardiac efficiency is reduced. Mitochondrial uncoupling has been proposed to contribute to these metabolic abnormalities but has not been directly demonstrated. RESEARCH DESIGN AND METHODS Oxygen consumption and cardiac function were determined in db/db hearts perfused with glucose or glucose and palmitate. Mitochondrial function was determined in saponin-permeabilized fibers and proton leak kinetics and H(2)O(2) generation determined in isolated mitochondria. RESULTS db/db hearts exhibited reduced cardiac function and increased MVo(2). Mitochondrial reactive oxygen species (ROS) generation and lipid and protein peroxidation products were increased. Mitochondrial proliferation was increased in db/db hearts, oxidative phosphorylation capacity was impaired, but H(2)O(2) production was increased. Mitochondria from db/db mice exhibited fatty acid-induced mitochondrial uncoupling that is inhibitable by GDP, suggesting that these changes are mediated by uncoupling proteins (UCPs). Mitochondrial uncoupling was not associated with an increase in UCP content, but fatty acid oxidation genes and expression of electron transfer flavoproteins were increased, whereas the content of the F1 alpha-subunit of ATP synthase was reduced. CONCLUSIONS These data demonstrate that mitochondrial uncoupling in the heart in obesity and diabetes is mediated by activation of UCPs independently of changes in expression levels. This likely occurs on the basis of increased delivery of reducing equivalents from beta-oxidation to the electron transport chain, which coupled with decreased oxidative phosphorylation capacity increases ROS production and lipid peroxidation.
Collapse
Affiliation(s)
- Sihem Boudina
- Division of Endocrinology, Metabolism, and Diabetes, Program in Human Molecular Biology and Genetics, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Sigolo CAO, Di Mascio P, Medeiros MHG. Covalent modification of cytochrome c exposed to trans,trans-2,4-decadienal. Chem Res Toxicol 2007; 20:1099-110. [PMID: 17658762 DOI: 10.1021/tx700111v] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Modification of biomolecules by reactive aldehydes is believed to play a role in biological processes, including aging, atherosclerosis, and Alzheimer's disease. Here, the modification of cytochrome c promoted by trans, trans-2,4-decadienal (DDE) was investigated. Matrix-assisted laser desorption/ionization time-of-flight experiments indicated increases in the molecular weight of cytochrome c, consistent with the formation of DDE adducts. Our data show that the protein modification was time-, pH-, and DDE concentration-dependent, leading to the formation of at least six adducts after 2 h of incubation at pH 7.4. Electrospray ionization quantitative TOF mass spectrometry analysis of tryptic digests indicated that His-33, Lys-39, Lys-72, and Lys-100 were modified by DDE. These adducts could have significant effects considering that His-33, Lys-72, and Lys-100 are present in clusters of basic amino acid residues, which are believed to participate in the interaction of cytochrome c with cardiolipin in the inner mitochondrial membrane and cytochrome c oxidase. A blue shift in the cytochrome c Soret band from 409 to 406 nm was also observed after DDE reaction, indicating heme crevice opening and displacement of heme sixth ligand (Met-80) coordination in modified protein. The covalent modifications in cytochrome c could play a role in mitochondrial dysfunction associated with oxidative stress.
Collapse
Affiliation(s)
- Carlos A O Sigolo
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, CEP 05508-900, São Paulo, Brazil
| | | | | |
Collapse
|
58
|
Duval C, Cámara Y, Hondares E, Sibille B, Villarroya F. Overexpression of mitochondrial uncoupling protein-3 does not decrease production of the reactive oxygen species, elevated by palmitate in skeletal muscle cells. FEBS Lett 2007; 581:955-61. [PMID: 17303124 DOI: 10.1016/j.febslet.2007.01.085] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2006] [Revised: 01/23/2007] [Accepted: 01/29/2007] [Indexed: 11/20/2022]
Abstract
Fatty acids induced an increase in reactive oxygen species (ROS) and enhanced NF-kappaB activation in L6 myotubes differentiated in culture. Palmitate proved more effective than oleate in eliciting these effects. The induction of uncoupling protein-3 (UCP3) at levels similar to those occurring in vivo, attained through the use of an adenoviral vector, led to a reduction of mitochondrial membrane potential in L6 myotubes. However, the capacity of palmitate to increase ROS was not reduced but, quite the opposite, it was moderately enhanced due to the presence of UCP3. The presence of UCP3 in mitochondria did not modify the expression of genes encoding ROS-related enzymes, either in basal conditions or in the presence of palmitate. However, in the presence of UCP3, UCP2 mRNA expression was down-regulated in response to palmitate. We conclude that UCP3 does not act as a protective agent against palmitate-dependent induction of ROS production in differentiated skeletal muscle cells.
Collapse
Affiliation(s)
- Carine Duval
- Departament de Bioquimica i Biologia Molecular, Universitat de Barcelona, and CIBER Fisiopatología Obesidad y Nutricion (CB06/03) Instituto de Salud Carlos III, Spain, Diagonal 645, E-08028-Barcelona, Spain
| | | | | | | | | |
Collapse
|
59
|
Ramsay TG, Richards MP. Beta-adrenergic regulation of uncoupling protein expression in swine. Comp Biochem Physiol A Mol Integr Physiol 2007; 147:395-403. [PMID: 17383207 DOI: 10.1016/j.cbpa.2007.01.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2006] [Revised: 01/11/2007] [Accepted: 01/11/2007] [Indexed: 11/28/2022]
Abstract
This study examined the beta-adrenergic regulation of uncoupling protein (UCP) 2 and UCP3 gene expression in porcine tissues. In vitro experiments examined changes in UCP2 and UCP3 gene expression in middle (MSQ) and outer (OSQ) subcutaneous adipose tissues from crossbred neutered male pigs. Incubation of tissue slices (24 h) with 0 to 1000 nM isoproterenol increased UCP2 and UCP3 mRNA abundance in MSQ and OSQ, relative to 18S rRNA (P<0.05). For the in vivo experiment, nine randomly selected pigs (80 kg) were presented with a diet supplemented with 10.0 ppm ractopamine for 2 weeks. Another eight pigs were maintained on a control diet. Dietary ractopamine did not affect adipose UCP2 or UCP3 gene expression (P>0.05). However, UCP2 mRNA abundance was depressed in semitendinosus white (STW, P<0.05) and semitendinosus red (STR, P<0.001) by ractopamine feeding. Also, ractopamine decreased UCP3 mRNA abundance by 28% in STW (P<0.05). The in vitro data suggest that beta-adrenergic agonists directly affect adipose tissue UCP expression, although these adipose effects can be masked by the in vivo physiology. The in vivo data indicate that beta-adrenergic agonists may function in regulating UCP2 and UCP3 expression in selected muscles.
Collapse
Affiliation(s)
- T G Ramsay
- Growth Biology Laboratory, USDA-ARS, Beltsville, MD 20705, USA.
| | | |
Collapse
|
60
|
Beck V, Jabůrek M, Demina T, Rupprecht A, Porter RK, Jezek P, Pohl EE. Polyunsaturated fatty acids activate human uncoupling proteins 1 and 2 in planar lipid bilayers. FASEB J 2007; 21:1137-44. [PMID: 17242157 DOI: 10.1096/fj.06-7489com] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Uncoupling proteins 1 (UCP1) and 2 (UCP2) belong to the family of mitochondrial anion transporters and share 59% sequence identity with each other. Whereas UCP1 was shown to be responsible for the rapid production of heat in brown adipose tissue, the primary function and transport properties of ubiquitously expressed UCP2 are controversially discussed. Here, for the first time, the activation pattern of the recombinant human UCP2 in comparison to the recombinant human UCP1 are studied using a well-defined system of planar lipid bilayers. It is shown that despite apparently different physiological functions, hUCP2 exhibited its protonophoric function similar to hUCP1--exclusively in the presence of long-chain fatty acids (FA). The calculated hUCP2 transport rate of 4.5 s(-1) is the same order of magnitude, as shown previously for UCP1. It leads to the conclusion that the differences in the activity of both proteins in living mitochondria are based exclusively on their different expression level. Both proteins are activated much more effectively by polyunsaturated than by saturated FA. The proton and total membrane conductances increased in the range palmitic < oleic < eicosatrienoic < linoleic < retinoic < arachidonic acids. The higher uncoupling protein (UCP)-dependent conductance in the presence of polyunsaturated FA is explained on the basis of the FA cycling hypothesis.
Collapse
Affiliation(s)
- Valeri Beck
- Institute of Cell Biology and Neurobiology, Charité Universitätsmedizin, Charitéplatz 1, 10117 Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
61
|
Fromme T, Reichwald K, Platzer M, Li XS, Klingenspor M. Chicken ovalbumin upstream promoter transcription factor II regulates uncoupling protein 3 gene transcription in Phodopus sungorus. BMC Mol Biol 2007; 8:1. [PMID: 17204145 PMCID: PMC1779797 DOI: 10.1186/1471-2199-8-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2006] [Accepted: 01/04/2007] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Ucp3 is an integral protein of the inner mitochondrial membrane with a role in lipid metabolism preventing deleterious effects of fatty acids in states of high lipid oxidation. Ucp3 is expressed in brown adipose tissue and skeletal muscle and controlled by a transcription factor complex including PPARalpha, MyoD and the histone acetyltransferase p300. Several studies have demonstrated interaction of these factors with chicken ovalbumin upstream promoter transcription factor II (Coup-TFII). This nuclear receptor is involved in organogenesis and other developmental processes including skeletal muscle development, but also co-regulates a number of metabolic genes. In this study we in silico analyzed the upstream region of Ucp3 of the Djungarian hamster Phodopus sungorus and identified several putative response elements for Coup-TFII. We therefore investigated whether Coup-TFII is a further player in the transcriptional control of the Ucp3 gene in rodents. RESULTS By quantitative PCR we demonstrated a positive correlation of Coup-TFII and Ucp3 mRNA expression in skeletal muscle and brown adipose tissue in response to food deprivation and cold exposure, respectively. In reporter gene assays Coup-TFII enhanced transactivation of the Ucp3 promoter conveyed by MyoD, PPARalpha, RXRalpha and/or p300. Using deletions and mutated constructs, we identified a Coup-TFII enhancer element 816-840 bp upstream of the transcriptional start site. Binding of Coup-TFII to this upstream enhancer was confirmed in electrophoretic mobility shift and supershift assays. CONCLUSION Transcriptional regulation of the Coup-TFII gene in response to starvation and cold exposure seems to be the regulatory mechanism of Ucp3 mRNA expression in brown adipose and skeletal muscle tissue determining the final appropriate rate of transcript synthesis. These findings add a crucial component to the complex transcriptional machinery controlling expression of Ucp3. Given the substantial evidence for a function of Ucp3 in lipid metabolism, Coup-TFII may not only be a negative regulator of glucose responsive genes but also transactivate genes involved in lipid metabolism.
Collapse
Affiliation(s)
- Tobias Fromme
- Department of Animal Physiology, Faculty of Biology, Philipps-University, D-35043 Marburg, Germany
| | - Kathrin Reichwald
- Genome Analysis, Leibniz-Institute for Age Research – Fritz Lipmann Institute, D-07745 Jena, Germany
| | - Matthias Platzer
- Genome Analysis, Leibniz-Institute for Age Research – Fritz Lipmann Institute, D-07745 Jena, Germany
| | - Xing-Sheng Li
- Department of Animal Physiology, Faculty of Biology, Philipps-University, D-35043 Marburg, Germany
| | - Martin Klingenspor
- Department of Animal Physiology, Faculty of Biology, Philipps-University, D-35043 Marburg, Germany
| |
Collapse
|
62
|
Dlasková A, Spacek T, Skobisová E, Santorová J, Jezek P. Certain aspects of uncoupling due to mitochondrial uncoupling proteins in vitro and in vivo. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2006; 1757:467-73. [PMID: 16781660 DOI: 10.1016/j.bbabio.2006.05.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2006] [Revised: 04/21/2006] [Accepted: 05/05/2006] [Indexed: 01/12/2023]
Abstract
Thermogenic uncoupling has been proven only for UCP1 in brown adipose tissue. All other isoforms of UCPs are potentially acting in suppression of mitochondrial reactive oxygen species (ROS) production. In this contribution we show that BAT mitochondria can be uncoupled by lauric acid in the range of approximately 100 nM when endogenous fatty acids are combusted by carnitine cycle and beta-oxidation is properly separated from the uncoupling effect. Respiration increased up to 3 times when related to the lowest fatty acid content (BSA present plus carnitine cycle). We also illustrated that any effect leading to more coupled states leads to enhanced H2O2 generation and any effect resulting in uncoupling gives reduced H2O2 generation in BAT mitochondria. Finally, we report doubling of plant UCP transcript in cells as well as amount of protein detected by 3H-GTP-binding sites in mitochondria of shoots and roots of maize seedlings subjected to the salt stress.
Collapse
Affiliation(s)
- Andrea Dlasková
- Department No.75, Membrane Transport Biophysics, Institute of Physiology, Academy of Sciences of the Czech Republic, Vídenská 1083, 14220 Prague 4, Czech Republic
| | | | | | | | | |
Collapse
|
63
|
Khailova LS, Prikhodko EA, Dedukhova VI, Mokhova EN, Popov VN, Skulachev VP. Participation of ATP/ADP antiporter in oleate- and oleate hydroperoxide-induced uncoupling suppressed by GDP and carboxyatractylate. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2006; 1757:1324-9. [PMID: 16765906 DOI: 10.1016/j.bbabio.2006.04.024] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2006] [Revised: 04/10/2006] [Accepted: 04/28/2006] [Indexed: 11/30/2022]
Abstract
In experiments on isolated kidney and liver mitochondria, it is shown that oleate hydroperoxide induces a much smaller increase in the controlled respiration rate and DeltaPsi decrease than the same concentrations of oleate. Palmitate appears to be less efficient than oleate but more efficient than oleate hydroperoxide. In all cases, GDP and CAtr cause some recoupling, CAtr being more effective. Addition of 0.2 mM GDP before CAtr does not prevent further DeltaPsi increase by subsequent CAtr addition. On the other hand, GDP added after CAtr is without any effect. GDP partially prevents the DeltaPsi lowering by ADP at the State 4--State 3 transition if small amounts of CAtr are present. The data are consistent with the suggestion of F. Goglia and V.P. Skulachev (FASEB J. 17, 1585-1591, 2003) that fatty acid anions are translocated by mitochondrial anion carriers much better than their hydroperoxides. As to GDP recoupling, it cannot be regarded as a specific probe for uncoupling by UCPs since it can be mediated by the ATP/ADP antiporter.
Collapse
Affiliation(s)
- Lyudmila S Khailova
- Department of Bioenergetics, A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119992, Russia
| | | | | | | | | | | |
Collapse
|
64
|
Shabalina IG, Petrovic N, Kramarova TV, Hoeks J, Cannon B, Nedergaard J. UCP1 and Defense against Oxidative Stress. J Biol Chem 2006; 281:13882-93. [PMID: 16543238 DOI: 10.1074/jbc.m601387200] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Uncoupling proteins have been ascribed a role in defense against oxidative stress, particularly by being activated by products of oxidative stress such as 4-hydroxy-2-nonenal (HNE). We have investigated here the ability of HNE to activate UCP1. Using brown fat mitochondria from UCP1+/+ and UCP1-/- mice to allow for identification of UCP1-dependent effects, we found that HNE could neither (re)activate purine nucleotide-inhibited UCP1, nor induce additional activation of innately active UCP1. The aldehyde nonenal had a (re)activating effect only if converted to the corresponding fatty acid by aldehyde dehydrogenase; the presence of a carboxyl group was thus an absolute requirement for (re)activation. The UCP1-dependent proton leak was not increased by HNE but HNE changed basal proton leak characteristics in a UCP1-independent manner. In agreement with the in vitro results, we found, as compared with UCP1+/+ mice, no increase in HNE/protein adducts in brown fat mitochondria isolated from UCP1-/- mice, irrespective of whether they were adapted to thermoneutral temperature (30 degrees C) or to the cold (4 degrees C). The absence of oxidative damage in UCP1-/- mitochondria was not due to enhanced activity of antioxidant enzymes. Thus, HNE did not affect UCP1 activity, and UCP1 would appear not to be physiologically involved in defense against oxidative stress. Additionally, it was concluded that at least in brown adipose tissue, conditions of high mitochondrial membrane potential, high oxygen tension, and high substrate supply do not necessarily lead to increased oxidative damage.
Collapse
Affiliation(s)
- Irina G Shabalina
- Wenner-Gren Institute, The Arrhenius Laboratories F3, Stockholm University, SE-106 91 Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
65
|
Pawade T, Ho PWL, Kwok KHH, Chu ACY, Ho SL, Ramsden DB. Uncoupling proteins: targets of endocrine disruptors? Mol Cell Endocrinol 2005; 244:79-86. [PMID: 16229938 DOI: 10.1016/j.mce.2005.06.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2005] [Accepted: 06/20/2005] [Indexed: 01/01/2023]
Abstract
The roles of uncoupling proteins (UCPs) are discussed. Particular attention has been paid to the roles of UCP2 to UCP5 as agents mediating thermogenesis, and to the concept of limited or "mild" uncoupling as a means of reducing oxidative stress. The role of the endocrine system, thyroid hormones and catecholamines, in regulating expression of UCPs is also discussed.
Collapse
Affiliation(s)
- T Pawade
- Department of Medicine, Division of Medical Sciences, University of Birmingham, Queen Elizabeth Hospital, UK
| | | | | | | | | | | |
Collapse
|
66
|
Flandin P, Donati Y, Barazzone-Argiroffo C, Muzzin P. Hyperoxia-mediated oxidative stress increases expression of UCP3 mRNA and protein in skeletal muscle. FEBS Lett 2005; 579:3411-5. [PMID: 15922330 DOI: 10.1016/j.febslet.2005.04.084] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2005] [Revised: 04/20/2005] [Accepted: 04/26/2005] [Indexed: 11/19/2022]
Abstract
The uncoupling protein-3 (UCP3) is a mitochondrial protein expressed mainly in skeletal muscle. Among several hypotheses for its physiological function, UCP3 has been proposed to prevent excessive production of reactive oxygen species. In the present study, we evaluated the effect of an oxidative stress induced by hyperoxia on UCP3 expression in mouse skeletal muscle and C2C12 myotubes. We found that the hyperoxia-mediated oxidative stress was associated with a 5-fold and 3-fold increase of UCP3 mRNA and protein levels, respectively, in mouse muscle. Hyperoxia also enhanced reactive oxygen species production and UCP3 mRNA expression in C2C12 myotubes. Our findings support the view that both in vivo and in vitro UCP3 may modulate reactive oxygen species production in response to an oxidative stress.
Collapse
Affiliation(s)
- Pierre Flandin
- Department of Cell Physiology and Metabolism, Centre Médical Universitaire, 1 rue Michel Servet, 1211 Geneva 4, Switzerland.
| | | | | | | |
Collapse
|
67
|
McLeod CJ, Aziz A, Hoyt RF, McCoy JP, Sack MN. Uncoupling proteins 2 and 3 function in concert to augment tolerance to cardiac ischemia. J Biol Chem 2005; 280:33470-6. [PMID: 16079144 DOI: 10.1074/jbc.m505258200] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Transient cardiac ischemia activates cell survival signaling, conferring subsequent ischemia tolerance to the heart. This biological phenomenon, termed ischemic preconditioning, results in improved clinical outcome and attenuated infarct size following myocardial infarction. To explore genomic modifications underpinning this ischemia tolerance, we delineated the regulation and function of the cardiac enriched mitochondrial uncoupling proteins 2 and 3 during delayed ischemic preconditioning in the rat. Cardiac transcripts of genes encoding uncoupling proteins 2 and 3 are up-regulated in parallel with infarct size reduction in preconditioned hearts. Mitochondria isolated from preconditioned hearts exhibit an augmented inducible proton leak. In parallel, following anoxia-reoxygenation these mitochondria generate less hydrogen peroxide compared with non-preconditioned mitochondria. Preconditioning in rat cardiac derived myoblasts is abolished following uncoupling protein-2 depletion by RNA-interference. RNAi of uncoupling protein-3 partially attenuates the capacity to precondition these cells. Functional characterization of anoxia and reoxygenation tolerance following uncoupling protein 2 or 3 and combined 2 and 3 RNAi shows the largest reduction in viability follows depletion of both homologues. Uncoupling protein-2 depletion alone significantly attenuates anoxia-reoxygenation tolerance but uncoupling protein-3 depletion does not reduce anoxia tolerance. In parallel combined uncoupling protein depletion and isolated uncoupling protein-2 depletion augments ROS production in viable cardiomyocytes following anoxia-reoxygenation. Concurrent anti-oxidant administration ameliorates the uncoupling protein-depleted anoxia-susceptible phenotype. In conclusion, mitochondrial uncoupling proteins are necessary components of ischemia tolerance and function as components of the cellular antioxidant defense program. In the cytoprotective hierarchy, uncoupling protein-2 appears to play a greater role than uncoupling protein-3 in modulating ischemia/anoxia tolerance in heart-derived cells.
Collapse
Affiliation(s)
- Christopher J McLeod
- Cardiovascular Branch, Laboratory of Animal Medicine and Surgery, Flow Cytometry Core, NHLBI, National Institutes of Health, Bethesda, Maryland 20892-1454, USA
| | | | | | | | | |
Collapse
|
68
|
Jezek P, Hlavatá L. Mitochondria in homeostasis of reactive oxygen species in cell, tissues, and organism. Int J Biochem Cell Biol 2005; 37:2478-503. [PMID: 16103002 DOI: 10.1016/j.biocel.2005.05.013] [Citation(s) in RCA: 521] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2005] [Revised: 04/26/2005] [Accepted: 05/31/2005] [Indexed: 12/22/2022]
Abstract
The recent knowledge on mitochondria as the substantial source of reactive oxygen species, namely superoxide and hydrogen peroxide efflux from mitochondria, is reviewed, as well as nitric oxide and subsequent peroxynitrite generation in mitochondria and their effects. The reactive oxygen species formation in extramitochondrial locations, in peroxisomes, by cytochrome P450, and NADPH oxidase reaction, is also briefly discussed. Conditions are pointed out under which mitochondria represent the major ROS source for the cell: higher percentage of non-phosphorylating and coupled mitochondria, in vivo oxygen levels leading to increased intensity of the reverse electron transport in the respiratory chain, and nitric oxide effects on the redox state of cytochromes. We formulate hypotheses on the crucial role of ROS generated in mitochondria for the whole cell and organism, in concert with extramitochondrial ROS and antioxidant defense. We hypothesize that a sudden decline of mitochondrial ROS production converts cells or their microenvironment into a "ROS sink" represented by the instantly released excessive capacity of ROS-detoxification mechanisms. A partial but immediate decline of mitochondrial ROS production may be triggered by activation of mitochondrial uncoupling, specifically by activation of recruited or constitutively present uncoupling proteins such as UCP2, which may counterbalance the mild oxidative stress.
Collapse
Affiliation(s)
- Petr Jezek
- Department of Membrane Transport Biophysics, No. 75, Institute of Physiology, Academy of Sciences of the Czech Republic, Vídenská 1083, CZ 14220 Prague, Czech Republic.
| | | |
Collapse
|
69
|
Brand MD, Esteves TC. Physiological functions of the mitochondrial uncoupling proteins UCP2 and UCP3. Cell Metab 2005; 2:85-93. [PMID: 16098826 DOI: 10.1016/j.cmet.2005.06.002] [Citation(s) in RCA: 612] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2005] [Revised: 04/28/2005] [Accepted: 06/07/2005] [Indexed: 12/16/2022]
Abstract
Evidence for the physiological functions of UCP2 and UCP3 is critically reviewed. They do not mediate adaptive thermogenesis, but they may be significantly thermogenic under specific pharmacological conditions. There is strong evidence that the mild regulated uncoupling they cause attenuates mitochondrial ROS production, protects against cellular damage, and diminishes insulin secretion. Evidence that they export fatty acids physiologically is weak. UCP2 and UCP3 are important potential targets for treatment of aging, degenerative diseases, diabetes, and perhaps obesity.
Collapse
Affiliation(s)
- Martin D Brand
- MRC Dunn Human Nutrition Unit, Hills Road, Cambridge, United Kingdom.
| | | |
Collapse
|
70
|
Esteves TC, Brand MD. The reactions catalysed by the mitochondrial uncoupling proteins UCP2 and UCP3. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2005; 1709:35-44. [PMID: 16005426 DOI: 10.1016/j.bbabio.2005.06.002] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2005] [Revised: 06/06/2005] [Accepted: 06/08/2005] [Indexed: 11/23/2022]
Abstract
The mitochondrial uncoupling proteins UCP2 and UCP3 may be important in attenuating mitochondrial production of reactive oxygen species, in insulin signalling (UCP2), and perhaps in thermogenesis and other processes. To understand their physiological roles, it is necessary to know what reactions they are able to catalyse. We critically examine the evidence for proton transport and anion transport by UCP2 and UCP3. There is good evidence that they increase mitochondrial proton conductance when activated by superoxide, reactive oxygen species derivatives such as hydroxynonenal, and other alkenals or their analogues. However, they do not catalyse proton leak in the absence of such acute activation. They can also catalyse export of fatty acid and other anions, although the relationship of anion transport to proton transport remains controversial.
Collapse
Affiliation(s)
- Telma C Esteves
- MRC Dunn Human Nutrition Unit, Hills Road, Cambridge CB2 2XY, UK
| | | |
Collapse
|
71
|
Růzicka M, Skobisová E, Dlasková A, Santorová J, Smolková K, Spacek T, Zácková M, Modrianský M, Jezek P. Recruitment of mitochondrial uncoupling protein UCP2 after lipopolysaccharide induction. Int J Biochem Cell Biol 2005; 37:809-21. [PMID: 15694840 DOI: 10.1016/j.biocel.2004.10.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2004] [Revised: 10/18/2004] [Accepted: 10/27/2004] [Indexed: 11/17/2022]
Abstract
Rat liver mitochondria contain a negligible amount of mitochondrial uncoupling protein UCP2 as indicated by 3H-GTP binding. UCP2 recruitment in hepatocytes during infection may serve to decrease mitochondrial production of reactive oxygen species (ROS), and this, in turn, would counterbalance the increased oxidative stress. To characterize in detail UCP2 recruitment in hepatocytes, we studied rats pretreated with lipopolysaccharide (LPS) or hepatocytes isolated from them, as an in vitro model for the systemic response to bacterial infection. LPS injection resulted in 3.3- or 3-fold increase of UCP2 mRNA in rat liver and hepatocytes, respectively, as detected by real-time RT-PCR on a LightCycler. A concomitant increase in UCP2 protein content was indicated either by Western blots or was quantified by up to three-fold increase in the number of 3H-GTP binding sites in mitochondria of LPS-stimulated rats. Moreover, H2O2 production was increased by GDP only in mitochondria of LPS-stimulated rats with or without fatty acids and carboxyatractyloside. When monitored by JC1 fluorescent probe in situ mitochondria of hepatocytes from LPS-stimulated rats exhibited lower membrane potential than mitochondria of unstimulated rats. We have demonstrated that the lower membrane potential does not result from apoptosis initiation. However, due to a small extent of potential decrease upon UCP2 recruitment, justified also by theoretical calculations, we conclude that the recruited UCP2 causes only a weak uncoupling which is able to decrease mitochondrial ROS production but not produce enough heat for thermogenesis participating in a febrile response.
Collapse
Affiliation(s)
- Michal Růzicka
- Department of Membrane Transport Biophysics, No. 75 Institute of Physiology, Academy of Sciences of the Czech Republic, Vídenská 1083, 14220 Prague 4, Czech Republic
| | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Bai Y, Onuma H, Bai X, Medvedev AV, Misukonis M, Weinberg JB, Cao W, Robidoux J, Floering LM, Daniel KW, Collins S. Persistent nuclear factor-kappa B activation in Ucp2-/- mice leads to enhanced nitric oxide and inflammatory cytokine production. J Biol Chem 2005; 280:19062-9. [PMID: 15757894 PMCID: PMC1382174 DOI: 10.1074/jbc.m500566200] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
One of the phenotypes of mice with targeted disruption of the uncoupling protein-2 gene (Ucp2-/-) is greater macrophage phagocytic activity and free radical production, resulting in a striking resistance to infectious microorganisms. In this study, the molecular mechanisms of this enhanced immune response were investigated. We found that levels of nitric oxide measured in either plasma or isolated macrophages from Ucp2-/- mice are significantly elevated in response to bacterial lipopolysaccharide challenge compared with similarly treated Ucp2+/+ mice. Likewise, expression of inducible nitric-oxide synthase and inflammatory cytokines is higher in Ucp2-/- mice in vivo and in vitro. Key steps in the activation cascade of nuclear factor (NF)-kappa B, including I kappa B kinase and nuclear translocation of NF-kappa B subunits, are all remarkably enhanced in Ucp2-/- mice, most notably even under basal conditions. The elevated basal activity of I kappa B kinase in macrophages from Ucp2-/- mice can be blocked by cell-permeable inhibitors of superoxide and hydrogen peroxide generation, but not by a specific inhibitor for inducible nitric-oxide synthase. Isolated mitochondria from Ucp2-/- cells produced more superoxide/hydrogen peroxide. We conclude that mitochrondrially derived reactive oxygen from Ucp2-/- cells constitutively activates NF-kappa B, resulting in a "primed" state to both potentiate and amplify the inflammatory response upon subsequent stimulation.
Collapse
Affiliation(s)
- Yushi Bai
- From the Division of Biological Sciences, Endocrine Biology Program, CIIT Centers for Health Research, Research Triangle Park, North Carolina 27709-2137 and
| | - Hiroki Onuma
- From the Division of Biological Sciences, Endocrine Biology Program, CIIT Centers for Health Research, Research Triangle Park, North Carolina 27709-2137 and
| | - Xu Bai
- Department of Psychiatry and Behavioral Sciences and
| | | | - Mary Misukonis
- Division of Hematology-Oncology, Veterans Administration Medical Center/Duke University Medical Center, Durham, North Carolina 27710
| | - J. Brice Weinberg
- Division of Hematology-Oncology, Veterans Administration Medical Center/Duke University Medical Center, Durham, North Carolina 27710
| | - Wenhong Cao
- From the Division of Biological Sciences, Endocrine Biology Program, CIIT Centers for Health Research, Research Triangle Park, North Carolina 27709-2137 and
| | - Jacques Robidoux
- From the Division of Biological Sciences, Endocrine Biology Program, CIIT Centers for Health Research, Research Triangle Park, North Carolina 27709-2137 and
| | - Lisa M. Floering
- From the Division of Biological Sciences, Endocrine Biology Program, CIIT Centers for Health Research, Research Triangle Park, North Carolina 27709-2137 and
| | - Kiefer W. Daniel
- From the Division of Biological Sciences, Endocrine Biology Program, CIIT Centers for Health Research, Research Triangle Park, North Carolina 27709-2137 and
| | - Sheila Collins
- From the Division of Biological Sciences, Endocrine Biology Program, CIIT Centers for Health Research, Research Triangle Park, North Carolina 27709-2137 and
- Department of Psychiatry and Behavioral Sciences and
- ||To whom correspondence should be addressed: Endocrine Biology Program, CIIT Centers for Health Research, 6 Davis Dr., P. O. Box 12137, Research Triangle Park, NC 27709-2137. Tel.: 919-558-1378; Fax: 919-558-1305; E-mail:
| |
Collapse
|
73
|
Silvestri E, Moreno M, Lombardi A, Ragni M, de Lange P, Alexson SEH, Lanni A, Goglia F. Thyroid-hormone effects on putative biochemical pathways involved in UCP3 activation in rat skeletal muscle mitochondria. FEBS Lett 2005; 579:1639-45. [PMID: 15757654 DOI: 10.1016/j.febslet.2005.02.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2005] [Revised: 02/01/2005] [Accepted: 02/07/2005] [Indexed: 01/13/2023]
Abstract
In vitro, uncoupling protein 3 (UCP3)-mediated uncoupling requires cofactors [e.g., superoxides, coenzyme Q (CoQ) and fatty acids (FA)] or their derivatives, but it is not yet clear whether or how such activators interact with each other under given physiological or pathophysiological conditions. Since triiodothyronine (T3) stimulates lipid metabolism, UCP3 expression and mitochondrial uncoupling, we examined its effects on some biochemical pathways that may underlie UCP3-mediated uncoupling. T3-treated rats (Hyper) showed increased mitochondrial lipid-oxidation rates, increased expression and activity of enzymes involved in lipid handling and increased mitochondrial superoxide production and CoQ levels. Despite the higher mitochondrial superoxide production in Hyper, euthyroid and hyperthyroid mitochondria showed no differences in proton-conductance when FA were chelated by bovine serum albumin. However, mitochondria from Hyper showed a palmitoyl-carnitine-induced and GDP-inhibited increased proton-conductance in the presence of carboxyatractylate. We suggest that T3 stimulates the UCP3 activity in vivo by affecting the complex network of biochemical pathways underlying the UCP3 activation.
Collapse
Affiliation(s)
- E Silvestri
- Dipartimento di Scienze Biologiche ed Ambientali, Università degli Studi del Sannio, Via Port'Arsa 11, 82100 Benevento, Italy
| | | | | | | | | | | | | | | |
Collapse
|