51
|
Abstract
Alzheimer's disease (AD) is the most common age-related dementia. Unfortunately due to a lack of validated biomarkers definitive diagnosis relies on the histological demonstration of amyloid-beta (Abeta) plaques and tau neurofibrillary tangles. Abeta processing is implicated in AD progression and many therapeutic strategies target various aspects of this biology. While Abeta deposition is the most prominent feature of AD, oligomeric forms of Abeta have been implicated as the toxic species inducing the neuronal dysfunction. Currently there are no methods allowing routine monitoring of levels of such species in living populations. We have used surface enhanced laser desorption ionization time of flight (SELDI-TOF) mass spectrometry incorporating antibody capture to investigate whether the cellular membrane-containing fraction of blood provides a new source of biomarkers. There are significant differences in the mass spectra profiles of AD compared with HC subjects, with significantly higher levels of Abeta monomer and dimer in the blood of AD subjects. Furthermore, levels of these species correlated with clinical markers of AD including brain Abeta burden, cognitive impairment and brain atrophy. These results indicate that fundamental biochemical events relevant to AD can be monitored in blood, and that the species detected may be useful clinical biomarkers for AD.
Collapse
|
52
|
Dodel R, Neff F, Noelker C, Pul R, Du Y, Bacher M, Oertel W. Intravenous Immunoglobulins as a Treatment for Alzheimerʼs Disease. Drugs 2010; 70:513-28. [DOI: 10.2165/11533070-000000000-00000] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
53
|
Measurement of anti-Aβ1–42 antibodies in intravenous immunoglobulin with indirect ELISA: The problem of nonspecific binding. J Neurosci Methods 2010; 187:263-9. [DOI: 10.1016/j.jneumeth.2010.01.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Revised: 01/15/2010] [Accepted: 01/15/2010] [Indexed: 12/31/2022]
|
54
|
Response to the Letter of Juan I. Jorquera regarding "Relevance of quantitative measurements of anti-Aβ antibodies in therapeutic intravenous immunoglobulin using synthetic peptides". Int Immunopharmacol 2010. [DOI: 10.1016/j.intimp.2009.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
55
|
Adekar SP, Klyubin I, Macy S, Rowan MJ, Solomon A, Dessain SK, O'Nuallain B. Inherent anti-amyloidogenic activity of human immunoglobulin gamma heavy chains. J Biol Chem 2009; 285:1066-74. [PMID: 19889627 DOI: 10.1074/jbc.m109.044321] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
We have previously shown that a subpopulation of naturally occurring human IgGs were cross-reactive against conformational epitopes on pathologic aggregates of Abeta, a peptide that forms amyloid fibrils in the brains of patients with Alzheimer disease, inhibited amyloid fibril growth, and dissociated amyloid in vivo. Here, we describe similar anti-amyloidogenic activity that is a general property of free human Ig gamma heavy chains. A gamma(1) heavy chain, F1, had nanomolar binding to an amyloid fibril-related conformational epitope on synthetic oligomers and fibrils as well as on amyloid-laden tissue sections. F1 did not bind to native Abeta monomers, further indicating the conformational nature of its binding site. The inherent anti-amyloidogenic activity of Ig gamma heavy chains was demonstrated by nanomolar amyloid fibril and oligomer binding by polyclonal and monoclonal human heavy chains that were isolated from inert or weakly reactive antibodies. Most importantly, the F1 heavy chain prevented in vitro fibril growth and reduced in vivo soluble Abeta oligomer-induced impairment of rodent hippocampal long term potentiation, a cellular mechanism of learning and memory. These findings demonstrate that free human Ig gamma heavy chains comprise a novel class of molecules for developing potential therapeutics for Alzheimer disease and other amyloid disorders. Moreover, establishing the molecular basis for heavy chain-amyloidogenic conformer interactions should advance understanding on the types of interactions that these pathologic assemblies have with biological molecules.
Collapse
Affiliation(s)
- Sharad P Adekar
- Lankenau Institute for Medical Research, Wynnewood, Pennsylvania 19096, USA
| | | | | | | | | | | | | |
Collapse
|
56
|
Rezai-Zadeh K, Gate D, Szekely CA, Town T. Can peripheral leukocytes be used as Alzheimer's disease biomarkers? Expert Rev Neurother 2009; 9:1623-33. [PMID: 19903022 PMCID: PMC2828773 DOI: 10.1586/ern.09.118] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) is the leading cause of dementia in elderly populations throughout the world and its incidence is on the rise. Current clinical diagnosis of AD requires intensive examination that includes neuropsychological testing and costly brain imaging techniques, and a definitive diagnosis can only be made upon postmortem neuropathological examination. Additionally, antemortem clinical AD diagnosis is typically administered following onset of cognitive and behavioral symptoms. As these symptoms emerge relatively late in disease progression, therapeutic intervention occurs after significant neurodegeneration, thereby limiting efficacy. The identification of noninvasive diagnostic biomarkers of AD is becoming increasingly important to make diagnosis more widely available to clinics with limited access to neuropsychological testing or state-of-the-art brain imaging, reduce the cost of clinical diagnosis, provide a biological measure to track the course of therapeutic intervention, and most importantly, allow for earlier diagnosis--possibly even during the prodromal phase--with hopes of therapeutic intervention prior to appreciable neurodegeneration. Circulating leukocytes are attractive candidate AD biomarkers as they can be obtained in a minimally invasive manner and are easily analyzed by widely available flow cytometry techniques. In this review, we critically analyze the potential utility of peripheral leukocytes as biological markers for AD.
Collapse
Affiliation(s)
- Kavon Rezai-Zadeh
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA, Tel.: +1 310 423 7611, Fax: +1 310 423 0302
| | - David Gate
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Institute, Los Angeles, CA 90048, USA, Tel.: +1 310 423 7611, Fax: +1 310 423 0302
| | - Christine A Szekely
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA, Tel.: +1 310 423 6887, Fax: +1 310 423 8300
| | - Terrence Town
- Departments of Neurosurgery and Biomedical Sciences, Cedars-Sinai Medical Center, Department of Medicine, David Geffen School of Medicine at UCLA, 8700 Beverly Blvd, Davis Building, Room 2091, Los Angeles, CA 90048, USA, Tel.: +1 310 423 1202, Fax: +1 310 423 0302
| |
Collapse
|
57
|
Klaver AC, Finke JM, Digambaranath J, Balasubramaniam M, Loeffler DA. Antibody concentrations to Abeta1-42 monomer and soluble oligomers in untreated and antibody-antigen-dissociated intravenous immunoglobulin preparations. Int Immunopharmacol 2009; 10:115-9. [PMID: 19840873 DOI: 10.1016/j.intimp.2009.10.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Revised: 09/23/2009] [Accepted: 10/09/2009] [Indexed: 11/16/2022]
Abstract
Cognitive improvement in Alzheimer's disease (AD) patients treated with intravenous immunoglobulin (IvIg) has been attributed to its antibodies to amyloid beta (Abeta). We compared the concentrations of specific antibodies to soluble Abeta1-42 conformations, namely Abeta1-42 monomer and Abeta1-42 soluble oligomers, between three IvIg preparations, Gamunex, Gammagard, and Flebogamma. To determine specific antibody concentrations to these Abeta1-42 conformations, nonspecific binding of the IvIg preparations to the Abeta reverse sequence, Abeta42-1, was subtracted. These antibodies were measured in untreated IvIg preparations and also after they were treated to dissociate antibody-antigen complexes, because this procedure has been reported to increase the detectable levels of serum anti-Abeta antibodies. Antibody levels to Abeta1-42 monomer were significantly higher in untreated Gamunex than in the other two IvIg preparations, and antibody-antigen dissociation increased the measured anti-Abeta monomer concentrations in Gamunex and Gammagard. Dissociated Gamunex and Gammagard had higher anti-Abeta monomer levels than Flebogamma. Generally similar results were found for antibodies to soluble Abeta1-42 oligomers, with the exception that after antibody-antigen dissociation, only Gammagard had significantly higher antibody levels than Flebogamma. These differences in antibody concentrations to Abeta1-42 conformations (particularly to Abeta1-42 soluble oligomers, thought to be the most neurotoxic conformation of soluble Abeta) and the increased availability of these antibodies after antibody-antigen complex dissociation have important implications for IvIg treatment of AD patients.
Collapse
Affiliation(s)
- Andrea C Klaver
- Division of Neurology, Beaumont Research Institute, William Beaumont Hospital, Suite 507, Royal Oak, MI 48073, USA.
| | | | | | | | | |
Collapse
|
58
|
Schneider P, Hampel H, Buerger K. Biological marker candidates of Alzheimer's disease in blood, plasma, and serum. CNS Neurosci Ther 2009; 15:358-74. [PMID: 19840034 DOI: 10.1111/j.1755-5949.2009.00104.x] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
At the earliest clinical stages of Alzheimer's disease (AD), when first symptoms are mild, making a reliable and accurate diagnosis is difficult. AD related brain pathology and underlying molecular mechanisms precede symptoms. Biological markers can serve as supportive early screening and diagnostic tools as well as indicators of presymptomatic biochemical change. Moreover, biomarkers cover a variety of roles and functions such as disease prediction, indicating disease acuity and progression, and may ensure biological mapping of treatment outcome. Early screening, detection, and diagnosis of AD would permit earlier disease modifying intervention at potentially reversible stages. To date, most established biological markers from both cerebrospinal fluid neurochemistry and structural and functional neuroimaging have not reached widespread clinical application. Crucial remaining problems, such as easy acceptance and application of a test, cost-effectiveness, and noninvasiveness, need to be resolved. The development and validation of precise, reliable, and robust tests and biomarkers in blood, plasma, or serum has therefore been for a long time the ultimate focus of many research groups worldwide. Blood-based testing will most likely be the prerequisite to future sensitive screening of large populations at risk of AD and the baseline in a diagnostic flow approach to AD. The status and emerging perspectives on hypothesis and exploratory-based candidate biomarkers derived from blood, plasma, and serum are reviewed and discussed.
Collapse
Affiliation(s)
- Philine Schneider
- Department of Psychiatry, Ludwig-Maximilian University, Alzheimer Memorial Center, Munich, Germany.
| | | | | |
Collapse
|
59
|
Neuroprotective natural antibodies to assemblies of amyloidogenic peptides decrease with normal aging and advancing Alzheimer's disease. Proc Natl Acad Sci U S A 2009; 106:12145-50. [PMID: 19581601 DOI: 10.1073/pnas.0904866106] [Citation(s) in RCA: 142] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
A number of distinct beta-amyloid (Abeta) variants or multimers have been implicated in Alzheimer's disease (AD), and antibodies recognizing such peptides are in clinical trials. Humans have natural Abeta-specific antibodies, but their diversity, abundance, and function in the general population remain largely unknown. Here, we demonstrate with peptide microarrays the presence of natural antibodies against known toxic Abeta and amyloidogenic non-Abeta species in plasma samples and cerebrospinal fluid of AD patients and healthy controls aged 21-89 years. Antibody reactivity was most prominent against oligomeric assemblies of Abeta and pyroglutamate or oxidized residues, and IgGs specific for oligomeric preparations of Abeta1-42 in particular declined with age and advancing AD. Most individuals showed unexpected antibody reactivities against peptides unique to autosomal dominant forms of dementia (mutant Abeta, ABri, ADan) and IgGs isolated from plasma of AD patients or healthy controls protected primary neurons from Abeta toxicity. Aged vervets showed similar patterns of plasma IgG antibodies against amyloid peptides, and after immunization with Abeta the monkeys developed high titers not only against Abeta peptides but also against ABri and ADan peptides. Our findings support the concept of conformation-specific, cross-reactive antibodies that may protect against amyloidogenic toxic peptides. If a therapeutic benefit of Abeta antibodies can be confirmed in AD patients, stimulating the production of such neuroprotective antibodies or passively administering them to the elderly population may provide a preventive measure toward AD.
Collapse
|
60
|
Perdivara I, Deterding LJ, Cozma C, Tomer KB, Przybylski M. Glycosylation profiles of epitope-specific anti-beta-amyloid antibodies revealed by liquid chromatography-mass spectrometry. Glycobiology 2009; 19:958-70. [PMID: 19318519 DOI: 10.1093/glycob/cwp038] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Alzheimer's disease (AD) is the most prevalent form of age-related neurodementia. The accumulation of beta-amyloid polypeptide (Abeta) in brain is generally believed to be a key event in AD. The recent discovery of physiological beta-amyloid autoantibodies represents a promising perspective for treatment and early diagnosis of AD. The mechanisms by which natural beta-amyloid autoantibodies prevent neurodegeneration are currently unknown. The aim of the present study was to analyze the N-linked glycosylation of a plaque-specific, monoclonal antibody (clone 6E10) relevant for immunotherapy of AD, in comparison with the glycosylation pattern of an Abeta autoantibody isolated from an IgG source. Liquid chromatography in combination with tandem mass spectrometry was used to analyze the glycopeptides generated by enzymatic degradation of the antibodies reduced and alkylated heavy chains. The oligosaccharide pattern of the 6E10 antibody shows primarily core-fucosylated biantennary complex structures and, to a low extent, tri- and tetragalactosyl glycoforms, with or without terminal sialic acids. The glycans associated with the serum anti-Abeta autoantibodies are of the complex, biantennary-type, fucosylated at the first N-acetyl glucosamine residue of the trimannosyl chitobiose core and contain zero to two galactose residues, and zero to one terminal sialic acid, with or without bisecting N-acetyl glucosamine. Glycosylation analysis of the Abeta-autoantibody performed at the peptide level revealed all four human IgG subclasses, with IgG(1) and IgG(2) as the dominant subclasses.
Collapse
Affiliation(s)
- Irina Perdivara
- Department of Chemistry, Laboratory of Analytical Chemistry and Biopolymer Structure Analysis, University of Konstanz, 78457 Konstanz, Germany
| | | | | | | | | |
Collapse
|
61
|
O’Nuallain B, Acero L, Williams AD, McWilliams Koeppen HP, Weber A, Schwarz HP, Wall JS, Weiss DT, Solomon A. Human Plasma Contains Cross-Reactive Aβ Conformer-Specific IgG Antibodies. Biochemistry 2008; 47:12254-6. [DOI: 10.1021/bi801767k] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Brian O’Nuallain
- Human Immunology and Cancer Program, Department of Medicine, University of Tennessee Graduate School of Medicine, Knoxville, Tennessee 37920, and Baxter Bioscience, Vienna, Austria
| | - Luis Acero
- Human Immunology and Cancer Program, Department of Medicine, University of Tennessee Graduate School of Medicine, Knoxville, Tennessee 37920, and Baxter Bioscience, Vienna, Austria
| | - Angela D. Williams
- Human Immunology and Cancer Program, Department of Medicine, University of Tennessee Graduate School of Medicine, Knoxville, Tennessee 37920, and Baxter Bioscience, Vienna, Austria
| | - Helen P. McWilliams Koeppen
- Human Immunology and Cancer Program, Department of Medicine, University of Tennessee Graduate School of Medicine, Knoxville, Tennessee 37920, and Baxter Bioscience, Vienna, Austria
| | - Alfred Weber
- Human Immunology and Cancer Program, Department of Medicine, University of Tennessee Graduate School of Medicine, Knoxville, Tennessee 37920, and Baxter Bioscience, Vienna, Austria
| | - Hans P. Schwarz
- Human Immunology and Cancer Program, Department of Medicine, University of Tennessee Graduate School of Medicine, Knoxville, Tennessee 37920, and Baxter Bioscience, Vienna, Austria
| | - Jonathan S. Wall
- Human Immunology and Cancer Program, Department of Medicine, University of Tennessee Graduate School of Medicine, Knoxville, Tennessee 37920, and Baxter Bioscience, Vienna, Austria
| | - Deborah T. Weiss
- Human Immunology and Cancer Program, Department of Medicine, University of Tennessee Graduate School of Medicine, Knoxville, Tennessee 37920, and Baxter Bioscience, Vienna, Austria
| | - Alan Solomon
- Human Immunology and Cancer Program, Department of Medicine, University of Tennessee Graduate School of Medicine, Knoxville, Tennessee 37920, and Baxter Bioscience, Vienna, Austria
| |
Collapse
|
62
|
Steinitz M. Developing injectable immunoglobulins to treat cognitive impairment in Alzheimer's disease. Expert Opin Biol Ther 2008; 8:633-42. [PMID: 18407766 DOI: 10.1517/14712598.8.5.633] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Alzheimer's disease is a devastating disorder, clinically characterized by a comprehensive cognitive decline. The novel strategy of anti-amyloid-beta immunotherapy has been suggested following encouraging results obtained in murine models of Alzheimer's disease, in non-human primates, and in small-scale clinical trials. OBJECTIVE To examine the choice between active or passive anti-amyloid-beta immunization and the choice of the molecule to which the immune machinery should be targeted, which are central issues in future immune therapy of Alzheimer's disease. METHODS Research into the new area of Alzheimer's disease immune therapy is primarily based on in vivo and in vitro studies of murine models of Alzheimer's disease. The studies are hence limited to defined genetic deficiencies. RESULTS/CONCLUSIONS In humans, infusion of anti-amyloid-beta antibodies is considered a safer approach than active anti-amyloid-beta vaccination. Alzheimer's-disease-protective anti-amyloid-beta monoclonal antibodies should target specific epitopes within the amyloid beta(1 42) peptide, avoiding possibly harmful binding to the ubiquitous normal amyloid precursor protein. Since Alzheimer's disease immunotherapy requires repeated infusion of antibodies over a prolonged period of time, Alzheimer's disease patients will tolerate such antibodies provided the latter are exclusively of human origin. Human monoclonal antibodies that correspond to ubiquitous anti-amyloid-beta, present in all healthy humans, might bear important protective characteristics.
Collapse
Affiliation(s)
- Michael Steinitz
- The Hebrew University-Hadassah Medical School, Department of Pathology, Jerusalem, 91120, POB 12272, Israel.
| |
Collapse
|
63
|
Abstract
In Alzheimer's disease (AD), there is abnormal accumulation of Abeta and tau proteins in the brain. There is an associated immunological response, but it is still unclear whether this is beneficial or harmful. Inflammation in AD, specifically in the form of microglial activation, has, for many years, been considered to contribute to disease progression. However, two types of evidence suggest that it may be appropriate to revise this view: first, the disappointing results of prospective clinical trials of anti-inflammatory agents and, second, the observation that microglia can clear plaques in AD following Abeta immunization. Although Abeta immunization alters AD pathology, there is limited evidence so far of benefit to cognitive function. Immunization against microorganisms is almost always used as a method of disease prevention rather than to treat a disease process that has already started. In animal models, immunotherapy at an early age can protect against Abeta accumulation and it will be interesting to see if this can usefully be applied to humans to prevent AD.
Collapse
Affiliation(s)
- Delphine Boche
- Division of Clinical Neurosciences, University of Southampton, Southampton, UK.
| | | |
Collapse
|
64
|
Friedland RP, Tedesco JM, Wilson AC, Atwood CS, Smith MA, Perry G, Zagorski MG. Antibodies to potato virus Y bind the amyloid beta peptide: immunohistochemical and NMR studies. J Biol Chem 2008; 283:22550-6. [PMID: 18505725 DOI: 10.1074/jbc.m802088200] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Studies in transgenic mice bearing mutated human Alzheimer disease (AD) genes show that active vaccination with the amyloid beta (Abeta) protein or passive immunization with anti-Abeta antibodies has beneficial effects on the development of disease. Although a trial of Abeta vaccination in humans was halted because of autoimmune meningoencephalitis, favorable effects on Abeta deposition in the brain and on behavior were seen. Conflicting results have been observed concerning the relationship of circulating anti-Abeta antibodies and AD. Although these autoantibodies are thought to arise from exposure to Abeta, it is also possible that homologous proteins may induce antibody synthesis. We propose that the long-standing presence of anti-Abeta antibodies or antibodies to immunogens homologous to the Abeta protein may produce protective effects. The amino acid sequence of the potato virus Y (PVY) nuclear inclusion b protein is highly homologous to the immunogenic N-terminal region of Abeta. PVY infects potatoes and related crops worldwide. Here, we show through immunocytochemistry, enzyme-linked immunosorbent assay, and NMR studies that mice inoculated with PVY develop antibodies that bind to Abeta in both neuritic plaques and neurofibrillary tangles, whereas antibodies to material from uninfected potato leaf show only modest levels of background immunoreactivity. NMR data show that the anti-PVY antibody binds to Abeta within the Phe4-Ser8 and His13-Leu17 regions. Immune responses generated from dietary exposure to proteins homologous to Abeta may induce antibodies that could influence the normal physiological processing of the protein and the development or progression of AD.
Collapse
Affiliation(s)
- Robert P Friedland
- Department of Neurology, Case Western Reserve University, Cleveland, Ohio 44106, USA.
| | | | | | | | | | | | | |
Collapse
|
65
|
Xu W, Kawarabayashi T, Matsubara E, Deguchi K, Murakami T, Harigaya Y, Ikeda M, Amari M, Kuwano R, Abe K, Shoji M. Plasma antibodies to Abeta40 and Abeta42 in patients with Alzheimer's disease and normal controls. Brain Res 2008; 1219:169-79. [PMID: 18534566 DOI: 10.1016/j.brainres.2008.02.060] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2007] [Revised: 02/14/2008] [Accepted: 02/15/2008] [Indexed: 10/22/2022]
Abstract
Antibodies to amyloid beta protein (Abeta) are present naturally or after Abeta vaccine therapy in human plasma. To clarify their clinical role, we examined plasma samples from 113 patients with Alzheimer's disease (AD) and 205 normal controls using the tissue amyloid plaque immunoreactivity (TAPIR) assay. A high positive rate of TAPIR was revealed in AD (45.1%) and age-matched controls (41.2%), however, no significance was observed. No significant difference was observed in the MMS score or disease duration between TAPIR-positive and negative samples. TAPIR-positive plasma reacted with the Abeta40 monomer and dimer, and the Abeta42 monomer weakly, but not with the Abeta42 dimer. TAPIR was even detected in samples from young normal subjects and young Tg2576 transgenic mice. Although the Abeta40 level and Abeta40/42 ratio increased, and Abeta42 was significantly decreased in plasma from AD groups when compared to controls, no significant correlations were revealed between plasma Abeta levels and TAPIR grading. Thus an immune response to Abeta40 and immune tolerance to Abeta42 occurred naturally in humans without a close relationship to the Abeta burden in the brain. Clarification of the mechanism of the immune response to Abeta42 is necessary for realization of an immunotherapy for AD.
Collapse
Affiliation(s)
- Wuhua Xu
- Department of Neurology, Neuroscience, Biophysiological Science, Okayama University Graduate School of Medicine, Dentistry and Pharmacy, 2-5-1 Shikatacho, Okayama 700-8558, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Taguchi H, Planque S, Nishiyama Y, Symersky J, Boivin S, Szabo P, Friedland RP, Ramsland PA, Edmundson AB, Weksler ME, Paul S. Autoantibody-catalyzed hydrolysis of amyloid beta peptide. J Biol Chem 2007; 283:4714-22. [PMID: 18086674 DOI: 10.1074/jbc.m707983200] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We describe IgM class human autoantibodies that hydrolyze amyloid beta peptide 1-40 (Abeta40). A monoclonal IgM from a patient with Waldenström's macroglobulinemia hydrolyzed Abeta40 at the Lys-28-Gly-29 bond and Lys-16-Ala-17 bonds. The catalytic activity was inhibited stoichiometrically by an electrophilic serine protease inhibitor. Treatment with the catalytic IgM blocked the aggregation and toxicity of Abeta40 in neuronal cell cultures. IgMs purified from the sera of patients with Alzheimer disease (AD) hydrolyzed Abeta40 at rates superior to IgMs from age-matched humans without dementia. IgMs from non-elderly humans expressed the least catalytic activity. The reaction rate was sufficient to afford appreciable degradation at physiological Abeta and IgM concentrations found in peripheral circulation. Increased Abeta concentrations in the AD brain are thought to induce neurodegenerative effects. Peripheral administration of Abeta binding antibodies has been suggested as a potential treatment of AD. Our results suggest that catalytic IgM autoantibodies can help clear Abeta, and they open the possibility of using catalytic Abs for AD immunotherapy.
Collapse
Affiliation(s)
- Hiroaki Taguchi
- Chemical Immunology Research Center, Department of Pathology and Laboratory Medicine, University of Texas Houston Medical School, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Lanz TA, Schachter JB. Solid-phase extraction enhances detection of beta-amyloid peptides in plasma and enables Abeta quantification following passive immunization with Abeta antibodies. J Neurosci Methods 2007; 169:16-22. [PMID: 18160105 DOI: 10.1016/j.jneumeth.2007.11.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2007] [Revised: 11/16/2007] [Accepted: 11/17/2007] [Indexed: 12/01/2022]
Abstract
We have previously developed a solid-phase extraction (SPE) procedure to enable the detection of beta-amyloid (Abeta) peptides in brain tissue from non-transgenic animals. We have now adapted these methods to enrich the Abeta fraction in cerebrospinal fluid (CSF) and plasma. Human CSF and plasma and Tg2576 mouse plasma were subjected to guanidine denaturation followed by SPE in 96-well cassettes. The resulting eluates could be concentrated significantly to enhance detection of low-abundance Abeta peptides by immunoassay. The concentrated eluates diluted in a linear fashion with consistent recovery between SPE columns. This technique was therefore used to facilitate quantification of Abeta1-X, 1-40, 1-42, and 1-38 peptides in normal human CSF and plasma samples. SPE sample preparation was also applied to the plasma of mice dosed peripherally with a monoclonal antibody raised against Abeta. When such samples were assayed directly, the presence of the systemically administered antibody interfered with the subsequent immunoassay, by preventing detection of antibody-bound Abeta. After subjecting plasma from antibody-treated animals to denaturation and SPE, the antibody-antigen complex was disrupted, and the Abeta fraction could be isolated from the antibody-containing fraction. Application of this method allowed for detection of a 100-fold increase in plasma Abeta1-40 following treatment of Tg2576 mice or wild type littermate control mice with Abeta40-specific monoclonal antibody 9TL. Given the availability of a variety of SPE matrices, we hypothesize that these methods could facilitate plasma antigen retrieval using multiple therapeutic antibody approaches.
Collapse
Affiliation(s)
- Thomas A Lanz
- CNS Biology, Pfizer Inc., Groton, CT 06340, United States.
| | | |
Collapse
|
68
|
Sohn JH, So JO, Kim H, Nam EJ, Ha HJ, Kim YH, Mook-Jung I. Reduced serum level of antibodies against amyloid beta peptide is associated with aging in Tg2576 mice. Biochem Biophys Res Commun 2007; 361:800-4. [PMID: 17678618 DOI: 10.1016/j.bbrc.2007.07.107] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2007] [Accepted: 07/20/2007] [Indexed: 11/16/2022]
Abstract
Both active and passive immunization to eliminate amyloid plaques from the brain of patients with Alzheimer's disease (AD) have confirmed that amyloid beta (Abeta) vaccination does not only result in clearance of Abeta plaques but improves behavioral-cognitive deficits in animal models of AD. In the present study, the levels of naturally occurring serum antibodies against Abeta were measured in Tg2576 mice at various ages using ELISA to determine the relationship between aging and the level of anti-Abeta autoantibody. The level of anti-Abeta antibody fell significantly at the age of 9 months, at the age when amyloid plaques started to appear in the brain of Tg2576 mice, and was persistently low thereafter. However, serum immunoglobulin (Ig) level was elevated in older transgenic mice compared with younger transgenic mice suggesting that the reduced level of anti-Abeta autoantibody was not merely due to deterioration of the immune response in aged Tg2576 mice.
Collapse
Affiliation(s)
- Ji-Hoon Sohn
- Department of Biochemistry and Cancer Research Institute, Seoul National University College of Medicine, 28 Yongon-dong, Chongno-gu, Seoul 110-799, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
69
|
Britschgi M, Wyss-Coray T. Systemic and acquired immune responses in Alzheimer's disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2007; 82:205-33. [PMID: 17678963 DOI: 10.1016/s0074-7742(07)82011-3] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized clinically by a progressive cognitive decline and dementia. AD brains are marked by amyloid plaques and neurofibrillary tangles, neuronal cell loss, and a prominent activation of glial cells, and innate immune responses. A growing number of studies in AD have also reported alterations in systemic immune responses including changes in lymphocyte and macrophage distribution and activation, the presence of autoantibodies, or abnormal cytokine production. Studies in animal models for AD support the notion that immune cells infiltrate the brain and may modulate the disease. Here we will review evidence for systemic alterations in immune responses and a role for acquired immunity in AD and discuss their potential contribution to the disease.
Collapse
Affiliation(s)
- Markus Britschgi
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California 94305, USA
| | | |
Collapse
|
70
|
Istrin G, Bosis E, Solomon B. Intravenous immunoglobulin enhances the clearance of fibrillar amyloid-beta peptide. J Neurosci Res 2006; 84:434-43. [PMID: 16767774 DOI: 10.1002/jnr.20886] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Intravenous immunoglobulin (IVIg), a purified immunoglobulin fraction manufactured from the blood of healthy humans, is an FDA-approved treatment for many immune and inflammatory diseases. Recent studies have demonstrated that IVIg therapy has several positive effects on patients with Alzheimer's disease (AD). These include improving cognitive functions and lowering the level of soluble amyloid-beta peptide (AbetaP) in the brain. Nonetheless, the mechanism by which IVIg mediates the clearance of AbetaP from the AD brain currently remains unknown. In this study we investigated the molecular basis for the direct and indirect effects of IVIg on AbetaP clearance using the BV-2 cellular microglia line. Specifically, we show that IVIg dissolves preformed AbetaP fibrils in vitro. Moreover, IVIg increases cellular tolerance to AbetaP, enhances microglial migration toward AbetaP deposits, and mediates phagocytosis of AbetaP. Thus, several mechanisms can be considered when examining the effects of IVIg. Our work supports the hypothesis that IVIg interferes by more than one mechanism in clearing AbetaP from the brains of Alzheimer's patients.
Collapse
Affiliation(s)
- Gili Istrin
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | | | | |
Collapse
|
71
|
Wang YJ, Zhou HD, Zhou XF. Clearance of amyloid-beta in Alzheimer's disease: progress, problems and perspectives. Drug Discov Today 2006; 11:931-8. [PMID: 16997144 DOI: 10.1016/j.drudis.2006.08.004] [Citation(s) in RCA: 151] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2006] [Revised: 07/14/2006] [Accepted: 08/11/2006] [Indexed: 11/25/2022]
Abstract
Alzheimer's disease (AD) is the most common form of senile dementia and the fourth highest cause of disability and death in the elderly. Amyloid-beta (Abeta) has been widely implicated in the etiology of AD. Several mechanisms have been proposed for Abeta clearance, including receptor-mediated Abeta transport across the blood-brain barrier and enzyme-mediated Abeta degradation. Moreover, pre-existing immune responses to Abeta might also be involved in Abeta clearance. In AD, such mechanisms appear to have become impaired. Recently, therapeutic approaches for Abeta clearance, targeting immunotherapy and molecules binding Abeta, have been developed. In this review, we discuss recent progress and problems with respect to Abeta clearance mechanisms and propose strategies for the development of therapeutics targeting Abeta clearance.
Collapse
Affiliation(s)
- Yan-Jiang Wang
- Department of Human Physiology and Centre for Neuroscience, Flinders University, Adelaide 5042, Australia
| | | | | |
Collapse
|
72
|
Lee EB, Leng LZ, Zhang B, Kwong L, Trojanowski JQ, Abel T, Lee VMY. Targeting amyloid-beta peptide (Abeta) oligomers by passive immunization with a conformation-selective monoclonal antibody improves learning and memory in Abeta precursor protein (APP) transgenic mice. J Biol Chem 2005; 281:4292-9. [PMID: 16361260 DOI: 10.1074/jbc.m511018200] [Citation(s) in RCA: 216] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Passive immunization of murine models of Alzheimer disease amyloidosis reduces amyloid-beta peptide (Abeta) levels and improves cognitive function. To specifically address the role of Abeta oligomers in learning and memory, we generated a novel monoclonal antibody, NAB61, that preferentially recognizes a conformational epitope present in dimeric, small oligomeric, and higher order Abeta structures but not full-length amyloid-beta precursor protein or C-terminal amyloid-beta precursor protein fragments. NAB61 also recognized a subset of brain Abeta deposits, preferentially mature senile plaques, and amyloid angiopathy. Using NAB61 as immunotherapy, we showed that aged Tg2576 transgenic mice treated with NAB61 displayed significant improvements in spatial learning and memory relative to control mice. These data implicated Abeta oligomers as a pathologic substrate for cognitive decline in Alzheimer disease.
Collapse
Affiliation(s)
- Edward B Lee
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, 19104, USA
| | | | | | | | | | | | | |
Collapse
|
73
|
|