51
|
Schlitzer A, McGovern N, Ginhoux F. Dendritic cells and monocyte-derived cells: Two complementary and integrated functional systems. Semin Cell Dev Biol 2015; 41:9-22. [DOI: 10.1016/j.semcdb.2015.03.011] [Citation(s) in RCA: 158] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Revised: 03/27/2015] [Accepted: 03/31/2015] [Indexed: 12/23/2022]
|
52
|
Daya M, van der Merwe L, van Helden PD, Möller M, Hoal EG. Investigating the Role of Gene-Gene Interactions in TB Susceptibility. PLoS One 2015; 10:e0123970. [PMID: 25919455 PMCID: PMC4412713 DOI: 10.1371/journal.pone.0123970] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 02/24/2015] [Indexed: 11/22/2022] Open
Abstract
Tuberculosis (TB) is the second leading cause of mortality from infectious disease worldwide. One of the factors involved in developing disease is the genetics of the host, yet the field of TB susceptibility genetics has not yielded the answers that were expected. A commonly posited explanation for the missing heritability of complex disease is gene-gene interactions, also referred to as epistasis. In this study we investigate the role of gene-gene interactions in genetic susceptibility to TB using a cohort recruited from a high TB incidence community from Cape Town, South Africa. Our discovery data set incorporates genotypes from a large a number of candidate gene studies as well as genome-wide data. After limiting our search space to pairs of putative TB susceptibility genes, as well as pairs of genes that have been curated in online databases as potential interactors, we use statistical modelling to identify pairs of interacting SNPs. We attempt to validate the top models identified in our discovery data set using an independent genome-wide TB case-control data set from The Gambia. A number of models were successfully validated, indicating that interplay between the NRG1 - NRG3, GRIK1 - GRIK3 and IL23R - ATG4C gene pairs may modify susceptibility to TB. Gene pairs involved in the NF-κB pathway were also identified in the discovery data set (SFTPD - NOD2, ISG15 - TLR8 and NLRC5 - IL12RB1), but could not be tested in the Gambian study group due to lack of overlapping data.
Collapse
Affiliation(s)
- Michelle Daya
- SA MRC Centre for TB Research, DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Lize van der Merwe
- SA MRC Centre for TB Research, DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Paul D. van Helden
- SA MRC Centre for TB Research, DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Marlo Möller
- SA MRC Centre for TB Research, DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Eileen G. Hoal
- SA MRC Centre for TB Research, DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
53
|
Mandai K, Rikitake Y, Mori M, Takai Y. Nectins and nectin-like molecules in development and disease. Curr Top Dev Biol 2015; 112:197-231. [PMID: 25733141 DOI: 10.1016/bs.ctdb.2014.11.019] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Nectins and nectin-like molecules (Necls)/Cadms are Ca(2+)-independent immunoglobulin superfamily cell adhesion molecules, expressed in most cell types. Nectins mediate not only homotypic but also heterotypic cell-cell adhesion, in contrast to classic cadherins which participate only in homophilic adhesion. Nectins and Necls function in organogenesis of the eye, inner ear, tooth, and cerebral cortex and in a variety of developmental processes including spermatogenesis, axon guidance, synapse formation, and myelination. They are also involved in various diseases, such as viral infection, hereditary ectodermal dysplasia, Alzheimer's disease, autism spectrum disorder, and cancer. Thus, nectins and Necls are crucial for both physiology and pathology. This review summarizes recent advances in research on these cell adhesion molecules in development and pathogenesis.
Collapse
Affiliation(s)
- Kenji Mandai
- Division of Pathogenetic Signaling, Kobe University Graduate School of Medicine, Kobe, Japan; CREST, Japan Science and Technology Agency, Kobe, Japan
| | - Yoshiyuki Rikitake
- CREST, Japan Science and Technology Agency, Kobe, Japan; Division of Signal Transduction, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan; Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Masahiro Mori
- CREST, Japan Science and Technology Agency, Kobe, Japan; Division of Neurophysiology, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Japan; Faculty of Health Sciences, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Yoshimi Takai
- Division of Pathogenetic Signaling, Kobe University Graduate School of Medicine, Kobe, Japan; CREST, Japan Science and Technology Agency, Kobe, Japan.
| |
Collapse
|
54
|
Gurka S, Hartung E, Becker M, Kroczek RA. Mouse Conventional Dendritic Cells Can be Universally Classified Based on the Mutually Exclusive Expression of XCR1 and SIRPα. Front Immunol 2015; 6:35. [PMID: 25699051 PMCID: PMC4316789 DOI: 10.3389/fimmu.2015.00035] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 01/19/2015] [Indexed: 12/23/2022] Open
Abstract
Since the identification of mouse dendritic cells (DC) in the early 70s, all attempts to consistently classify the identified functional DC subpopulations according to their surface molecule expression failed. In the absence of DC lineage markers, a great variety of non-congruent surface molecules were used instead. Recent advances in the understanding of the involvement of transcription factors in the differentiation of DC subpopulations, together with the identification of a lineage marker for cross-presenting DC, have now allowed to establish a consistent and unified DC classification in the mouse. We demonstrate in the present article that all conventional DC in the mouse can be universally subdivided into either XCR1+ (“cross-presenting”) DC or SIRPα+ DC, irrespective of their activation status. This advancement will greatly facilitate future work on the biology of mouse DC. We discuss this new classification in view of current DC classification systems in the mouse and the human.
Collapse
Affiliation(s)
- Stephanie Gurka
- Molecular Immunology, Robert Koch-Institute , Berlin , Germany
| | - Evelyn Hartung
- Molecular Immunology, Robert Koch-Institute , Berlin , Germany
| | - Martina Becker
- Molecular Immunology, Robert Koch-Institute , Berlin , Germany
| | | |
Collapse
|
55
|
Dutertre CA, Wang LF, Ginhoux F. Aligning bona fide dendritic cell populations across species. Cell Immunol 2014; 291:3-10. [DOI: 10.1016/j.cellimm.2014.08.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 08/24/2014] [Indexed: 01/06/2023]
|
56
|
Dendritic cells, monocytes and macrophages: a unified nomenclature based on ontogeny. Nat Rev Immunol 2014; 14:571-8. [PMID: 25033907 DOI: 10.1038/nri3712] [Citation(s) in RCA: 1309] [Impact Index Per Article: 130.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The mononuclear phagocyte system (MPS) has historically been categorized into monocytes, dendritic cells and macrophages on the basis of functional and phenotypical characteristics. However, considering that these characteristics are often overlapping, the distinction between and classification of these cell types has been challenging. In this Opinion article, we propose a unified nomenclature for the MPS. We suggest that these cells can be classified primarily by their ontogeny and secondarily by their location, function and phenotype. We believe that this system permits a more robust classification during both steady-state and inflammatory conditions, with the benefit of spanning different tissues and across species.
Collapse
|
57
|
Tullett KM, Lahoud MH, Radford KJ. Harnessing Human Cross-Presenting CLEC9A(+)XCR1(+) Dendritic Cells for Immunotherapy. Front Immunol 2014; 5:239. [PMID: 24904587 PMCID: PMC4033245 DOI: 10.3389/fimmu.2014.00239] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 05/08/2014] [Indexed: 12/21/2022] Open
Affiliation(s)
- Kirsteen M Tullett
- Mater Research Institute, University of Queensland , Brisbane, QLD , Australia ; School of Medicine, University of Queensland , Brisbane, QLD , Australia ; Centre for Biomedical Research, Burnet Institute , Melbourne, VIC , Australia
| | - Mireille H Lahoud
- Centre for Biomedical Research, Burnet Institute , Melbourne, VIC , Australia ; Department of Immunology, Monash University , Melbourne, VIC , Australia
| | - Kristen J Radford
- Mater Research Institute, University of Queensland , Brisbane, QLD , Australia ; School of Biomedical Sciences, University of Queensland , Brisbane, QLD , Australia
| |
Collapse
|
58
|
Dutertre CA, Jourdain JP, Rancez M, Amraoui S, Fossum E, Bogen B, Sanchez C, Couëdel-Courteille A, Richard Y, Dalod M, Feuillet V, Cheynier R, Hosmalin A. TLR3–Responsive, XCR1+, CD141(BDCA-3)+/CD8α+-Equivalent Dendritic Cells Uncovered in Healthy and Simian Immunodeficiency Virus–Infected Rhesus Macaques. THE JOURNAL OF IMMUNOLOGY 2014; 192:4697-708. [DOI: 10.4049/jimmunol.1302448] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
59
|
Cortez VS, Cervantes-Barragan L, Song C, Gilfillan S, McDonald KG, Tussiwand R, Edelson BT, Murakami Y, Murphy KM, Newberry RD, Sibley LD, Colonna M. CRTAM controls residency of gut CD4+CD8+ T cells in the steady state and maintenance of gut CD4+ Th17 during parasitic infection. ACTA ACUST UNITED AC 2014; 211:623-33. [PMID: 24687959 PMCID: PMC3978276 DOI: 10.1084/jem.20130904] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Interactions between cell adhesion molecules CRTAM and Cadm1 regulate the residency and maintenance of CD4+CD8+ and CD4+ T cells in the gut that can influence the immune response to infection. Retention of lymphocytes in the intestinal mucosa requires specialized chemokine receptors and adhesion molecules. We find that both CD4+CD8+ and CD4+ T cells in the intestinal epithelium, as well as CD8+ T cells in the intestinal mucosa and mesenteric lymph nodes, express the cell adhesion molecule class I–restricted T cell–associated molecule (Crtam) upon activation, whereas the ligand of Crtam, cell adhesion molecule 1 (Cadm1), is expressed on gut CD103+DCs. Lack of Crtam–Cadm1 interactions in Crtam−/− and Cadm1−/− mice results in loss of CD4+CD8+ T cells, which arise from mucosal CD4+ T cells that acquire a CD8 lineage expression profile. After acute oral infection with Toxoplasma gondii, both WT and Crtam−/− mice mounted a robust TH1 response, but markedly fewer TH17 cells were present in the intestinal mucosa of Crtam−/− mice. The almost exclusive TH1 response in Crtam−/− mice resulted in more efficient control of intestinal T. gondii infection. Thus, Crtam–Cadm1 interactions have a major impact on the residency and maintenance of CD4+CD8+ T cells in the gut mucosa in the steady state. During pathogenic infection, Crtam–Cadm1 interactions regulate the dynamic equilibrium between newly formed CD4+ T cells and their retention in the gut, thereby shaping representation of disparate CD4+ T cell subsets and the overall quality of the CD4+ T cell response.
Collapse
Affiliation(s)
- Victor S Cortez
- Department of Pathology and Immunology, 2 Department of Internal Medicine, 3 Department of Molecular Microbiology, and 4 Howard Hughes Medical Institute, Washington University School of Medicine, St. Louis, MO 63110
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Moiseeva EP, Straatman KR, Leyland ML, Bradding P. CADM1 controls actin cytoskeleton assembly and regulates extracellular matrix adhesion in human mast cells. PLoS One 2014; 9:e85980. [PMID: 24465823 PMCID: PMC3899107 DOI: 10.1371/journal.pone.0085980] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 12/03/2013] [Indexed: 12/21/2022] Open
Abstract
CADM1 is a major receptor for the adhesion of mast cells (MCs) to fibroblasts, human airway smooth muscle cells (HASMCs) and neurons. It also regulates E-cadherin and alpha6beta4 integrin in other cell types. Here we investigated a role for CADM1 in MC adhesion to both cells and extracellular matrix (ECM). Downregulation of CADM1 in the human MC line HMC-1 resulted not only in reduced adhesion to HASMCs, but also reduced adhesion to their ECM. Time-course studies in the presence of EDTA to inhibit integrins demonstrated that CADM1 provided fast initial adhesion to HASMCs and assisted with slower adhesion to ECM. CADM1 downregulation, but not antibody-dependent CADM1 inhibition, reduced MC adhesion to ECM, suggesting indirect regulation of ECM adhesion. To investigate potential mechanisms, phosphotyrosine signalling and polymerisation of actin filaments, essential for integrin-mediated adhesion, were examined. Modulation of CADM1 expression positively correlated with surface KIT levels and polymerisation of cortical F-actin in HMC-1 cells. It also influenced phosphotyrosine signalling and KIT tyrosine autophosphorylation. CADM1 accounted for 46% of surface KIT levels and 31% of F-actin in HMC-1 cells. CADM1 downregulation resulted in elongation of cortical actin filaments in both HMC-1 cells and human lung MCs and increased cell rigidity of HMC-1 cells. Collectively these data suggest that CADM1 is a key adhesion receptor, which regulates MC net adhesion, both directly through CADM1-dependent adhesion, and indirectly through the regulation of other adhesion receptors. The latter is likely to occur via docking of KIT and polymerisation of cortical F-actin. Here we propose a stepwise model of adhesion with CADM1 as a driving force for net MC adhesion.
Collapse
Affiliation(s)
- Elena P. Moiseeva
- Institute for Lung Health, Dept. of Infection, Immunity and Inflammation, University of Leicester, Leicester, United Kingdom
- * E-mail:
| | - Kees R. Straatman
- Centre for Core Biotechnology Services, University of Leicester, Leicester, United Kingdom
| | - Mark L. Leyland
- Department of Biochemistry, University of Leicester, Leicester, United Kingdom
| | - Peter Bradding
- Institute for Lung Health, Dept. of Infection, Immunity and Inflammation, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
61
|
Ding Y, Wilkinson A, Idris A, Fancke B, O'Keeffe M, Khalil D, Ju X, Lahoud MH, Caminschi I, Shortman K, Rodwell R, Vuckovic S, Radford KJ. FLT3-ligand treatment of humanized mice results in the generation of large numbers of CD141+ and CD1c+ dendritic cells in vivo. THE JOURNAL OF IMMUNOLOGY 2014; 192:1982-9. [PMID: 24453245 DOI: 10.4049/jimmunol.1302391] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We established a humanized mouse model incorporating FLT3-ligand (FLT3-L) administration after hematopoietic cell reconstitution to investigate expansion, phenotype, and function of human dendritic cells (DC). FLT3-L increased numbers of human CD141(+) DC, CD1c(+) DC, and, to a lesser extent, plasmacytoid DC (pDC) in the blood, spleen, and bone marrow of humanized mice. CD1c(+) DC and CD141(+) DC subsets were expanded to a similar degree in blood and spleen, with a bias toward expansion of the CD1c(+) DC subset in the bone marrow. Importantly, the human DC subsets generated after FLT3-L treatment of humanized mice are phenotypically and functionally similar to their human blood counterparts. CD141(+) DC in humanized mice express C-type lectin-like receptor 9A, XCR1, CADM1, and TLR3 but lack TLR4 and TLR9. They are major producers of IFN-λ in response to polyinosinic-polycytidylic acid but are similar to CD1c(+) DC in their capacity to produce IL-12p70. Although all DC subsets in humanized mice are efficient at presenting peptide to CD8(+) T cells, CD141(+) DC are superior in their capacity to cross-present protein Ag to CD8(+) T cells following activation with polyinosinic-polycytidylic acid. CD141(+) DC can be targeted in vivo following injection of Abs against human DEC-205 or C-type lectin-like receptor 9A. This model provides a feasible and practical approach to dissect the function of human CD141(+) and CD1c(+) DC and evaluate adjuvants and DC-targeting strategies in vivo.
Collapse
Affiliation(s)
- Yitian Ding
- Mater Research, Translational Research Institute, Brisbane, Queensland 4102, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Watchmaker PB, Lahl K, Lee M, Baumjohann D, Morton J, Kim SJ, Zeng R, Dent A, Ansel KM, Diamond B, Hadeiba H, Butcher EC. Comparative transcriptional and functional profiling defines conserved programs of intestinal DC differentiation in humans and mice. Nat Immunol 2014; 15:98-108. [PMID: 24292363 PMCID: PMC3942165 DOI: 10.1038/ni.2768] [Citation(s) in RCA: 189] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 10/18/2013] [Indexed: 12/12/2022]
Abstract
Dendritic cells (DCs) that orchestrate mucosal immunity have been studied in mice. Here we characterized human gut DC populations and defined their relationship to previously studied human and mouse DCs. CD103(+)Sirpα(-) DCs were related to human blood CD141(+) DCs and to mouse intestinal CD103(+)CD11b(-) DCs and expressed markers of cross-presenting DCs. CD103(+)Sirpα(+) DCs aligned with human blood CD1c(+) DCs and mouse intestinal CD103(+)CD11b(+) DCs and supported the induction of regulatory T cells. Both CD103(+) DC subsets induced the TH17 subset of helper T cells, while CD103(-)Sirpα(+) DCs induced the TH1 subset of helper T cells. Comparative analysis of transcriptomes revealed conserved transcriptional programs among CD103(+) DC subsets and identified a selective role for the transcriptional repressors Bcl-6 and Blimp-1 in the specification of CD103(+)CD11b(-) DCs and intestinal CD103(+)CD11b(+) DCs, respectively. Our results highlight evolutionarily conserved and divergent programming of intestinal DCs.
Collapse
MESH Headings
- Animals
- Antigens, CD/immunology
- Antigens, CD/metabolism
- Antigens, CD1/immunology
- Antigens, CD1/metabolism
- CD11b Antigen/immunology
- CD11b Antigen/metabolism
- Cell Differentiation/genetics
- Cell Differentiation/immunology
- Cells, Cultured
- Cluster Analysis
- Cross-Priming/genetics
- Cross-Priming/immunology
- Dendritic Cells/immunology
- Dendritic Cells/metabolism
- Flow Cytometry
- Glycoproteins/immunology
- Glycoproteins/metabolism
- Humans
- Integrin alpha Chains/immunology
- Integrin alpha Chains/metabolism
- Integrins/genetics
- Integrins/immunology
- Intestinal Mucosa/immunology
- Mice
- Mice, Knockout
- Mice, Transgenic
- Microscopy, Confocal
- Oligonucleotide Array Sequence Analysis
- Receptors, Chemokine/genetics
- Receptors, Chemokine/immunology
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- Th17 Cells/immunology
- Th17 Cells/metabolism
- Transcriptome/genetics
- Transcriptome/immunology
Collapse
Affiliation(s)
- Payal B Watchmaker
- 1] Laboratory of Immunology and Vascular Biology, Department of Pathology, Stanford University School of Medicine, Stanford, California, USA. [2] The Center for Molecular Biology and Medicine, Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA. [3]
| | - Katharina Lahl
- 1] Laboratory of Immunology and Vascular Biology, Department of Pathology, Stanford University School of Medicine, Stanford, California, USA. [2] The Center for Molecular Biology and Medicine, Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA. [3]
| | - Mike Lee
- 1] Laboratory of Immunology and Vascular Biology, Department of Pathology, Stanford University School of Medicine, Stanford, California, USA. [2] The Center for Molecular Biology and Medicine, Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA
| | - Dirk Baumjohann
- Department of Microbiology and Immunology, Sandler Asthma Basic Research Center, University of California San Francisco, San Francisco, California, USA
| | - John Morton
- Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Sun Jung Kim
- Center for Autoimmune and Musculoskeletal Diseases, the Feinstein Institute for Medical Research, Manhasset, New York, USA
| | - Ruizhu Zeng
- 1] Laboratory of Immunology and Vascular Biology, Department of Pathology, Stanford University School of Medicine, Stanford, California, USA. [2] The Center for Molecular Biology and Medicine, Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA
| | - Alexander Dent
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - K Mark Ansel
- Department of Microbiology and Immunology, Sandler Asthma Basic Research Center, University of California San Francisco, San Francisco, California, USA
| | - Betty Diamond
- Center for Autoimmune and Musculoskeletal Diseases, the Feinstein Institute for Medical Research, Manhasset, New York, USA
| | - Husein Hadeiba
- 1] The Center for Molecular Biology and Medicine, Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA. [2] Palo Alto Institute for Research & Education, Palo Alto, California, USA
| | - Eugene C Butcher
- 1] Laboratory of Immunology and Vascular Biology, Department of Pathology, Stanford University School of Medicine, Stanford, California, USA. [2] The Center for Molecular Biology and Medicine, Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA. [3] Palo Alto Institute for Research & Education, Palo Alto, California, USA
| |
Collapse
|
63
|
Zechmann M, Reese S, Göbel TW. Chicken CRTAM binds nectin-like 2 ligand and is upregulated on CD8+ αβ and γδ T lymphocytes with different kinetics. PLoS One 2013; 8:e81942. [PMID: 24339981 PMCID: PMC3858274 DOI: 10.1371/journal.pone.0081942] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 10/18/2013] [Indexed: 01/01/2023] Open
Abstract
During a search for immunomodulatory receptors in the chicken genome, we identified a previously cloned chicken sequence as CRTAM homologue by its overall identity and several conserved sequence features. For further characterization, we generated a CRTAM specific mab. No staining was detectable in freshly isolated cell preparations from thymus, bursa, caecal tonsils, spleen, blood and intestine. Activation of splenocytes with recombinant IL-2 increased rapid CRTAM expression within a 2 h period on about 30% of the cells. These CRTAM+ cells were identified as CD8+ γδ T lymphocytes. In contrast, CRTAM expression could not be stimulated on PBL with IL-2, even within a 48 h stimulation period. As a second means of activation, T cell receptor (TCR) crosslinking using an anti-αβ-TCR induced CRTAM on both PBL and splenocytes. While CRTAM expression was again rapidly upregulated on splenocytes within 2 h, it took 48 h to reach maximum levels of CRTAM expression in PBL. Strikingly, albeit the stimulation of splenocytes was performed with anti-αβ-TCR, CRTAM expression after 2 h was mainly restricted to CD8+ γδ T lymphocytes, however, the longer anti-TCR stimulation of peripheral blood lymphocytes (PBL) resulted in CRTAM expression on αβ T lymphocytes. In order to characterize the potential ligand we cloned and expressed chicken Necl-2, a member of the nectin and nectin-like family which is highly homologous to its mammalian counterpart. Three independent assays including a reporter assay, staining with a CRTAM-Ig fusion protein and a cell conjugate assay confirmed the interaction of CRTAM with Necl-2 which could also be blocked by a soluble CRTAM-Ig fusion protein or a CRTAM specific mab. These results suggest that chicken CRTAM represents an early activation antigen on CD8+ T cells which binds to Necl-2 and is upregulated with distinct kinetics on αβ versus γδ T lymphocytes.
Collapse
Affiliation(s)
- Maria Zechmann
- Institute for Animal Physiology, Department of Veterinary Sciences, University of Munich, Munich, Germany
| | - Sven Reese
- Institute for Anatomy, Histology and Embryology, Department of Veterinary Sciences, University of Munich, Munich, Germany
| | - Thomas W. Göbel
- Institute for Animal Physiology, Department of Veterinary Sciences, University of Munich, Munich, Germany
- * E-mail:
| |
Collapse
|
64
|
Collin M, McGovern N, Haniffa M. Human dendritic cell subsets. Immunology 2013; 140:22-30. [PMID: 23621371 PMCID: PMC3809702 DOI: 10.1111/imm.12117] [Citation(s) in RCA: 342] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 04/22/2013] [Accepted: 04/24/2013] [Indexed: 12/14/2022] Open
Abstract
Dendritic cells are highly adapted to their role of presenting antigen and directing immune responses. Developmental studies indicate that DCs originate independently from monocytes and tissue macrophages. Emerging evidence also suggests that distinct subsets of DCs have intrinsic differences that lead to functional specialisation in the generation of immunity. Comparative studies are now allowing many of these properties to be more fully understood in the context of human immunology.
Collapse
Affiliation(s)
- Matthew Collin
- Human Dendritic Cell Laboratory, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK.
| | | | | |
Collapse
|
65
|
Zhang S, Lu G, Qi J, Li Y, Zhang Z, Zhang B, Fan Z, Yan J, Gao G. Competition of Cell Adhesion and Immune Recognition: Insights into the Interaction between CRTAM and Nectin-like 2. Structure 2013; 21:1430-9. [DOI: 10.1016/j.str.2013.06.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2013] [Revised: 05/16/2013] [Accepted: 06/11/2013] [Indexed: 12/28/2022]
|
66
|
Moiseeva EP, Roach KM, Leyland ML, Bradding P. CADM1 is a key receptor mediating human mast cell adhesion to human lung fibroblasts and airway smooth muscle cells. PLoS One 2013; 8:e61579. [PMID: 23620770 PMCID: PMC3631237 DOI: 10.1371/journal.pone.0061579] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 03/11/2013] [Indexed: 02/05/2023] Open
Abstract
Background Mast cells (MCs) play a central role in the development of many diseases including asthma and pulmonary fibrosis. Interactions of human lung mast cells (HLMCs) with human airway smooth muscle cells (HASMCs) are partially dependent on adhesion mediated by cell adhesion molecule-1 (CADM1), but the adhesion mechanism through which HLMCs interact with human lung fibroblasts (HLFs) is not known. CADM1 is expressed as several isoforms (SP4, SP1, SP6) in HLMCs, with SP4 dominant. These isoforms differentially regulate HLMC homotypic adhesion and survival. Objective In this study we have investigated the role of CADM1 isoforms in the adhesion of HLMCs and HMC-1 cells to primary HASMCs and HLFs. Methods CADM1 overexpression or downregulation was achieved using adenoviral delivery of CADM1 short hairpin RNAs or isoform-specific cDNAs respectively. Results Downregulation of CADM1 attenuated both HLMC and HMC-1 adhesion to both primary HASMCs and HLFs. Overexpression of either SP1 or SP4 isoforms did not alter MC adhesion to HASMCs, whereas overexpression of SP4, but not SP1, significantly increased both HMC-1 cell and HLMC adhesion to HLFs. The expression level of CADM1 SP4 strongly predicted the extent of MC adhesion; linear regression indicated that CADM1 accounts for up to 67% and 32% of adhesion to HLFs for HMC-1 cells and HLMCs, respectively. HLFs supported HLMC proliferation and survival through a CADM1-dependent mechanism. With respect to CADM1 counter-receptor expression, HLFs expressed both CADM1 and nectin-3, whereas HASMCs expressed only nectin-3. Conclusion and Clinical Relevance Collectively these data indicate that the CADM1 SP4 isoform is a key receptor mediating human MC adhesion to HASMCs and HLFs. The differential expression of CADM1 counter-receptors on HLFs compared to HASMCs may allow the specific targeting of either HLMC-HLF or HLMC-HASMC interactions in the lung parenchyma and airways.
Collapse
Affiliation(s)
- Elena P. Moiseeva
- Institute for Lung Health, Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, United Kingdom
| | - Katy M. Roach
- Institute for Lung Health, Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, United Kingdom
| | - Mark L. Leyland
- Department of Biochemistry, University of Leicester, Leicester, United Kingdom
| | - Peter Bradding
- Institute for Lung Health, Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, United Kingdom
- * E-mail:
| |
Collapse
|
67
|
Dessarthe B, Thedrez A, Latouche JB, Cabillic F, Drouet A, Daniel P, de La Pintière CT, Catros V, Toutirais O. CRTAM Receptor Engagement by Necl-2 on Tumor Cells Triggers Cell Death of Activated Vγ9Vδ2 T Cells. THE JOURNAL OF IMMUNOLOGY 2013; 190:4868-76. [PMID: 23530148 DOI: 10.4049/jimmunol.1202596] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
MESH Headings
- Antigens/immunology
- Autophagy/immunology
- Cell Adhesion Molecule-1
- Cell Adhesion Molecules/immunology
- Cell Adhesion Molecules/metabolism
- Cell Line, Tumor
- Cell Membrane/immunology
- Cell Membrane/metabolism
- Cytotoxicity, Immunologic/immunology
- Down-Regulation/immunology
- HT29 Cells
- Hep G2 Cells
- Humans
- Immunoglobulins/immunology
- Immunoglobulins/metabolism
- Immunotherapy/methods
- Interferon-gamma/immunology
- Interferon-gamma/metabolism
- K562 Cells
- Neoplasms/immunology
- Neoplasms/metabolism
- Neoplasms/pathology
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Receptors, Natural Killer Cell/immunology
- Receptors, Natural Killer Cell/metabolism
- T-Lymphocytes/cytology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
Collapse
Affiliation(s)
- Benoît Dessarthe
- INSERM UMR991 "Foie, Métabolisme et Cancer," F-35033 Rennes, France
| | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Minami A, Shimono Y, Mizutani K, Nobutani K, Momose K, Azuma T, Takai Y. Reduction of the ST6 β-galactosamide α-2,6-sialyltransferase 1 (ST6GAL1)-catalyzed sialylation of nectin-like molecule 2/cell adhesion molecule 1 and enhancement of ErbB2/ErbB3 signaling by microRNA-199a. J Biol Chem 2013; 288:11845-53. [PMID: 23504322 DOI: 10.1074/jbc.m112.405993] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Nectin-like molecule 2 (Necl-2)/cell adhesion molecule 1 (CADM1) is shown to be down-regulated by the promoter hypermethylation and/or loss of heterozygosity at chromosome 11q23.2 in many types of cancers, including lung and breast cancers, and is proposed to serve as a tumor suppressor. However, the incidence of these epigenetic and genetic abnormalities of Necl-2 is 30-60% in these cancers, and other mechanisms for the suppression of Necl-2 are presumed to be present. We previously showed that Necl-2 interacts in cis with ErbB3 and suppresses the heregulin (HRG)-induced ErbB2/ErbB3 signaling for cell movement and death. We studied here the relationship between Necl-2 and microRNA-199a (miR-199a) that is up-regulated or down-regulated in a variety of cancers. miR-199a did not directly target the Necl-2 mRNA or affect its mRNA level in human lung cancer A549 cells and human embryonic kidney HEK293 cells. Necl-2 was at least sialylated by the sialyltransferase ST6 β-galactosamide α-2,6-sialyltransferase 1 (ST6GAL1). miR-199a targeted ST6GAL1 and reduced both the sialylation and the protein level of Necl-2. In addition, miR-199a enhanced the HRG-induced ErbB2/ErbB3 signaling. These results indicate that the suppressive role of Necl-2 in the HRG-induced ErbB2/ErbB3 signaling is regulated by miR-199a at least through the reduction of the ST6GAL1-catalyzed sialylation of Necl-2 and/or through the reduction of the protein level of Necl-2 presumably by the protein degradation.
Collapse
Affiliation(s)
- Akihiro Minami
- Division of Molecular and Cellular Biology, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017, Japan
| | | | | | | | | | | | | |
Collapse
|
69
|
Momose K, Minami A, Shimono Y, Mizutani K, Nobutani K, Azuma T, Takai Y. miR-214 and hypoxia down-regulate Necl-2/CADM1 and enhance ErbB2/ErbB3 signaling. Genes Cells 2013; 18:195-202. [DOI: 10.1111/gtc.12027] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 11/18/2012] [Indexed: 01/16/2023]
Affiliation(s)
| | | | - Yohei Shimono
- Division of Molecular and Cellular Biology; Department of Biochemistry and Molecular Biology; Kobe University Graduate School of Medicine; 7-5-1 Kusunoki-cho; Chuo-ku; Kobe; 650-0017; Japan
| | - Kiyohito Mizutani
- Division of Molecular and Cellular Biology; Department of Biochemistry and Molecular Biology; Kobe University Graduate School of Medicine; 7-5-1 Kusunoki-cho; Chuo-ku; Kobe; 650-0017; Japan
| | | | - Takeshi Azuma
- Division of Gastroenterology; Department of Internal Medicine; Kobe University Graduate School of Medicine; 7-5-1 Kusunoki-cho; Chuo-ku; Kobe; 650-0017; Japan
| | - Yoshimi Takai
- Division of Molecular and Cellular Biology; Department of Biochemistry and Molecular Biology; Kobe University Graduate School of Medicine; 7-5-1 Kusunoki-cho; Chuo-ku; Kobe; 650-0017; Japan
| |
Collapse
|
70
|
Abstract
Dendritic cells (DC) play a pivotal role in the induction and regulation of immune responses, including the induction of cytotoxic T lymphocytes (CTL) responses. These are essential for the eradication of cancers and pathogens including HIV and malaria, for which there are currently no effective vaccines. New developments in our understanding of DC biology have identified the key DC subset responsible for CTL induction, which is now an attractive candidate to target for vaccination. These DC are characterized by expression of novel markers Clec9A and XCR1, and a specialized capacity to cross-present antigen (Ag) from tumors and pathogens that do not directly infect DC. New generation DC vaccines that specifically target the cross-presenting DC in vivo have already demonstrated potential in preclinical animal models but the challenge remains to translate these findings into clinically efficacous vaccines in man. This has been greatly facilitated by the recent identification of the equivalent Clec9A(+) XCR1(+) cross-presenting DC in human lymphoid tissues and peripheral tissues that are key sites for vaccination administration. These findings combined with further studies on DC subset biology have important implications for the design of new CTL-mediated vaccines.
Collapse
Affiliation(s)
- Kristen J Radford
- Cancer Immunotherapies Group; Mater Medical Research Institute; South Brisbane, QLD; University of Queensland School of Medicine; Herston, QLD Australia
| | | |
Collapse
|
71
|
|
72
|
The equivalents of human blood and spleen dendritic cell subtypes can be generated in vitro from human CD34(+) stem cells in the presence of fms-like tyrosine kinase 3 ligand and thrombopoietin. Cell Mol Immunol 2012; 9:446-54. [PMID: 23085949 DOI: 10.1038/cmi.2012.48] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Dendritic cells (DCs) are immune cells specialized to capture, process and present antigen to T cells in order to initiate an appropriate adaptive immune response. The study of mouse DC has revealed a heterogeneous population of cells that differ in their development, surface phenotype and function. The study of human blood and spleen has shown the presence of two subsets of conventional DC including the CD1b/c(+) and CD141(+)CLEC9A(+) conventional DC (cDC) and a plasmacytoid DC (pDC) that is CD304(+)CD123(+). Studies on these subpopulations have revealed phenotypic and functional differences that are similar to those described in the mouse. In this study, the three DC subsets have been generated in vitro from human CD34(+) precursors in the presence of fms-like tyrosine kinase 3 ligand (Flt3L) and thrombopoietin (TPO). The DC subsets so generated, including the CD1b/c(+) and CLEC9A(+) cDCs and CD123(+) pDCs, were largely similar to their blood and spleen counterparts with respect to surface phenotype, toll-like receptor and transcription factor expression, capacity to stimulate T cells, cytokine secretion and cross-presentation of antigens. This system may be utilized to study aspects of DC development and function not possible in vivo.
Collapse
|
73
|
CADM1 is expressed as multiple alternatively spliced functional and dysfunctional isoforms in human mast cells. Mol Immunol 2012; 53:345-54. [PMID: 23063768 PMCID: PMC3550521 DOI: 10.1016/j.molimm.2012.08.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 08/29/2012] [Accepted: 08/30/2012] [Indexed: 02/07/2023]
Abstract
Cell adhesion molecule 1 (CADM1) is implicated in the pathogenesis of several diseases and is responsible for adhesion and survival of mast cells (MCs). Differential expression of CADM1 isoforms was found in different species. We previously cloned SP4, SP1, SP6 and a dysfunctional isoform from human lung MCs (HLMCs) and the MC line HMC-1. The aim of this study was to identify all isoforms expressed in human MCs. The functional isoforms SP4, SP1, SP6 and SP3, with alternative splicing between exons 7/11, were detected in human MCs by RT-PCR. Two dysfunctional isoforms with alternative splicing of cryptic exons A and B between exons 1/2, leading to premature termination of translation, were found in ∼40% of MC specimens. Sequencing of genomic DNA showed that splicing of cryptic exon B did not result from specific SNPs within this exon or its putative splice branch point. Highly glycosylated CADM1 (∼105 kDa) was detected by western blotting, but an extracellular domain (∼95 kDa) was found only in the culture medium from HLMCs, but not HMC-1 cells, indicating differential protein expression. Transfection of SP1 and SP6, but not SP4, reduced adhesion of HMC-1 cells to human lung fibroblasts but not airway smooth muscle cells. Hence, dysfunctional and functional CADM1 isoforms are found in human MCs. The longer SP1 and SP6 were most evident in differentiated HLMCs and displayed differential adhesion compared to SP4. These multiple isoforms are likely to contribute to MC function in both health and disease.
Collapse
|
74
|
Faraji F, Pang Y, Walker RC, Nieves Borges R, Yang L, Hunter KW. Cadm1 is a metastasis susceptibility gene that suppresses metastasis by modifying tumor interaction with the cell-mediated immunity. PLoS Genet 2012; 8:e1002926. [PMID: 23028344 PMCID: PMC3447942 DOI: 10.1371/journal.pgen.1002926] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 07/13/2012] [Indexed: 12/22/2022] Open
Abstract
Metastasis is a complex process utilizing both tumor-cell-autonomous properties and host-derived factors, including cellular immunity. We have previously shown that germline polymorphisms can modify tumor cell metastatic capabilities through cell-autonomous mechanisms. However, how metastasis susceptibility genes interact with the tumor stroma is incompletely understood. Here, we employ a complex genetic screen to identify Cadm1 as a novel modifier of metastasis. We demonstrate that Cadm1 can specifically suppress metastasis without affecting primary tumor growth. Unexpectedly, Cadm1 did not alter tumor-cell-autonomous properties such as proliferation or invasion, but required the host's adaptive immune system to affect metastasis. The metastasis-suppressing effect of Cadm1 was lost in mice lacking T cell–mediated immunity, which was partially phenocopied by depleting CD8+ T cells in immune-competent mice. Our data show a novel function for Cadm1 in suppressing metastasis by sensitizing tumor cells to immune surveillance mechanisms, and this is the first report of a heritable metastasis susceptibility gene engaging tumor non-autonomous factors. Metastasis, the dissemination and growth of tumor cells in organs distinct from which they originated, is the most common cause of cancer-related death. Accumulating evidence indicates that an individual's genetic background, the heritable complement of genetic variations that distinguish individuals, not only contributes to overall cancer risk, but also specifically influences metastatic potential. Using a mouse model of metastatic breast cancer and complex genetic analysis, we have identified Cadm1 as a metastasis susceptibility gene. Cadm1 was previously identified as a tumor suppressor in lung adenocarcinoma, and reductions in its expression have been associated with poor survival in numerous cancer types. In this manuscript, we use in vivo modeling to show that high expression of Cadm1 inhibits pulmonary metastasis, while knockdown of Cadm1 promotes the metastatic capability of tumor cells. We further show that the metastasis-suppressive effect of Cadm1 expression is lost in mice lacking T cell–mediated immunity and that this effect is partially mediated by CD8+ T-lymphocytes. Our data suggest that the inverse correlation between Cadm1 expression and disease-free survival in humans is a result of a metastasis-suppressive interaction of Cadm1 with the cell-mediated immunity.
Collapse
Affiliation(s)
- Farhoud Faraji
- Metastasis Susceptibility Section, Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- School of Medicine, Saint Louis University, St. Louis, Missouri, United States of America
- Howard Hughes Medical Institute–National Institutes of Health Research Scholars Program, Chevy Chase, Maryland, United States of America
| | - Yanli Pang
- Tumor Microenvironment Section, Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Renard C. Walker
- Metastasis Susceptibility Section, Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Rosan Nieves Borges
- Metastasis Susceptibility Section, Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Li Yang
- Tumor Microenvironment Section, Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Kent W. Hunter
- Metastasis Susceptibility Section, Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
75
|
Kang SJ. The bloodline of CD8α(+) dendritic cells. Mol Cells 2012; 34:219-29. [PMID: 22767247 PMCID: PMC3887845 DOI: 10.1007/s10059-012-0058-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Revised: 05/24/2012] [Accepted: 05/25/2012] [Indexed: 12/23/2022] Open
Abstract
The immune system is highly coordinated by various cell types. Dendritic cells (DCs) orchestrate immune responses at various stages and bridge innate immunity and adaptive immunity. DCs are a family of cells consisting of various subsets distinguished by surface markers, locations, and transcription factors that govern their development, differentiation, and homeostasis. The complexity of DC subset biology has hindered the understanding of the functional differences among DC subsets. The subset expressing the surface molecule CD8α is of particular interest, due to the efficiency of this DC subset in priming CD8(+) cytotoxic T cells and cross-presenting exogenous antigens to CD8(+) T cells. CD8α(+) DCs maintain tolerance to autologous antigens at steady state, but when activated secrete IL-12, polarizing T helper (Th) 1 responses. Recently, novel DC subsets were found to be present in peripheral tissues and the relationship between CD8α(+) DCs in lymphoid organs and DC subsets in peripheral tissues has been revealed. This review describes the pedigree of CD8α(+) DCs and related subsets, including a history of the discovery of DC subsets and their functional characterization.
Collapse
Affiliation(s)
- Suk-Jo Kang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 305-701, Korea.
| |
Collapse
|
76
|
Furuno T, Hagiyama M, Sekimura M, Okamoto K, Suzuki R, Ito A, Hirashima N, Nakanishi M. Cell adhesion molecule 1 (CADM1) on mast cells promotes interaction with dorsal root ganglion neurites by heterophilic binding to nectin-3. J Neuroimmunol 2012; 250:50-8. [DOI: 10.1016/j.jneuroim.2012.05.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 05/22/2012] [Accepted: 05/25/2012] [Indexed: 01/07/2023]
|
77
|
Gerner MY, Kastenmuller W, Ifrim I, Kabat J, Germain RN. Histo-cytometry: a method for highly multiplex quantitative tissue imaging analysis applied to dendritic cell subset microanatomy in lymph nodes. Immunity 2012; 37:364-76. [PMID: 22863836 DOI: 10.1016/j.immuni.2012.07.011] [Citation(s) in RCA: 323] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Revised: 06/26/2012] [Accepted: 07/17/2012] [Indexed: 01/24/2023]
Abstract
Flow cytometry allows highly quantitative analysis of complex dissociated populations at the cost of neglecting their tissue localization. In contrast, conventional microscopy methods provide spatial information, but visualization and quantification of cellular subsets defined by complex phenotypic marker combinations is challenging. Here, we describe an analytical microscopy method, "histo-cytometry," for visualizing and quantifying phenotypically complex cell populations directly in tissue sections. This technology is based on multiplexed antibody staining, tiled high-resolution confocal microscopy, voxel gating, volumetric cell rendering, and quantitative analysis. We have tested this technology on various innate and adaptive immune populations in murine lymph nodes (LNs) and were able to identify complex cellular subsets and phenotypes, achieving quantitatively similar results to flow cytometry, while also gathering cellular positional information. Here, we employ histo-cytometry to describe the spatial segregation of resident and migratory dendritic cell subsets into specialized microanatomical domains, suggesting an unexpected LN demarcation into discrete functional compartments.
Collapse
Affiliation(s)
- Michael Y Gerner
- Lymphocyte Biology Section, Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | |
Collapse
|
78
|
Haniffa M, Shin A, Bigley V, McGovern N, Teo P, See P, Wasan PS, Wang XN, Malinarich F, Malleret B, Larbi A, Tan P, Zhao H, Poidinger M, Pagan S, Cookson S, Dickinson R, Dimmick I, Jarrett RF, Renia L, Tam J, Song C, Connolly J, Chan JKY, Gehring A, Bertoletti A, Collin M, Ginhoux F. Human tissues contain CD141hi cross-presenting dendritic cells with functional homology to mouse CD103+ nonlymphoid dendritic cells. Immunity 2012; 37:60-73. [PMID: 22795876 PMCID: PMC3476529 DOI: 10.1016/j.immuni.2012.04.012] [Citation(s) in RCA: 547] [Impact Index Per Article: 45.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Revised: 03/21/2012] [Accepted: 04/07/2012] [Indexed: 02/08/2023]
Abstract
Dendritic cell (DC)-mediated cross-presentation of exogenous antigens acquired in the periphery is critical for the initiation of CD8+ T cell responses. Several DC subsets are described in human tissues but migratory cross-presenting DCs have not been isolated, despite their potential importance in immunity to pathogens, vaccines, and tumors and tolerance to self. Here, we identified a CD141hi DC present in human interstitial dermis, liver, and lung that was distinct from the majority of CD1c+ and CD14+ tissue DCs and superior at cross-presenting soluble antigens. Cutaneous CD141hi DCs were closely related to blood CD141+ DCs, and migratory counterparts were found among skin-draining lymph node DCs. Comparative transcriptomic analysis with mouse showed tissue DC subsets to be conserved between species and permitted close alignment of human and mouse DC subsets. These studies inform the rational design of targeted immunotherapies and facilitate translation of mouse functional DC biology to the human setting.
Collapse
Affiliation(s)
- Muzlifah Haniffa
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Segura E, Valladeau-Guilemond J, Donnadieu MH, Sastre-Garau X, Soumelis V, Amigorena S. Characterization of resident and migratory dendritic cells in human lymph nodes. ACTA ACUST UNITED AC 2012; 209:653-60. [PMID: 22430490 PMCID: PMC3328358 DOI: 10.1084/jem.20111457] [Citation(s) in RCA: 251] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Human skin-draining lymph nodes contain functionally distinct subsets of resident and migratory dendritic cells. Dendritic cells (DCs) initiate adaptive immune responses in lymph nodes (LNs). In mice, LN DCs can be divided into resident and tissue-derived populations, the latter of which migrate from the peripheral tissues. In humans, different subsets of DCs have been identified in the blood, spleen, and skin, but less is known about populations of resident and migratory tissue-derived DCs in LNs. We have analyzed DCs in human LNs and identified two populations of resident DCs that are present in all LNs analyzed, as well as in the spleen and tonsil, and correspond to the two known blood DC subtypes. We also identify three main populations of skin-derived migratory DCs that are present only in skin-draining LNs and correspond to the DC subsets found in the skin. Resident DCs subsets induce both Th1 and Th2 cytokines in naive allogeneic T lymphocytes, whereas the corresponding blood subsets failed to induce efficient Th2 polarization. LN-resident DCs also cross-present antigen without in vitro activation, whereas blood DCs fail to do so. Among migratory DCs, one subset was poor at both CD4+ and CD8+ T cell activation, whereas the other subsets induced only Th2 polarization. We conclude that in humans, skin-draining LNs host both resident and migratory DC subsets with distinct functional abilities.
Collapse
Affiliation(s)
- Elodie Segura
- Institut National de la Santé et de la Recherche Médicale Unité 932, 75005 Paris, France
| | | | | | | | | | | |
Collapse
|
80
|
Chan CJ, Andrews DM, Smyth MJ. Receptors that interact with nectin and nectin-like proteins in the immunosurveillance and immunotherapy of cancer. Curr Opin Immunol 2012; 24:246-51. [PMID: 22285893 DOI: 10.1016/j.coi.2012.01.009] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Revised: 01/09/2012] [Accepted: 01/09/2012] [Indexed: 01/27/2023]
Abstract
Management of an immune response is achieved through a delicate balance of pro-inflammatory and anti-inflammatory mechanisms. Controlling this response requires co-operation between a multitude of immune cells that are in turn controlled by specific receptor-ligand interactions and cytokine networks. In the context of cancer, a major mechanism by which the immune system restrains disease is through the action of cytotoxic lymphocytes that include natural killer (NK) cells and CD8 T cells. Both of these cell types express a panoply of receptors that are able to control their responses in order to heighten the specificity of their effector function. An emerging class of such receptors on cytotoxic lymphocytes are a group of immunoglobulin superfamily members that interact with ligands of the nectin and nectin-like (necl) family. These receptors include CD226, TIGIT, CRTAM and CD96. This review will outline the immunobiology of these receptors, the contexts where their function is important, their role in tumour immunosurveillance, and how they may be utilised for therapeutic applications in cancer.
Collapse
Affiliation(s)
- Christopher J Chan
- Cellular Immunity Laboratory, Cancer Immunology Program, Peter MacCallum Cancer Centre, East Melbourne 3002, Australia
| | | | | |
Collapse
|
81
|
Clinical significance of CADM1/TSLC1/IgSF4 expression in adult T-cell leukemia/lymphoma. Leukemia 2012; 26:1238-46. [PMID: 22289924 DOI: 10.1038/leu.2011.379] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cell adhesion molecule 1 (CADM1/TSLC1) was recently identified as a novel cell surface marker for adult T-cell leukemia/lymphoma (ATLL). In this study, we developed various antibodies as diagnostic tools to identify CADM1-positive ATLL leukemia cells. In flow cytometric analysis, the percentages of CD4(+)CADM1(+) double-positive cells correlated well with both the percentages of CD4(+)CD25(+) cells and with abnormal lymphocytes in the peripheral blood of patients with various types of ATLL. Moreover, the degree of CD4(+)CADM1(+) cells over 1% significantly correlated with the copy number of the human T-lymphotropic virus type 1 (HTLV-1) provirus in the peripheral blood of HTLV-1 carriers and ATLL patients. We also identified a soluble form of CADM1 in the peripheral blood of ATLL patients, and the expression levels of this form were correlated with the levels of soluble interleukin 2 receptor alpha. Moreover, lymphomas derived from ATLL were strongly and specifically stained with a CADM1 antibody. Thus, detection of CD4(+)CADM1(+) cells in the peripheral blood, measurement of serum levels of soluble CADM1 and immunohistochemical detection of CADM1 in lymphomas would be a useful set of markers for disease progression in ATLL and may aid in both the early diagnosis and measurement of treatment efficacy for ATLL.
Collapse
|
82
|
Giangreco A, Hoste E, Takai Y, Rosewell I, Watt FM. Epidermal Cadm1 Expression Promotes Autoimmune Alopecia via Enhanced T Cell Adhesion and Cytotoxicity. THE JOURNAL OF IMMUNOLOGY 2011; 188:1514-22. [DOI: 10.4049/jimmunol.1003342] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
83
|
Hashimoto D, Miller J, Merad M. Dendritic cell and macrophage heterogeneity in vivo. Immunity 2011; 35:323-35. [PMID: 21943488 DOI: 10.1016/j.immuni.2011.09.007] [Citation(s) in RCA: 295] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Indexed: 12/17/2022]
Abstract
Macrophage and dendritic cell (DC) are hematopoietic cells found in all tissues in the steady state that share the ability to sample the environment but have distinct function in tissue immunity. Controversies remain on the best way to distinguish macrophages from DCs in vivo. In this Perspective, we discuss how recent discoveries in the origin of the DC and macrophage lineage help establish key functional differences between tissue DC and macrophage subsets. We also emphasize the need to further understand the functional heterogeneity of the tissue DC and macrophage lineages to better comprehend the complex role of these cells in tissue homeostasis and immunity.
Collapse
Affiliation(s)
- Daigo Hashimoto
- Department of Oncological Sciences, 1425 Madison Avenue, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | |
Collapse
|
84
|
Crozat K, Tamoutounour S, Vu Manh TP, Fossum E, Luche H, Ardouin L, Guilliams M, Azukizawa H, Bogen B, Malissen B, Henri S, Dalod M. Cutting edge: expression of XCR1 defines mouse lymphoid-tissue resident and migratory dendritic cells of the CD8α+ type. THE JOURNAL OF IMMUNOLOGY 2011; 187:4411-5. [PMID: 21948982 DOI: 10.4049/jimmunol.1101717] [Citation(s) in RCA: 167] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Subsets of dendritic cells (DCs) have been described according to their functions and anatomical locations. Conventional DC subsets are defined by reciprocal expression of CD11b and CD8α in lymphoid tissues (LT), and of CD11b and CD103 in non-LT (NLT). Spleen CD8α(+) and dermal CD103(+) DCs share a high efficiency for Ag cross-presentation and a developmental dependency on specific transcription factors. However, it is not known whether all NLT-derived CD103(+) DCs and LT-resident CD8α(+) DCs are similar despite their different anatomical locations. XCR1 was previously described as exclusively expressed on mouse spleen CD8α(+) DCs and human blood BDCA3(+) DCs. In this article, we showed that LT-resident CD8α(+) DCs and NLT-derived CD103(+) DCs specifically express XCR1 and are characterized by a unique transcriptional fingerprint, irrespective of their tissue of origin. Therefore, CD8α(+) DCs and CD103(+) DCs belong to a common DC subset which is unequivocally identified by XCR1 expression throughout the body.
Collapse
Affiliation(s)
- Karine Crozat
- Centre d'Immunologie Marseille-Luminy, Université de la Méditerranée, 13288 Marseille, France.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Mizutani K, Kawano S, Minami A, Waseda M, Ikeda W, Takai Y. Interaction of nectin-like molecule 2 with integrin alpha6beta4 and inhibition of disassembly of integrin alpha6beta4 from hemidesmosomes. J Biol Chem 2011; 286:36667-76. [PMID: 21880726 DOI: 10.1074/jbc.m110.200535] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
In normal epithelial cells, integrin α(6)β(4) is abundantly expressed and forms hemidesmosomes, which is a cellular structure that mediates cell-extracellular matrix binding. In many types of cancer cells, integrin α(6)β(4) is up-regulated, laminin is cleaved, and hemidesmosomes are disrupted, eventually causing an enhancement of cancer cell movement and facilitation of their invasion. We previously showed that the immunoglobulin-like cell adhesion molecule Necl-2 (Nectin-like molecule 2), known as a tumor suppressor, inhibits cancer cell movement by suppressing the ErbB3/ErbB2 signaling. We show here that Necl-2 interacts in cis with integrin α(6)β(4). The binding of Necl-2 with integrin β(4) was mediated by its extracellular region. In human colorectal adenocarcinoma Caco-2 cells, integrin α(6)β(4) was localized at hemidesmosomes. Small interfering RNA-mediated suppression of Necl-2 expression enhanced the phorbol ester-induced disruption of the integrin α(6)β(4) complex at hemidesmosomes, whereas expression of Necl-2 suppressed the disruption of this structure. These results indicate that tumor-suppressive functions of Necl-2 are mediated by the stabilization of the hemidesmosome structure in addition to the inhibition of the ErbB3/ErbB2 signaling.
Collapse
Affiliation(s)
- Kiyohito Mizutani
- Division of Molecular and Cellular Biology, Department of Biochemistry, and Molecular Biology, Kobe University Graduate School of Medicine, Kobe 650-0017, Hyogo, Japan
| | | | | | | | | | | |
Collapse
|
86
|
Mittag D, Proietto AI, Loudovaris T, Mannering SI, Vremec D, Shortman K, Wu L, Harrison LC. Human Dendritic Cell Subsets from Spleen and Blood Are Similar in Phenotype and Function but Modified by Donor Health Status. THE JOURNAL OF IMMUNOLOGY 2011; 186:6207-17. [DOI: 10.4049/jimmunol.1002632] [Citation(s) in RCA: 185] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
87
|
|
88
|
Targeting human dendritic cell subsets for improved vaccines. Semin Immunol 2011; 23:21-7. [PMID: 21277223 DOI: 10.1016/j.smim.2011.01.004] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Accepted: 01/05/2011] [Indexed: 11/21/2022]
Abstract
Dendritic cells (DCs) were discovered in 1973 by Ralph Steinman as a previously undefined cell type in the mouse spleen and are now recognized as a group of related cell populations that induce and regulate adaptive immune responses. Studies of the past decade show that, both in mice and humans, DCs are composed of subsets that differ in their localization, phenotype, and functions. These progresses in our understanding of DC biology provide a new framework for improving human health. In this review, we discuss human DC subsets in the context of their medical applications, with a particular focus on DC targeting.
Collapse
|
89
|
Marquet F, Bonneau M, Pascale F, Urien C, Kang C, Schwartz-Cornil I, Bertho N. Characterization of dendritic cells subpopulations in skin and afferent lymph in the swine model. PLoS One 2011; 6:e16320. [PMID: 21298011 PMCID: PMC3029332 DOI: 10.1371/journal.pone.0016320] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Accepted: 12/16/2010] [Indexed: 12/27/2022] Open
Abstract
Transcutaneous delivery of vaccines to specific skin dendritic cells (DC) subsets is foreseen as a promising strategy to induce strong and specific types of immune responses such as tolerance, cytotoxicity or humoral immunity. Because of striking histological similarities between human and pig skin, pig is recognized as the most suitable model to study the cutaneous delivery of medicine. Therefore improving the knowledge on swine skin DC subsets would be highly valuable to the skin vaccine field. In this study, we showed that pig skin DC comprise the classical epidermal langerhans cells (LC) and dermal DC (DDC) that could be divided in 3 subsets according to their phenotypes: (1) the CD163neg/CD172aneg, (2) the CD163highCD172apos and (3) the CD163lowCD172apos DDC. These subtypes have the capacity to migrate from skin to lymph node since we detected them in pseudo-afferent lymph. Extensive phenotyping with a set of markers suggested that the CD163high DDC resemble the antibody response-inducing human skin DC/macrophages whereas the CD163negCD172low DDC share properties with the CD8+ T cell response-inducing murine skin CD103pos DC. This work, by showing similarities between human, mouse and swine skin DC, establishes pig as a model of choice for the development of transcutaneous immunisation strategies targeting DC.
Collapse
Affiliation(s)
- Florian Marquet
- Virologie et Immunologie Moléculaires UR892, Institut National de la Recherche Agronomique, Domaine de Vilvert, Jouy-en-Josas, France
| | - Michel Bonneau
- Centre de Recherche en Imagerie Interventionnelle, Institut National de la Recherche Agronomique, Domaine de Vilvert, Jouy-en-Josas, France
| | - Florentina Pascale
- Virologie et Immunologie Moléculaires UR892, Institut National de la Recherche Agronomique, Domaine de Vilvert, Jouy-en-Josas, France
- Centre de Recherche en Imagerie Interventionnelle, Institut National de la Recherche Agronomique, Domaine de Vilvert, Jouy-en-Josas, France
| | - Celine Urien
- Virologie et Immunologie Moléculaires UR892, Institut National de la Recherche Agronomique, Domaine de Vilvert, Jouy-en-Josas, France
| | - Chantal Kang
- Centre de Recherche en Imagerie Interventionnelle, Institut National de la Recherche Agronomique, Domaine de Vilvert, Jouy-en-Josas, France
| | - Isabelle Schwartz-Cornil
- Virologie et Immunologie Moléculaires UR892, Institut National de la Recherche Agronomique, Domaine de Vilvert, Jouy-en-Josas, France
- * E-mail: (NB); (IS-C)
| | - Nicolas Bertho
- Virologie et Immunologie Moléculaires UR892, Institut National de la Recherche Agronomique, Domaine de Vilvert, Jouy-en-Josas, France
- * E-mail: (NB); (IS-C)
| |
Collapse
|
90
|
|
91
|
Abstract
Antigen cross-presentation is a critical step in the elicitation of cell-mediated immune responses. Much research has been aimed at manipulating antigen cross-presentation to improve tumor immunotherapy and vaccination. In this issue of Science Translational Medicine, Saccheri et al. describe a mechanism for spurring successful antitumor responses by enhancing the transfer, to antigen-presenting cells, of tumor-specific antigens that leave the cancer cells via gap junctions induced by Salmonella infection of the melanoma tumor. Salmonella turns from foe to friend by promoting cross-presentation for strong antitumor immunity and tumor eradication.
Collapse
Affiliation(s)
- Baoxu Pang
- Division of Cell Biology, Netherlands Cancer Institute, 1066CX Amsterdam, Netherlands
| | | |
Collapse
|
92
|
Tumor antigen cross-presentation and the dendritic cell: where it all begins? Clin Dev Immunol 2010; 2010:539519. [PMID: 20976125 PMCID: PMC2957101 DOI: 10.1155/2010/539519] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Accepted: 08/25/2010] [Indexed: 12/22/2022]
Abstract
Dendritic cells (DCs) are professional antigen-presenting cells (APCs) that are critical for the generation of effective cytotoxic T lymphocyte (CTL) responses; however, their function and phenotype are often defective or altered in tumor-bearing hosts, which may limit their capacity to mount an effective tumor-specific CTL response. In particular, the manner in which exogenous tumor antigens are acquired, processed, and cross-presented to CD8 T cells by DCs in tumor-bearing hosts is not well understood, but may have a profound effect on antitumor immunity. In this paper, we have examined the role of DCs in the cross-presentation of tumor antigen in terms of their subset, function, migration, and location with the intention of examining the early processes that contribute to the development of an ineffective anti-tumor immune response.
Collapse
|
93
|
Contreras V, Urien C, Guiton R, Alexandre Y, Vu Manh TP, Andrieu T, Crozat K, Jouneau L, Bertho N, Epardaud M, Hope J, Savina A, Amigorena S, Bonneau M, Dalod M, Schwartz-Cornil I. Existence of CD8α-like dendritic cells with a conserved functional specialization and a common molecular signature in distant mammalian species. THE JOURNAL OF IMMUNOLOGY 2010; 185:3313-25. [PMID: 20702727 DOI: 10.4049/jimmunol.1000824] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The mouse lymphoid organ-resident CD8alpha(+) dendritic cell (DC) subset is specialized in Ag presentation to CD8(+) T cells. Recent evidence shows that mouse nonlymphoid tissue CD103(+) DCs and human blood DC Ag 3(+) DCs share similarities with CD8alpha(+) DCs. We address here whether the organization of DC subsets is conserved across mammals in terms of gene expression signatures, phenotypic characteristics, and functional specialization, independently of the tissue of origin. We study the DC subsets that migrate from the skin in the ovine species that, like all domestic animals, belongs to the Laurasiatheria, a distinct phylogenetic clade from the supraprimates (human/mouse). We demonstrate that the minor sheep CD26(+) skin lymph DC subset shares significant transcriptomic similarities with mouse CD8alpha(+) and human blood DC Ag 3(+) DCs. This allowed the identification of a common set of phenotypic characteristics for CD8alpha-like DCs in the three mammalian species (i.e., SIRP(lo), CADM1(hi), CLEC9A(hi), CD205(hi), XCR1(hi)). Compared to CD26(-) DCs, the sheep CD26(+) DCs show 1) potent stimulation of allogeneic naive CD8(+) T cells with high selective induction of the Ifngamma and Il22 genes; 2) dominant efficacy in activating specific CD8(+) T cells against exogenous soluble Ag; and 3) selective expression of functional pathways associated with high capacity for Ag cross-presentation. Our results unravel a unifying definition of the CD8alpha(+)-like DCs across mammalian species and identify molecular candidates that could be used for the design of vaccines applying to mammals in general.
Collapse
Affiliation(s)
- Vanessa Contreras
- Virologie et Immunologie Moléculaires UR892, Institut National de Recherche Agronomique, Domaine de Vilvert, Jouy-en-Josas, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Guilliams M, Henri S, Tamoutounour S, Ardouin L, Schwartz-Cornil I, Dalod M, Malissen B. From skin dendritic cells to a simplified classification of human and mouse dendritic cell subsets. Eur J Immunol 2010; 40:2089-94. [DOI: 10.1002/eji.201040498] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
95
|
Joffre OP, Sancho D, Zelenay S, Keller AM, Reis e Sousa C. Efficient and versatile manipulation of the peripheral CD4+ T-cell compartment by antigen targeting to DNGR-1/CLEC9A. Eur J Immunol 2010; 40:1255-65. [PMID: 20333625 PMCID: PMC3064981 DOI: 10.1002/eji.201040419] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
DC NK lectin group receptor-1 (DNGR-1, also known as CLEC9A) is a C-type lectin receptor expressed by mouse CD8α+ DC and by their putative equivalents in human. DNGR-1 senses necrosis and regulates CD8+ T-cell cross-priming to dead-cell-associated antigens. In addition, DNGR-1 is a target for selective in vivo delivery of antigens to DC and the induction of CD8+ T-cell and Ab responses. In this study, we evaluated whether DNGR-1 targeting can be additionally used to manipulate antigen-specific CD4+ T lymphocytes. Injection of small amounts of antigen-coupled anti-DNGR-1 mAb into mice promoted MHC class II antigen presentation selectively by CD8α+ DC. In the steady state, this was sufficient to induce proliferation of antigen-specific naïve CD4+ T cells and to drive their differentiation into Foxp3+ regulatory lymphocytes. Co-administration of adjuvants prevented this induction of tolerance and promoted immunity. Notably, distinct adjuvants allowed qualitative modulation of CD4+ T-cell behavior: poly I:C induced a strong IL-12-independent Th1 response, whereas curdlan led to the priming of Th17 cells. Thus, antigen targeting to DNGR-1 is a versatile approach for inducing functionally distinct CD4+ T-cell responses. Given the restricted pattern of expression of DNGR-1 across species, this strategy could prove useful for developing immunotherapy protocols in humans.
Collapse
Affiliation(s)
- Olivier P Joffre
- Immunobiology Laboratory, Cancer Research UK, London Research Institute, Lincoln's Inn Fields Laboratories, London, UK
| | | | | | | | | |
Collapse
|
96
|
Fournier G, Garrido-Urbani S, Reymond N, Lopez M. [Nectin and nectin-like molecules as markers, actors and targets in cancer]. Med Sci (Paris) 2010; 26:273-9. [PMID: 20346277 DOI: 10.1051/medsci/2010263273] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Nectin and nectin-like (necl) proteins form a family of 9 adhesion molecules that belong to the immunoglobulin superfamily. They play a key role in different biological processes such as cell polarity, proliferation, differentiation and migration in epithelial, endothelial, immune and nervous systems. Besides their role in physiology, they have been involved in different pathological processes in humans. They serve as virus receptors (poliovirus and herpes simplex virus), they are involved in orofacial malformation (CLPED1) and recently they have been described as markers, actors and potential therapeutics targets in cancer. Among them, necl-5, nectin-2 and nectin-4 are overexpressed in tumors, and are associated with a poor prognosis. On the opposite, necl-1, necl-2 and necl-4 act as tumor suppressors and are repressed in cancer. The involvement of nectins and necls molecules in cancer and their potential used in therapy is discussed in this review.
Collapse
|
97
|
Yewdell JW. Designing CD8+ T cell vaccines: it's not rocket science (yet). Curr Opin Immunol 2010; 22:402-10. [PMID: 20447814 PMCID: PMC2908899 DOI: 10.1016/j.coi.2010.04.002] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Accepted: 04/12/2010] [Indexed: 01/09/2023]
Abstract
CD8+ T cells play important roles in clearing viral infections and eradicating tumors. Designing vaccines that elicit effective CD8+ T cell responses requires a thorough knowledge of the pathways of antigen presentation in vivo. Here, I review recent progress in understanding the activation of naïve CD8+ T cells in vivo, with particular emphasis on cross-priming, the presentation of protein antigens acquired by dendritic cells from their environment. With the rapid advances in this area of research, the dawn of rational vaccine design is at hand.
Collapse
|
98
|
Villadangos JA, Shortman K. Found in translation: the human equivalent of mouse CD8+ dendritic cells. ACTA ACUST UNITED AC 2010; 207:1131-4. [PMID: 20513744 PMCID: PMC2882838 DOI: 10.1084/jem.20100985] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The murine dendritic cell network comprises multiple subsets with distinct functions, but few of their human counterparts have been described. New data now reveals the likely human equivalent of the mouse DC subset specialized in cross-presentation.
Collapse
Affiliation(s)
- Jose A Villadangos
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3050, Australia.
| | | |
Collapse
|
99
|
Kerrigan AM, Brown GD. Syk-coupled C-type lectin receptors that mediate cellular activation via single tyrosine based activation motifs. Immunol Rev 2010; 234:335-52. [PMID: 20193029 DOI: 10.1111/j.0105-2896.2009.00882.x] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Different dendritic cell (DC) subsets have distinct specialized functions contributed in part by their differential expression of pattern recognition receptors (PRRs). C-type lectin receptors (CLRs) are a group of PRRs expressed by DCs and other myeloid cells that can recognize endogenous ligands as well as a wide range of exogenous structures present on pathogens. Dual roles in homeostasis and immunity have been demonstrated for some members of this receptor family. Largely due to their endocytic ability and subset specific expression, DC-expressed CLRs have been the focus of significant antigen-targeting studies. A number of CLRs function on the basis of signaling via association with immunoreceptor tyrosine-based activation motif (ITAM)-containing adapter proteins. Others contain ITAM-related motifs or immunoreceptor tyrosine-based inhibitory motifs (ITIMs) in their cytoplasmic tails. Here we review CLRs that induce intracellular signaling via a single tyrosine-based ITAM-like motif and highlight their relevance in terms of DC function.
Collapse
Affiliation(s)
- Ann M Kerrigan
- Section of Infection and Immunity, Institute of Molecular Sciences, School of Medicine and Dentistry, University of Aberdeen, Aberdeen, UK
| | | |
Collapse
|
100
|
Romani N, Clausen BE, Stoitzner P. Langerhans cells and more: langerin-expressing dendritic cell subsets in the skin. Immunol Rev 2010; 234:120-41. [PMID: 20193016 DOI: 10.1111/j.0105-2896.2009.00886.x] [Citation(s) in RCA: 308] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Langerhans cells (LCs) are antigen-presenting dendritic cells (DCs) that reside in epithelia. The best studied example is the LC of the epidermis. By electron microscopy, their identifying feature is the unique rod- or tennis racket-shaped Birbeck granule. The phenotypic hallmark is their expression of the C-type lectin receptor langerin/CD207. Langerin, however, is also expressed on a recently discovered population of DC in the dermis and other tissues of the body. These 'dermal langerin(+) dendritic cells' are unrelated to LCs. The complex field of langerin-negative dermal DCs is not dealt with here. In this article, we briefly review the history, ontogeny, and homeostasis of LCs. More emphasis is laid on the discussion of functional properties in vivo. Novel models using genetically engineered mice are contributing tremendously to our understanding of the role of LCs in eliciting adaptive immune responses against pathogens or tumors and in inducing and maintaining tolerance against self antigens and innocuous substances in vivo. Also, innate effector functions are increasingly being recognized. Current activities in this area are reviewed, and possibilities for future exploitation of LC in medicine, e.g. for the improvement of vaccines, are contemplated.
Collapse
Affiliation(s)
- Nikolaus Romani
- Department of Dermatology & Venereology, Innsbruck Medical University, Innsbruck, Austria.
| | | | | |
Collapse
|