51
|
Two conformational states of Ras GTPase exhibit differential GTP-binding kinetics. Biochem Biophys Res Commun 2008; 369:327-32. [PMID: 18291096 DOI: 10.1016/j.bbrc.2008.01.169] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2008] [Accepted: 01/31/2008] [Indexed: 11/20/2022]
Abstract
Previous (31)P NMR studies revealed that small GTPases H-Ras and K-Ras in complex with GTP assume two interconverting conformational states, state 1 and state 2. While state 2 corresponds to an active conformation, little is known about the function of state 1, an inactive conformation incapable of effector binding. To address the biochemical properties of state 1, we measured the (31)P NMR spectra of five Ras family small GTPases; H-Ras, M-Ras, Rap1A, Rap2A and RalA, and find that they exhibit distinctive state 2/state 1 populations with the ratios ranging from 0.072 for M-Ras to 16 for Rap2A. Further, we show that GTPases with higher populations of state 1 exhibit higher dissociation and association rate constants for GTP. These results imply that GTP loading to the nucleotide-free small GTPases preferentially yields state 1, which is subsequently converted to state 2, rendering the GTP-bound form functional.
Collapse
|
52
|
Yokoyama K, Gillespie JR, Van Voorhis WC, Buckner FS, Gelb MH. Protein geranylgeranyltransferase-I of Trypanosoma cruzi. Mol Biochem Parasitol 2007; 157:32-43. [PMID: 17996962 DOI: 10.1016/j.molbiopara.2007.09.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2007] [Revised: 09/24/2007] [Accepted: 09/26/2007] [Indexed: 10/22/2022]
Abstract
Protein geranylgeranyltransferase type I (PGGT-I) and protein farnesyltransferase (PFT) occur in many eukaryotic cells. Both consist of two subunits, the common alpha subunit and a distinct beta subunit. In the gene database of protozoa Trypanosoma cruzi, the causative agent of Chagas' disease, a putative protein that consists of 401 amino acids with approximately 20% amino acid sequence identity to the PGGT-I beta of other species was identified, cloned, and characterized. Multiple sequence alignments show that the T. cruzi ortholog contains all three of the zinc-binding residues and several residues uniquely conserved in the beta subunit of PGGT-I. Co-expression of this protein and the alpha subunit of T. cruzi PFT in Sf9 insect cells yielded a dimeric protein that forms a tight complex selectively with [(3)H]geranylgeranyl pyrophosphate, indicating a key characteristic of a functional PGGT-I. Recombinant T. cruzi PGGT-I ortholog showed geranylgeranyltransferase activity with distinct specificity toward the C-terminal CaaX motif of protein substrates compared to that of the mammalian PGGT-I and T. cruzi PFT. Most of the CaaX-containing proteins with X=Leu are good substrates of T. cruzi PGGT-I, and those with X=Met are substrates for both T. cruzi PFT and PGGT-I, whereas unlike mammalian PGGT-I, those with X=Phe are poor substrates for T. cruzi PGGT-I. Several candidates for T. cruzi PGGT-I or PFT substrates containing the C-terminal CaaX motif are found in the T. cruzi gene database. Among five C-terminal peptides of those tested, a peptide of a Ras-like protein ending with CVLL was selectively geranylgeranylated by T. cruzi PGGT-I. Other peptides with CTQQ (Tcj2 DNAJ protein), CAVM (TcPRL-1 protein tyrosine phosphatase), CHFM (a small GTPase like protein), and CQLF (TcRho1 GTPase) were specific substrates for T. cruzi PFT but not for PGGT-I. The mRNA and protein of the T. cruzi PGGT-I beta ortholog were detected in three life-cycle stages of T. cruzi. Cytosol fractions from trypomastigotes (infectious mammalian stage) and epimastigotes (insect stage) were shown to contain levels of PGGT-I activity that are approximately 100-fold lower than PFT activity. The CaaX mimetics known as PGGT-I inhibitors show very low potency against T. cruzi PGGT-I compared to the mammalian enzyme, suggesting the potential to develop selective inhibitors against the parasite enzyme.
Collapse
Affiliation(s)
- Kohei Yokoyama
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA.
| | | | | | | | | |
Collapse
|
53
|
Kötting C, Kallenbach A, Suveyzdis Y, Eichholz C, Gerwert K. Surface change of Ras enabling effector binding monitored in real time at atomic resolution. Chembiochem 2007; 8:781-7. [PMID: 17385754 DOI: 10.1002/cbic.200600552] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Ras, the prototype of the Ras superfamily, acts as a molecular switch for cell growth. External growth signals induce a GDP-to-GTP exchange. This modifies the Ras surface (Ras(on)GTP) and enables effector binding, which then activates signal-transduction pathways. GTP hydrolysis, catalysed by Ras and GAP, returns the signal to "off" (Ras(off)GDP). Oncogenic mutations in Ras prevent this hydrolysis, and thereby cause uncontrolled cell growth. In the Ras(off)-to-Ras(on) transition, the Ras surface is changed by a movement of the switch I loop that controls effector binding. We monitored this surface change at atomic resolution in real time by time-resolved FTIR (trFTIR) spectroscopy. In the transition from Ras(off) to Ras(on) a GTP-bound intermediate is now identified, in which effector binding is still prevented (Ras(off)GTP). The loop movement from Ras(off)GTP to Ras(on)GTP was directly monitored by the C=O vibration of Thr35. The structural change creates a binding site with a rate constant of 5 s(-1) at 260 K. A small molecule that shifted the equilibrium from the Ras(on)GTP state towards the Ras(off)GTP state would prevent effector binding, even if hydrolysis were blocked by oncogenic mutations. We present a spectroscopic fingerprint of both states that can be used as an assay in drug screening for such small molecules.
Collapse
Affiliation(s)
- Carsten Kötting
- Lehrstuhl für Biophysik, Ruhr-Universität Bochum, 44780 Bochum, Germany.
| | | | | | | | | |
Collapse
|
54
|
Spoerner M, Nuehs A, Herrmann C, Steiner G, Kalbitzer HR. Slow conformational dynamics of the guanine nucleotide-binding protein Ras complexed with the GTP analogue GTPgammaS. FEBS J 2007; 274:1419-33. [PMID: 17302736 DOI: 10.1111/j.1742-4658.2007.05681.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The guanine nucleotide-binding protein Ras occurs in solution in two different conformational states, state 1 and state 2 with an equilibrium constant K(12) of 2.0, when the GTP analogue guanosine-5'-(beta,gamma-imido)triphosphate or guanosine-5'-(beta,gamma-methyleno)triphosphate is bound to the active centre. State 2 is assumed to represent a strong binding state for effectors with a conformation similar to that found for Ras complexed to effectors. In the other state (state 1), the switch regions of Ras are most probably dynamically disordered. Ras variants that exist predominantly in state 1 show a drastically reduced affinity to effectors. In contrast, Ras(wt) bound to the GTP analogue guanosine-5'-O-(3-thiotriphosphate) (GTPgammaS) leads to (31)P NMR spectra that indicate the prevalence of only one conformational state with K(12) > 10. Titration with the Ras-binding domain of Raf-kinase (Raf-RBD) shows that this state corresponds to effector binding state 2. In the GTPgammaS complex of the effector loop mutants Ras(T35S) and Ras(T35A) two conformational states different to state 2 are detected, which interconvert over a millisecond time scale. Binding studies with Raf-RBD suggest that both mutants exist mainly in low-affinity states 1a and 1b. From line-shape analysis of the spectra measured at various temperatures an activation energy DeltaH(|) (1a1b) of 61 kJ.mol(-1) and an activation entropy DeltaS(|) (1a1b) of 65 J.K(-1).mol(-1) are derived. Isothermal titration calorimetry on Ras bound to the different GTP-analogues shows that the effective affinity K(A) for the Raf-RBD to Ras(T35S) is reduced by a factor of about 20 compared to the wild-type with the strongest reduction observed for the GTPgammaS complex.
Collapse
Affiliation(s)
- Michael Spoerner
- Universität Regensburg, Institut für Biophysik und physikalische Biochemie, Universitätsstrasse 31, Regensburg D-93040, Germany
| | | | | | | | | |
Collapse
|
55
|
Kiel C, Foglierini M, Kuemmerer N, Beltrao P, Serrano L. A genome-wide Ras-effector interaction network. J Mol Biol 2007; 370:1020-32. [PMID: 17544445 DOI: 10.1016/j.jmb.2007.05.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2007] [Revised: 05/01/2007] [Accepted: 05/03/2007] [Indexed: 11/18/2022]
Abstract
Here using structural information and protein design tools we have drawn the network of interactions between 20 Ras subfamily proteins with 50 putative Ras binding domains. To validate this network we have cloned six poorly characterized Ras binding domains (RBD) and two Ras proteins (RERG, DiRas1). These, together with previously described RBD domains, Ras and Rap proteins have been analyzed in 70 pull-down experiments. Comparing our interaction network with these and previous pull-down experiments (total of 150 cases) shows a very high accuracy for distinguishing between binders and non-binders ( approximately 0.80). Bioinformatics information was integrated to distinguish those in vitro interactions that are more likely to be relevant in vivo. We proposed several new interactions between Ras family members and effector domains that are of relevance in understanding the physiological role of these proteins. More broadly our results demonstrate that (domain-domain) interaction specificities between members of protein families can be accurately predicted using structural information.
Collapse
Affiliation(s)
- Christina Kiel
- Structural and computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany.
| | | | | | | | | |
Collapse
|
56
|
Ader C, Spoerner M, Kalbitzer HR, Brunner E. Solid-state 31P NMR spectroscopy of precipitated guanine nucleotide-binding protein Ras in complexes with its effector molecules Raf kinase and RalGDS. J Phys Chem B 2007; 111:2752-7. [PMID: 17315921 DOI: 10.1021/jp067792p] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Liquid-state 31P NMR spectroscopy is a well-established method for the study of guanine nucleotide-binding proteins (GNB proteins) such as the proto-oncogene Ras. Solid-state 31P NMR spectroscopy could meanwhile also be used to study microcrystalline samples of Ras as well as its partial loss-of-function mutants Ras(T35S) and Ras(T35A). However, solid-state NMR studies of the latter mutants in complex with effector molecules such as RalGDS or Raf kinase were so far prevented, since it has been impossible to crystallize these complexes yet. The aim of the present contribution is to make such complexes accessible to solid-state 31P NMR spectroscopy by the application of precipitation methods. The complex formed by Ras(T35S) and Raf kinase is preserved during precipitation. In contrast, the weakly bound complex of Ras(T35S) with RalGDS is dissociated or at least perturbed by the precipitation procedure. Solid-state 31P NMR experiments on precipitates of these complexes deliver spectra of high resolution and signal-to-noise ratio which allows the application of two-dimensional techniques. Precipitates prepared using polyethylene glycol 6000 (PEG) as precipitant were found to exhibit spectra of maximum resolution and signal-to-noise ratio. Interestingly, the 31P signal due to the alpha-phosphate of GppNHp bound to Ras(T35S) in crystalline samples or aged precipitates has a significantly different isotropic chemical shift than in the liquid state or in freshly prepared precipitates. This directly indicates that the crystal structure differs from the equilibrium solution structure at least in the neighborhood of the alpha-phosphate group.
Collapse
Affiliation(s)
- Christian Ader
- Institute of Biophysics and Physical Biochemistry, University of Regensburg, D-93040 Regensburg, Germany
| | | | | | | |
Collapse
|
57
|
Lundin B, Thuswaldner S, Shutova T, Eshaghi S, Samuelsson G, Barber J, Andersson B, Spetea C. Subsequent events to GTP binding by the plant PsbO protein: structural changes, GTP hydrolysis and dissociation from the photosystem II complex. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2006; 1767:500-8. [PMID: 17223069 DOI: 10.1016/j.bbabio.2006.10.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2006] [Revised: 10/26/2006] [Accepted: 10/28/2006] [Indexed: 10/23/2022]
Abstract
Besides an essential role in optimizing water oxidation in photosystem II (PSII), it has been reported that the spinach PsbO protein binds GTP [C. Spetea, T. Hundal, B. Lundin, M. Heddad, I. Adamska, B. Andersson, Proc. Natl. Acad. Sci. U.S.A. 101 (2004) 1409-1414]. Here we predict four GTP-binding domains in the structure of spinach PsbO, all localized in the beta-barrel domain of the protein, as judged from comparison with the 3D-structure of the cyanobacterial counterpart. These domains are not conserved in the sequences of the cyanobacterial or green algae PsbO proteins. MgGTP induces specific changes in the structure of the PsbO protein in solution, as detected by circular dichroism and intrinsic fluorescence spectroscopy. Spinach PsbO has a low intrinsic GTPase activity, which is enhanced fifteen-fold when the protein is associated with the PSII complex in its dimeric form. GTP stimulates the dissociation of PsbO from PSII under light conditions known to also release Mn(2+) and Ca(2+) ions from the oxygen-evolving complex and to induce degradation of the PSII reaction centre D1 protein. We propose the occurrence in higher plants of a PsbO-mediated GTPase activity associated with PSII, which has consequences for the function of the oxygen-evolving complex and D1 protein turnover.
Collapse
Affiliation(s)
- Björn Lundin
- Division of Cell Biology, Linköping University, SE-581 85 Linköping, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
58
|
Nuñez Rodriguez N, Lee INL, Banno A, Qiao HF, Qiao RF, Yao Z, Hoang T, Kimmelman AC, Chan AML. Characterization of R-ras3/m-ras null mice reveals a potential role in trophic factor signaling. Mol Cell Biol 2006; 26:7145-54. [PMID: 16980617 PMCID: PMC1592885 DOI: 10.1128/mcb.00476-06] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
R-Ras3/M-Ras is a member of the RAS superfamily of small-molecular-weight GTP-binding proteins. Previous studies have demonstrated high levels of expression in several regions of the central nervous system, and a constitutively active form of M-Ras promotes cytoskeletal reorganization, cellular transformation, survival, and differentiation. However, the physiological functions of M-Ras during embryogenesis and postnatal development have not been elucidated. By using a specific M-Ras antibody, we demonstrated a high level of M-Ras expression in astrocytes, in addition to neurons. Endogenous M-Ras was activated by several trophic factors in astrocytes, including epidermal growth factor (EGF), basic fibroblast growth factor, and hepatocyte growth factor. Interestingly, M-Ras activation by EGF was more sustained compared to prototypic Ras. A mouse strain deficient in M-Ras was generated to investigate its role in development. M-Ras null mice appeared phenotypically normal, and there was a lack of detectable morphological and neurological defects. In addition, primary astrocytes derived from Mras(-/-) mice did not appear to display substantial alterations in the activation of both the mitogen-activated protein kinase and phosphatidylinositol 3-kinase pathways in response to trophic factors.
Collapse
Affiliation(s)
- Nelson Nuñez Rodriguez
- Department of Oncological Sciences, The Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Eathiraj S, Mishra A, Prekeris R, Lambright DG. Structural basis for Rab11-mediated recruitment of FIP3 to recycling endosomes. J Mol Biol 2006; 364:121-35. [PMID: 17007872 DOI: 10.1016/j.jmb.2006.08.064] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2006] [Revised: 08/22/2006] [Accepted: 08/22/2006] [Indexed: 10/24/2022]
Abstract
The Rab11 GTPase regulates recycling of internalized plasma membrane receptors and is essential for completion of cytokinesis. A family of Rab11 interacting proteins (FIPs) that conserve a C-terminal Rab-binding domain (RBD) selectively recognize the active form of Rab11. Normal completion of cytokinesis requires a complex between Rab11 and FIP3. Here, we report the crystal structure and mutational analysis of a heterotetrameric complex between constitutively active Rab11 and a FIP3 construct that includes the RBD. Two Rab11 molecules bind to dyad symmetric sites at the C terminus of FIP3, which forms a non-canonical coiled-coiled dimer with a flared C terminus and hook region. The RBD overlaps with the coiled coil and extends through the C-terminal hook. Although FIP3 engages the switch and interswitch regions of Rab11, the mode of interaction differs significantly from that of other Rab-effector complexes. In particular, the switch II region undergoes a large structural rearrangement from an ordered but non-complementary active conformation to a remodeled conformation that facilitates the interaction with FIP3. Finally, we provide evidence that FIP3 can form homo-oligomers in cells, and that a critical determinant of Rab11 binding in vitro is necessary for FIP3 recruitment to recycling endosomes during cytokinesis.
Collapse
Affiliation(s)
- Sudharshan Eathiraj
- Program in Molecular Medicine and Department of Biochemistry & Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | | | | |
Collapse
|
60
|
Arai Y, Iwane AH, Wazawa T, Yokota H, Ishii Y, Kataoka T, Yanagida T. Dynamic polymorphism of Ras observed by single molecule FRET is the basis for molecular recognition. Biochem Biophys Res Commun 2006; 343:809-15. [PMID: 16564025 DOI: 10.1016/j.bbrc.2006.03.031] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2006] [Accepted: 03/01/2006] [Indexed: 11/25/2022]
Abstract
Ras regulates signal transduction pathway function by dynamically interacting with various effectors. To understand the basis for Ras function, its conformational dynamics were measured in the absence and presence of effectors using single molecule fluorescence resonance energy transfer (FRET) between probes located on the Switch II region and GTP. The time trajectories of FRET efficiency from GTP-bound Ras showed that this conformation spontaneously varies among multiple states. Among them, a low FRET state was identified as an inactive state. The transition involving the inactive conformational state occurred in the time range of seconds. In contrast, fluctuation occurring most probably between multiple active high FRET conformational states lasted approximately 30 ms but converged to a specific conformational state upon binding to an effector. Thus, Ras conformation spontaneously fluctuates to readily interact with various effectors.
Collapse
Affiliation(s)
- Yoshiyuki Arai
- Department of Systems and Human Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka 560-9531, Japan
| | | | | | | | | | | | | |
Collapse
|