51
|
Popa A, Pager CT, Dutch RE. C-terminal tyrosine residues modulate the fusion activity of the Hendra virus fusion protein. Biochemistry 2011; 50:945-52. [PMID: 21175223 PMCID: PMC3035738 DOI: 10.1021/bi101597k] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The paramyxovirus family includes important human pathogens such as measles, mumps, respiratory syncytial virus, and the recently emerged, highly pathogenic Hendra and Nipah viruses. The viral fusion (F) protein plays critical roles in infection, promoting both the virus-cell membrane fusion events needed for viral entry as well as cell-cell fusion events leading to syncytia formation. We describe the surprising finding that addition of the short epitope HA tag to the cytoplasmic tail (CT) of the Hendra virus F protein leads to a significant increase in the extent of cell-cell membrane fusion. This increase was not due to alterations in surface expression, cleavage state, or association with lipid microdomains. Addition of a Myc tag of similar length did not alter Hendra F protein fusion activity, indicating that the observed stimulation was not solely a result of lengthening the CT. Three tyrosine residues within the HA tag were critical for the increase in the extent of fusion, suggesting C-terminal tyrosines may modulate Hendra fusion activity. The effects of addition of the HA tag varied with other fusion proteins, as parainfluenza virus 5 F-HA showed a decreased level of surface expression and no stimulation of fusion. These results indicate that additions to the C-terminal end of the F protein CT can modulate protein function in a sequence specific manner, reinforcing the need for careful analysis of epitope-tagged glycoproteins. In addition, our results implicate C-terminal tyrosine residues in the modulation of the membrane fusion reaction promoted by these viral glycoproteins.
Collapse
Affiliation(s)
- Andreea Popa
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington KY 40536
| | - Cara Teresia Pager
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington KY 40536
| | - Rebecca Ellis Dutch
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington KY 40536
| |
Collapse
|
52
|
Complementing defective viruses that express separate paramyxovirus glycoproteins provide a new vaccine vector approach. J Virol 2010; 85:2004-11. [PMID: 21177820 DOI: 10.1128/jvi.01852-10] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Replication-defective vaccine vectors based on vesicular stomatitis virus (VSV) lacking its envelope glycoprotein gene (G) are highly effective in animal models. However, such ΔG vectors are difficult to grow because they require complementation with the VSV G protein. In addition, the complementing G protein induces neutralizing antibodies in animals and thus limits multiple vector applications. In the process of generating an experimental Nipah virus (a paramyxovirus) vaccine, we generated two defective VSVΔG vectors, each expressing one of the two Nipah virus (NiV) glycoproteins (G and F) that are both required for virus entry to host cells. These replication-defective VSV vectors were effective at generating NiV neutralizing antibody in mice. Most interestingly, we found that these two defective viruses could be grown together and passaged in tissue culture cells in the absence of VSV G complementation. This mixture of complementing defective viruses was also highly effective at generating NiV neutralizing antibody in animals. This novel approach to growing and producing a vaccine from two defective viruses could be generally applicable to vaccine production for other paramyxoviruses or for other viruses where the expression of at least two different proteins is required for viral entry. Such an approach minimizes biosafety concerns that could apply to single, replication-competent VSV recombinants expressing all proteins required for infection.
Collapse
|
53
|
Erbar S, Maisner A. Nipah virus infection and glycoprotein targeting in endothelial cells. Virol J 2010; 7:305. [PMID: 21054904 PMCID: PMC2991316 DOI: 10.1186/1743-422x-7-305] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Accepted: 11/08/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The highly pathogenic Nipah virus (NiV) causes fatal respiratory and brain infections in animals and humans. The major hallmark of the infection is a systemic endothelial infection, predominantly in the CNS. Infection of brain endothelial cells allows the virus to overcome the blood-brain-barrier (BBB) and to subsequently infect the brain parenchyma. However, the mechanisms of NiV replication in endothelial cells are poorly elucidated. We have shown recently that the bipolar or basolateral expression of the NiV surface glycoproteins F and G in polarized epithelial cell layers is involved in lateral virus spread via cell-to-cell fusion and that correct sorting depends on tyrosine-dependent targeting signals in the cytoplasmic tails of the glycoproteins. Since endothelial cells share many characteristics with epithelial cells in terms of polarization and protein sorting, we wanted to elucidate the role of the NiV glycoprotein targeting signals in endothelial cells. RESULTS As observed in vivo, NiV infection of endothelial cells induced syncytia formation. The further finding that infection increased the transendothelial permeability supports the idea of spread of infection via cell-to-cell fusion and endothelial cell damage as a mechanism to overcome the BBB. We then revealed that both glycoproteins are expressed at lateral cell junctions (bipolar), not only in NiV-infected primary endothelial cells but also upon stable expression in immortalized endothelial cells. Interestingly, mutation of tyrosines 525 and 542/543 in the cytoplasmic tail of the F protein led to an apical redistribution of the protein in endothelial cells whereas tyrosine mutations in the G protein had no effect at all. This fully contrasts the previous results in epithelial cells where tyrosine 525 in the F, and tyrosines 28/29 in the G protein were required for correct targeting. CONCLUSION We conclude that the NiV glycoprotein distribution is responsible for lateral virus spread in both, epithelial and endothelial cell monolayers. However, the prerequisites for correct protein targeting differ markedly in the two polarized cell types.
Collapse
Affiliation(s)
- Stephanie Erbar
- Institute of Virology, Philipps University of Marburg, Germany
| | | |
Collapse
|
54
|
Weise C, Erbar S, Lamp B, Vogt C, Diederich S, Maisner A. Tyrosine residues in the cytoplasmic domains affect sorting and fusion activity of the Nipah virus glycoproteins in polarized epithelial cells. J Virol 2010; 84:7634-41. [PMID: 20484517 PMCID: PMC2897613 DOI: 10.1128/jvi.02576-09] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Accepted: 05/06/2010] [Indexed: 12/20/2022] Open
Abstract
The highly pathogenic Nipah virus (NiV) is aerially transmitted and causes a systemic infection after entering the respiratory tract. Airway epithelia are thus important targets in primary infection. Furthermore, virus replication in the mucosal surfaces of the respiratory or urinary tract in later phases of infection is essential for virus shedding and transmission. So far, the mechanisms of NiV replication in epithelial cells are poorly elucidated. In the present study, we provide evidence that bipolar targeting of the two NiV surface glycoproteins G and F is of biological importance for fusion in polarized epithelia. We demonstrate that infection of polarized cells induces focus formation, with both glycoproteins located at lateral membranes of infected cells adjacent to uninfected cells. Supporting the idea of a direct spread of infection via lateral cell-to-cell fusion, we could identify basolateral targeting signals in the cytoplasmic domains of both NiV glycoproteins. Tyrosine 525 in the F protein is part of an endocytosis signal and is also responsible for basolateral sorting. Surprisingly, we identified a dityrosine motif at position 28/29 in the G protein, which mediates polarized targeting. A dileucine motif predicted to function as sorting signal is not involved. Mutation of the targeting signal in one of the NiV glycoproteins prevented the fusion of polarized cells, suggesting that basolateral or bipolar F and G expression facilitates the spread of NiV within epithelial cell monolayers, thereby contributing to efficient virus spread in mucosal surfaces in early and late phases of infection.
Collapse
Affiliation(s)
- Carolin Weise
- Institute of Virology, Philipps University of Marburg, D-35043 Marburg, Germany
| | - Stephanie Erbar
- Institute of Virology, Philipps University of Marburg, D-35043 Marburg, Germany
| | - Boris Lamp
- Institute of Virology, Philipps University of Marburg, D-35043 Marburg, Germany
| | - Carola Vogt
- Institute of Virology, Philipps University of Marburg, D-35043 Marburg, Germany
| | - Sandra Diederich
- Institute of Virology, Philipps University of Marburg, D-35043 Marburg, Germany
| | - Andrea Maisner
- Institute of Virology, Philipps University of Marburg, D-35043 Marburg, Germany
| |
Collapse
|
55
|
Garner OB, Aguilar HC, Fulcher JA, Levroney EL, Harrison R, Wright L, Robinson LR, Aspericueta V, Panico M, Haslam SM, Morris HR, Dell A, Lee B, Baum LG. Endothelial galectin-1 binds to specific glycans on nipah virus fusion protein and inhibits maturation, mobility, and function to block syncytia formation. PLoS Pathog 2010; 6:e1000993. [PMID: 20657665 PMCID: PMC2904771 DOI: 10.1371/journal.ppat.1000993] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Accepted: 06/09/2010] [Indexed: 12/21/2022] Open
Abstract
Nipah virus targets human endothelial cells via NiV-F and NiV-G envelope glycoproteins, resulting in endothelial syncytia formation and vascular compromise. Endothelial cells respond to viral infection by releasing innate immune effectors, including galectins, which are secreted proteins that bind to specific glycan ligands on cell surface glycoproteins. We demonstrate that galectin-1 reduces NiV-F mediated fusion of endothelial cells, and that endogenous galectin-1 in endothelial cells is sufficient to inhibit syncytia formation. Galectin-1 regulates NiV-F mediated cell fusion at three distinct points, including retarding maturation of nascent NiV-F, reducing NiV-F lateral mobility on the plasma membrane, and directly inhibiting the conformational change in NiV-F required for triggering fusion. Characterization of the NiV-F N-glycome showed that the critical site for galectin-1 inhibition is rich in glycan structures known to bind galectin-1. These studies identify a unique set of mechanisms for regulating pathophysiology of NiV infection at the level of the target cell. Nipah virus (NiV) is classified as a “priority pathogen” by the NIH. NiV infection of humans results in multi-organ hemorrhage due to endothelial syncytia formation, and also causes fatal encephalitis in up to 70% of patients. As there are no effective vaccines or therapeutics for NiV, understanding the mechanism of endothelial damage by NiV is a critical goal. Our present work defines the interaction between galectin-1, an innate immune lectin that is secreted by human endothelial cells, with the fusion glycoprotein of NiV. We demonstrate that galectin-1 can block the function of the NiV-F protein via three distinct mechanisms, and thus reduce the ability of NiV-F to cause endothelial cell-cell fusion. Importantly, in this study, we use human endothelial cells, the primary target of Nipah virus in vivo, and demonstrate that endogenous galectin-1 made by endothelial cells contributes to limiting cell-cell fusion caused by NiV-F. As endothelial syncytia formation is one of the primary pathophysiologic events in Nipah virus infection, contributing to the hemorrhagic diathesis seen in infected patients, understanding the mechanism of endothelial cell fusion and the ability of galectin-1 to ameliorate cell fusion are critical for development of new approaches to mitigate these events.
Collapse
Affiliation(s)
- Omai B. Garner
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Hector C. Aguilar
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Jennifer A. Fulcher
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Ernest L. Levroney
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Rebecca Harrison
- Division of Molecular Biosciences, Faculty of Natural Sciences, Imperial College, London, United Kingdom
| | - Lacey Wright
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Lindsey R. Robinson
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Vanessa Aspericueta
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Maria Panico
- Division of Molecular Biosciences, Faculty of Natural Sciences, Imperial College, London, United Kingdom
| | - Stuart M. Haslam
- Division of Molecular Biosciences, Faculty of Natural Sciences, Imperial College, London, United Kingdom
| | - Howard R. Morris
- Division of Molecular Biosciences, Faculty of Natural Sciences, Imperial College, London, United Kingdom
- MSCAN Ltd., Millars Business Centre, Wokingham, Berks, United Kingdom
| | - Anne Dell
- Division of Molecular Biosciences, Faculty of Natural Sciences, Imperial College, London, United Kingdom
| | - Benhur Lee
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Linda G. Baum
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
56
|
Affiliation(s)
- Rebecca Ellis Dutch
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America.
| |
Collapse
|
57
|
A quantitative and kinetic fusion protein-triggering assay can discern distinct steps in the nipah virus membrane fusion cascade. J Virol 2010; 84:8033-41. [PMID: 20519383 DOI: 10.1128/jvi.00469-10] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The deadly paramyxovirus Nipah virus (NiV) contains a fusion glycoprotein (F) with canonical structural and functional features common to its class. Receptor binding to the NiV attachment glycoprotein (G) triggers F to undergo a two-phase conformational cascade: the first phase progresses from a metastable prefusion state to a prehairpin intermediate (PHI), while the second phase is marked by transition from the PHI to the six-helix-bundle hairpin. The PHI can be captured with peptides that mimic F's heptad repeat regions, and here we utilized a NiV heptad repeat peptide to quantify PHI formation and the half-lives (t(1/2)) of the first and second fusion cascade phases. We found that ephrinB2 receptor binding to G triggered approximately 2-fold more F than that triggered by ephrinB3, consistent with the increased rate and extent of fusion observed with ephrinB2- versus ephrinB3-expressing cells. In addition, for a series of hyper- and hypofusogenic F mutants, we quantified F-triggering capacities and measured the kinetics of their fusion cascade phases. Hyper- and hypofusogenicity can each be manifested through distinct stages of the fusion cascade, giving rise to vastly different half-lives for the first (t(1/2), 1.9 to 7.5 min) or second (t(1/2), 1.5 to 15.6 min) phase. While three mutants had a shorter first phase and a longer second phase than the wild-type protein, one mutant had the opposite phenotype. Thus, our results reveal multiple critical parameters that govern the paramyxovirus fusion cascade, and our assays should help efforts to elucidate other class I membrane fusion processes.
Collapse
|
58
|
Smith EC, Popa A, Chang A, Masante C, Dutch RE. Viral entry mechanisms: the increasing diversity of paramyxovirus entry. FEBS J 2010; 276:7217-27. [PMID: 19878307 DOI: 10.1111/j.1742-4658.2009.07401.x] [Citation(s) in RCA: 127] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The paramyxovirus family contains established human pathogens such as the measles virus and human respiratory syncytial virus, as well as emerging pathogens including the Hendra and Nipah viruses and the recently identified human metapneumovirus. Two major envelope glycoproteins, the attachment protein and the fusion protein, promote the processes of viral attachment and virus-cell membrane fusion required for entry. Although common mechanisms of fusion protein proteolytic activation and the mechanism of membrane fusion promotion have been shown in recent years, considerable diversity exists in the family relating to receptor binding and the potential mechanisms of fusion triggering.
Collapse
Affiliation(s)
- Everett C Smith
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536-0509, USA
| | | | | | | | | |
Collapse
|
59
|
Xiao S, Paldurai A, Nayak B, Subbiah M, Collins PL, Samal SK. Complete genome sequence of avian paramyxovirus type 7 (strain Tennessee) and comparison with other paramyxoviruses. Virus Res 2009; 145:80-91. [PMID: 19540277 PMCID: PMC3292215 DOI: 10.1016/j.virusres.2009.06.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2009] [Revised: 06/04/2009] [Accepted: 06/05/2009] [Indexed: 11/22/2022]
Abstract
The complete genome sequence of avian paramyxovirus serotype 7 (APMV-7) prototype strain dove/Tennessee/4/75 was determined. The genome size is 15,480 nucleotides (nt) long and follows the "rule of six". The genome contains six non-overlapping genes in the order of 3'-N-P/V/W-M-F-HN-L-5'. The 3'-leader and 5'-trailer sequences of the genome are 55 and 127nt long, respectively. The first 12nt of the leader and trailer sequences are complementary to each other. The viral genes are flanked by highly conserved gene-start (GS) and gene-end (GE) transcription signals, and in addition the 3'-leader sequence contains a sequence ((35)AAUUAUUUUUU(45)) that is identical to the GE signal present at two of the genes. The genes are separated by intergenic sequences (IGS) ranging between 11 and 70nt. The phosphoprotein (P) gene contains a conserved RNA editing site (3'-UUUUUCCC-5') presumed to be involved in the production of V and W proteins. The viral fusion (F) protein has a single basic amino acid at the putative cleavage site ((101)TLPSSR [see formula in text] F(107)); however, the virus did not require exogenous protease for in vitro replication. The virus grew in only a few established cell lines, indicating a restricted host range. Sequence alignment and phylogenetic analysis of the predicted amino acid sequence of APMV-7 proteins with the cognate proteins of the viruses of all five genera of the family Paramyxoviridae showed that APMV-7 is more closely related to APMV-2, -6, -8 than to APMV-1, -3, -4 and -9. The mean death time in embryonated chicken eggs was found to be more than 144h, indicating APMV-7 to be avirulent for chickens.
Collapse
Affiliation(s)
- Sa Xiao
- Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, Maryland, USA
| | - Anandan Paldurai
- Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, Maryland, USA
| | - Baibaswata Nayak
- Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, Maryland, USA
| | - Madhuri Subbiah
- Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, Maryland, USA
| | - Peter L. Collins
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, USA
| | - Siba K Samal
- Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, Maryland, USA
| |
Collapse
|
60
|
Chloroquine administration does not prevent Nipah virus infection and disease in ferrets. J Virol 2009; 83:11979-82. [PMID: 19759137 DOI: 10.1128/jvi.01847-09] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hendra virus and Nipah virus, two zoonotic paramyxoviruses in the genus Henipavirus, have recently emerged and continue to cause sporadic disease outbreaks in humans and animals. Mortality rates of up to 75% have been reported in humans, but there are presently no clinically licensed therapeutics for treating henipavirus-induced disease. A recent report indicated that chloroquine, used in malaria therapy for over 70 years, prevented infection with Nipah virus in vitro. Chloroquine was assessed using a ferret model of lethal Nipah virus infection and found to be ineffective against Nipah virus infection in vivo.
Collapse
|
61
|
Nipah virus fusion protein: influence of cleavage site mutations on the cleavability by cathepsin L, trypsin and furin. Virus Res 2009; 145:300-6. [PMID: 19665506 PMCID: PMC7126315 DOI: 10.1016/j.virusres.2009.07.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2009] [Revised: 07/28/2009] [Accepted: 07/29/2009] [Indexed: 11/22/2022]
Abstract
Nipah virus (NiV), a highly pathogenic member of the Paramyxoviridae which originated from bats, encodes for a fusion (F) protein which is proteolytically processed within endosomes by cathepsin L. We show here that sequence requirements for NiV F activation differ markedly from other para- or orthomyxoviral fusion proteins. In contrast to other viral fusion proteins with monobasic cleavage sites, processing of NiV F proteins with one single basic amino acid in the cleavage peptide by exogenous trypsin is very inefficient, and introduction of a consensus sequence for furin does not result in cleavage by this ubiquitous protease. In contrast, a multibasic cleavage peptide in the NiV F protein completely impairs proteolytic processing and the generation of biological activity.
Collapse
|
62
|
Iorio RM, Melanson VR, Mahon PJ. Glycoprotein interactions in paramyxovirus fusion. Future Virol 2009; 4:335-351. [PMID: 20161127 DOI: 10.2217/fvl.09.17] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The Paramyxoviridae are enveloped, negative-stranded RNA viruses, some of which recognize sialic acid-containing receptors, while others recognize specific proteinaceous receptors. The major cytopathic effect of paramyxovirus infection is membrane fusion-induced syncytium formation. Paramyxoviruses are unusual in that the receptor-binding and fusion-promoting activities reside on two different spike structures, the attachment and fusion glycoproteins, respectively. For most paramyxoviruses, this distribution of functions requires a mechanism by which the two processes can be linked for the promotion of fusion. This is accomplished by a virus-specific interaction between the two proteins. An increasing body of evidence supports the notion that members of this family of viruses utilize this glycoprotein interaction in different ways in order to mediate the regulation of the fusion protein activation, depending on the type of receptor utilized by the virus.
Collapse
Affiliation(s)
- Ronald M Iorio
- Program in Immunology & Virology, University of Massachusetts Medical School, Worcester, MA 01655, USA and Department of Molecular Genetics & Microbiology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA, Tel.: +1 508 856 5257, ,
| | | | | |
Collapse
|
63
|
Differential rates of protein folding and cellular trafficking for the Hendra virus F and G proteins: implications for F-G complex formation. J Virol 2009; 83:8998-9001. [PMID: 19553334 DOI: 10.1128/jvi.00414-09] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hendra virus F protein-promoted membrane fusion requires the presence of the viral attachment protein, G. However, events leading to the association of these glycoproteins remain unclear. Results presented here demonstrate that Hendra virus G undergoes slower secretory pathway trafficking than is observed for Hendra virus F. This slowed trafficking is not dependent on the G protein cytoplasmic tail, the presence of the G receptor ephrin B2, or interaction with other viral proteins. Instead, Hendra virus G was found to undergo intrinsically slow oligomerization within the endoplasmic reticulum. These results suggest that the critical F-G interactions occur only after the initial steps of synthesis and cellular transport.
Collapse
|
64
|
Niedermeier S, Singethan K, Rohrer SG, Matz M, Kossner M, Diederich S, Maisner A, Schmitz J, Hiltensperger G, Baumann K, Holzgrabe U, Schneider-Schaulies J. A Small-Molecule Inhibitor of Nipah Virus Envelope Protein-Mediated Membrane Fusion. J Med Chem 2009; 52:4257-65. [DOI: 10.1021/jm900411s] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sabine Niedermeier
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97080 Würzburg, Germany
| | - Katrin Singethan
- Institute for Virology and Immunobiology, University of Würzburg, Versbacher Strasse 7, 97078 Würzburg, Germany
| | - Sebastian G. Rohrer
- Institute for Pharmaceutical Chemistry, Technical University of Braunschweig, Beethovenstrasse 55, 38106 Braunschweig, Germany
| | - Magnus Matz
- Institute for Pharmaceutical Chemistry, Technical University of Braunschweig, Beethovenstrasse 55, 38106 Braunschweig, Germany
| | - Markus Kossner
- Institute for Pharmaceutical Chemistry, Technical University of Braunschweig, Beethovenstrasse 55, 38106 Braunschweig, Germany
| | - Sandra Diederich
- Institute for Virology, University of Marburg, Hans-Meerweinstrasse 2, 35043 Marburg, Germany
| | - Andrea Maisner
- Institute for Virology, University of Marburg, Hans-Meerweinstrasse 2, 35043 Marburg, Germany
| | - Jens Schmitz
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97080 Würzburg, Germany
| | - Georg Hiltensperger
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97080 Würzburg, Germany
| | - Knut Baumann
- Institute for Pharmaceutical Chemistry, Technical University of Braunschweig, Beethovenstrasse 55, 38106 Braunschweig, Germany
| | - Ulrike Holzgrabe
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97080 Würzburg, Germany
| | - Jürgen Schneider-Schaulies
- Institute for Virology and Immunobiology, University of Würzburg, Versbacher Strasse 7, 97078 Würzburg, Germany
| |
Collapse
|
65
|
Wild T. Henipaviruses: A new family of emerging Paramyxoviruses. ACTA ACUST UNITED AC 2009; 57:188-96. [DOI: 10.1016/j.patbio.2008.04.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2008] [Accepted: 04/16/2008] [Indexed: 11/25/2022]
|
66
|
Thiel L, Diederich S, Erbar S, Pfaff D, Augustin HG, Maisner A. Ephrin-B2 expression critically influences Nipah virus infection independent of its cytoplasmic tail. Virol J 2008; 5:163. [PMID: 19108727 PMCID: PMC2628893 DOI: 10.1186/1743-422x-5-163] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2008] [Accepted: 12/24/2008] [Indexed: 11/11/2022] Open
Abstract
Background Cell entry and cell-to-cell spread of the highly pathogenic Nipah virus (NiV) requires binding of the NiV G protein to cellular ephrin receptors and subsequent NiV F-mediated fusion. Since expression levels of the main NiV entry receptor ephrin-B2 (EB2) are highly regulated in vivo to fulfill the physiological functions in axon guidance and angiogenesis, the goal of this study was to determine if changes in the EB2 expression influence NiV infection. Results Surprisingly, transfection of increasing EB2 plasmid concentrations reduced cell-to-cell fusion both in cells expressing the NiV glycoproteins and in cells infected with NiV. This effect was attributed to the downregulation of the NiV glycoproteins from the cell surface. In addition to the influence on cell-to-cell fusion, increased EB2 expression significantly reduced the total amount of NiV-infected cells, thus interfered with virus entry. To determine if the negative effect of elevated EB2 expression on virus entry is a result of an increased EB2 signaling, receptor function of a tail-truncated and therefore signaling-defective ΔcEB2 was tested. Interestingly, ΔcEB2 fully functioned as NiV entry and fusion receptor, and overexpression also interfered with virus replication. Conclusion Our findings clearly show that EB2 signaling does not account for the striking negative impact of elevated receptor expression on NiV infection, but rather that the ratio between the NiV envelope glycoproteins and surface receptors critically influence cell-to-cell fusion and virus entry.
Collapse
Affiliation(s)
- Lena Thiel
- Institute of Virology, Philipps University of Marburg, Marburg, Germany.
| | | | | | | | | | | |
Collapse
|
67
|
Erbar S, Diederich S, Maisner A. Selective receptor expression restricts Nipah virus infection of endothelial cells. Virol J 2008; 5:142. [PMID: 19036148 PMCID: PMC2607271 DOI: 10.1186/1743-422x-5-142] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2008] [Accepted: 11/26/2008] [Indexed: 11/21/2022] Open
Abstract
Nipah virus (NiV) is a highly pathogenic paramyxovirus that causes severe diseases in animals and humans. Endothelial cell (EC) infection is an established hallmark of NiV infection in vivo. Despite systemic virus spread via the vascular system, EC in brain and lung are preferentially infected whereas EC in other organs are less affected. As in vivo, we found differences in the infection of EC in cell culture. Only brain-derived primary or immortalized EC were found to be permissive to NiV infection. Using a replication-independent fusion assay, we could show that the lack of infection in non-brain EC was due to a lack of receptor expression. The NiV entry receptors ephrinB2 (EB2) or ephrinB3 were only expressed in brain endothelia. The finding that EB2 expression in previously non-permissive aortic EC rendered the cells permissive to infection then demonstrated that EB2 is not only necessary but also sufficient to allow the establishment of a productive NiV infection. This strongly suggests that limitations in receptor expression restrict virus entry in certain EC subsets in vivo, and are thus responsible for the differences in EC tropism observed in human and animal NiV infections.
Collapse
Affiliation(s)
- Stephanie Erbar
- Institute of Virology, Philipps University of Marburg, Marburg, Germany.
| | | | | |
Collapse
|
68
|
Differential role for low pH and cathepsin-mediated cleavage of the viral spike protein during entry of serotype II feline coronaviruses. Vet Microbiol 2008; 132:235-48. [PMID: 18606506 PMCID: PMC2588466 DOI: 10.1016/j.vetmic.2008.05.019] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2008] [Revised: 05/07/2008] [Accepted: 05/20/2008] [Indexed: 12/19/2022]
Abstract
Feline infectious peritonitis (FIP) is a terminal disease of cats caused by systemic infection with a feline coronavirus (FCoV). FCoV biotypes that cause FIP are designated feline infectious peritonitis virus (FIPV), and are distinguished by their ability to infect macrophages and monocytes. Antigenically similar to their virulent counterparts are FCoV biotypes designated feline enteric coronavirus (FECV), which usually cause only mild enteritis and are unable to efficiently infect macrophages and monocytes. The FCoV spike protein mediates viral entry into the host cell and has previously been shown to determine the distinct tropism exhibited by certain isolates of FIPV and FECV, however, the molecular mechanism underlying viral pathogenesis has yet to be determined. Here we show that the FECV strain WSU 79-1683 (FECV-1683) is highly dependent on host cell cathepsin B and cathepsin L activity for entry into the host cell, as well as on the low pH of endocytic compartments. In addition, both cathepsin B and cathepsin L are able to induce a specific cleavage event in the FECV-1683 spike protein. In contrast, host cell entry by the FIPV strains WSU 79-1146 (FIPV-1146) and FIPV-DF2 proceeds independently of cathepsin L activity and low pH, but is still highly dependent on cathepsin B activity. In the case of FIPV-1146 and FIPV-DF2, infection of primary feline monocytes was also dependent on host cell cathepsin B activity, indicating that host cell cathepsins may play a role in the distinct tropisms displayed by different feline coronavirus biotypes.
Collapse
|
69
|
Diederich S, Thiel L, Maisner A. Role of endocytosis and cathepsin-mediated activation in Nipah virus entry. Virology 2008; 375:391-400. [PMID: 18342904 PMCID: PMC7103400 DOI: 10.1016/j.virol.2008.02.019] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2007] [Revised: 12/07/2007] [Accepted: 02/08/2008] [Indexed: 11/08/2022]
Abstract
The recent discovery that the Nipah virus (NiV) fusion protein (F) is activated by endosomal cathepsin L raised the question if NiV utilize pH- and protease-dependent mechanisms of entry. We show here that the NiV receptor ephrin B2, virus-like particles and infectious NiV are internalized from the cell surface. However, endocytosis, acidic pH and cathepsin-mediated cleavage are not necessary for the initiation of infection of new host cells. Our data clearly demonstrate that proteolytic activation of the NiV F protein is required before incorporation into budding virions but not after virus entry.
Collapse
|
70
|
Aromatic amino acids in the juxtamembrane domain of severe acute respiratory syndrome coronavirus spike glycoprotein are important for receptor-dependent virus entry and cell-cell fusion. J Virol 2008; 82:2883-94. [PMID: 18199653 DOI: 10.1128/jvi.01805-07] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus (SARS-CoV) spike glycoprotein (S) is a class I viral fusion protein that binds to its receptor glycoprotein, human angiotensin converting enzyme 2 (hACE2), and mediates virus entry and cell-cell fusion. The juxtamembrane domain (JMD) of S is an aromatic amino acid-rich region proximal to the transmembrane domain that is highly conserved in all coronaviruses. Alanine substitutions for one or two of the six aromatic residues in the JMD did not alter the surface expression of the SARS-CoV S proteins with a deletion of the C-terminal 19 amino acids (S Delta19) or reduce binding to soluble human ACE2 (hACE2). However, hACE2-dependent entry of trypsin-treated retrovirus pseudotyped viruses expressing JMD mutant S Delta19 proteins was greatly reduced. Single alanine substitutions for aromatic residues reduced entry to 10 to 60% of the wild-type level. The greatest reduction was caused by residues nearest the transmembrane domain. Four double alanine substitutions reduced entry to 5 to 10% of the wild-type level. Rapid hACE2-dependent S-mediated cell-cell fusion was reduced to 60 to 70% of the wild-type level for all single alanine substitutions and the Y1188A/Y1191A protein. S Delta19 proteins with other double alanine substitutions reduced cell-cell fusion further, from 40% to less than 20% of wild-type levels. The aromatic amino acids in the JMD of the SARS-CoV S glycoprotein play critical roles in receptor-dependent virus-cell and cell-cell fusion. Because the JMD is so highly conserved in all coronavirus S proteins, it is a potential target for development of drugs that may inhibit virus entry and/or cell-cell fusion mediated by S proteins of all coronaviruses.
Collapse
|
71
|
Halpin K, Mungall BA. Recent progress in henipavirus research. Comp Immunol Microbiol Infect Dis 2007; 30:287-307. [PMID: 17629946 DOI: 10.1016/j.cimid.2007.05.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2006] [Accepted: 05/30/2007] [Indexed: 11/30/2022]
Abstract
Following the discovery of two new paramyxoviruses in the 1990s, much effort has been placed on rapidly finding the reservoir hosts, characterising the genomes, identifying the viral receptors and formulating potential vaccines and therapeutic options for these viruses, Hendra and Nipah viruses caused zoonotic disease on a scale not seen before with other paramyxoviruses. Nipah virus particularly caused high morbidity and mortality in humans and high morbidity in pig populations in the first outbreak in Malaysia. Both viruses continue to pose a threat with sporadic outbreaks continuing into the 21st century. Experimental and surveillance studies identified that pteropus bats are the reservoir hosts. Research continues in an attempt to understand events that precipitated spillover of these viruses. Discovered on the cusp of the molecular technology revolution, much progress has been made in understanding these new viruses. This review endeavours to capture the depth and breadth of these recent advances.
Collapse
Affiliation(s)
- Kim Halpin
- CSIRO, Australian Animal Health Laboratory, Private Bag 24, Geelong, Vic. 3220, Australia.
| | | |
Collapse
|
72
|
Abstract
Nipah virus (NiV) is a highly pathogenic paramyxovirus, which emerged in 1998 from fruit bats in Malaysia and caused an outbreak of severe respiratory disease in pigs and fatal encephalitis in humans with high mortality rates. In contrast to most paramyxoviruses, NiV can infect a large variety of mammalian species. Due to this broad host range, its zoonotic potential, its high pathogenicity for humans, and the lack of effective vaccines or therapeutics, NiV was classified as a biosafety level 4 pathogen. This article provides an overview of the molecular characteristics of NiV focusing on the structure, functions, and unique biological properties of the two NiV surface glycoproteins, the receptor-binding G protein, and the fusion protein F. Since viral glycoproteins are major determinants for cell tropism and virus spread, a detailed knowledge of these proteins can help to understand the molecular basis of viral pathogenicity.
Collapse
Affiliation(s)
- Sandra Diederich
- Philipps-Universität Marburg, Institut für Virologie, Hans-Meerwein-Str 2, Marburg, Germany
| | | |
Collapse
|
73
|
Gardner AE, Dutch RE. A conserved region in the F(2) subunit of paramyxovirus fusion proteins is involved in fusion regulation. J Virol 2007; 81:8303-14. [PMID: 17507474 PMCID: PMC1951327 DOI: 10.1128/jvi.00366-07] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Paramyxoviruses utilize both an attachment protein and a fusion (F) protein to drive virus-cell and cell-cell fusion. F exists functionally as a trimer of two disulfide-linked subunits: F(1) and F(2). Alignment and analysis of a set of paramyxovirus F protein sequences identified three conserved blocks (CB): one in the fusion peptide/heptad repeat A domain, known to play important roles in fusion promotion, one in the region between the heptad repeats of F(1) (CBF(1)) (A. E. Gardner, K. L. Martin, and R. E. Dutch, Biochemistry 46:5094-5105, 2007), and one in the F(2) subunit (CBF(2)). To analyze the functions of CBF(2), alanine substitutions at conserved positions were created in both the simian virus 5 (SV5) and Hendra virus F proteins. A number of the CBF(2) mutations resulted in folding and expression defects. However, the CBF(2) mutants that were properly expressed and trafficked had altered fusion promotion activity. The Hendra virus CBF(2) Y79A and P89A mutants showed significantly decreased levels of fusion, whereas the SV5 CBF(2) I49A mutant exhibited greatly increased cell-cell fusion relative to that for wild-type F. Additional substitutions at SV5 F I49 suggest that both side chain volume and hydrophobicity at this position are important in the folding of the metastable, prefusion state and the subsequent triggering of membrane fusion. The recently published prefusogenic structure of parainfluenza virus 5/SV5 F (H. S. Yin et al., Nature 439:38-44, 2006) places CBF(2) in direct contact with heptad repeat A. Our data therefore indicate that this conserved region plays a critical role in stabilizing the prefusion state, likely through interactions with heptad repeat A, and in triggering membrane fusion.
Collapse
Affiliation(s)
- Amanda E Gardner
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Biomedical Biological Sciences Research Building, 741 S. Limestone, Lexington, KY 40536-0509, USA
| | | |
Collapse
|
74
|
Gardner AE, Martin KL, Dutch RE. A conserved region between the heptad repeats of paramyxovirus fusion proteins is critical for proper F protein folding. Biochemistry 2007; 46:5094-105. [PMID: 17417875 PMCID: PMC2525568 DOI: 10.1021/bi6025648] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Paramyxoviruses are a diverse family that utilizes a fusion (F) protein to enter cells via fusion of the viral lipid bilayer with a target cell membrane. Although certain regions of the F protein are known to play critical roles in membrane fusion, the function of much of the protein remains unclear. Sequence alignment of a set of paramyxovirus F proteins and analysis utilizing Block Maker identified a region of conserved amino acid sequence in a large domain between the heptad repeats of F1, designated CBF1. We employed site-directed mutagenesis to analyze the function of completely conserved residues of CBF1 in both the simian virus 5 (SV5) and Hendra virus F proteins. The majority of CBF1 point mutants were deficient in homotrimer formation, proteolytic processing, and transport to the cell surface. For some SV5 F mutants, proteolytic cleavage and surface expression could be restored by expression at 30 degrees C, and varying levels of fusion promotion were observed at this temperature. In addition, the mutant SV5 F V402A displayed a hyperfusogenic phenotype at both 30 and 37 degrees C, indicating that this mutation allows for efficient fusion with only an extremely small amount of cleaved, active protein. The recently published prefusogenic structure of PIV5/SV5 F (Yin, H. S., et al. (2006) Nature 439, 38-44) indicates that residues within and flanking CBF1 interact with the fusion peptide domain. Together, these data suggest that CBF1-fusion peptide interactions are critical for the initial folding of paramyxovirus F proteins from this important viral family and can also modulate subsequent membrane fusion promotion.
Collapse
Affiliation(s)
| | | | - Rebecca E. Dutch
- To whom correspondence should be addressed: Phone: (859) 323-1795; Fax: (859) 323-1037; E-mail:
| |
Collapse
|
75
|
Cantín C, Holguera J, Ferreira L, Villar E, Muñoz-Barroso I. Newcastle disease virus may enter cells by caveolae-mediated endocytosis. J Gen Virol 2007; 88:559-569. [PMID: 17251575 DOI: 10.1099/vir.0.82150-0] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The entry into cells of Newcastle disease virus (NDV), a prototype member of the paramyxoviruses, is believed to occur by direct fusion at the plasma membrane through a pH-independent mechanism. In addition, NDV may enter host cells by an endocytic pathway. Treatment of cells with drugs that block caveolae-dependent endocytosis reduced NDV fusion and infectivity, the degree of inhibition being dependent on virus concentration. The inhibitory effect was reduced greatly when drugs were added after virus adsorption. Cells treated with methyl beta-cyclodextrin, a drug that sequesters cholesterol from membranes, reduced the extent of fusion, infectivity and virus-cell binding; this indicates that cholesterol plays a role in NDV entry. Double-labelling immunofluorescence assays performed with anti-NDV monoclonal antibodies and antibodies against the early endosome marker EEA1 revealed the localization of the virus in these intracellular structures. Using fluorescence microscopy, it was found that cell-cell fusion was enhanced at low pH. It is concluded that NDV may infect cells through a caveolae-dependent endocytic pathway, suggesting that this pathway could be an alternative route for virus entry into cells.
Collapse
Affiliation(s)
- Celia Cantín
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Edificio Departamental Lab. 108, Plaza Doctores de la Reina s/n, 37007 Salamanca, Spain
| | - Javier Holguera
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Edificio Departamental Lab. 108, Plaza Doctores de la Reina s/n, 37007 Salamanca, Spain
| | - Laura Ferreira
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Edificio Departamental Lab. 108, Plaza Doctores de la Reina s/n, 37007 Salamanca, Spain
| | - Enrique Villar
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Edificio Departamental Lab. 108, Plaza Doctores de la Reina s/n, 37007 Salamanca, Spain
| | - Isabel Muñoz-Barroso
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Edificio Departamental Lab. 108, Plaza Doctores de la Reina s/n, 37007 Salamanca, Spain
| |
Collapse
|
76
|
Whitman SD, Dutch RE. Surface density of the Hendra G protein modulates Hendra F protein-promoted membrane fusion: role for Hendra G protein trafficking and degradation. Virology 2007; 363:419-29. [PMID: 17328935 PMCID: PMC1952237 DOI: 10.1016/j.virol.2007.01.029] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2006] [Revised: 01/08/2007] [Accepted: 01/28/2007] [Indexed: 01/08/2023]
Abstract
Hendra virus, like most paramyxoviruses, requires both a fusion (F) and attachment (G) protein for promotion of cell-cell fusion. Recent studies determined that Hendra F is proteolytically processed by the cellular protease cathepsin L after endocytosis. This unique cathepsin L processing results in a small percentage of Hendra F on the cell surface. To determine how the surface densities of the two Hendra glycoproteins affect fusion promotion, we performed experiments that varied the levels of glycoproteins expressed in transfected cells. Using two different fusion assays, we found a marked increase in fusion when expression of the Hendra G protein was increased, with a 1:1 molar ratio of Hendra F:G on the cell surface resulting in optimal membrane fusion. Our results also showed that Hendra G protein levels are modulated by both more rapid protein turnover and slower protein trafficking than is seen for Hendra F.
Collapse
Affiliation(s)
| | - Rebecca Ellis Dutch
- *Corresponding author: Dr. Rebecca Ellis Dutch, Department of Molecular and Cellular Biochemistry, University of Kentucky, College of Medicine, Biomedical Biological Sciences Research Building, 741 South Limestone, Lexington, KY 40536-0509, Phone: (859) 323-1795, Fax: (859) 323-1037, E-mail:
| |
Collapse
|
77
|
Aguilar HC, Matreyek KA, Choi DY, Filone CM, Young S, Lee B. Polybasic KKR motif in the cytoplasmic tail of Nipah virus fusion protein modulates membrane fusion by inside-out signaling. J Virol 2007; 81:4520-32. [PMID: 17301148 PMCID: PMC1900187 DOI: 10.1128/jvi.02205-06] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The cytoplasmic tails of the envelope proteins from multiple viruses are known to contain determinants that affect their fusogenic capacities. Here we report that specific residues in the cytoplasmic tail of the Nipah virus fusion protein (NiV-F) modulate its fusogenic activity. Truncation of the cytoplasmic tail of NiV-F greatly inhibited cell-cell fusion. Deletion and alanine scan analysis identified a tribasic KKR motif in the membrane-adjacent region as important for modulating cell-cell fusion. The K1A mutation increased fusion 5.5-fold, while the K2A and R3A mutations decreased fusion 3- to 5-fold. These results were corroborated in a reverse-pseudotyped viral entry assay, where receptor-pseudotyped reporter virus was used to infect cells expressing wild-type or mutant NiV envelope glycoproteins. Differential monoclonal antibody binding data indicated that hyper- or hypofusogenic mutations in the KKR motif affected the ectodomain conformation of NiV-F, which in turn resulted in faster or slower six-helix bundle formation, respectively. However, we also present evidence that the hypofusogenic phenotypes of the K2A and R3A mutants were effected via distinct mechanisms. Interestingly, the K2A mutant was also markedly excluded from lipid rafts, where approximately 20% of wild-type F and the other mutants can be found. Finally, we found a strong negative correlation between the relative fusogenic capacities of these cytoplasmic-tail mutants and the avidities of NiV-F and NiV-G interactions (P = 0.007, r(2) = 0.82). In toto, our data suggest that inside-out signaling by specific residues in the cytoplasmic tail of NiV-F can modulate its fusogenicity by multiple distinct mechanisms.
Collapse
Affiliation(s)
- Hector C Aguilar
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California at Los Angeles, 609 Charles E. Young Drive East, Los Angeles, CA 90095, USA
| | | | | | | | | | | |
Collapse
|
78
|
Patch JR, Crameri G, Wang LF, Eaton BT, Broder CC. Quantitative analysis of Nipah virus proteins released as virus-like particles reveals central role for the matrix protein. Virol J 2007; 4:1. [PMID: 17204159 PMCID: PMC1781425 DOI: 10.1186/1743-422x-4-1] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2006] [Accepted: 01/04/2007] [Indexed: 11/25/2022] Open
Abstract
Background Nipah virus (NiV) is an emerging paramyxovirus distinguished by its ability to cause fatal disease in both animal and human hosts. Together with Hendra virus (HeV), they comprise the genus Henipavirus in the Paramyxoviridae family. NiV and HeV are also restricted to Biosafety Level-4 containment and this has hampered progress towards examining details of their replication and morphogenesis. Here, we have established recombinant expression systems to study NiV particle assembly and budding through the formation of virus-like particles (VLPs). Results When expressed by recombinant Modified Vaccinia virus Ankara (rMVA) or plasmid transfection, individual NiV matrix (M), fusion (F) and attachment (G) proteins were all released into culture supernatants in a membrane-associated state as determined by sucrose density gradient flotation and immunoprecipitation. However, co-expression of F and G along with M revealed a shift in their distribution across the gradient, indicating association with M in VLPs. Protein release was also altered depending on the context of viral proteins being expressed, with F, G and nucleocapsid (N) protein reducing M release, and N release dependent on the co-expression of M. Immunoelectron microscopy and density analysis revealed VLPs that were similar to authentic virus. Differences in the budding dynamics of NiV proteins were also noted between rMVA and plasmid based strategies, suggesting that over-expression by poxvirus may not be appropriate for studying the details of recombinant virus particle assembly and release. Conclusion Taken together, the results indicate that NiV M, F, and G each possess some ability to bud from expressing cells, and that co-expression of these viral proteins results in a more organized budding process with M playing a central role. These findings will aid our understanding of paramyxovirus particle assembly in general and could help facilitate the development of a novel vaccine approach for henipaviruses.
Collapse
Affiliation(s)
- Jared R Patch
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, Maryland 20814, USA
| | - Gary Crameri
- CSIRO Livestock Industries, Australian Animal Health Laboratory, Geelong, Victoria 3220, Australia
| | - Lin-Fa Wang
- CSIRO Livestock Industries, Australian Animal Health Laboratory, Geelong, Victoria 3220, Australia
| | - Bryan T Eaton
- CSIRO Livestock Industries, Australian Animal Health Laboratory, Geelong, Victoria 3220, Australia
| | - Christopher C Broder
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, Maryland 20814, USA
| |
Collapse
|
79
|
Ciancanelli MJ, Basler CF. Mutation of YMYL in the Nipah virus matrix protein abrogates budding and alters subcellular localization. J Virol 2006; 80:12070-8. [PMID: 17005661 PMCID: PMC1676283 DOI: 10.1128/jvi.01743-06] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Matrix (M) proteins reportedly direct the budding of paramyxoviruses from infected cells. In order to begin to characterize the assembly process for the highly lethal, emerging paramyxovirus Nipah virus (NiV), we have examined the budding of NiV M. We demonstrated that expression of the NiV M protein is sufficient to produce budding virus-like particles (VLPs) that are physically and morphologically similar to NiV. We identified in NiV M a sequence, YMYL, with similarity to the YPDL late domain found in the equine infectious anemia virus Gag protein. When the YMYL within NiV M was mutated, VLP release was abolished and M was relocalized to the nucleus, but the mutant M proteins retained oligomerization activity. When YMYL was fused to a late-domain mutant of the Ebola virus VP40 matrix protein, VP40 budding was restored. These results suggest that the YMYL sequence may act as a trafficking signal and a late domain for NiV M.
Collapse
Affiliation(s)
- Michael J Ciancanelli
- Department of Microbiology, Box 1124, Mount Sinai School of Medicine, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | | |
Collapse
|
80
|
Bossart KN, Broder CC. Developments towards effective treatments for Nipah and Hendra virus infection. Expert Rev Anti Infect Ther 2006; 4:43-55. [PMID: 16441208 DOI: 10.1586/14787210.4.1.43] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Hendra and Nipah virus are closely related emerging viruses comprising the Henipavirus genus of the subfamily Paramyxovirinae and are distinguished by their ability to cause fatal disease in both animal and human hosts. In particular, the high mortality and person-to-person transmission associated with the most recent Nipah virus outbreaks, as well as the very recent re-emergence of Hendra virus, has confirmed the importance and necessity of developing effective therapeutic interventions. Much research conducted on the henipaviruses over the past several years has focused on virus entry, including the attachment of virus to the host cell, the identification of the virus receptor and the membrane fusion process between the viral and host cell membranes. These findings have led to the development of possible vaccine candidates, as well as potential antiviral therapeutics. The common link among all of the possible antiviral agents discussed here, which have also been developed and tested, is that they target very early stages of the infection process. The establishment and validation of suitable animal models of Henipavirus infection and pathogenesis are also discussed as they will be crucial in the assessment of the effectiveness of any treatments for Hendra and Nipah virus infection.
Collapse
Affiliation(s)
- Katharine N Bossart
- Australian Animal Health Laboratory, CSIRO Livestock Industries, Geelong, Victoria 3220, Australia.
| | | |
Collapse
|
81
|
Pager CT, Craft WW, Patch J, Dutch RE. A mature and fusogenic form of the Nipah virus fusion protein requires proteolytic processing by cathepsin L. Virology 2006; 346:251-7. [PMID: 16460775 PMCID: PMC7111743 DOI: 10.1016/j.virol.2006.01.007] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2005] [Revised: 12/17/2005] [Accepted: 01/05/2006] [Indexed: 11/27/2022]
Abstract
The Nipah virus fusion (F) protein is proteolytically processed to F1 + F2 subunits. We demonstrate here that cathepsin L is involved in this important maturation event. Cathepsin inhibitors ablated cleavage of Nipah F. Proteolytic processing of Nipah F and fusion activity was dramatically reduced in cathepsin L shRNA-expressing Vero cells. Additionally, Nipah virus F-mediated fusion was inhibited in cathepsin L-deficient cells, but coexpression of cathepsin L restored fusion activity. Both purified cathepsin L and B could cleave immunopurified Nipah F protein, but only cathepsin L produced products of the correct size. Our results suggest that endosomal cathepsins can cleave Nipah F, but that cathepsin L specifically converts Nipah F to a mature and fusogenic form.
Collapse
Affiliation(s)
- Cara Theresia Pager
- Department of Molecular and Cellular Biochemistry, University of Kentucky, College of Medicine, Biomedical Biological Sciences Research Building, 741 South Limestone, Lexington, KY 40536-0509, USA
| | - Willie Warren Craft
- Department of Molecular and Cellular Biochemistry, University of Kentucky, College of Medicine, Biomedical Biological Sciences Research Building, 741 South Limestone, Lexington, KY 40536-0509, USA
| | - Jared Patch
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD 20814, USA
| | - Rebecca Ellis Dutch
- Department of Molecular and Cellular Biochemistry, University of Kentucky, College of Medicine, Biomedical Biological Sciences Research Building, 741 South Limestone, Lexington, KY 40536-0509, USA
- Corresponding author. Fax: +1 859 323 1037.
| |
Collapse
|
82
|
Abstract
Hendra virus and Nipah virus are highly pathogenic paramyxoviruses that have recently emerged from flying foxes to cause serious disease outbreaks in humans and livestock in Australia, Malaysia, Singapore and Bangladesh. Their unique genetic constitution, high virulence and wide host range set them apart from other paramyxoviruses. These features led to their classification into the new genus Henipavirus within the family Paramyxoviridae and to their designation as Biosafety Level 4 pathogens. This review provides an overview of henipaviruses and the types of infection they cause, and describes how studies on the structure and function of henipavirus proteins expressed from cloned genes have provided insights into the unique biological properties of these emerging human pathogens.
Collapse
Affiliation(s)
- Bryan T Eaton
- Australian Animal Health Laboratory, Commonwealth Scientific and Industrial Research Organization, 5 Portarlington Road, Geelong, Victoria 3220, Australia.
| | | | | | | |
Collapse
|