51
|
Gliding motility revisited: how do the myxobacteria move without flagella? Microbiol Mol Biol Rev 2010; 74:229-49. [PMID: 20508248 DOI: 10.1128/mmbr.00043-09] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In bacteria, motility is important for a wide variety of biological functions such as virulence, fruiting body formation, and biofilm formation. While most bacteria move by using specialized appendages, usually external or periplasmic flagella, some bacteria use other mechanisms for their movements that are less well characterized. These mechanisms do not always exhibit obvious motility structures. Myxococcus xanthus is a motile bacterium that does not produce flagella but glides slowly over solid surfaces. How M. xanthus moves has remained a puzzle that has challenged microbiologists for over 50 years. Fortunately, recent advances in the analysis of motility mutants, bioinformatics, and protein localization have revealed likely mechanisms for the two M. xanthus motility systems. These results are summarized in this review.
Collapse
|
52
|
Kaiser D, Robinson M, Kroos L. Myxobacteria, polarity, and multicellular morphogenesis. Cold Spring Harb Perspect Biol 2010; 2:a000380. [PMID: 20610548 PMCID: PMC2908774 DOI: 10.1101/cshperspect.a000380] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Myxobacteria are renowned for the ability to sporulate within fruiting bodies whose shapes are species-specific. The capacity to build those multicellular structures arises from the ability of M. xanthus to organize high cell-density swarms, in which the cells tend to be aligned with each other while constantly in motion. The intrinsic polarity of rod-shaped cells lays the foundation, and each cell uses two polar engines for gliding on surfaces. It sprouts retractile type IV pili from the leading cell pole and secretes capsular polysaccharide through nozzles from the trailing pole. Regularly periodic reversal of the gliding direction was found to be required for swarming. Those reversals are generated by a G-protein switch which is driven by a sharply tuned oscillator. Starvation induces fruiting body development, and systematic reductions in the reversal frequency are necessary for the cells to aggregate rather than continue to swarm. Developmental gene expression is regulated by a network that is connected to the suppression of reversals.
Collapse
Affiliation(s)
- Dale Kaiser
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California 94305, USA.
| | | | | |
Collapse
|
53
|
Abstract
DNA pumps play important roles in bacteria during cell division and during the transfer of genetic material by conjugation and transformation. The FtsK/SpoIIIE proteins carry out the translocation of double-stranded DNA to ensure complete chromosome segregation during cell division. In contrast, the complex molecular machines that mediate conjugation and genetic transformation drive the transport of single stranded DNA. The transformation machine also processes this internalized DNA and mediates its recombination with the resident chromosome during and after uptake, whereas the conjugation apparatus processes DNA before transfer. This article reviews these three types of DNA pumps, with attention to what is understood of their molecular mechanisms, their energetics and their cellular localizations.
Collapse
Affiliation(s)
- Briana Burton
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, USA
| | | |
Collapse
|
54
|
Karuppiah V, Hassan D, Saleem M, Derrick JP. Structure and oligomerization of the PilC type IV pilus biogenesis protein from Thermus thermophilus. Proteins 2010; 78:2049-57. [DOI: 10.1002/prot.22720] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
55
|
Kowalska K, Soscia C, Combe H, Vasseur P, Voulhoux R, Filloux A. The C-terminal amphipathic α-helix of Pseudomonas aeruginosa PelC outer membrane protein is required for its function. Biochimie 2010; 92:33-40. [DOI: 10.1016/j.biochi.2009.10.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Accepted: 10/14/2009] [Indexed: 11/26/2022]
|
56
|
Type III secretion systems shape up as they ship out. Curr Opin Microbiol 2009; 13:47-52. [PMID: 20015680 DOI: 10.1016/j.mib.2009.11.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2009] [Accepted: 11/14/2009] [Indexed: 11/23/2022]
Abstract
Virulence associated protein type III secretion systems (T3SSs) are intricately structured organic nanosyringes that achieve the translocation of bacterial proteins from the prokaryotic cytoplasm across three membranes into the host cytosol. The substrates for these systems number in the hundreds, with remarkably diverse biological activities, modulating host cell biology for the benefit of the pathogen. Although there has been tremendous progress on the structure and function of the T3SS substrates, there has been comparatively little progress on the much more highly conserved secretion apparatus itself. This review summarizes recent advances in the field of structural microbiology that have begun to address this shortcoming, finally bringing to bear the power of structural biology to this central virulence system of Gram-negative bacterial pathogens.
Collapse
|
57
|
Viarre V, Cascales E, Ball G, Michel GPF, Filloux A, Voulhoux R. HxcQ liposecretin is self-piloted to the outer membrane by its N-terminal lipid anchor. J Biol Chem 2009; 284:33815-23. [PMID: 19815547 DOI: 10.1074/jbc.m109.065938] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Secretins are an unusual and important class of bacterial outer membrane (OM) proteins. They are involved in the transport of single proteins or macromolecular structures such as pili, needle complexes, and bacteriophages across the OM. Secretins are multimeric ring-shaped structures that form large pores in the OM. The targeting of such macromolecular structures to the OM often requires special assistance, conferred by specific pilotins or pilot proteins. Here, we investigated HxcQ, the OM component of the second Pseudomonas aeruginosa type II secretion system. We found that HxcQ forms high molecular mass structures resistant to heat and SDS, revealing its secretin nature. Interestingly, we showed that HxcQ is a lipoprotein. Construction of a recombinant nonlipidated HxcQ (HxcQnl) revealed that lipidation is essential for HxcQ function. Further phenotypic analysis indicated that HxcQnl accumulates as multimers in the inner membrane of P. aeruginosa, a typical phenotype observed for secretins in the absence of their cognate pilotin. Our observations led us to the conclusion that the lipid anchor of HxcQ plays a pilotin role. The self-piloting of HxcQ to the OM was further confirmed by its correct multimeric OM localization when expressed in the heterologous host Escherichia coli. Altogether, our results reveal an original and unprecedented pathway for secretin transport to the OM.
Collapse
Affiliation(s)
- Véronique Viarre
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires (UPR 9027), CNRS, Institut de Microbiologie de la Méditerranée, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France
| | | | | | | | | | | |
Collapse
|
58
|
Carbonnelle E, Hill DJ, Morand P, Griffiths NJ, Bourdoulous S, Murillo I, Nassif X, Virji M. Meningococcal interactions with the host. Vaccine 2009; 27 Suppl 2:B78-89. [PMID: 19481311 DOI: 10.1016/j.vaccine.2009.04.069] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Neisseria meningitidis interacts with host tissues through hierarchical, concerted and co-ordinated actions of a number of adhesins; many of which undergo antigenic and phase variation, a strategy that helps immune evasion. Three major structures, pili, Opa and Opc predominantly influence bacterial adhesion to host cells. Pili and Opa proteins also determine host and tissue specificity while Opa and Opc facilitate efficient cellular invasion. Recent studies have also implied a role of certain adhesin-receptor pairs in determining increased host susceptibility to infection. This chapter examines our current knowledge of meningococcal adhesion and invasion mechanisms particularly related to human epithelial and endothelial cells which are of primary importance in the disease process.
Collapse
Affiliation(s)
- Etienne Carbonnelle
- INSERM, unité 570, Université Paris Descartes, 156 rue de Vaugirard, Paris 75015, France
| | | | | | | | | | | | | | | |
Collapse
|
59
|
Abstract
The development of a comprehensive vaccine against meningococcal disease has been challenging. Recent developments in molecular genetics have provided both explanations for these challenges and possible solutions. Since genome sequence data became available there has been a marked increase in number of protein antigens that have been suggested as prospective vaccine components. This review catalogues the proposed vaccine candidates and examines the evidence for their inclusion in potential protein vaccine formulations.
Collapse
Affiliation(s)
- Ian M Feavers
- Division of Bacteriology, National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Potters Bar, Hertfordshire EN6 3QG, United Kingdom.
| | | |
Collapse
|
60
|
Schwarzenlander C, Haase W, Averhoff B. The role of single subunits of the DNA transport machinery of Thermus thermophilus HB27 in DNA binding and transport. Environ Microbiol 2009; 11:801-8. [PMID: 19396940 DOI: 10.1111/j.1462-2920.2008.01801.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Thermus thermophilus HB27 is well known for its extraordinary trait of high frequencies of natural transformation, which is considered a major mechanism of horizontal gene transfer. We show that the DNA translocator of T. thermophilus binds and transports DNA from members of all three domains. These results, together with the data obtained from genome comparisons, suggest that the DNA translocator of T. thermophilus has a major impact in adaptation of Thermus to thermal stress conditions and interdomain DNA transfer in extreme hot environments. DNA transport in T. thermophilus is mediated by a macromolecular transport machinery that consists of at least 16 subunits and spans the cytoplasmic membrane and the entire cell periphery. Here, we have addressed the role of single subunits in DNA binding and transport. PilQ is involved in DNA binding, ComEA, PilF and PilA4 are involved in transport of DNA through the outer membrane and PilM, PilN, PilO, PilA1-3, PilC and ComEC are essential for the transport of DNA through the thick cell wall layers and/or through the inner membrane. These data are discussed in the light of the subcellular localization of the proteins. A topological model for DNA transport across the cell wall is presented.
Collapse
Affiliation(s)
- Cornelia Schwarzenlander
- Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Goethe University Frankfurt am Main, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | | | | |
Collapse
|
61
|
Averhoff B. Shuffling genes around in hot environments: the unique DNA transporter ofThermus thermophilus. FEMS Microbiol Rev 2009; 33:611-26. [DOI: 10.1111/j.1574-6976.2008.00160.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
62
|
A conserved structural motif mediates formation of the periplasmic rings in the type III secretion system. Nat Struct Mol Biol 2009; 16:468-76. [PMID: 19396170 DOI: 10.1038/nsmb.1603] [Citation(s) in RCA: 157] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2008] [Accepted: 04/08/2009] [Indexed: 11/09/2022]
Abstract
The type III secretion system (T3SS) is a macromolecular 'injectisome' that allows bacterial pathogens to transport virulence proteins into the eukaryotic host cell. This macromolecular complex is composed of connected ring-like structures that span both bacterial membranes. The crystal structures of the periplasmic domain of the outer membrane secretin EscC and the inner membrane protein PrgH reveal the conservation of a modular fold among the three proteins that form the outer membrane and inner membrane rings of the T3SS. This leads to the hypothesis that this conserved fold provides a common ring-building motif that allows for the assembly of the variably sized outer membrane and inner membrane rings characteristic of the T3SS. Using an integrated structural and experimental approach, we generated ring models for the periplasmic domain of EscC and placed them in the context of the assembled T3SS, providing evidence for direct interaction between the outer membrane and inner membrane ring components and an unprecedented span of the outer membrane secretin.
Collapse
|
63
|
Mrsny RJ. Lessons from nature: "Pathogen-Mimetic" systems for mucosal nano-medicines. Adv Drug Deliv Rev 2009; 61:172-92. [PMID: 19146895 DOI: 10.1016/j.addr.2008.09.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2007] [Accepted: 09/22/2008] [Indexed: 12/13/2022]
Abstract
Mucosal surfaces establish an interface with external environments that provide a protective barrier with the capacity to selectively absorb and secrete materials important for homeostasis of the organism. In man, mucosal surfaces such as those in the gastrointestinal tract, respiratory tree and genitourinary system also represent significant barrier to the successful administration of certain pharmaceutical agents and the delivery of newly designed nano-scale therapeutic systems. This review examines morphological, physiological and biochemical aspects of these mucosal barriers and presents currently understood mechanisms used by a variety of virulence factors used by pathogenic bacteria to overcome various aspects of these mucosal barriers. Such information emphasizes the impediments that biologically active materials must overcome for absorption across these mucosal surfaces and provides a template for strategies to overcome these barriers for the successful delivery of nano-scale bioactive materials, also known as nano-medicines.
Collapse
|
64
|
Allemand JF, Maier B. Bacterial translocation motors investigated by single molecule techniques. FEMS Microbiol Rev 2009; 33:593-610. [PMID: 19243443 DOI: 10.1111/j.1574-6976.2009.00166.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Translocation of DNA and protein fibers through narrow constrictions is a ubiquitous and crucial activity of bacterial cells. Bacteria use specialized machines to support macromolecular movement. A very important step toward a mechanistic understanding of these translocation machines is the characterization of their physical properties at the single molecule level. Recently, four bacterial transport processes have been characterized by nanomanipulation at the single molecule level, DNA translocation by FtsK and SpoIIIE, DNA import during transformation, and the related process of a type IV pilus retraction. With all four processes, the translocation rates, processivity, and stalling forces were remarkably high as compared with single molecule experiments with other molecular motors. Although substrates of all four processes proceed along a preferential direction of translocation, directionality has been shown to be controlled by distinct mechanisms.
Collapse
|
65
|
Structure-function relationships of the outer membrane translocon Wza investigated by cryo-electron microscopy and mutagenesis. J Struct Biol 2009; 166:172-82. [PMID: 19236919 DOI: 10.1016/j.jsb.2009.02.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Revised: 01/23/2009] [Accepted: 02/15/2009] [Indexed: 11/21/2022]
Abstract
The outer membrane protein Wza, from Escherichia coli K30, forms an octameric complex that is essential for capsular polysaccharide export. Homologs of Wza are widespread in gram-negative bacterial pathogens where capsules are critical virulence determinants. Wza is unusual in that it spans the outer membrane using a barrel composed of amphipathic alpha-helices, rather than being a beta-barrel like almost all other outer membrane channels. The transmembrane helical barrel of Wza also forms the external opening to a hydrophilic translocation pathway that spans the periplasm. Here, we have probed the structure and function of the Wza complex using both cryo-electron microscopy and mutagenesis. The helical barrel structure is stable in detergent micelles under mildly acidic conditions but is destabilized at basic pH, although the overall quaternary structure is retained. Truncation of the C-terminal region that forms the helical barrel by 4 residues has no effect on the ability of Wza to oligomerize and support capsule export, but larger truncations of 18, 24 or 35 amino acids abolish its function. The bulk of the C-terminal domain is essential for the stability and assembly of the E. coli Wza complex.
Collapse
|
66
|
Korotkov KV, Pardon E, Steyaert J, Hol WG. Crystal structure of the N-terminal domain of the secretin GspD from ETEC determined with the assistance of a nanobody. Structure 2009; 17:255-65. [PMID: 19217396 PMCID: PMC2662362 DOI: 10.1016/j.str.2008.11.011] [Citation(s) in RCA: 157] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2008] [Revised: 11/24/2008] [Accepted: 11/24/2008] [Indexed: 01/07/2023]
Abstract
Secretins are among the largest bacterial outer membrane proteins known. Here we report the crystal structure of the periplasmic N-terminal domain of GspD (peri-GspD) from the type 2 secretion system (T2SS) secretin in complex with a nanobody, the VHH domain of a heavy-chain camelid antibody. Two different crystal forms contained the same compact peri-GspD:nanobody heterotetramer. The nanobody contacts peri-GspD mainly via CDR3 and framework residues. The peri-GspD structure reveals three subdomains, with the second and third subdomains exhibiting the KH fold which also occurs in ring-forming proteins of the type 3 secretion system. The first subdomain of GspD is related to domains in phage tail proteins and outer membrane TonB-dependent receptors. A dodecameric peri-GspD model is proposed in which a solvent-accessible beta strand of the first subdomain interacts with secreted proteins and/or T2SS partner proteins by beta strand complementation.
Collapse
Affiliation(s)
- Konstantin V. Korotkov
- Department of Biochemistry, Biomolecular Structure Center, University of Washington, Seattle, WA 98195, USA
| | - Els Pardon
- Department of Molecular and Cellular Interactions, VIB, B-1050 Brussels, Belgium,Structural Biology Brussels, Vrije Universiteit Brussel, B-1050 Brussels, Belgium
| | - Jan Steyaert
- Department of Molecular and Cellular Interactions, VIB, B-1050 Brussels, Belgium,Structural Biology Brussels, Vrije Universiteit Brussel, B-1050 Brussels, Belgium
| | - Wim G.J. Hol
- Department of Biochemistry, Biomolecular Structure Center, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
67
|
Affiliation(s)
- Dale Kaiser
- Departments of Biochemistry and of Developmental Biology, Stanford University School of Medicine, Stanford, California, 94305;
| |
Collapse
|
68
|
Identification of meningococcal genes necessary for colonization of human upper airway tissue. Infect Immun 2008; 77:45-51. [PMID: 18936183 DOI: 10.1128/iai.00968-08] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Neisseria meningitidis is an exclusively human pathogen that has evolved primarily to colonize the nasopharynx rather than to cause systemic disease. Colonization is the most frequent outcome following meningococcal infection and a prerequisite for invasive disease. The mechanism of colonization involves attachment of the organism to epithelial cells via bacterial type IV pili (Tfp), but subsequent events during colonization remain largely unknown. We analyzed 576 N. meningitidis mutants for their capacity to colonize human nasopharyngeal tissue in an organ culture model to identify bacterial genes required for colonization. Eight colonization-defective mutants were isolated. Two mutants were unable to express Tfp and were defective for adhesion to epithelial cells, which is likely to be the basis of their attenuation in nasopharyngeal tissue. Three other mutants are predicted to have lost previously uncharacterized surface molecules, while the remaining mutants have transposon insertions in genes of unknown function. We have identified novel meningococcal colonization factors, and this should provide insights into the survival of this important pathogen in its natural habitat.
Collapse
|
69
|
|
70
|
Okon M, Moraes TF, Lario PI, Creagh AL, Haynes CA, Strynadka NC, McIntosh LP. Structural Characterization of the Type-III Pilot-Secretin Complex from Shigella flexneri. Structure 2008; 16:1544-54. [DOI: 10.1016/j.str.2008.08.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2008] [Revised: 08/08/2008] [Accepted: 08/15/2008] [Indexed: 02/02/2023]
|
71
|
Krehenbrink M, Chami M, Guilvout I, Alzari PM, Pécorari F, Pugsley AP. Artificial binding proteins (Affitins) as probes for conformational changes in secretin PulD. J Mol Biol 2008; 383:1058-68. [PMID: 18822295 DOI: 10.1016/j.jmb.2008.09.016] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2008] [Revised: 08/26/2008] [Accepted: 09/02/2008] [Indexed: 11/27/2022]
Abstract
The DNA-binding protein Sac7d was previously modified to bind with high affinity to the N domain of the outer membrane secretin PulD from the bacterium Klebsiella oxytoca. Here, we show that binding of the Sac7d derivatives (affitins) to PulD is sensitive to conformational changes caused by denaturant and by the zwitterionic detergent Zwittergent 3-14 routinely used to extract secretins from outer membranes. This sensitivity to the conformational state of PulD allowed us to use the affitins as probes for the native structure of PulD and to devise protocols for examining in vitro synthesized protein in nonionic detergent and for the affinity purification of native PulD using affitins as ligands. When fused to periplasmic PhoA, three affitins inhibited PulD multimerization in vivo and caused loss of function. In two cases, this was likely to be due to dimerization of the affitin by the bound PhoA, as the effect was absent when the affitins were fused to monomeric MalE. In the third case, the MalE and PhoA moieties probably interfered sterically with PulD protomer interactions and, thereby, inhibited multimerization. None of the affitins tested interacted with PulD at sites of protomer interaction or blocked the secretin channel through which exoproteins cross the outer membrane in the Type II secretion pathway of which PulD is a key component.
Collapse
Affiliation(s)
- Martin Krehenbrink
- Institut Pasteur, Unité de Génétique moléculaire, CNRS URA2172, 25, rue du Dr. Roux, 75724 Paris Cedex 15, France
| | | | | | | | | | | |
Collapse
|
72
|
PilF is an outer membrane lipoprotein required for multimerization and localization of the Pseudomonas aeruginosa Type IV pilus secretin. J Bacteriol 2008; 190:6961-9. [PMID: 18776008 DOI: 10.1128/jb.00996-08] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Type IV pili (T4P) are retractile appendages that contribute to the virulence of bacterial pathogens. PilF is a Pseudomonas aeruginosa lipoprotein that is essential for T4P biogenesis. Phenotypic characterization of a pilF mutant confirmed that T4P-mediated functions are abrogated: T4P were no longer present on the cell surface, twitching motility was abolished, and the mutant was resistant to infection by T4P retraction-dependent bacteriophage. The results of cellular fractionation studies indicated that PilF is the outer membrane pilotin required for the localization and multimerization of the secretin, PilQ. Mutation of the putative PilF lipidation site untethered the protein from the outer membrane, causing secretin assembly in both inner and outer membranes. T4P-mediated twitching motility and bacteriophage susceptibility were moderately decreased in the lipidation site mutant, while cell surface piliation was substantially reduced. The tethering of PilF to the outer membrane promotes the correct localization of PilQ and appears to be required for the formation of stable T4P. Our 2.0-A structure of PilF revealed a superhelical arrangement of six tetratricopeptide protein-protein interaction motifs that may mediate the contacts with PilQ during secretin assembly. An alignment of pseudomonad PilF sequences revealed three highly conserved surfaces that may be involved in PilF function.
Collapse
|
73
|
Guilvout I, Chami M, Berrier C, Ghazi A, Engel A, Pugsley AP, Bayan N. In Vitro Multimerization and Membrane Insertion of Bacterial Outer Membrane Secretin PulD. J Mol Biol 2008; 382:13-23. [DOI: 10.1016/j.jmb.2008.06.055] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2008] [Revised: 06/19/2008] [Accepted: 06/23/2008] [Indexed: 11/26/2022]
|
74
|
Abstract
The widespread role of pili as colonization factors in pathogens has long been recognized in Gram-negative bacteria and more recently in Gram-positive bacteria, making the study of these hair-like filaments a perennial hot topic for research. No other pili are found in as many or as diverse bacteria as type IV pili. This is likely a consequence of their ancient origin and unique ability to promote multiple and strikingly different phenotypes such as attachment to surfaces, aggregation, uptake of DNA during transformation, motility, etc. Two decades of investigations in several model species have shed some light on the structure of these filaments and the molecular basis of some of the properties they confer. Moreover, recent discoveries have led to a better knowledge of the genetic basis and molecular mechanisms of type IV pili biogenesis. This brings us a few steps closer to understanding how these filaments are produced, but leaves us wondering whether (as in the famous motto that inspired the title) out of the many models studied will emerge one unifying mechanism.
Collapse
Affiliation(s)
- Vladimir Pelicic
- Department of Microbiology, Imperial College London, London SW7 2AZ, UK.
| |
Collapse
|
75
|
Trindade MB, Job V, Contreras-Martel C, Pelicic V, Dessen A. Structure of a widely conserved type IV pilus biogenesis factor that affects the stability of secretin multimers. J Mol Biol 2008; 378:1031-9. [PMID: 18433773 DOI: 10.1016/j.jmb.2008.03.028] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2008] [Revised: 03/07/2008] [Accepted: 03/11/2008] [Indexed: 11/19/2022]
Abstract
Type IV pili (Tfp) are arguably the most widespread pili in bacteria, whose biogenesis requires a complex machinery composed of as many as 18 different proteins. This includes the conserved outer membrane-localized secretin, which forms a pore through which Tfp emerge on the bacterial surface. Although, in most model species studied, secretin oligomerization and functionality requires the action of partner lipoproteins, structural information regarding these molecules is limited. We report the high-resolution crystal structure of PilW, the partner lipoprotein of the type IV pilus secretin PilQ from Neisseria meningitidis, which defines a conserved class of Tfp biogenesis proteins involved in the formation and/or stability of secretin multimers in a wide variety of bacteria. The use of the PilW structure as a blueprint reveals an area of high-level sequence conservation in homologous proteins from different pathogens that could reflect a possible secretin-binding site. These results could be exploited for the development of new broad-spectrum antibacterials interfering with the biogenesis of a widespread virulence factor.
Collapse
Affiliation(s)
- Melissa B Trindade
- Institut de Biologie Structurale Jean-Pierre Ebel, UMR 5075, 41 rue Jules Horowitz, F-38027 Grenoble, France
| | | | | | | | | |
Collapse
|
76
|
Moraes TF, Spreter T, Strynadka NC. Piecing together the type III injectisome of bacterial pathogens. Curr Opin Struct Biol 2008; 18:258-66. [PMID: 18258424 DOI: 10.1016/j.sbi.2007.12.011] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2007] [Revised: 12/17/2007] [Accepted: 12/18/2007] [Indexed: 01/01/2023]
Abstract
The Type III secretion system is a bacterial 'injectisome' which allows Gram-negative bacteria to shuttle virulence proteins directly into the host cells they infect. This macromolecular assembly consists of more than 20 different proteins put together to collectively span three biological membranes. The recent T3SS crystal structures of the major oligomeric inner membrane ring, the helical needle filament, needle tip protein, the associated ATPase, and outer membrane pilotin together with electron microscopy reconstructions have dramatically furthered our understanding of how this protein translocator functions. The crucial details that describe how these proteins assemble into this oligomeric complex will need a hybrid of structural methodologies including EM, crystallography, and NMR to clarify the intra- and inter-molecular interactions between different structural components of the apparatus.
Collapse
Affiliation(s)
- Trevor F Moraes
- University of British Columbia, Biochemistry and Molecular Biology and the Center for Blood Research, Rm 4350 Life Sciences Center, 2350 Health Sciences Mall, Vancouver, Canada V6T 1Z3
| | | | | |
Collapse
|
77
|
Craig L, Li J. Type IV pili: paradoxes in form and function. Curr Opin Struct Biol 2008; 18:267-77. [PMID: 18249533 DOI: 10.1016/j.sbi.2007.12.009] [Citation(s) in RCA: 208] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2007] [Revised: 12/12/2007] [Accepted: 12/12/2007] [Indexed: 01/24/2023]
Abstract
Type IV pili are filaments on the surfaces of many Gram-negative bacteria that mediate an extraordinary array of functions, including adhesion, motility, microcolony formation and secretion of proteases and colonization factors. Their prominent display on the surfaces of many bacterial pathogens, their vital role in virulence, and their ability to elicit an immune response make Type IV pilus structures particularly relevant for study as targets for component vaccines and therapies. Structural studies of the pili and components of the pilus assembly apparatus have proven extremely challenging, but new approaches and methods have produced important breakthroughs that are advancing our understanding of pilus functions and their complex assembly mechanism. These structures provide insights into the biology of Type IV pili as well as that of the related bacterial secretion and archaeal flagellar systems. This review will summarize the most recent structural advances on Type IV pili and their assembly components and highlight their significance.
Collapse
Affiliation(s)
- Lisa Craig
- Molecular Biology and Biochemistry Department, Simon Fraser University, 8888 University Dr., Burnaby, BC, Canada V5A 1S6.
| | | |
Collapse
|
78
|
Assalkhou R, Balasingham S, Collins RF, Frye SA, Davidsen T, Benam AV, Bjørås M, Derrick JP, Tønjum T. The outer membrane secretin PilQ from Neisseria meningitidis binds DNA. MICROBIOLOGY-SGM 2007; 153:1593-1603. [PMID: 17464074 PMCID: PMC2884949 DOI: 10.1099/mic.0.2006/004200-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Neisseria meningitidis is naturally competent for transformation throughout its growth cycle. Transformation in neisserial species is coupled to the expression of type IV pili, which are present on the cell surface as bundled filamentous appendages, and are assembled, extruded and retracted by the pilus biogenesis components. During the initial phase of the transformation process, binding and uptake of DNA takes place with entry through a presumed outer-membrane channel into the periplasm. This study showed that DNA associates only weakly with purified pili, but binds significantly to the PilQ complex isolated directly from meningococcal membranes. By assessing the DNA-binding activity of the native complex PilQ, as well as recombinant truncated PilQ monomers, it was shown that the N-terminal region of PilQ is involved in the interaction with DNA. It was evident that the binding of ssDNA to PilQ had a higher affinity than the binding of dsDNA. The binding of DNA to PilQ did not, however, depend on the presence of the neisserial DNA-uptake sequence. It is suggested that transforming DNA is introduced into the cell through the outer-membrane channel formed by the PilQ complex, and that DNA uptake occurs by non-specific introduction of DNA coupled to pilus retraction, followed by presentation to DNA-binding component(s), including PilQ.
Collapse
Affiliation(s)
- Reza Assalkhou
- Centre for Molecular Biology and Neuroscience and Institute of Microbiology, University of Oslo, Oslo, Norway
- Centre for Molecular Biology and Neuroscience and Institute of Microbiology, Rikshospitalet-Radiumhospitalet Medical Centre, Oslo, Norway
| | - Seetha Balasingham
- Centre for Molecular Biology and Neuroscience and Institute of Microbiology, University of Oslo, Oslo, Norway
- Centre for Molecular Biology and Neuroscience and Institute of Microbiology, Rikshospitalet-Radiumhospitalet Medical Centre, Oslo, Norway
| | - Richard F. Collins
- Faculty of Life Sciences, The University of Manchester, Manchester Interdisciplinary Biocentre, 131 Princess Street, Manchester M1 7DN, UK
| | - Stephan A. Frye
- Centre for Molecular Biology and Neuroscience and Institute of Microbiology, University of Oslo, Oslo, Norway
| | - Tonje Davidsen
- Centre for Molecular Biology and Neuroscience and Institute of Microbiology, University of Oslo, Oslo, Norway
| | - Afsaneh V. Benam
- Centre for Molecular Biology and Neuroscience and Institute of Microbiology, University of Oslo, Oslo, Norway
| | - Magnar Bjørås
- Centre for Molecular Biology and Neuroscience and Institute of Microbiology, University of Oslo, Oslo, Norway
- Centre for Molecular Biology and Neuroscience and Institute of Microbiology, Rikshospitalet-Radiumhospitalet Medical Centre, Oslo, Norway
| | - Jeremy P. Derrick
- Faculty of Life Sciences, The University of Manchester, Manchester Interdisciplinary Biocentre, 131 Princess Street, Manchester M1 7DN, UK
| | - Tone Tønjum
- Centre for Molecular Biology and Neuroscience and Institute of Microbiology, University of Oslo, Oslo, Norway
- Centre for Molecular Biology and Neuroscience and Institute of Microbiology, Rikshospitalet-Radiumhospitalet Medical Centre, Oslo, Norway
| |
Collapse
|
79
|
Chen CT, Bettigeri S, Weng SS, Pawar VD, Lin YH, Liu CY, Lee WZ. Asymmetric Aerobic Oxidation of α-Hydroxy Acid Derivatives by C4-Symmetric, Vanadate-Centered, Tetrakisvanadyl(V) Clusters Derived from N-Salicylidene-α-aminocarboxylates. J Org Chem 2007; 72:8175-85. [DOI: 10.1021/jo070575f] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Chien-Tien Chen
- Department of Chemistry, National Taiwan Normal University, Taipei, Taiwan, #88, Section 4, Ding-jou Road, Taipei, Taiwan 11650
| | - Sampada Bettigeri
- Department of Chemistry, National Taiwan Normal University, Taipei, Taiwan, #88, Section 4, Ding-jou Road, Taipei, Taiwan 11650
| | - Shiue-Shien Weng
- Department of Chemistry, National Taiwan Normal University, Taipei, Taiwan, #88, Section 4, Ding-jou Road, Taipei, Taiwan 11650
| | - Vijay D. Pawar
- Department of Chemistry, National Taiwan Normal University, Taipei, Taiwan, #88, Section 4, Ding-jou Road, Taipei, Taiwan 11650
| | - Ya-Hui Lin
- Department of Chemistry, National Taiwan Normal University, Taipei, Taiwan, #88, Section 4, Ding-jou Road, Taipei, Taiwan 11650
| | - Cheng-Yuan Liu
- Department of Chemistry, National Taiwan Normal University, Taipei, Taiwan, #88, Section 4, Ding-jou Road, Taipei, Taiwan 11650
| | - Way-Zen Lee
- Department of Chemistry, National Taiwan Normal University, Taipei, Taiwan, #88, Section 4, Ding-jou Road, Taipei, Taiwan 11650
| |
Collapse
|
80
|
Johnsborg O, Eldholm V, Håvarstein LS. Natural genetic transformation: prevalence, mechanisms and function. Res Microbiol 2007; 158:767-78. [PMID: 17997281 DOI: 10.1016/j.resmic.2007.09.004] [Citation(s) in RCA: 229] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2007] [Revised: 09/04/2007] [Accepted: 09/21/2007] [Indexed: 02/02/2023]
Abstract
Studies show that gene acquisition through natural transformation has contributed significantly to the adaptation and ecological diversification of several bacterial species. Relatively little is still known, however, about the prevalence and phylogenetic distribution of organisms possessing this property. Thus, whether natural transformation only benefits a limited number of species or has a large impact on lateral gene flow in nature remains a matter of speculation. Here we will review the most recent advances in our understanding of the phenomenon and discuss its possible biological functions.
Collapse
Affiliation(s)
- Ola Johnsborg
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, As, Norway
| | | | | |
Collapse
|
81
|
Collins RF, Saleem M, Derrick JP. Purification and three-dimensional electron microscopy structure of the Neisseria meningitidis type IV pilus biogenesis protein PilG. J Bacteriol 2007; 189:6389-96. [PMID: 17616599 PMCID: PMC1951934 DOI: 10.1128/jb.00648-07] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2007] [Accepted: 06/26/2007] [Indexed: 11/20/2022] Open
Abstract
Type IV pili are surface-exposed retractable fibers which play a key role in the pathogenesis of Neisseria meningitidis and other gram-negative pathogens. PilG is an integral inner membrane protein and a component of the type IV pilus biogenesis system. It is related by sequence to the extensive GspF family of secretory proteins, which are involved in type II secretion processes. PilG was overexpressed and purified from Escherichia coli membranes by detergent extraction and metal ion affinity chromatography. Analysis of the purified protein by perfluoro-octanoic acid polyacrylamide gel electrophoresis showed that PilG formed dimers and tetramers. A three-dimensional (3-D) electron microscopy structure of the PilG multimer was determined using single-particle averaging applied to samples visualized by negative staining. Symmetry analysis of the unsymmetrized 3-D volume provided further evidence that the PilG multimer is a tetramer. The reconstruction also revealed an asymmetric bilobed structure approximately 125 A in length and 80 A in width. The larger lobe within the structure was identified as the N terminus by location of Ni-nitrilotriacetic acid nanogold particles to the N-terminal polyhistidine tag. We propose that the smaller lobe corresponds to the periplasmic domain of the protein, with the narrower "waist" region being the transmembrane section. This constitutes the first report of a 3-D structure of a member of the GspF family and suggests a physical basis for the role of the protein in linking cytoplasmic and periplasmic protein components of the type II secretion and type IV pilus biogenesis systems.
Collapse
Affiliation(s)
- Richard F Collins
- Faculties of Life Sciences and Engineering/Physical Sciences, Manchester Interdisciplinary Biocentre, University of Manchester, 131 Princess Street, Manchester, United Kingdom
| | | | | |
Collapse
|
82
|
Collin S, Guilvout I, Chami M, Pugsley AP. YaeT-independent multimerization and outer membrane association of secretin PulD. Mol Microbiol 2007; 64:1350-7. [PMID: 17542925 DOI: 10.1111/j.1365-2958.2007.05743.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Previous studies demonstrated that targeting of the dodecameric secretin PulD to the Escherichia coli outer membrane is strictly dependent on the chaperone-like pilotin PulS. Here, we report that PulD multimerization and membrane association in strains producing PulS were unaffected when the levels of the essential outer membrane assembly factor YaeT(Omp85) were reduced by controlled expression of a paraBAD-yaeT transcriptional fusion. This behaviour contrasted markedly to that of the trimeric porin LamB, which remained monomeric under these conditions. Furthermore, resistance to extraction by the detergent Sarkosyl and by urea, and susceptibility to trypsin digestion all suggested that PulD localized to the outer membrane in YaeT-depleted cells. We conclude that, unlike classical beta-barrel outer membrane proteins such as LamB, multimerization of PulD is largely YaeT-independent.
Collapse
Affiliation(s)
- Séverine Collin
- Molecular Genetics Unit and CNRS URA2172, Institut Pasteur, 25, rue du Dr Roux, 75724 Paris Cedex 15, France
| | | | | | | |
Collapse
|
83
|
Balasingham SV, Collins RF, Assalkhou R, Homberset H, Frye SA, Derrick JP, Tønjum T. Interactions between the lipoprotein PilP and the secretin PilQ in Neisseria meningitidis. J Bacteriol 2007; 189:5716-27. [PMID: 17526700 PMCID: PMC1951802 DOI: 10.1128/jb.00060-07] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Neisseria meningitidis can be the causative agent of meningitis or septicemia. This bacterium expresses type IV pili, which mediate a variety of functions, including autoagglutination, twitching motility, biofilm formation, adherence, and DNA uptake during transformation. The secretin PilQ supports type IV pilus extrusion and retraction, but it also requires auxiliary proteins for its assembly and localization in the outer membrane. Here we have studied the physical properties of the lipoprotein PilP and examined its interaction with PilQ. We found that PilP was an inner membrane protein required for pilus expression and transformation, since pilP mutants were nonpiliated and noncompetent. These mutant phenotypes were restored by the expression of PilP in trans. The pilP gene is located upstream of pilQ, and analysis of their transcripts indicated that pilP and pilQ were cotranscribed. Furthermore, analysis of the level of PilQ expression in pilP mutants revealed greatly reduced amounts of PilQ only in the deletion mutant, exhibiting a polar effect on pilQ transcription. In vitro experiments using recombinant fragments of PilP and PilQ showed that the N-terminal region of PilP interacted with the middle part of the PilQ polypeptide. A three-dimensional reconstruction of the PilQ-PilP interacting complex was obtained at low resolution by transmission electron microscopy, and PilP was shown to localize around the cap region of the PilQ oligomer. These findings suggest a role for PilP in pilus biogenesis. Although PilQ does not need PilP for its stabilization or membrane localization, the specific interaction between these two proteins suggests that they might have another coordinated activity in pilus extrusion/retraction or related functions.
Collapse
Affiliation(s)
- Seetha V Balasingham
- Centre for Molecular Biology and Neuroscience, Institute of Microbiology, University of Oslo, Oslo, Norway
| | | | | | | | | | | | | |
Collapse
|
84
|
Han X, Kennan RM, Parker D, Davies JK, Rood JI. Type IV fimbrial biogenesis is required for protease secretion and natural transformation in Dichelobacter nodosus. J Bacteriol 2007; 189:5022-33. [PMID: 17513472 PMCID: PMC1951885 DOI: 10.1128/jb.00138-07] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The objective of this study was to develop an understanding of the molecular mechanisms by which type IV fimbrial biogenesis, natural transformation, and protease secretion are linked in the ovine foot rot pathogen, Dichelobacter nodosus. We have shown that like the D. nodosus fimbrial subunit FimA, the pilin-like protein PilE and the FimN, FimO, and FimP proteins, which are homologs of PilB, PilC, and PilD from Pseudomonas aeruginosa, are essential for fimbrial biogenesis and natural transformation, indicating that transformation requires an intact type IV fimbrial apparatus. The results also showed that extracellular protease secretion in the fimN, fimO, fimP, and pilE mutants was significantly reduced, which represents the first time that PilB, PilC, and PilE homologs have been shown to be required for the secretion of unrelated extracellular proteins in a type IV fimbriate bacterium. Quantitative real-time PCR analysis of the three extracellular protease genes aprV2, aprV5, and bprV showed that the effects on protease secretion were not mediated at the transcriptional level. Bioinformatic analysis did not identify a classical type II secretion system, and the putative fimbrial biogenesis gene pilQ was the only outer membrane secretin gene identified. Based on these results, it is postulated that in D. nodosus, protease secretion occurs by a type II secretion-related process that directly involves components of the type IV fimbrial biogenesis machinery, which represents the only type II secretion system encoded by the small genome of this highly evolved pathogen.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Dichelobacter nodosus/genetics
- Dichelobacter nodosus/metabolism
- Dichelobacter nodosus/ultrastructure
- Electrophoresis, Gel, Two-Dimensional
- Electrophoresis, Polyacrylamide Gel
- Fimbriae Proteins/analysis
- Fimbriae Proteins/genetics
- Fimbriae Proteins/metabolism
- Fimbriae, Bacterial/genetics
- Fimbriae, Bacterial/metabolism
- Fimbriae, Bacterial/ultrastructure
- Gene Order
- Genes, Bacterial
- Immunoblotting
- Microscopy, Electron, Transmission
- Molecular Sequence Data
- Multigene Family
- Mutation
- Peptide Hydrolases/metabolism
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- Xiaoyan Han
- Australian Research Council Centre of Excellence in Structural and Functional Microbial Genomics, Department of Microbiology, Monash University, Victoria 3800, Australia
| | | | | | | | | |
Collapse
|
85
|
Frye SA, Assalkhou R, Collins RF, Ford RC, Petersson C, Derrick JP, Tønjum T. Topology of the outer-membrane secretin PilQ from Neisseria meningitidis. MICROBIOLOGY-SGM 2007; 152:3751-3764. [PMID: 17159226 DOI: 10.1099/mic.0.2006/000315-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Neisseria meningitidis is the causative agent of epidemic meningococcal meningitis and septicaemia. Type IV pili are surface organelles that mediate a variety of functions, including adhesion, twitching motility, and competence for DNA binding and uptake in transformation. The secretin PilQ is required for type IV pilus expression at the cell surface, and forms a dodecameric cage-like macromolecular complex in the meningococcal outer membrane. PilQ-null mutants are devoid of surface pili, and prevailing evidence suggests that the PilQ complex facilitates extrusion and retraction of type IV pili across the outer membrane. Defining the orientation of the meningococcal PilQ complex in the membrane is a prerequisite for understanding the structure-function relationships of this important protein in pilus biology. In order to begin to define the topology of the PilQ complex in the outer membrane, polyhistidine insertions in N- and C-terminal regions of PilQ were constructed, and their subcellular locations examined. Notably, the insertion epitopes at residues 205 and 678 were located within the periplasm, whereas residue 656 was exposed at the outer surface of the outer membrane. Using electron microscopy with Ni-NTA gold labelling, it was demonstrated that the insertion at residue 205 within the N-terminus mapped to a site on the arm-like features of the 3D structure of the PilQ multimer. Interestingly, mutation of the same region gave rise to an increase in vancomycin permeability through the PilQ complex. The results yield novel information on the PilQ N-terminal location and function in the periplasm, and reveal a complex organization of the membrane-spanning secretin in vivo.
Collapse
Affiliation(s)
- Stephan A Frye
- Centre for Molecular Biology and Neuroscience and Institute of Microbiology, Rikshospitalet-Radiumhospitalet Medical Centre, Norway
- Centre for Molecular Biology and Neuroscience and Institute of Microbiology, University of Oslo, Norway
| | - Reza Assalkhou
- Centre for Molecular Biology and Neuroscience and Institute of Microbiology, University of Oslo, Norway
| | - Richard F Collins
- Faculty of Life Sciences, The University of Manchester, Sackville Street, PO Box 88, Manchester M60 1QD, UK
| | - Robert C Ford
- Faculty of Life Sciences, The University of Manchester, Sackville Street, PO Box 88, Manchester M60 1QD, UK
| | - Christoffer Petersson
- Division of Medical Microbiology, Department of Molecular and Clinical Medicine, Faculty of Health Sciences, Linköping University, Sweden
| | - Jeremy P Derrick
- Faculty of Life Sciences, The University of Manchester, Sackville Street, PO Box 88, Manchester M60 1QD, UK
| | - Tone Tønjum
- Centre for Molecular Biology and Neuroscience and Institute of Microbiology, Rikshospitalet-Radiumhospitalet Medical Centre, Norway
- Centre for Molecular Biology and Neuroscience and Institute of Microbiology, University of Oslo, Norway
| |
Collapse
|
86
|
Collins RF, Beis K, Dong C, Botting CH, McDonnell C, Ford RC, Clarke BR, Whitfield C, Naismith JH. The 3D structure of a periplasm-spanning platform required for assembly of group 1 capsular polysaccharides in Escherichia coli. Proc Natl Acad Sci U S A 2007; 104:2390-5. [PMID: 17283336 PMCID: PMC1793899 DOI: 10.1073/pnas.0607763104] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Capsular polysaccharides (CPSs) are essential virulence determinants of many pathogenic bacteria. Escherichia coli group 1 CPSs provide paradigms for widespread surface polysaccharide assembly systems in Gram-negative bacteria. In these systems, complex carbohydrate polymers must be exported across the periplasm and outer membrane to the cell surface. Group 1 CPS export requires oligomers of the outer membrane protein, Wza, for translocation across the outer membrane. Assembly also depends on Wzc, an inner membrane tyrosine autokinase known to regulate export and synthesis of group 1 CPS. Here, we provide a structural view of a complex comprising Wzc and Wza that spans the periplasm, connecting the inner and outer membranes. Examination of transmembrane sections of the complex suggests that the periplasm is compressed at the site of complex formation. An important feature of CPS production is the coupling of steps involved in biosynthesis and export. We propose that the Wza-Wzc complex provides the structural and regulatory core of a larger macromolecular machine. We suggest a mechanism by which CPS may move from the periplasm through the outer membrane.
Collapse
Affiliation(s)
- Richard F. Collins
- *Faculty of Life Science, University of Manchester, Manchester M60 1QD, United Kingdom
| | - Konstantinos Beis
- Centre for Biomolecular Sciences, University of St. Andrews, North Haugh, St. Andrews, Fife KY16 9ST, United Kingdom; and
| | - Changjiang Dong
- Centre for Biomolecular Sciences, University of St. Andrews, North Haugh, St. Andrews, Fife KY16 9ST, United Kingdom; and
| | - Catherine H. Botting
- Centre for Biomolecular Sciences, University of St. Andrews, North Haugh, St. Andrews, Fife KY16 9ST, United Kingdom; and
| | - Catherine McDonnell
- *Faculty of Life Science, University of Manchester, Manchester M60 1QD, United Kingdom
| | - Robert C. Ford
- *Faculty of Life Science, University of Manchester, Manchester M60 1QD, United Kingdom
| | - Bradley R. Clarke
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - Chris Whitfield
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada N1G 2W1
- To whom correspondence may be addressed. E-mail:
or
| | - James H. Naismith
- Centre for Biomolecular Sciences, University of St. Andrews, North Haugh, St. Andrews, Fife KY16 9ST, United Kingdom; and
- To whom correspondence may be addressed. E-mail:
or
| |
Collapse
|
87
|
Helm RA, Barnhart MM, Seifert HS. pilQ Missense mutations have diverse effects on PilQ multimer formation, piliation, and pilus function in Neisseria gonorrhoeae. J Bacteriol 2007; 189:3198-207. [PMID: 17277065 PMCID: PMC1855849 DOI: 10.1128/jb.01833-06] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Type IV pili are required for virulence in Neisseria gonorrhoeae, as they are involved in adherence to host epithelium, twitching motility, and DNA transformation. The outer membrane secretin PilQ forms a homododecameric ring through which the pilus is proposed to be secreted. pilQ null mutants are nonpiliated, and thus, all pilus-dependent functions are eliminated. Mutagenesis was performed on the middle one-third of pilQ, and mutants with colony morphologies consistent with the colony morphology of nonpiliated or underpiliated bacteria were selected. Nineteen mutants, each with a single amino acid substitution, were isolated and displayed diverse phenotypes in terms of PilQ multimer stability, pilus expression, transformation efficiency, and host cell adherence. The 19 mutants were grouped into five phenotypic classes based on functionality. Four of the five mutant classes fit the current model of pilus functionality, which proposes that a functional pilus assembly apparatus, not necessarily full-length pili, is required for transformation, while high levels of displayed pili are required for adherence. One class, despite having an underpiliated colony morphology, expressed high levels of pili yet adhered poorly, demonstrating that pilus expression is necessary but not sufficient for adherence and indicating that PilQ may be directly involved in host cell adherence. The collection of phenotypes expressed by these mutants suggests that PilQ has an active role in pilus expression and function.
Collapse
Affiliation(s)
- R Allen Helm
- Department of Microbiology-Immunology, Northwestern University's Feinberg School of Medicine, S213, 303 East Chicago Avenue, Chicago, IL 60611, USA
| | | | | |
Collapse
|
88
|
Collins RF, Derrick JP. Wza: a new structural paradigm for outer membrane secretory proteins? Trends Microbiol 2007; 15:96-100. [PMID: 17275308 DOI: 10.1016/j.tim.2007.01.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2006] [Revised: 01/05/2007] [Accepted: 01/19/2007] [Indexed: 11/17/2022]
Abstract
Gram-negative bacteria need to be able to transport a large variety of macromolecules across their outer membranes. In Escherichia coli, the passage of the group 1 capsular polysaccharide is mediated by an integral outer membrane protein, Wza. The crystal structure of Wza, determined recently, reveals a novel transmembrane alpha-helical barrel and a large central cavity within the core of the vase-shaped protein complex. The structure has similarities with that of the secretin protein, PilQ, which mediates the transition of type IV pili across the outer membrane. We propose that the large internal chamber, which can accommodate the secreted assembled macromolecule, is likely to be a common feature found in other outer membrane proteins involved in secretion processes.
Collapse
Affiliation(s)
- Richard F Collins
- Faculty of Engineering and Physical Sciences, Manchester Interdisciplinary Biocentre, The University of Manchester, Manchester, M1 7DN, UK
| | | |
Collapse
|
89
|
McDevitt CA, Collins RF, Conway M, Modok S, Storm J, Kerr ID, Ford RC, Callaghan R. Purification and 3D structural analysis of oligomeric human multidrug transporter ABCG2. Structure 2007; 14:1623-32. [PMID: 17098188 DOI: 10.1016/j.str.2006.08.014] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2006] [Revised: 08/04/2006] [Accepted: 08/08/2006] [Indexed: 12/16/2022]
Abstract
ABCG2 is a multidrug efflux pump associated with resistance of cancer cells to a plethora of unrelated drugs. ABCG2 is a "half-transporter," and previous studies have indicated that it forms homodimers and higher oligomeric species. In this manuscript, electron microscopic structural analysis directly addressed this issue. An N-terminal hexahistidine-tagged ABCG2(R482G) isoform was expressed to high levels in insect cells. An extensive detergent screen was employed to effect extraction of ABCG2(R482G) from membranes and identified only the fos-choline detergents as efficient. Soluble protein was purified to >95% homogeneity by a three-step procedure while retaining the ability to bind substrates. Cryonegative stain electron microscopy of purified ABCG2(R482G) provided 3D structural data at a resolution of approximately 18 A. Single-particle analysis revealed that the complex forms a tetrameric complex ( approximately 180 A in diameter x approximately 140 A high) with an aqueous central region. We interpret the tetrameric structure as comprising four homodimeric ABCG2(R482G) complexes.
Collapse
Affiliation(s)
- Christopher A McDevitt
- Nuffield Department of Clinical Laboratory Sciences, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
90
|
Carbonnelle E, Helaine S, Nassif X, Pelicic V. A systematic genetic analysis in Neisseria meningitidis defines the Pil proteins required for assembly, functionality, stabilization and export of type IV pili. Mol Microbiol 2006; 61:1510-22. [PMID: 16968224 DOI: 10.1111/j.1365-2958.2006.05341.x] [Citation(s) in RCA: 156] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Although type IV pili (Tfp) are among the commonest virulence factors in bacteria, their biogenesis by complex machineries of 12-15 proteins, and thereby their function remains poorly understood. Interestingly, some of these proteins were reported to merely antagonize the retraction of the fibres powered by PilT, because piliation could be restored in their absence by a mutation in the pilT gene. The recent identification of the 15 Pil proteins dedicated to Tfp biogenesis in Neisseria meningitidis offered us the unprecedented possibility to define their exact contribution in this process. We therefore systematically introduced a pilT mutation into the corresponding non-piliated mutants and characterized them for the rescue of Tfp and Tfp-mediated virulence phenotypes. We found that in addition to the pilin, the main constituent of Tfp, only six Pil proteins were required for the actual assembly of the fibres, because apparently normal fibres were restored in the remaining mutants. Restored fibres were surface-exposed, except in the pilQ/T mutant in which they were trapped in the periplasm, suggesting that the PilQ secretin was the sole Pil component necessary for their emergence on the surface. Importantly, although in most mutants the restored Tfp were not functional, the pilG/T and pilH/T mutants could form bacterial aggregates and adhere to human cells efficiently, suggesting that Tfp stabilization and functional maturation are two discrete steps. These findings have numerous implications for understanding Tfp biogenesis/function and provide a useful groundwork for the characterization of the precise function of each Pil protein in this process.
Collapse
|
91
|
Dong C, Beis K, Nesper J, Brunkan AL, Clarke BR, Whitfield C, Naismith JH. Wza the translocon for E. coli capsular polysaccharides defines a new class of membrane protein. Nature 2006; 444:226-9. [PMID: 17086202 PMCID: PMC3315050 DOI: 10.1038/nature05267] [Citation(s) in RCA: 290] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2006] [Accepted: 09/21/2006] [Indexed: 11/09/2022]
Abstract
Many types of bacteria produce extracellular polysaccharides (EPSs). Some are secreted polymers and show only limited association with the cell surface, whereas others are firmly attached to the cell surface and form a discrete structural layer, the capsule, which envelopes the cell and allows the bacteria to evade or counteract the host immune system. EPSs have critical roles in bacterial colonization of surfaces, such as epithelia and medical implants; in addition some EPSs have important industrial and biomedical applications in their own right. Here we describe the 2.26 A resolution structure of the 340 kDa octamer of Wza, an integral outer membrane lipoprotein, which is essential for group 1 capsule export in Escherichia coli. The transmembrane region is a novel alpha-helical barrel. The bulk of the Wza structure is located in the periplasm and comprises three novel domains forming a large central cavity. Wza is open to the extracellular environment but closed to the periplasm. We propose a route and mechanism for translocation of the capsular polysaccharide. This work may provide insight into the export of other large polar molecules such as DNA and proteins.
Collapse
Affiliation(s)
- Changjiang Dong
- Centre for Biomolecular Sciences, EaStChem, The University, St Andrews, KY16 9RH
| | - Konstantinos Beis
- Centre for Biomolecular Sciences, EaStChem, The University, St Andrews, KY16 9RH
| | - Jutta Nesper
- Department of Molecular and Cellular Biology, The University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | - Anne L. Brunkan
- Department of Molecular and Cellular Biology, The University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | - Bradley R. Clarke
- Department of Molecular and Cellular Biology, The University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | - Chris Whitfield
- Department of Molecular and Cellular Biology, The University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | - James H. Naismith
- Centre for Biomolecular Sciences, EaStChem, The University, St Andrews, KY16 9RH
| |
Collapse
|
92
|
Abstract
The type III secretion injectisome is a complex nanomachine that allows bacteria to deliver protein effectors across eukaryotic cellular membranes. In recent years, significant progress has been made in our understanding of its structure, assembly and mode of operation. The principal structural components of the injectisome, from the base located in the bacterial cytosol to the tip of the needle protruding from the cell surface, have been investigated in detail. The structures of several constituent proteins were solved at the atomic level and important insights into the assembly process have been gained. However, despite the ongoing concerted efforts of molecular and structural biologists, the role of many of the constituent components of this nanomachine remain unknown.
Collapse
Affiliation(s)
- Guy R Cornelis
- Biozentrum der Universität Basel, Klingelbergstrasse 50, CH-4056, Basel, Switzerland.
| |
Collapse
|
93
|
Guilvout I, Chami M, Engel A, Pugsley AP, Bayan N. Bacterial outer membrane secretin PulD assembles and inserts into the inner membrane in the absence of its pilotin. EMBO J 2006; 25:5241-9. [PMID: 17082772 PMCID: PMC1636608 DOI: 10.1038/sj.emboj.7601402] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2006] [Accepted: 09/29/2006] [Indexed: 11/09/2022] Open
Abstract
Dodecamerization and insertion of the outer membrane secretin PulD is entirely determined by the C-terminal half of the polypeptide (PulD-CS). In the absence of its cognate chaperone PulS, PulD-CS and PulD mislocalize to the inner membrane, from which they are extractable with detergents but not urea. Electron microscopy of PulD-CS purified from the inner membrane revealed apparently normal dodecameric complexes. Electron microscopy of PulD-CS and PulD in inner membrane vesicles revealed inserted secretin complexes. Mislocalization of PulD or PulD-CS to this membrane induces the phage shock response, probably as a result of a decreased membrane electrochemical potential. Production of PulD in the absence of the phage shock response protein PspA and PulS caused a substantial drop in membrane potential and was lethal. Thus, PulD-CS and PulD assemble in the inner membrane if they do not associate with PulS. We propose that PulS prevents premature multimerization of PulD and accompanies it through the periplasm to the outer membrane. PulD is the first bacterial outer membrane protein with demonstrated ability to insert efficiently into the inner membrane.
Collapse
Affiliation(s)
- Ingrid Guilvout
- Molecular Genetics Unit and CNRS URA2172, Institut Pasteur, Paris, France
| | - Mohamed Chami
- ME Müller Institute, Biozentrum, University of Basel, Basel, Switzerland
| | - Andreas Engel
- ME Müller Institute, Biozentrum, University of Basel, Basel, Switzerland
| | - Anthony P Pugsley
- Molecular Genetics Unit and CNRS URA2172, Institut Pasteur, Paris, France
- Molecular Genetics Unit, Institut Pasteur, 25, rue du Dr Roux, 75724 Paris Cedex 15, France. Tel.: +33 1 4568 8494; Fax: +33 1 4568 8960; E-mail:
| | - Nicolas Bayan
- Molecular Genetics Unit and CNRS URA2172, Institut Pasteur, Paris, France
- CNRS UMR8619, Université de Paris Sud, Orsay, France
| |
Collapse
|
94
|
Golovanov AP, Balasingham S, Tzitzilonis C, Goult BT, Lian LY, Homberset H, Tønjum T, Derrick JP. The Solution Structure of a Domain from the Neisseria meningitidis Lipoprotein PilP Reveals a New β-Sandwich Fold. J Mol Biol 2006; 364:186-95. [PMID: 17007878 DOI: 10.1016/j.jmb.2006.08.078] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2006] [Revised: 08/24/2006] [Accepted: 08/29/2006] [Indexed: 10/24/2022]
Abstract
Type IV pili are long, thin fibres, which extend from the surface of the bacterial pathogen Neisseria meningitidis; they play a key role in adhesion and colonisation of host cells. PilP is a lipoprotein, suggested to be involved in the assembly and stabilization of an outer membrane protein, PilQ, which is required for pilus formation. Here we describe the expression of a recombinant fragment of PilP, spanning residues 20 to 181, and determination of the solution structure of a folded domain, spanning residues 85 to 163, by NMR. The N-terminal third of the protein, from residues 20 to 84, is apparently unfolded. Protease digestion yielded a 113 residue fragment that contained the folded domain. The domain adopts a simple beta-sandwich type fold, consisting of a three-stranded beta-sheet packed against a four-stranded beta-sheet. There is also a short segment of 3(10) helix at the N-terminal part of the folded domain. We were unable to identify any other proteins that are closely related in structure to the PilP domain, although the fold appears to be distantly related to the lipocalin family. Over 40 homologues of PilP have been identified in Gram-negative bacteria and the majority of conserved residues lie within the folded domain. The fourth beta-strand and adjacent loop regions contain a high proportion of conserved residues, including three glycine residues, which seem to play a role in linking the two beta-sheets. The two beta-sheets pack together to form a crevice, lined with conserved hydrophobic residues: we suggest that this feature could act as a binding site for a small ligand. The results show that PilP and its homologues have a conserved, folded domain at the C-terminal end of the protein that may be involved in mediating binding to hydrophobic ligands.
Collapse
Affiliation(s)
- Alexander P Golovanov
- Faculty of Life Sciences and Manchester Interdisciplinary Biocentre, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK.
| | | | | | | | | | | | | | | |
Collapse
|
95
|
Rumszauer J, Schwarzenlander C, Averhoff B. Identification, subcellular localization and functional interactions of PilMNOWQ and PilA4 involved in transformation competency and pilus biogenesis in the thermophilic bacterium Thermus thermophilus HB27. FEBS J 2006; 273:3261-72. [PMID: 16857013 DOI: 10.1111/j.1742-4658.2006.05335.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The natural transformation system of the thermophilic bacterium Thermus thermophilus HB27 comprises at least 16 distinct competence proteins encoded by seven distinct loci. In this article, we present for the first time biochemical analyses of the Thermus thermophilus competence proteins PilMNOWQ and PilA4, and demonstrate that the pilMNOWQ genes are each essential for natural transformation. We identified three different forms of PilA4, one with an apparent molecular mass of 14 kDa, which correlates with that of the deduced protein, an 18-kDa form and a 23-kDa form; the last was found to be glycosylated. We demonstrate that PilM, PilN and PilO are located in the inner membrane, whereas PilW, PilQ and PilA4 are located in the inner and outer membranes. These data show that PilMNOWQ and PilA4 are components of a DNA translocator structure that spans the inner and outer membranes. We further show that PilA4 and PilQ both copurify with pilus structures. Possible functions of PilQ and PilA4 in DNA translocation and in pilus biogenesis are discussed. Comparative mutant studies revealed that mutations in either pilW or pilQ significantly affect the location of the other protein in the outer membrane. Furthermore, no PilA4 was present in the outer membranes of these mutants. From these findings, we conclude that the abilities of PilW, PilQ and PilA4 to stably localize or accumulate in the outer membrane fraction are strongly dependent on one another, which is in accord with an outer membrane DNA translocator complex comprising PilW, PilQ, and PilA4.
Collapse
Affiliation(s)
- Judit Rumszauer
- Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University Frankfurt/Main, Germany
| | | | | |
Collapse
|
96
|
Abstract
Secretins are a unique class of bacterial multimeric outer membrane proteins that probably differ considerably from other, less complex outer membrane proteins in their overall structure and organization, and in their requirements for outer membrane targeting and assembly factors. In this MicroCommentary, we discuss these differences with respect to the role of a specific class of lipoproteins, often referred to as pilotins, in secretin complex assembly. We compare them with other lipoproteins that play a role in Omp85/YaeT-mediated assembly of more classical outer membrane proteins. One of the examples we have chosen is the Myxococcus Xanthus lipoprotein Tgl. Coculture of cells with and without Tgl allows secretin assembly (and, hence, type IV pilus assembly) in the cells without Tgl, indicating that it can act by cell-to-cell contact or can transfer between cells.
Collapse
Affiliation(s)
- Nicolas Bayan
- Molecular Genetics Unit and CNRS URA 2172, Institut Pasteur, 25, rue du Dr Roux, 75724 Paris CEDEX 15, France
| | | | | |
Collapse
|
97
|
Collins RF, Beis K, Clarke BR, Ford RC, Hulley M, Naismith JH, Whitfield C. Periplasmic protein-protein contacts in the inner membrane protein Wzc form a tetrameric complex required for the assembly of Escherichia coli group 1 capsules. J Biol Chem 2006; 281:2144-50. [PMID: 16172129 PMCID: PMC3315051 DOI: 10.1074/jbc.m508078200] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The K antigenic capsular polysaccharide forms a structural layer, the capsule, on the surfaces of Escherichia coli cells. The capsule provides an important protective covering that helps protect encapsulated bacteria from host immune defenses. The assembly and translocation of the capsule requires proteins in the inner and outer membranes. The inner membrane protein Wzc is a tyrosine autokinase that plays an essential role in what is believed to be a coordinated biosynthesis and secretion process. Mutants lacking Wzc can form K antigen oligosaccharides but are unable to polymerize high molecular weight capsular polymers. Wzc homologs have been identified in exopolymer biosynthesis systems in many different Gram-negative and -positive bacteria. Using single particle averaging on cryo-negatively stained samples, we have produced the first three-dimensional structure of this type of membrane protein in its phosphorylated state at approximately 14 A resolution. Perfluoro-octanoate-PAGE analysis of detergent-solubilized oligomeric Wzc and symmetry analysis of the transmission electron microscopy data clearly demonstrated that Wzc forms a tetrameric complex with C4 rotational symmetry. Viewed from the top of the complex, the oligomer is square with a diameter of approximately 100 A and can be divided into four separate densities. From the side, Wzc is approximately 110 A high and has a distinctive appearance similar to an extracted molar tooth. The upper "crown" region is approximately 55 A high and forms a continuous ring of density. Four unconnected "roots" ( approximately 65 A high) emerge from the underside of the crown. We propose that the crown is formed by protein-protein contacts from the four Wzc periplasmic domains, while each root represents an individual cytoplasmic tyrosine autokinase domain.
Collapse
Affiliation(s)
- Richard F. Collins
- Faculty of Life Science, University of Manchester, Manchester, M60 1QD, United Kingdom
| | - Konstantinos Beis
- Centre for Biomolecular Sciences, University of St. Andrews, North Haugh, St. Andrews, Fife KY16 9ST, United Kingdom
| | - Bradley R. Clarke
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Robert C. Ford
- Faculty of Life Science, University of Manchester, Manchester, M60 1QD, United Kingdom
| | - Martyn Hulley
- Faculty of Life Science, University of Manchester, Manchester, M60 1QD, United Kingdom
| | - James H. Naismith
- Centre for Biomolecular Sciences, University of St. Andrews, North Haugh, St. Andrews, Fife KY16 9ST, United Kingdom
| | - Chris Whitfield
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
98
|
Zhao S, Tobiason DM, Hu M, Seifert HS, Nicholas RA. The penC mutation conferring antibiotic resistance in Neisseria gonorrhoeae arises from a mutation in the PilQ secretin that interferes with multimer stability. Mol Microbiol 2005; 57:1238-51. [PMID: 16101998 PMCID: PMC2673695 DOI: 10.1111/j.1365-2958.2005.04752.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The penC resistance gene was previously characterized in an FA19 penA mtrR penB gonococcal strain (PR100) as a spontaneous mutation that increased resistance to penicillin and tetracycline. We show here that antibiotic resistance mediated by penC is the result of a Glu-666 to Lys missense mutation in the pilQ gene that interferes with the formation of the SDS-resistant high-molecular-mass PilQ secretin complex, disrupts piliation and decreases transformation frequency by 50-fold. Deletion of pilQ in PR100 confers the same level of antibiotic resistance as the penC mutation, but increased resistance was observed only in strains containing the mtrR and penB resistance determinants. Site-saturation mutagenesis of Glu-666 revealed that only acidic or amidated amino acids at this position preserved PilQ function. Consistent with early studies suggesting the importance of cysteine residues for stability of the PilQ multimer, mutation of either of the two cysteine residues in FA19 PilQ led to a similar phenotype as penC: increased antibiotic resistance, loss of piliation, intermediate levels of transformation competence and absence of SDS-resistant PilQ oligomers. These data show that a functional secretin complex can enhance the entry of antibiotics into the cell and suggest that the PilQ oligomer forms a pore in the outer membrane through which antibiotics diffuse into the periplasm.
Collapse
Affiliation(s)
- Shuqing Zhao
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - Deborah M. Tobiason
- Department of Microbiology and Immunology, Northwestern University's Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | | | - H. Steven Seifert
- Department of Microbiology and Immunology, Northwestern University's Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Robert A. Nicholas
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
- To whom correspondence should be addressed at: University of North Carolina at Chapel Hill Department of Pharmacology CB#7365 Chapel Hill, NC 27599-7365 Office: (919) 966-6547 Fax: (919) 966-5640
| |
Collapse
|
99
|
Abstract
Transformation and conjugation permit the passage of DNA through the bacterial membranes and represent dominant modes for the transfer of genetic information between bacterial cells or between bacterial and eukaryotic cells. As such, they are responsible for the spread of fitness-enhancing traits, including antibiotic resistance. Both processes usually involve the recognition of double-stranded DNA, followed by the transfer of single strands. Elaborate molecular machines are responsible for negotiating the passage of macromolecular DNA through the layers of the cell surface. All or nearly all the machine components involved in transformation and conjugation have been identified, and here we present models for their roles in DNA transport.
Collapse
Affiliation(s)
- Inês Chen
- Public Health Research Institute, 225 Warren Street, Newark, NJ 07103, USA
| | - Peter J. Christie
- Department of Microbiology and Molecular Genetics, University of Texas Medical School at Houston, Houston, TX 77030, USA
| | - David Dubnau
- Public Health Research Institute, 225 Warren Street, Newark, NJ 07103, USA
| |
Collapse
|
100
|
Mirus O, Schleiff E. Prediction of beta-barrel membrane proteins by searching for restricted domains. BMC Bioinformatics 2005; 6:254. [PMID: 16225682 PMCID: PMC1280923 DOI: 10.1186/1471-2105-6-254] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2005] [Accepted: 10/14/2005] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The identification of beta-barrel membrane proteins out of a genomic/proteomic background is one of the rapidly developing fields in bioinformatics. Our main goal is the prediction of such proteins in genome/proteome wide analyses. RESULTS For the prediction of beta-barrel membrane proteins within prokaryotic proteomes a set of parameters was developed. We have focused on a procedure with a low false positive rate beside a procedure with lowest false prediction rate to obtain a high certainty for the predicted sequences. We demonstrate that the discrimination between beta-barrel membrane proteins and other proteins is improved by analyzing a length limited region. The developed set of parameters is applied to the proteome of E. coli and the results are compared to four other described procedures. CONCLUSION Analyzing the beta-barrel membrane proteins revealed the presence of a defined membrane inserted beta-barrel region. This information can now be used to refine other prediction programs as well. So far, all tested programs fail to predict outer membrane proteins in the proteome of the prokaryote E. coli with high reliability. However, the reliability of the prediction is improved significantly by a combinatory approach of several programs. The consequences and usability of the developed scores are discussed.
Collapse
Affiliation(s)
- Oliver Mirus
- Botanisches Institut der Ludwig-Maximilians-Universität München, Menzinger Str. 67, 80638 München, Germany
| | - Enrico Schleiff
- Botanisches Institut der Ludwig-Maximilians-Universität München, Menzinger Str. 67, 80638 München, Germany
| |
Collapse
|