51
|
Christel C, Lee A. Ca2+-dependent modulation of voltage-gated Ca2+ channels. Biochim Biophys Acta Gen Subj 2011; 1820:1243-52. [PMID: 22223119 DOI: 10.1016/j.bbagen.2011.12.012] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2011] [Revised: 12/15/2011] [Accepted: 12/16/2011] [Indexed: 01/06/2023]
Abstract
BACKGROUND Voltage-gated (Cav) Ca2+ channels are multi-subunit complexes that play diverse roles in a wide variety of tissues. A fundamental mechanism controlling Cav channel function involves the Ca2+ ions that permeate the channel pore. Ca2+ influx through Cav channels mediates feedback regulation to the channel that is both negative (Ca2+-dependent inactivation, CDI) and positive (Ca2+-dependent facilitation, CDF). SCOPE OF REVIEW This review highlights general mechanisms of CDI and CDF with an emphasis on how these processes have been studied electrophysiologically in native and heterologous expression systems. MAJOR CONCLUSIONS Electrophysiological analyses have led to detailed insights into the mechanisms and prevalence of CDI and CDF as Cav channel regulatory mechanisms. All Cav channel family members undergo some form of Ca2+-dependent feedback that relies on CaM or a related Ca2+ binding protein. Tremendous progress has been made in characterizing the role of CaM in CDI and CDF. Yet, what contributes to the heterogeneity of CDI/CDF in various cell-types and how Ca2+-dependent regulation of Cav channels controls Ca2+ signaling remain largely unexplored. GENERAL SIGNIFICANCE Ca2+ influx through Cav channels regulates diverse physiological events including excitation-contraction coupling in muscle, neurotransmitter and hormone release, and Ca2+-dependent gene transcription. Therefore, the mechanisms that regulate channels, such as CDI and CDF, can have a large impact on the signaling potential of excitable cells in various physiological contexts. This article is part of a Special Issue entitled Biochemical, biophysical and genetic approaches to intracellular calcium signaling.
Collapse
Affiliation(s)
- Carl Christel
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA 52242, USA
| | | |
Collapse
|
52
|
Minobe E, Asmara H, Saud ZA, Kameyama M. Calpastatin domain L is a partial agonist of the calmodulin-binding site for channel activation in Cav1.2 Ca2+ channels. J Biol Chem 2011; 286:39013-22. [PMID: 21937422 DOI: 10.1074/jbc.m111.242248] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Cav1.2 Ca(2+) channel activity diminishes in inside-out patches (run-down). Previously, we have found that with ATP, calpastatin domain L (CSL) and calmodulin (CaM) recover channel activity from the run-down in guinea pig cardiac myocytes. Because the potency of the CSL repriming effect was smaller than that of CaM, we hypothesized that CSL might act as a partial agonist of CaM in the channel-repriming effect. To examine this hypothesis, we investigated the effect of the competitions between CSL and CaM on channel activity and on binding in the channel. We found that CSL suppressed the channel-activating effect of CaM in a reversible and concentration-dependent manner. The channel-inactivating effect of CaM seen at high concentrations of CaM, however, did not seem to be affected by CSL. In the GST pull-down assay, CSL suppressed binding of CaM to GST fusion peptides derived from C-terminal regions in a competitive manner. The inhibition of CaM binding by CSL was observed with the IQ peptide but not the PreIQ peptide, which is the CaM-binding domain in the C terminus. The results are consistent with the hypothesis that CSL competes with CaM as a partial agonist for the site in the IQ domain in the C-terminal region of the Cav1.2 channel, which may be involved in activation of the channel.
Collapse
Affiliation(s)
- Etsuko Minobe
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan
| | | | | | | |
Collapse
|
53
|
Mikhaylova M, Hradsky J, Kreutz MR. Between promiscuity and specificity: novel roles of EF-hand calcium sensors in neuronal Ca2+ signalling. J Neurochem 2011; 118:695-713. [PMID: 21722133 DOI: 10.1111/j.1471-4159.2011.07372.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In recent years, substantial progress has been made towards an understanding of the physiological function of EF-hand calcium sensor proteins of the Calmodulin (CaM) superfamily in neurons. This deeper appreciation is based on the identification of novel target interactions, structural studies and the discovery of novel signalling mechanisms in protein trafficking and synaptic plasticity, in which CaM-like sensor proteins appear to play a role. However, not all interactions are of plausible physiological relevance and in many cases it is not yet clear how the CaM signaling network relates to the proposed function of other EF-hand sensors. In this review, we will summarize these findings and address some of the open questions on the functional role of EF-hand calcium binding proteins in neurons.
Collapse
Affiliation(s)
- Marina Mikhaylova
- PG Neuroplasticity, Leibniz-Institute for Neurobiology, Magdeburg, Germany
| | | | | |
Collapse
|
54
|
Park S, Li C, Ames JB. Nuclear magnetic resonance structure of calcium-binding protein 1 in a Ca(2+) -bound closed state: implications for target recognition. Protein Sci 2011; 20:1356-66. [PMID: 21608059 DOI: 10.1002/pro.662] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Accepted: 05/10/2011] [Indexed: 11/10/2022]
Abstract
Calcium-binding protein 1 (CaBP1), a neuron-specific member of the calmodulin (CaM) superfamily, regulates the Ca(2+) -dependent activity of inositol 1,4,5-triphosphate receptors (InsP3Rs) and various voltage-gated Ca(2+) channels. Here, we present the NMR structure of full-length CaBP1 with Ca(2+) bound at the first, third, and fourth EF-hands. A total of 1250 nuclear Overhauser effect distance measurements and 70 residual dipolar coupling restraints define the overall main chain structure with a root-mean-squared deviation of 0.54 Å (N-domain) and 0.48 Å (C-domain). The first 18 residues from the N-terminus in CaBP1 (located upstream of the first EF-hand) are structurally disordered and solvent exposed. The Ca(2+) -saturated CaBP1 structure contains two independent domains separated by a flexible central linker similar to that in calmodulin and troponin C. The N-domain structure of CaBP1 contains two EF-hands (EF1 and EF2), both in a closed conformation [interhelical angles = 129° (EF1) and 142° (EF2)]. The C-domain contains EF3 and EF4 in the familiar Ca(2+) -bound open conformation [interhelical angles = 105° (EF3) and 91° (EF4)]. Surprisingly, the N-domain adopts the same closed conformation in the presence or absence of Ca(2+) bound at EF1. The Ca(2+) -bound closed conformation of EF1 is reminiscent of Ca(2+) -bound EF-hands in a closed conformation found in cardiac troponin C and calpain. We propose that the Ca(2+) -bound closed conformation of EF1 in CaBP1 might undergo an induced-fit opening only in the presence of a specific target protein, and thus may help explain the highly specialized target binding by CaBP1.
Collapse
Affiliation(s)
- Saebomi Park
- Department of Chemistry, University of California, Davis, California 95616, USA
| | | | | |
Collapse
|
55
|
Nejatbakhsh N, Feng ZP. Calcium binding protein-mediated regulation of voltage-gated calcium channels linked to human diseases. Acta Pharmacol Sin 2011; 32:741-8. [PMID: 21642945 DOI: 10.1038/aps.2011.64] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Calcium ion entry through voltage-gated calcium channels is essential for cellular signalling in a wide variety of cells and multiple physiological processes. Perturbations of voltage-gated calcium channel function can lead to pathophysiological consequences. Calcium binding proteins serve as calcium sensors and regulate the calcium channel properties via feedback mechanisms. This review highlights the current evidences of calcium binding protein-mediated channel regulation in human diseases.
Collapse
|
56
|
Minor DL, Findeisen F. Progress in the structural understanding of voltage-gated calcium channel (CaV) function and modulation. Channels (Austin) 2011; 4:459-74. [PMID: 21139419 DOI: 10.4161/chan.4.6.12867] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Voltage-gated calcium channels (CaVs) are large, transmembrane multiprotein complexes that couple membrane depolarization to cellular calcium entry. These channels are central to cardiac action potential propagation, neurotransmitter and hormone release, muscle contraction, and calcium-dependent gene transcription. Over the past six years, the advent of high-resolution structural studies of CaV components from different isoforms and CaV modulators has begun to reveal the architecture that underlies the exceptionally rich feedback modulation that controls CaV action. These descriptions of CaV molecular anatomy have provided new, structure-based insights into the mechanisms by which particular channel elements affect voltage-dependent inactivation (VDI), calcium‑dependent inactivation (CDI), and calcium‑dependent facilitation (CDF). The initial successes have been achieved through structural studies of soluble channel domains and modulator proteins and have proven most powerful when paired with biochemical and functional studies that validate ideas inspired by the structures. Here, we review the progress in this growing area and highlight some key open challenges for future efforts.
Collapse
Affiliation(s)
- Daniel L Minor
- Cardiovascular Research Institute, University of California-San Francisco, CA, USA.
| | | |
Collapse
|
57
|
Findeisen F, Minor DL. Structural basis for the differential effects of CaBP1 and calmodulin on Ca(V)1.2 calcium-dependent inactivation. Structure 2011; 18:1617-31. [PMID: 21134641 DOI: 10.1016/j.str.2010.09.012] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Revised: 09/08/2010] [Accepted: 09/17/2010] [Indexed: 01/01/2023]
Abstract
Calcium-binding protein 1 (CaBP1), a calmodulin (CaM) homolog, endows certain voltage-gated calcium channels (Ca(V)s) with unusual properties. CaBP1 inhibits Ca(V)1.2 calcium-dependent inactivation (CDI) and introduces calcium-dependent facilitation (CDF). Here, we show that the ability of CaBP1 to inhibit Ca(V)1.2 CDI and induce CDF arises from interaction between the CaBP1 N-lobe and interlobe linker residue Glu94. Unlike CaM, where functional EF hands are essential for channel modulation, CDI inhibition does not require functional CaBP1 EF hands. Furthermore, CaBP1-mediated CDF has different molecular requirements than CaM-mediated CDF. Overall, the data show that CaBP1 comprises two structural modules having separate functions: similar to CaM, the CaBP1 C-lobe serves as a high-affinity anchor that binds the Ca(V)1.2 IQ domain at a site that overlaps with the Ca²+/CaM C-lobe site, whereas the N-lobe/linker module houses the elements required for channel modulation. Discovery of this division provides the framework for understanding how CaBP1 regulates Ca(V)s.
Collapse
Affiliation(s)
- Felix Findeisen
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158-2330, USA
| | | |
Collapse
|
58
|
Oz S, Tsemakhovich V, Christel CJ, Lee A, Dascal N. CaBP1 regulates voltage-dependent inactivation and activation of Ca(V)1.2 (L-type) calcium channels. J Biol Chem 2011; 286:13945-53. [PMID: 21383011 DOI: 10.1074/jbc.m110.198424] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
CaBP1 is a Ca(2+)-binding protein that regulates the gating of voltage-gated (Ca(V)) Ca(2+) channels. In the Ca(V)1.2 channel α(1)-subunit (α(1C)), CaBP1 interacts with cytosolic N- and C-terminal domains and blunts Ca(2+)-dependent inactivation. To clarify the role of the α(1C) N-terminal domain in CaBP1 regulation, we compared the effects of CaBP1 on two alternatively spliced variants of α(1C) containing a long or short N-terminal domain. In both isoforms, CaBP1 inhibited Ca(2+)-dependent inactivation but also caused a depolarizing shift in voltage-dependent activation and enhanced voltage-dependent inactivation (VDI). In binding assays, CaBP1 interacted with the distal third of the N-terminal domain in a Ca(2+)-independent manner. This segment is distinct from the previously identified calmodulin-binding site in the N terminus. However, deletion of a segment in the proximal N-terminal domain of both α(1C) isoforms, which spared the CaBP1-binding site, inhibited the effect of CaBP1 on VDI. This result suggests a modular organization of the α(1C) N-terminal domain, with separate determinants for CaBP1 binding and transduction of the effect on VDI. Our findings expand the diversity and mechanisms of Ca(V) channel regulation by CaBP1 and define a novel modulatory function for the initial segment of the N terminus of α(1C).
Collapse
Affiliation(s)
- Shimrit Oz
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | | | | | |
Collapse
|
59
|
Bannister JP, Thomas-Gatewood CM, Neeb ZP, Adebiyi A, Cheng X, Jaggar JH. Ca(V)1.2 channel N-terminal splice variants modulate functional surface expression in resistance size artery smooth muscle cells. J Biol Chem 2011; 286:15058-66. [PMID: 21357696 DOI: 10.1074/jbc.m110.182816] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Voltage-dependent Ca(2+) (Ca(V)1.2) channels are the primary Ca(2+) influx pathway in arterial smooth muscle cells and are essential for contractility regulation by a variety of stimuli, including intravascular pressure. Arterial smooth muscle cell Ca(V)1.2 mRNA is alternatively spliced at exon 1 (e1), generating e1b or e1c variants, with e1c exhibiting relatively smooth muscle-specific expression in the cardiovascular system. Here, we examined physiological functions of Ca(V)1.2e1 variants and tested the hypothesis that targeting Ca(V)1.2e1 modulates resistance size cerebral artery contractility. Custom antibodies that selectively recognize Ca(V)1.2 channel proteins containing sequences encoded by either e1b (Ca(V)1.2e1b) or e1c (Ca(V)1.2e1c) both detected Ca(V)1.2 in rat and human cerebral arteries. shRNA targeting e1b or e1c reduced expression of that Ca(V)1.2 variant, induced compensatory up-regulation of the other variant, decreased total Ca(V)1.2, and reduced intravascular pressure- and depolarization-induced vasoconstriction. Ca(V)1.2e1b and Ca(V)1.2e1c knockdown reduced whole cell Ca(V)1.2 currents, with Ca(V)1.2e1c knockdown most effectively reducing total Ca(V)1.2 and inducing the largest vasodilation. Knockdown of α(2)δ-1, a Ca(V)1.2 auxiliary subunit, reduced surface expression of both Ca(V)1.2e1 variants, inhibiting Ca(V)1.2e1c more than Ca(V)1.2e1b. e1b or e1c overexpression reduced Ca(V)1.2 surface expression and whole cell currents, leading to vasodilation, with e1c overexpression inducing the largest effect. In summary, data indicate that arterial smooth muscle cells express Ca(V)1.2 channels containing e1b or e1c-encoded N termini that contribute to Ca(V)1.2 surface expression, α(2)δ-1 preferentially traffics the Ca(V)1.2e1c variant to the plasma membrane, and targeting of Ca(V)1.2e1 message or the Ca(V)1.2 channel proximal N terminus induces vasodilation.
Collapse
Affiliation(s)
- John P Bannister
- Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| | | | | | | | | | | |
Collapse
|
60
|
McCue HV, Haynes LP, Burgoyne RD. The diversity of calcium sensor proteins in the regulation of neuronal function. Cold Spring Harb Perspect Biol 2010; 2:a004085. [PMID: 20668007 DOI: 10.1101/cshperspect.a004085] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Calcium signaling in neurons as in other cell types mediates changes in gene expression, cell growth, development, survival, and cell death. However, neuronal Ca(2+) signaling processes have become adapted to modulate the function of other important pathways including axon outgrowth and changes in synaptic strength. Ca(2+) plays a key role as the trigger for fast neurotransmitter release. The ubiquitous Ca(2+) sensor calmodulin is involved in various aspects of neuronal regulation. The mechanisms by which changes in intracellular Ca(2+) concentration in neurons can bring about such diverse responses has, however, become a topic of widespread interest that has recently focused on the roles of specialized neuronal Ca(2+) sensors. In this article, we summarize synaptotagmins in neurotransmitter release, the neuronal roles of calmodulin, and the functional significance of the NCS and the CaBP/calneuron protein families of neuronal Ca(2+) sensors.
Collapse
Affiliation(s)
- Hannah V McCue
- The Physiological Laboratory, School of Biomedical Sciences, University of Liverpool, Crown Street, Liverpool L69 3BX, United Kingdom
| | | | | |
Collapse
|
61
|
McCue HV, Haynes LP, Burgoyne RD. Bioinformatic analysis of CaBP/calneuron proteins reveals a family of highly conserved vertebrate Ca2+-binding proteins. BMC Res Notes 2010; 3:118. [PMID: 20426809 PMCID: PMC2873350 DOI: 10.1186/1756-0500-3-118] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2010] [Accepted: 04/28/2010] [Indexed: 11/18/2022] Open
Abstract
Background Ca2+-binding proteins are important for the transduction of Ca2+ signals into physiological outcomes. As in calmodulin many of the Ca2+-binding proteins bind Ca2+ through EF-hand motifs. Amongst the large number of EF-hand containing Ca2+-binding proteins are a subfamily expressed in neurons and retinal photoreceptors known as the CaBPs and the related calneuron proteins. These were suggested to be vertebrate specific but exactly which family members are expressed outside of mammalian species had not been examined. Findings We have carried out a bioinformatic analysis to determine when members of this family arose and the conserved aspects of the protein family. Sequences of human members of the family obtained from GenBank were used in Blast searches to identify corresponding proteins encoded in other species using searches of non-redundant proteins, genome sequences and mRNA sequences. Sequences were aligned and compared using ClustalW. Some families of Ca2+-binding proteins are known to show a progressive expansion in gene number as organisms increase in complexity. In contrast, the results for CaBPs and calneurons showed that a full complement of CaBPs and calneurons are present in the teleost fish Danio rerio and possibly in cartilaginous fish. These findings suggest that the entire family of genes may have arisen at the same time during vertebrate evolution. Certain members of the family (for example the short form of CaBP1 and calneuron 1) are highly conserved suggesting essential functional roles. Conclusions The findings support the designation of the calneurons as a distinct sub-family. While the gene number for CaBPs/calneurons does not increase, a distinctive evolutionary change in these proteins in vertebrates has been an increase in the number of splice variants present in mammals.
Collapse
Affiliation(s)
- Hannah V McCue
- The Physiological Laboratory, School of Biomedical Sciences, University of Liverpool, Crown Street, Liverpool L69 3BX, UK.
| | | | | |
Collapse
|
62
|
Asmara H, Minobe E, Saud ZA, Kameyama M. Interactions of calmodulin with the multiple binding sites of Cav1.2 Ca2+ channels. J Pharmacol Sci 2010; 112:397-404. [PMID: 20308803 DOI: 10.1254/jphs.09342fp] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Although calmodulin binding to various sites of the Cav1.2 Ca(2+) channel has been reported, the mechanism of the interaction is not fully understood. In this study we examined calmodulin binding to fragment channel peptides using a semi-quantitative pull-down assay. Calmodulin bound to the peptides with decreasing affinity order: IQ > preIQ > I-II loop > N-terminal peptide. A peptide containing both preIQ and IQ regions (Leu(1599) - Leu(1668)) bound with approximately 2 mol of calmodulin per peptide. These results support the hypothesis that two molecules of calmodulin can simultaneously bind to the C-terminus of the Cav1.2 channel and modulate its facilitatory and inhibitory activities.
Collapse
Affiliation(s)
- Hadhimulya Asmara
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Japan
| | | | | | | |
Collapse
|
63
|
Han DY, Minobe E, Wang WY, Guo F, Xu JJ, Hao LY, Kameyama M. Calmodulin- and Ca2+-dependent facilitation and inactivation of the Cav1.2 Ca2+ channels in guinea-pig ventricular myocytes. J Pharmacol Sci 2010; 112:310-9. [PMID: 20197640 DOI: 10.1254/jphs.09282fp] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
The L-type Ca(2+) channel (Ca(V)1.2) shows clear Ca(2+)-dependent facilitation and inactivation. Here we have examined the effects of calmodulin (CaM) and Ca(2+) on Ca(2+) channel in guinea-pig ventricular myocytes in the inside-out patch mode, where rundown of the channels was controlled. At a free [Ca(2+)] of 0.1 microM, CaM (0.15, 0.7, 1.4, 2.1, 3.5, and 7.0 microM) + ATP (2.4 mM) induced channel activities of 27%, 98%, 142%, 222%, 65%, and 20% relative to the control activity, respectively, showing a bell-shaped relationship. Similar results were observed at a free [Ca(2+)] <0.01 microM or with a Ca(2+)-insensitive mutant, CaM(1234), suggesting that apoCaM may induce facilitation and inactivation of the channel activity. The bell-shaped curve of CaM was shifted to the lower concentration side with increasing [Ca(2+)]. A simple model for CaM- and Ca(2+)-dependent modulations of the channel activity, which involves two CaM-binding sites, was proposed. We suggest that both apoCaM and Ca(2+)/CaM can induce facilitation and inactivation of Ca(V)1.2 Ca(2+) channels and that the basic role of Ca(2+) is to accelerate CaM-dependent facilitation and inactivation.
Collapse
Affiliation(s)
- Dong-Yun Han
- School of Pharmaceutical Science, China Medical University, Shenyang, China
| | | | | | | | | | | | | |
Collapse
|
64
|
Thomsen MB, Foster E, Nguyen KH, Sosunov EA. Transcriptional and electrophysiological consequences of KChIP2-mediated regulation of CaV1.2. Channels (Austin) 2009; 3:308-10. [PMID: 19713767 DOI: 10.4161/chan.3.5.9560] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Potassium channel interacting proteins (KChIP) are Ca(2+)-binding proteins that originally were identified as auxiliary subunits for K(V)4 channels. K(V)4 channels encode the voltage gated A-current (I(A)) in neuronal tissue and the fast, transient outward current (I(to,f)) in cardiac tissue. Recently, we have reported that KChIP2 functionally modulates the cardiac Ca(V)1.2-governed L-type Ca(2+) current (I(Ca,L)) through a direct interaction between KChIP2 and the amino-terminus of Ca(V)1.2. Here, we show that KChIP2 and Ca(V)1.2 co-immunoprecipitate enhancing the biochemical support for our previous finding. Using gene-chip and real-time PCR techniques, we find that KChIP2(-/-) mice have an increased transcriptional activity of the calcium channel beta(2) subunit, CACNB2, whereas the expression of Ca(V)1.2 is preserved. Although I(to,f) is absent and I(Ca,L) is decreased in myocytes from KChIP2(-/-) mice, the action potential morphology is not altered. Furthermore, we show that the ventricular effective refractory period (VERP) is comparable in wild-type (53 +/- 5 ms) and KChIP2(-/-) mice (48 +/- 3 ms; p > 0.05). In summary, our findings document a novel function of KChIP2 and expand our insights into the in vivo modulation of cardiac ion currents.
Collapse
Affiliation(s)
- Morten B Thomsen
- Department of Pharmacology, Center for Molecular Therapeutics, College of Physicians and Surgeons, Columbia University, New York, NY, USA.
| | | | | | | |
Collapse
|
65
|
Benitah JP, Alvarez JL, Gómez AM. L-type Ca(2+) current in ventricular cardiomyocytes. J Mol Cell Cardiol 2009; 48:26-36. [PMID: 19660468 DOI: 10.1016/j.yjmcc.2009.07.026] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Revised: 07/09/2009] [Accepted: 07/27/2009] [Indexed: 12/24/2022]
Abstract
L-type Ca(2+) channels are mediators of Ca(2+) influx and the regulatory events accompanying it and are pivotal in the function and dysfunction of ventricular cardiac myocytes. L-type Ca(2+) channels are located in sarcolemma, including the T-tubules facing the sarcoplasmic reticulum junction, and are activated by membrane depolarization, but intracellular Ca(2+)-dependent inactivation limits Ca(2+) influx during action potential. I(CaL) is important in heart function because it triggers excitation-contraction coupling, modulates action potential shape and is involved in cardiac arrhythmia. L-type Ca(2+) channels are multi-subunit complexes that interact with several molecules involved in their regulations, notably by beta-adrenergic signaling. The present review highlights some of the recent findings on L-type Ca(2+) channel function, regulation, and alteration in acquired pathologies such as cardiac hypertrophy, heart failure and diabetic cardiomyopathy, as well as in inherited arrhythmic cardiac diseases such as Timothy and Brugada syndromes.
Collapse
|
66
|
Shi L, Ko ML, Ko GYP. Rhythmic expression of microRNA-26a regulates the L-type voltage-gated calcium channel alpha1C subunit in chicken cone photoreceptors. J Biol Chem 2009; 284:25791-803. [PMID: 19608742 DOI: 10.1074/jbc.m109.033993] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
MicroRNAs (miRNAs) modulate gene expression by degrading or inhibiting translation of messenger RNAs (mRNAs). Here, we demonstrated that chicken microRNA-26a (gga-mir-26a) is a key posttranscriptional regulator of photoreceptor L-type voltage-gated calcium channel alpha1C subunit (L-VGCCalpha1C) expression, and its own expression has a diurnal rhythm, thereby explaining the rhythmic nature of L-VGCCalpha1Cs. Circadian oscillators in retinal photoreceptors provide a mechanism that allows photoreceptors to anticipate daily illumination changes. In photoreceptors, L-VGCC activities are under circadian control, which are higher at night and lower during the day. Interestingly, the mRNA level of VGCCalpha1D oscillates, but those for VGCCalpha1C do not. However, the protein expression of both VGCCalpha1C and alpha1D are higher at night in cone photoreceptors. The underlying mechanism regulating L-VGCCalpha1C protein expression was not clear until now. In vitro targeting reporter assays verified that gga-mir-26a specifically targeted the L-VGCCalpha1C 3'-untranslated region, and gga-mir-26a expression in the retina peaked during the day. After transfection with gga-mir-26a, L-VGCCalpha1C protein expression and L-VGCC current density decreased. Therefore, the rhythmic expression of gga-mir-26a regulated the protein expression of the L-VGCCalpha1C subunit. Additionally, both CLOCK (circadian locomoter output cycles kaput) and CREB (cAMP-response element-binding protein-1) activated gga-mir-26a expression in vitro. This result implies that gga-mir-26a might be a downstream target of circadian oscillators. Our work has uncovered new functional roles for miRNAs in the regulation of circadian rhythms in cone photoreceptors. Circadian regulated miRNAs could serve as the link between the core oscillator and output signaling that further govern biological functions.
Collapse
Affiliation(s)
- Liheng Shi
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas 77843-4458, USA
| | | | | |
Collapse
|
67
|
Wang WY, Hao LY, Minobe E, Saud ZA, Han DY, Kameyama M. CaMKII phosphorylates a threonine residue in the C-terminal tail of Cav1.2 Ca(2+) channel and modulates the interaction of the channel with calmodulin. J Physiol Sci 2009; 59:283-90. [PMID: 19340532 PMCID: PMC10717815 DOI: 10.1007/s12576-009-0033-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2009] [Accepted: 02/23/2009] [Indexed: 11/26/2022]
Abstract
We have previously found that both CaMKII-mediated phosphorylation and calmodulin (CaM) binding to the channels are required for maintaining basal activity of the Cav1.2 Ca(2+) channels. In this study, we investigated the hypothetical CaMKII phosphorylation site on Cav1.2 that contributes to the channel regulation. We found that CaMKII phosphorylates the Thr1603 residue (Thr1604 in rabbit) within the preIQ region in the C-terminal tail of the guinea-pig Cav1.2 channel. Mutation of Thr1603 to Asp (T1603D) slowed the run-down of the channel in inside-out patch mode and abolished the time-dependency of the CaM's effects to reverse run-down. We also found that CaMKII-mediated phosphorylation of the proximal C-terminal fragment (CT1) increased, while dephosphorylation of CT1 decreased its binding with CaM. These findings suggest that CaMKII regulates the CaM binding to the channel, and thereby maintains basal activity of the Cav1.2 Ca(2+) channel.
Collapse
Affiliation(s)
- Wu-Yang Wang
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8544 Japan
| | - Li-Ying Hao
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8544 Japan
- Department of Pharmaceutical Toxicology, School of Pharmaceutical Sciences, China Medical University, 92 Beier Road, 110001 Shenyang, China
| | - Etsuko Minobe
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8544 Japan
| | - Zahangir Alam Saud
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8544 Japan
| | - Dong-Yun Han
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8544 Japan
- Department of Pharmaceutical Toxicology, School of Pharmaceutical Sciences, China Medical University, 92 Beier Road, 110001 Shenyang, China
| | - Masaki Kameyama
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8544 Japan
| |
Collapse
|
68
|
Thomsen MB, Wang C, Ozgen N, Wang HG, Rosen MR, Pitt GS. Accessory subunit KChIP2 modulates the cardiac L-type calcium current. Circ Res 2009; 104:1382-9. [PMID: 19461043 DOI: 10.1161/circresaha.109.196972] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Complex modulation of voltage-gated Ca2+ currents through the interplay among Ca2+ channels and various Ca(2+)-binding proteins is increasingly being recognized. The K+ channel interacting protein 2 (KChIP2), originally identified as an auxiliary subunit for K(V)4.2 and a component of the transient outward K+ channel (I(to)), is a Ca(2+)-binding protein whose regulatory functions do not appear restricted to K(V)4.2. Consequently, we hypothesized that KChIP2 is a direct regulator of the cardiac L-type Ca2+ current (I(Ca,L)). We found that I(Ca,L) density from KChIP2(-/-) myocytes is reduced by 28% compared to I(Ca,L) recorded from wild-type myocytes (P<0.05). This reduction in current density results from loss of a direct effect on the Ca2+ channel current, as shown in a transfected cell line devoid of confounding cardiac ion currents. I(Ca,L) regulation by KChIP2 was independent of Ca2+ binding to KChIP2. Biochemical analysis suggested a direct interaction between KChIP2 and the Ca(V)1.2 alpha(1C) subunit N terminus. We found that KChIP2 binds to the N-terminal inhibitory module of alpha(1C) and augments I(Ca,L) current density without increasing Ca(V)1.2 protein expression or trafficking to the plasma membrane. We propose a model in which KChIP2 impedes the N-terminal inhibitory module of Ca(V)1.2, resulting in increased I(Ca,L). In the context of recent reports that KChIP2 modulates multiple K(V) and Na(V) currents, these results suggest that KChIP2 is a multimodal regulator of cardiac ionic currents.
Collapse
Affiliation(s)
- Morten B Thomsen
- Department of Medicine, Duke University Medical Center, Box 103030 Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | |
Collapse
|
69
|
Crystal structure of dimeric cardiac L-type calcium channel regulatory domains bridged by Ca2+* calmodulins. Proc Natl Acad Sci U S A 2009; 106:5135-40. [PMID: 19279214 DOI: 10.1073/pnas.0807487106] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Voltage-dependent calcium channels (Ca(V)) open in response to changes in membrane potential, but their activity is modulated by Ca(2+) binding to calmodulin (CaM). Structural studies of this family of channels have focused on CaM bound to the IQ motif; however, the minimal differences between structures cannot adequately describe CaM's role in the regulation of these channels. We report a unique crystal structure of a 77-residue fragment of the Ca(V)1.2 alpha(1) subunit carboxyl terminus, which includes a tandem of the pre-IQ and IQ domains, in complex with Ca(2+).CaM in 2 distinct binding modes. The structure of the Ca(V)1.2 fragment is an unusual dimer of 2 coiled-coiled pre-IQ regions bridged by 2 Ca(2+).CaMs interacting with the pre-IQ regions and a canonical Ca(V)1-IQ-Ca(2+).CaM complex. Native Ca(V)1.2 channels are shown to be a mixture of monomers/dimers and a point mutation in the pre-IQ region predicted to abolish the coiled-coil structure significantly reduces Ca(2+)-dependent inactivation of heterologously expressed Ca(V)1.2 channels.
Collapse
|
70
|
Tampo A, Hogan CS, Sedlic F, Bosnjak ZJ, Kwok WM. Accelerated inactivation of cardiac L-type calcium channels triggered by anaesthetic-induced preconditioning. Br J Pharmacol 2009; 156:432-43. [PMID: 19154423 DOI: 10.1111/j.1476-5381.2008.00026.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Cardioprotection against ischaemia by anaesthetic-induced preconditioning (APC) is well established. However, the mechanism underlying Ca(2+) overload attenuation by APC is unknown. The effects of APC by isoflurane on the cardiac L-type Ca channel were investigated. EXPERIMENTAL APPROACH In a model of in vivo APC, Wistar rats were exposed to isoflurane (1.4%), delivered via a vaporizer in an enclosure, prior to thoracotomy. The Dahl S rats were similarly preconditioned to determine strain-dependent effects. Whole-cell patch clamp using cardiac ventricular myocytes was used to determine the L-type Ca(2+) current (I(Ca,L)) characteristics and calmodulin (CaM) levels were determined by Western blot analysis. Cytosolic Ca(2+) levels were monitored using fluo-4-AM. Action potential (AP) simulations examined the effects of APC. KEY RESULTS In Wistar rats, APC significantly accelerated I(Ca,L) inactivation kinetics. This was abolished when external Ca(2+) was replaced with Ba(2+), suggesting that Ca(2+)-dependent inactivation of I(Ca,L) was modulated by APC. Expression levels of CaM, a determinant of I(Ca,L) inactivation, were not affected. Attenuation of cytosolic Ca(2+) accumulation following oxidative stress was observed in the APC group. Simulations showed that the accelerated inactivation of I(Ca,L) resulted in a shortening of the AP duration. The Dahl S rat strain was resistant to APC and changes in I(Ca,L) inactivation were not observed in cardiomyocytes prepared from these rats. CONCLUSIONS AND IMPLICATIONS APC triggered persistent changes in the inactivation of cardiac L-type Ca channels. This can potentially lead to a reduction in Ca(2+) influx and attenuation of Ca(2+) overload during ischaemia/reperfusion.
Collapse
Affiliation(s)
- A Tampo
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, 53226, USA
| | | | | | | | | |
Collapse
|
71
|
Li C, Chan J, Haeseleer F, Mikoshiba K, Palczewski K, Ikura M, Ames JB. Structural insights into Ca2+-dependent regulation of inositol 1,4,5-trisphosphate receptors by CaBP1. J Biol Chem 2008; 284:2472-81. [PMID: 19008222 DOI: 10.1074/jbc.m806513200] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Calcium-binding protein 1 (CaBP1), a neuron-specific member of the calmodulin (CaM) superfamily, modulates Ca2+-dependent activity of inositol 1,4,5-trisphosphate receptors (InsP3Rs). Here we present NMR structures of CaBP1 in both Mg2+-bound and Ca2+-bound states and their structural interaction with InsP3Rs. CaBP1 contains four EF-hands in two separate domains. The N-domain consists of EF1 and EF2 in a closed conformation with Mg2+ bound at EF1. The C-domain binds Ca2+ at EF3 and EF4, and exhibits a Ca2+-induced closed to open transition like that of CaM. The Ca2+-bound C-domain contains exposed hydrophobic residues (Leu132, His134, Ile141, Ile144, and Val148) that may account for selective binding to InsP3Rs. Isothermal titration calorimetry analysis reveals a Ca2+-induced binding of the CaBP1 C-domain to the N-terminal region of InsP3R (residues 1-587), whereas CaM and the CaBP1 N-domain did not show appreciable binding. CaBP1 binding to InsP3Rs requires both the suppressor and ligand-binding core domains, but has no effect on InsP3 binding to the receptor. We propose that CaBP1 may regulate Ca2+-dependent activity of InsP3Rs by promoting structural contacts between the suppressor and core domains.
Collapse
Affiliation(s)
- Congmin Li
- Department of Chemistry, University of California, Davis, California 95616, USA
| | | | | | | | | | | | | |
Collapse
|
72
|
Calcium Channel Regulation and Presynaptic Plasticity. Neuron 2008; 59:882-901. [PMID: 18817729 DOI: 10.1016/j.neuron.2008.09.005] [Citation(s) in RCA: 466] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2008] [Revised: 09/05/2008] [Accepted: 09/05/2008] [Indexed: 01/15/2023]
|
73
|
Rieke F, Lee A, Haeseleer F. Characterization of Ca2+-binding protein 5 knockout mouse retina. Invest Ophthalmol Vis Sci 2008; 49:5126-35. [PMID: 18586882 DOI: 10.1167/iovs.08-2236] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE The goal of this study was to investigate, with the use of CaBP5 knockout mice, whether Ca(2+)-binding protein 5 (CaBP5) is required for vision. The authors also tested whether CaBP5 can modulate expressed Ca(v)1.2 voltage-activated calcium channels. METHODS CaBP5 knockout (Cabp5(-/-)) mice were generated. The retinal morphology and visual function of 6-week-old Cabp5(-/-) mice were analyzed by confocal and electron microscopy, single-flash electroretinography, and whole-cell patch-clamp recordings of retinal ganglion cells. The interaction and modulation of Ca(v)1.2 channels by CaBP5 were analyzed using affinity chromatography, gel overlay assays, and patch-clamp recordings of transfected HEK293 cells. RESULTS No evidence of morphologic changes and no significant difference in the amplitude of the ERG responses were observed in CaBP5 knockout mice compared with wild-type mice. However, the sensitivity of retinal ganglion cell light responses was reduced by approximately 50% in Cabp5(-/-) mice. CaBP5 directly interacted with the CaM-binding domain of Ca(v)1.2 and colocalized with Ca(v)1.2 in rod bipolar cells. In transfected HEK293T cells, CaBP5 suppressed calcium-dependent inactivation of Ca(v)1.2 and shifted the voltage dependence of activation to more depolarized membrane potentials. CONCLUSIONS This study provides evidence that lack of CaBP5 results in reduced sensitivity of rod-mediated light responses of retinal ganglion cells, suggestive of a role for CaBP5 in the normal transmission of light signals throughout the retinal circuitry. The interaction, colocalization, and modulation of Ca(v)1.2 by CaBP5 suggest that CaBP5 can alter retinal sensitivity through the modulation of voltage-gated calcium channels.
Collapse
Affiliation(s)
- Fred Rieke
- Department of 2Physiology and Biophysics, Howard Hughes Medical Institute, University of Washington, Seattle, Washington 98195, USA
| | | | | |
Collapse
|
74
|
|
75
|
Biomedical vignette. J Biomed Sci 2008. [PMCID: PMC7101994 DOI: 10.1007/s11373-008-9234-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
76
|
Lee A, Jimenez A, Cui G, Haeseleer F. Phosphorylation of the Ca2+-binding protein CaBP4 by protein kinase C zeta in photoreceptors. J Neurosci 2007; 27:12743-54. [PMID: 18003854 PMCID: PMC2703458 DOI: 10.1523/jneurosci.4264-07.2007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2007] [Accepted: 10/09/2007] [Indexed: 11/21/2022] Open
Abstract
CaBP4 is a calmodulin-like neuronal calcium-binding protein that is crucial for the development and/or maintenance of the cone and rod photoreceptor synapse. Previously, we showed that CaBP4 directly regulates Ca(v)1 L-type Ca2+ channels, which are essential for normal photoreceptor synaptic transmission. Here, we show that the function of CaBP4 is regulated by phosphorylation. CaBP4 is phosphorylated by protein kinase C zeta (PKCzeta) at serine 37 both in vitro and in the retina and colocalizes with PKCzeta in photoreceptors. CaBP4 phosphorylation is greater in light-adapted than dark-adapted mouse retinas. In electrophysiological recordings of cells transfected with Ca(v)1.3 and CaBP4, mutation of the serine 37 to alanine abolished the effect of CaBP4 in prolonging the Ca2+ current through Ca(v)1.3 channel, whereas inactivating mutations in the CaBP4 Ca2+-binding sites strengthened Ca(v)1.3 modulation. These findings demonstrate how light-stimulated changes in CaBP4 phosphorylation and Ca2+ binding may regulate presynaptic Ca2+ signals in photoreceptors.
Collapse
Affiliation(s)
- Amy Lee
- Department of Pharmacology and Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, Georgia 30322, and
| | - Amber Jimenez
- Department of Ophthalmology, University of Washington, Seattle, Washington 98195
| | - Guiying Cui
- Department of Pharmacology and Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, Georgia 30322, and
| | - Françoise Haeseleer
- Department of Ophthalmology, University of Washington, Seattle, Washington 98195
| |
Collapse
|
77
|
Ca2+ binding protein-1 inhibits Ca2+ currents and exocytosis in bovine chromaffin cells. J Biomed Sci 2007; 15:169-81. [DOI: 10.1007/s11373-007-9217-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2007] [Accepted: 09/25/2007] [Indexed: 10/22/2022] Open
|
78
|
Cui G, Meyer AC, Calin-Jageman I, Neef J, Haeseleer F, Moser T, Lee A. Ca2+-binding proteins tune Ca2+-feedback to Cav1.3 channels in mouse auditory hair cells. J Physiol 2007; 585:791-803. [PMID: 17947313 DOI: 10.1113/jphysiol.2007.142307] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Sound coding at the auditory inner hair cell synapse requires graded changes in neurotransmitter release, triggered by sustained activation of presynaptic Ca(v)1.3 voltage-gated Ca(2+) channels. Central to their role in this regard, Ca(v)1.3 channels in inner hair cells show little Ca(2+)-dependent inactivation, a fast negative feedback regulation by incoming Ca(2+) ions, which depends on calmodulin association with the Ca(2+) channel alpha(1) subunit. Ca(2+)-dependent inactivation characterizes nearly all voltage-gated Ca(2+) channels including Ca(v)1.3 in other excitable cells. The mechanism underlying the limited autoregulation of Ca(v)1.3 in inner hair cells remains a mystery. Previously, we established calmodulin-like Ca(2+)-binding proteins in the brain and retina (CaBPs) as essential modulators of voltage-gated Ca(2+) channels. Here, we demonstrate that CaBPs differentially modify Ca(2+) feedback to Ca(v)1.3 channels in transfected cells and explore their significance for Ca(v)1.3 regulation in inner hair cells. Of multiple CaBPs detected in inner hair cells (CaBP1, CaBP2, CaBP4 and CaBP5), CaBP1 most efficiently blunts Ca(2+)-dependent inactivation of Ca(v)1.3. CaBP1 and CaBP4 both interact with calmodulin-binding sequences in Ca(v)1.3, but CaBP4 more weakly inhibits Ca(2+)-dependent inactivation than CaBP1. Ca(2+)-dependent inactivation is marginally greater in inner hair cells from CaBP4(-/-) than from wild-type mice, yet CaBP4(-/-) mice are not hearing-impaired. In contrast to CaBP4, CaBP1 is strongly localized at the presynaptic ribbon synapse of adult inner hair cells both in wild-type and CaBP4(-/-) mice and therefore is positioned to modulate native Ca(v)1.3 channels. Our results reveal unexpected diversity in the strengths of CaBPs as Ca(2+) channel modulators, and implicate CaBP1 rather than CaBP4 in conferring the anomalous slow inactivation of Ca(v)1.3 Ca(2+) currents required for auditory transmission.
Collapse
Affiliation(s)
- Guiying Cui
- Department of Pharmacology and Center for Neurodegenerative Disease, Emory University School of Medicine, 1510 Clifton Road, Atlanta, GA 30322, USA
| | | | | | | | | | | | | |
Collapse
|
79
|
Kobayashi T, Yamada Y, Fukao M, Tsutsuura M, Tohse N. Regulation of Cav1.2 current: interaction with intracellular molecules. J Pharmacol Sci 2007; 103:347-53. [PMID: 17409629 DOI: 10.1254/jphs.cr0070012] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Ca(V)1.2 (alpha(1c)) is a pore-forming subunit of the voltage-dependent L-type calcium channel and is expressed in many tissues. The beta and alpha(2)/delta subunits are auxiliary subunits that affect the kinetics and the expression of Ca(V)1.2. In addition to the beta and alpha(2)/delta subunits, several molecules have been reported to be involved in the regulation of Ca(V)1.2 current. Calmodulin, CaBP1 (calcium-binding protein-1), CaMKII (calcium/calmodulin-dependent protein kinase II), AKAPs (A-kinase anchoring proteins), phosphatases, Caveolin-3, beta(2)-adrenergic receptor, PDZ domain proteins, sorcin, SNARE proteins, synaptotagmin, CSN5, RGK family, and AHNAK1 have all been reported to interact with Ca(V)1.2 and the beta subunit. This review focuses on the effect of these molecules on Ca(V)1.2 current.
Collapse
Affiliation(s)
- Takeshi Kobayashi
- Department of Cellular Physiology and Signal Transduction, Sapporo Medical University School of Medicine, Sapporo, Japan.
| | | | | | | | | |
Collapse
|
80
|
Abstract
Triggered activity in cardiac muscle and intracellular Ca2+ have been linked in the past. However, today not only are there a number of cellular proteins that show clear Ca2+ dependence but also there are a number of arrhythmias whose mechanism appears to be linked to Ca2+-dependent processes. Thus we present a systematic review of the mechanisms of Ca2+ transport (forward excitation-contraction coupling) in the ventricular cell as well as what is known for other cardiac cell types. Second, we review the molecular nature of the proteins that are involved in this process as well as the functional consequences of both normal and abnormal Ca2+ cycling (e.g., Ca2+ waves). Finally, we review what we understand to be the role of Ca2+ cycling in various forms of arrhythmias, that is, those associated with inherited mutations and those that are acquired and resulting from reentrant excitation and/or abnormal impulse generation (e.g., triggered activity). Further solving the nature of these intricate and dynamic interactions promises to be an important area of research for a better recognition and understanding of the nature of Ca2+ and arrhythmias. Our solutions will provide a more complete understanding of the molecular basis for the targeted control of cellular calcium in the treatment and prevention of such.
Collapse
Affiliation(s)
- Henk E D J Ter Keurs
- Department of Medicine, Physiology and Biophysics, University of Calgary, Alberta, Canada
| | | |
Collapse
|
81
|
Tippens AL, Lee A. Caldendrin, a Neuron-specific Modulator of Cav/1.2 (L-type) Ca2+ Channels. J Biol Chem 2007; 282:8464-73. [PMID: 17224447 DOI: 10.1074/jbc.m611384200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
EF-hand Ca2+-binding proteins such as calmodulin and CaBP1 have emerged as important regulatory subunits of voltage-gated Ca2+ channels. Here, we show that caldendrin, a variant of CaBP1 enriched in the brain, interacts with and distinctly modulates Cav1.2 (L-type) voltage-gated Ca2+ channels relative to other Ca2+-binding proteins. Caldendrin binds to the C-terminal IQ-domain of the pore-forming alpha1-subunit of Cav1.2 (alpha(1)1.2) and competitively displaces calmodulin and CaBP1 from this site. Compared with CaBP1, caldendrin causes a more modest suppression of Ca2+-dependent inactivation of Cav1.2 through a different subset of molecular determinants. Caldendrin does not bind to the N-terminal domain of alpha11.2, a site that is critical for functional interactions of the channel with CaBP1. Deletion of the N-terminal domain inhibits CaBP1, but spares caldendrin modulation of Cav1.2 inactivation. In contrast, mutations of the IQ-domain abolish physical and functional interactions of caldendrin and Cav1.2, but do not prevent channel modulation by CaBP1. Using antibodies specific for caldendrin and Cav1.2, we show that caldendrin coimmunoprecipitates with Cav1.2 from the brain and colocalizes with Cav1.2 in somatodendritic puncta of cortical neurons in culture. Our findings reveal functional diversity within related Ca2+-binding proteins, which may enhance the specificity of Ca2+ signaling by Cav1.2 channels in different cellular contexts.
Collapse
Affiliation(s)
- Alyssa L Tippens
- Department of Pharmacology, Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | |
Collapse
|
82
|
Structural aspects of calcium-binding proteins and their interactions with targets. ACTA ACUST UNITED AC 2007. [DOI: 10.1016/s0167-7306(06)41004-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
83
|
Yang PS, Alseikhan BA, Hiel H, Grant L, Mori MX, Yang W, Fuchs PA, Yue DT. Switching of Ca2+-dependent inactivation of Ca(v)1.3 channels by calcium binding proteins of auditory hair cells. J Neurosci 2006; 26:10677-89. [PMID: 17050707 PMCID: PMC6674762 DOI: 10.1523/jneurosci.3236-06.2006] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Ca(V)1.3 channels comprise a vital subdivision of L-type Ca2+ channels: Ca(V)1.3 channels mediate neurotransmitter release from auditory inner hair cells (IHCs), pancreatic insulin secretion, and cardiac pacemaking. Fitting with these diverse roles, Ca(V)1.3 channels exhibit striking variability in their inactivation by intracellular Ca2+. IHCs show generally weak-to-absent Ca2+-dependent inactivation (CDI), potentially permitting audition of sustained sounds. In contrast, the strong CDI seen elsewhere likely provides critical negative feedback. Here, we explore this mysterious CDI malleability, particularly its comparative weakness in hair cells. At baseline, heterologously expressed Ca(V)1.3 channels exhibit intense CDI, wherein each lobe of calmodulin (CaM) contributes a distinct inactivation component. Because CaM-like molecules (bearing four recognizable but not necessarily functional Ca2+-binding EF hands) can perturb the Ca2+ response of molecules regulated by CaM, we asked whether such CaM-like entities could influence CDI. We find that CaM-like calcium-binding protein (CaBP) molecules are clearly expressed within the organ of Corti. In particular, the rare subtype CaBP4 is specific to IHCs, and CaBP4 proves capable of eliminating even the potent baseline CDI of Ca(V)1.3. CaBP4 thereby represents a plausible candidate for moderating CDI within IHCs.
Collapse
Affiliation(s)
- Philemon S. Yang
- Ca Signals Laboratory, Departments of Biomedical Engineering and
| | | | - Hakim Hiel
- Center for Hearing and Balance, Department of Otolaryngology, Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Lisa Grant
- Center for Hearing and Balance, Department of Otolaryngology, Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Masayuki X. Mori
- Ca Signals Laboratory, Departments of Biomedical Engineering and
| | - Wanjun Yang
- Ca Signals Laboratory, Departments of Biomedical Engineering and
| | - Paul A. Fuchs
- Center for Hearing and Balance, Department of Otolaryngology, Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - David T. Yue
- Ca Signals Laboratory, Departments of Biomedical Engineering and
- Neuroscience and
| |
Collapse
|
84
|
Mikhaylova M, Sharma Y, Reissner C, Nagel F, Aravind P, Rajini B, Smalla KH, Gundelfinger ED, Kreutz MR. Neuronal Ca2+ signaling via caldendrin and calneurons. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1763:1229-37. [PMID: 17055077 DOI: 10.1016/j.bbamcr.2006.08.047] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2006] [Revised: 08/22/2006] [Accepted: 08/30/2006] [Indexed: 11/22/2022]
Abstract
The calcium sensor protein caldendrin is abundantly expressed in neurons and is thought to play an important role in different aspects of synapto-dendritic Ca2+ signaling. Caldendrin is highly abundant in the postsynaptic density of a subset of excitatory synapses in brain and its distinct localization raises several decisive questions about its function. Previous work suggests that caldendrin is tightly associated with Ca2+ - and Ca2+ release channels and might be involved in different aspects of the organization of the postsynaptic scaffold as well as with synapse-to-nucleus communication. In this report we introduce two new EF-hand calcium sensor proteins termed calneurons that apart from calmodulin represent the closest homologues of caldendrin in brain. Calneurons have a different EF-hand organization than other calcium sensor proteins, are prominently expressed in neurons and will presumably bind Ca2+ with higher affinity than caldendrin. Despite some significant structural differences it is conceivable that they are involved in similar Ca2+ regulated processes like caldendrin and neuronal calcium sensor proteins.
Collapse
Affiliation(s)
- Marina Mikhaylova
- AG Molecular Mechanisms of Plasticity, Department of Neurochemistry/Molecular Biology, Leibniz Institute for Neurobiology, Brenneckestrasse 6, 39118 Magdeburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Pitt GS, Dun W, Boyden PA. Remodeled cardiac calcium channels. J Mol Cell Cardiol 2006; 41:373-88. [PMID: 16901502 DOI: 10.1016/j.yjmcc.2006.06.071] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2006] [Revised: 05/26/2006] [Accepted: 06/22/2006] [Indexed: 10/24/2022]
Abstract
Cardiac calcium channels play a pivotal role in the proper functioning of cardiac cells. In response to various pathologic stimuli, they become remodeled, changing how they function, as they adapt to their new environment. Specific features of remodeled channels depend upon the particular disease state. This review will summarize what is known about remodeled cardiac calcium channels in three disease states: hypertrophy, heart failure and atrial fibrillation. In addition, it will review the recent advances made in our understanding of the function of the various molecular building blocks that contribute to the proper functioning of the cardiac calcium channel.
Collapse
Affiliation(s)
- Geoffrey S Pitt
- Department of Medicine, Columbia University, New York, NY, USA
| | | | | |
Collapse
|
86
|
Abstract
Calmodulin, a highly versatile and ubiquitously expressed Ca2+ sensor, regulates the function of many enzymes and ion channels. Both Ca2+-dependent inactivation and Ca2+-dependent facilitation of the voltage-gated Ca2+ channels Cav1.2 and Cav2.1 are regulated through an interaction with Ca2+-bound calmodulin. This review addresses the functional regulation of Cav1.2 and Cav2.1 by calmodulin and discusses how Ca2+ binding to a single calmodulin molecule can regulate opposing functions of the voltage-gated Ca2+ channels.
Collapse
Affiliation(s)
- D Brent Halling
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | |
Collapse
|
87
|
Wingard JN, Chan J, Bosanac I, Haeseleer F, Palczewski K, Ikura M, Ames JB. Structural analysis of Mg2+ and Ca2+ binding to CaBP1, a neuron-specific regulator of calcium channels. J Biol Chem 2005; 280:37461-70. [PMID: 16147998 PMCID: PMC1470661 DOI: 10.1074/jbc.m508541200] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CaBP1 (calcium-binding protein 1) is a 19.4-kDa protein of the EF-hand superfamily that modulates the activity of Ca(2+) channels in the brain and retina. Here we present data from NMR, microcalorimetry, and other biophysical studies that characterize Ca(2+) binding, Mg(2+) binding, and structural properties of recombinant CaBP1 purified from Escherichia coli. Mg(2+) binds constitutively to CaBP1 at EF-1 with an apparent dissociation constant (K(d)) of 300 microm. Mg(2+) binding to CaBP1 is enthalpic (DeltaH = -3.725 kcal/mol) and promotes NMR spectral changes, indicative of a concerted Mg(2+)-induced conformational change. Ca(2+) binding to CaBP1 induces NMR spectral changes assigned to residues in EF-3 and EF-4, indicating localized Ca(2+)-induced conformational changes at these sites. Ca(2+) binds cooperatively to CaBP1 at EF-3 and EF-4 with an apparent K(d) of 2.5 microM and a Hill coefficient of 1.3. Ca(2+) binds to EF-1 with low affinity (K(d) >100 microM), and no Ca(2+) binding was detected at EF-2. In the absence of Mg(2+) and Ca(2+), CaBP1 forms a flexible molten globule-like structure. Mg(2+) and Ca(2+) induce distinct conformational changes resulting in protein dimerization and markedly increased folding stability. The unfolding temperatures are 53, 74, and 76 degrees C for apo-, Mg(2+)-bound, and Ca(2+)-bound CaBP1, respectively. Together, our results suggest that CaBP1 switches between structurally distinct Mg(2+)-bound and Ca(2+)-bound states in response to Ca(2+) signaling. Both conformational states may serve to modulate the activity of Ca(2+) channel targets.
Collapse
Affiliation(s)
- Jennifer N Wingard
- Center for Advanced Research in Biotechnology, University of Maryland Biotechnology Institute, Rockville, 20850, USA
| | | | | | | | | | | | | |
Collapse
|