51
|
Raji RJ, Sasikumar R, Jacob E. Multiple roles of Adenomatous Polyposis Coli gene in Wnt Signalling - a Computational Model. Biosystems 2018; 172:26-36. [PMID: 30110600 DOI: 10.1016/j.biosystems.2018.08.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 07/23/2018] [Accepted: 08/07/2018] [Indexed: 12/14/2022]
Abstract
The Adenomatous Polyposis Coli (APC) gene is a multifunctional gene that plays a major role in regulating the Wnt signalling pathway. The Wnt pathway, when activated by Wnt signalling molecules, initiates cell division. Mutation of APC disrupts the regulation and causes continuous activation of the Wnt pathway even in the absence of Wnt signals, thus causing uncontrolled cell proliferation. APC regulates the Wnt pathway by controlling the formation of the nuclear complex β-catenin/TCF that initiates the transcription of the Wnt target genes. There are at least five mechanisms by which APC can regulate the formation of the β-catenin/TCF complex: This paper presents a computational model for the Wnt pathway that explicitly includes the above five roles of APC in regulating β-catenin/TCF formation. We use this computational model to perform in-silico experiments to study the effect of different functional losses of APC on the level of β-catenin/TCF complex. The simulations also demonstrate the different outcomes that could be expected when the system is governed by different hypotheses.
Collapse
Affiliation(s)
- Rejitha John Raji
- CSIR-National Institute for Interdisciplinary Science and Technology, Industrial Estate P.O, Trivandrum 695019, India.
| | - Roschen Sasikumar
- CSIR-National Institute for Interdisciplinary Science and Technology, Industrial Estate P.O, Trivandrum 695019, India
| | - Elizabeth Jacob
- CSIR-National Institute for Interdisciplinary Science and Technology, Industrial Estate P.O, Trivandrum 695019, India
| |
Collapse
|
52
|
Prossomariti A, Piazzi G, D'Angelo L, Miccoli S, Turchetti D, Alquati C, Montagna C, Bazzoli F, Ricciardiello L. miR-155 Is Downregulated in Familial Adenomatous Polyposis and Modulates WNT Signaling by Targeting AXIN1 and TCF4. Mol Cancer Res 2018; 16:1965-1976. [DOI: 10.1158/1541-7786.mcr-18-0115] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 05/31/2018] [Accepted: 07/23/2018] [Indexed: 11/16/2022]
|
53
|
Cheng J, Dwyer M, Okolotowicz KJ, Mercola M, Cashman JR. A Novel Inhibitor Targets Both Wnt Signaling and ATM/p53 in Colorectal Cancer. Cancer Res 2018; 78:5072-5083. [DOI: 10.1158/0008-5472.can-17-2642] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 02/02/2018] [Accepted: 07/10/2018] [Indexed: 11/16/2022]
|
54
|
Hu YH, Chen Q, Lu YX, Zhang JM, Lin C, Zhang F, Zhang WJ, Li XM, Zhang W, Li XN. Hypermethylation of NDN promotes cell proliferation by activating the Wnt signaling pathway in colorectal cancer. Oncotarget 2018; 8:46191-46203. [PMID: 28521288 PMCID: PMC5542259 DOI: 10.18632/oncotarget.17580] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 04/07/2017] [Indexed: 12/18/2022] Open
Abstract
The progression of CRC is a multistep process involving several genetic changes or epigenetic modifications. NDN is a member of the MAGE family, encoding a protein that generally suppresses cell proliferation and acting as a transcriptional repressor. Immunohistochemical staining revealed that the expression of NDN was significantly down-regulated in CRC tissues compared with normal tissues and the down-regulation of NDN in CRC could reflect the hypermethylation of the NDN promoter. Treatment of the CRC cell line SW480 with the demethylating agent 5-Aza-CdR restored the NDN expression level. The down-regulation of NDN was closely related to poor differentiation, advanced TNM stage and poor prognosis of CRC. The inhibition of NDN promoted CRC cell proliferation by enriching cells in the S phase. Furthermore, we observed that NDN binds to the GN box in the promoter of LRP6 to attenuate LRP6 transcription and inhibit the Wnt signaling pathway in CRC. In conclusion, our study revealed that the hypermethylation of NDN promotes cell proliferation by activating the Wnt signaling pathway through directly increasing the transcription of LRP6 in CRC. These findings might provide a new theoretical basis for the pathogenesis of CRC and facilitate the development of new therapeutic strategies against CRC.
Collapse
Affiliation(s)
- Yu-Han Hu
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Department of Pathology, Xinxiang Medical University, Xinxiang, China
| | - Qing Chen
- Department of Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yan-Xia Lu
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jian-Ming Zhang
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Department of Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chun Lin
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Fan Zhang
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Wen-Juan Zhang
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xiao-Min Li
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Wei Zhang
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xue-Nong Li
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
55
|
miR-450b-5p induced by oncogenic KRAS is required for colorectal cancer progression. Oncotarget 2018; 7:61312-61324. [PMID: 27494869 PMCID: PMC5308653 DOI: 10.18632/oncotarget.11016] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 07/14/2016] [Indexed: 12/13/2022] Open
Abstract
The development and progression of CRC are regarded as a complicated network and progressive event including genetic and/or epigenetic alterations. Recent researches revealed that MicroRNAs are biomarkers and regulators of CRC progression. Analyses of published microarray datasets revealed that miR-450b-5p was highly up-regulated in CRC tissues. In addition, high expression of miR-450b-5p was significantly associated with KRAS mutation. However, the role of miR-450b-5p in the progression of CRC remains unknown. Here, we sought to validate the expression of miR-450b-5p in CRC tissues and investigate the role and underlying mechanism of miR-450b-5p in the progression of CRC. The results revealed that miR-450b-5p was up-regulated in CRC tissues, high expression level of miR-450b-5p was positively associated with poor differentiation, advanced TNM classification and poor prognosis. Moreover, miR-450b-5p was especially high in KRAS-mutated cell lines and could be up-regulated by KRAS/AP-1 signaling. Functional validation revealed that overexpression of miR-450b-5p promoted cell proliferation and tumor growth while inhibited apoptosis of CRC cells. Furthermore, we demonstrated that miR-450b-5p directly bound the 3′-UTRs of SFRP2 and SIAH1, and activated Wnt/β-Catenin signaling. In conclusion, miR-450b-5p induced by oncogenic KRAS is required for colorectal cancer progression. Collectively, our work helped to understand the precise role of miR-450b-5p in the progression of CRC, and might promote the development of new therapeutic strategies against CRC.
Collapse
|
56
|
Martínez-Martínez E, Martín-Ruiz A, Martín P, Calvo V, Provencio M, García JM. CB2 cannabinoid receptor activation promotes colon cancer progression via AKT/GSK3β signaling pathway. Oncotarget 2018; 7:68781-68791. [PMID: 27634891 PMCID: PMC5356589 DOI: 10.18632/oncotarget.11968] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 09/02/2016] [Indexed: 01/19/2023] Open
Abstract
The pharmacological activation of the cannabinoid receptor type 2, CB2, has been shown to elicit anti-tumoral mechanisms in different cancer types. However, little is known about its endogenous role in tumor pathophysiology, and different studies have attributed pro-tumorigenic properties to this receptor. In a previous work, we showed that CB2 expression is a poor prognostic factor in colon cancer patients. Here we report that activation of CB2 with low doses of specific agonists induce cell proliferation and favor the acquisition of aggressive molecular features in colon cancer cells. We show that sub-micromolar concentrations of CB2-specific agonists, JWH-133 and HU-308, promote an increase in cell proliferation rate through the activation of AKT/PKB pathway in colon cancer in vitro and in vivo. AKT activation promotes GSK3β inhibition and thus, a more aggressive cell phenotype with the subsequent elevation of SNAIL levels, E-cadherin degradation and β-catenin delocalization from cell membrane. Taken together, our data show that CB2 activation with sub-micromolar doses of agonists, which could be more similar to endogenous levels of cannabinoids, promote colon cancer progression, implicating that CB2 could have a pro-tumorigenic endogenous role in colon cancer.
Collapse
Affiliation(s)
- Esther Martínez-Martínez
- Department of Medical Oncology, Hospital Universitario Puerta de Hierro-Majadahonda, E-28222 Madrid, Spain
| | - Asunción Martín-Ruiz
- Department of Medical Oncology, Hospital Universitario Puerta de Hierro-Majadahonda, E-28222 Madrid, Spain
| | - Paloma Martín
- Department of Pathology, Hospital Universitario Puerta de Hierro-Majadahonda, E-28222 Madrid, Spain
| | - Virginia Calvo
- Department of Medical Oncology, Hospital Universitario Puerta de Hierro-Majadahonda, E-28222 Madrid, Spain
| | - Mariano Provencio
- Department of Medical Oncology, Hospital Universitario Puerta de Hierro-Majadahonda, E-28222 Madrid, Spain
| | - José M García
- Department of Medical Oncology, Hospital Universitario Puerta de Hierro-Majadahonda, E-28222 Madrid, Spain
| |
Collapse
|
57
|
Polachi N, Subramaniyan B, Nagaraja P, Rangiah K, Ganeshan M. Extract from Butea monosperma inhibits β-catenin/Tcf signaling in SW480 human colon cancer cells. GENE REPORTS 2018. [DOI: 10.1016/j.genrep.2017.11.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
58
|
Tacchelly-Benites O, Wang Z, Yang E, Benchabane H, Tian A, Randall MP, Ahmed Y. Axin phosphorylation in both Wnt-off and Wnt-on states requires the tumor suppressor APC. PLoS Genet 2018; 14:e1007178. [PMID: 29408853 PMCID: PMC5800574 DOI: 10.1371/journal.pgen.1007178] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 12/30/2017] [Indexed: 12/24/2022] Open
Abstract
The aberrant activation of Wnt signal transduction initiates the development of 90% of colorectal cancers, the majority of which arise from inactivation of the tumor suppressor Adenomatous polyposis coli (APC). In the classical model for Wnt signaling, the primary role of APC is to act, together with the concentration-limiting scaffold protein Axin, in a “destruction complex” that directs the phosphorylation and consequent proteasomal degradation of the transcriptional activator β-catenin, thereby preventing signaling in the Wnt-off state. Following Wnt stimulation, Axin is recruited to a multiprotein “signalosome” required for pathway activation. Whereas it is well-documented that APC is essential in the destruction complex, APC’s role in this complex remains elusive. Here, we demonstrate in Drosophila that Axin exists in two distinct phosphorylation states in Wnt-off and Wnt-on conditions, respectively, that underlie its roles in the destruction complex and signalosome. These two Axin phosphorylation states are catalyzed by glycogen synthase kinase 3 (GSK3), and unexpectedly, completely dependent on APC in both unstimulated and Wnt-stimulated conditions. In a major revision of the classical model, we show that APC is essential not only in the destruction complex, but also for the rapid transition in Axin that occurs after Wnt stimulation and Axin’s subsequent association with the Wnt co-receptor LRP6/Arrow, one of the earliest steps in pathway activation. We propose that this novel requirement for APC in Axin regulation through phosphorylation both prevents signaling in the Wnt-off state and promotes signaling immediately following Wnt stimulation. The Wnt signal transduction pathway directs fundamental cellular processes during development and in homeostasis. Wnt signaling is deregulated in 90% of colorectal cancers, most of which are triggered by inactivation of the tumor suppressor Adenomatous polyposis coli (APC). In the classical model, APC’s sole role in Wnt signaling is to target the transcriptional coactivator β-catenin for phosphorylation and subsequent degradation, and thereby to inhibit signaling in the unstimulated state. However, the mechanisms by which APC functions remain unknown. Herein, we provide evidence in Drosophila that supports a major role for APC in the direct regulation of the scaffold protein Axin in both Wnt-on and Wnt-off conditions. Our results indicate that APC promotes Axin phosphorylation, which is required not only to inhibit signaling in the unstimulated state, but also to activate signaling following Wnt stimulation. These unanticipated findings support a more active and multifaceted role for APC in Wnt signaling than previously known, and force revision of the current model for APC function.
Collapse
Affiliation(s)
- Ofelia Tacchelly-Benites
- Department of Molecular and Systems Biology and the Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth College, Hanover, NH, United States of America
| | - Zhenghan Wang
- Department of Molecular and Systems Biology and the Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth College, Hanover, NH, United States of America
| | - Eungi Yang
- Department of Molecular and Systems Biology and the Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth College, Hanover, NH, United States of America
| | - Hassina Benchabane
- Department of Molecular and Systems Biology and the Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth College, Hanover, NH, United States of America
| | - Ai Tian
- Department of Molecular and Systems Biology and the Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth College, Hanover, NH, United States of America
| | - Michael P. Randall
- Department of Molecular and Systems Biology and the Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth College, Hanover, NH, United States of America
| | - Yashi Ahmed
- Department of Molecular and Systems Biology and the Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth College, Hanover, NH, United States of America
- * E-mail:
| |
Collapse
|
59
|
Chou YT, Jiang JK, Yang MH, Lu JW, Lin HK, Wang HD, Yuh CH. Identification of a noncanonical function for ribose-5-phosphate isomerase A promotes colorectal cancer formation by stabilizing and activating β-catenin via a novel C-terminal domain. PLoS Biol 2018; 16:e2003714. [PMID: 29337987 PMCID: PMC5786329 DOI: 10.1371/journal.pbio.2003714] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Revised: 01/26/2018] [Accepted: 12/22/2017] [Indexed: 12/22/2022] Open
Abstract
Altered metabolism is one of the hallmarks of cancers. Deregulation of ribose-5-phosphate isomerase A (RPIA) in the pentose phosphate pathway (PPP) is known to promote tumorigenesis in liver, lung, and breast tissues. Yet, the molecular mechanism of RPIA-mediated colorectal cancer (CRC) is unknown. Our study demonstrates a noncanonical function of RPIA in CRC. Data from the mRNAs of 80 patients’ CRC tissues and paired nontumor tissues and protein levels, as well as a CRC tissue array, indicate RPIA is significantly elevated in CRC. RPIA modulates cell proliferation and oncogenicity via activation of β-catenin in colon cancer cell lines. Unlike its role in PPP in which RPIA functions within the cytosol, RPIA enters the nucleus to form a complex with the adenomatous polyposis coli (APC) and β-catenin. This association protects β-catenin by preventing its phosphorylation, ubiquitination, and subsequent degradation. The C-terminus of RPIA (amino acids 290 to 311), a region distinct from its enzymatic domain, is necessary for RPIA-mediated tumorigenesis. Consistent with results in vitro, RPIA increases the expression of β-catenin and its target genes, and induces tumorigenesis in gut-specific promotor-carrying RPIA transgenic zebrafish. Together, we demonstrate a novel function of RPIA in CRC formation in which RPIA enters the nucleus and stabilizes β-catenin activity and suggests that RPIA might be a biomarker for targeted therapy and prognosis. The pentose phosphate pathway generates NADPH, pentose, and ribose-5-phosphate by RPIA for nucleotide synthesis. Deregulation of RPIA is known to promote tumorigenesis in liver, lung, and breast tissues; however, the molecular mechanism of RPIA-mediated CRC is unknown. Here, we demonstrate a role of RPIA in CRC formation distinct from its role in these other tissues. We showed that RPIA is significantly elevated in CRC. RPIA increased cell proliferation and oncogenicity via activation of β-catenin, with RPIA entering the nucleus to form a complex with APC and β-catenin. Further investigation suggested that RPIA protects β-catenin by preventing its phosphorylation, ubiquitination, and subsequent degradation. In addition, the C-terminus of RPIA (amino acids 290 to 311), a portion of the protein not previously characterized, is necessary for RPIA-mediated tumorigenesis. Finally, we observed that transgenic expression of RPIA increases the expression of β-catenin and its target genes and induces tumorigenesis. Our findings suggest that RPIA can enter the nucleus and associate with APC/β-catenin, and suggest precise treatment of human CRC by targeting its nonenzymatic domain.
Collapse
Affiliation(s)
- Yu-Ting Chou
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli, Taiwan
- Institute of Biotechnology, National Tsing-Hua University, Hsinchu, Taiwan
| | - Jeng-Kai Jiang
- Division of Colon and Rectal Surgery, Department of Surgery, Taipei Veterans General Hospital, Taiwan
| | - Muh-Hwa Yang
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Jeng-Wei Lu
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli, Taiwan
- Department of Life Sciences, National Central University, Jhongli City, Taoyuan, Taiwan
| | - Hua-Kuo Lin
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli, Taiwan
| | - Horng-Dar Wang
- Institute of Biotechnology, National Tsing-Hua University, Hsinchu, Taiwan
- * E-mail: (CHY); (HDW)
| | - Chiou-Hwa Yuh
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli, Taiwan
- Institute of Bioinformatics and Structural Biology, National Tsing-Hua University, Hsinchu, Taiwan
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
- * E-mail: (CHY); (HDW)
| |
Collapse
|
60
|
Shirafkan N, Mansoori B, Mohammadi A, Shomali N, Ghasbi M, Baradaran B. MicroRNAs as novel biomarkers for colorectal cancer: New outlooks. Biomed Pharmacother 2018; 97:1319-1330. [DOI: 10.1016/j.biopha.2017.11.046] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 11/04/2017] [Accepted: 11/07/2017] [Indexed: 12/19/2022] Open
|
61
|
Deshmukh V, Hu H, Barroga C, Bossard C, Kc S, Dellamary L, Stewart J, Chiu K, Ibanez M, Pedraza M, Seo T, Do L, Cho S, Cahiwat J, Tam B, Tambiah JRS, Hood J, Lane NE, Yazici Y. A small-molecule inhibitor of the Wnt pathway (SM04690) as a potential disease modifying agent for the treatment of osteoarthritis of the knee. Osteoarthritis Cartilage 2018; 26:18-27. [PMID: 28888902 DOI: 10.1016/j.joca.2017.08.015] [Citation(s) in RCA: 151] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 07/18/2017] [Accepted: 08/30/2017] [Indexed: 02/02/2023]
Abstract
OBJECTIVES Osteoarthritis (OA) is a degenerative disease characterized by loss of cartilage and increased subchondral bone within synovial joints. Wnt signaling affects the pathogenesis of OA as this pathway modulates both the differentiation of osteoblasts and chondrocytes, and production of catabolic proteases. A novel small-molecule Wnt pathway inhibitor, SM04690, was evaluated in a series of in vitro and in vivo animal studies to determine its effects on chondrogenesis, cartilage protection and synovial-lined joint pathology. DESIGN A high-throughput screen was performed using a cell-based reporter assay for Wnt pathway activity to develop a small molecule designated SM04690. Its properties were evaluated in bone-marrow-derived human mesenchymal stem cells (hMSCs) to assess chondrocyte differentiation and effects on cartilage catabolism by immunocytochemistry and gene expression, and glycosaminoglycan breakdown. In vivo effects of SM04690 on Wnt signaling, cartilage regeneration and protection were measured using biochemical and histopathological techniques in a rodent acute cruciate ligament tear and partial medial meniscectomy (ACLT + pMMx) OA model. RESULTS SM04690 induced hMSC differentiation into mature, functional chondrocytes and decreased cartilage catabolic marker levels compared to vehicle. A single SM04690 intra-articular (IA) injection was efficacious in a rodent OA model, with increased cartilage thickness, evidence for cartilage regeneration, and protection from cartilage catabolism observed, resulting in significantly improved Osteoarthritis Research Society International (OARSI) histology scores and biomarkers, compared to vehicle. CONCLUSIONS SM04690 induced chondrogenesis and appeared to inhibit joint destruction in a rat OA model, and is a candidate for a potential disease modifying therapy for OA.
Collapse
Affiliation(s)
| | - H Hu
- Samumed, LLC, San Diego, CA, USA.
| | | | | | - S Kc
- Samumed, LLC, San Diego, CA, USA.
| | | | | | - K Chiu
- Samumed, LLC, San Diego, CA, USA.
| | - M Ibanez
- Samumed, LLC, San Diego, CA, USA.
| | | | - T Seo
- Samumed, LLC, San Diego, CA, USA.
| | - L Do
- Samumed, LLC, San Diego, CA, USA.
| | - S Cho
- Samumed, LLC, San Diego, CA, USA.
| | | | - B Tam
- Samumed, LLC, San Diego, CA, USA.
| | | | - J Hood
- Samumed, LLC, San Diego, CA, USA.
| | - N E Lane
- University of California, Davis, CA, USA.
| | - Y Yazici
- Samumed, LLC, San Diego, CA, USA.
| |
Collapse
|
62
|
Inhibition of Wnt/β-Catenin pathway and Histone acetyltransferase activity by Rimonabant: a therapeutic target for colon cancer. Sci Rep 2017; 7:11678. [PMID: 28916833 PMCID: PMC5601949 DOI: 10.1038/s41598-017-11688-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 08/09/2017] [Indexed: 12/18/2022] Open
Abstract
In a high percentage (≥85%) of both sporadic and familial adenomatous polyposis forms of colorectal cancer (CRC), the inactivation of the APC tumor suppressor gene initiates tumor formation and modulates the Wnt/β-Catenin transduction pathways involved in the control of cell proliferation, adhesion and metastasis. Increasing evidence showed that the endocannabinoids control tumor growth and progression, both in vitro and in vivo. We evaluated the effect of Rimonabant, a Cannabinoid Receptor 1 (CB1) inverse agonist, on the Wnt/β-Catenin pathway in HCT116 and SW48 cell lines carrying the genetic profile of metastatic CRC poorly responsive to chemotherapies. In these models, Rimonabant inhibited the Wnt/β-Catenin canonical pathway and increased β-Catenin phosphorylation; in HCT116 cells, but not in SW48, the compound also triggered the Wnt/β-Catenin non canonical pathway activation through induction of Wnt5A and activation of CaMKII. The Rimonabant-induced downregulation of Wnt/β-Catenin target genes was partially ascribable to a direct inhibition of p300/KAT3B histone acetyltransferase, a coactivator of β-Catenin dependent gene regulation. Finally, in HCT116 xenografts, Rimonabant significantly reduced tumor growth and destabilized the nuclear localization of β-Catenin. Obtained data heavily supported the rationale for the use of cannabinoids in combined therapies for metastatic CRC harbouring activating mutations of β-Catenin.
Collapse
|
63
|
Loss of Usp9x disrupts cell adhesion, and components of the Wnt and Notch signaling pathways in neural progenitors. Sci Rep 2017; 7:8109. [PMID: 28808228 PMCID: PMC5556043 DOI: 10.1038/s41598-017-05451-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 06/02/2017] [Indexed: 12/31/2022] Open
Abstract
Development of neural progenitors depends upon the coordination of appropriate intrinsic responses to extrinsic signalling pathways. Here we show the deubiquitylating enzyme, Usp9x regulates components of both intrinsic and extrinsic fate determinants. Nestin-cre mediated ablation of Usp9x from embryonic neural progenitors in vivo resulted in a transient disruption of cell adhesion and apical-basal polarity and, an increased number and ectopic localisation of intermediate neural progenitors. In contrast to other adhesion and polarity proteins, levels of β-catenin protein, especially S33/S37/T41 phospho-β-catenin, were markedly increased in Usp9x−/Y embryonic cortices. Loss of Usp9x altered composition of the β-catenin destruction complex possibly impeding degradation of S33/S37/T41 phospho-β-catenin. Pathway analysis of transcriptomic data identified Wnt signalling as significantly affected in Usp9x−/Y embryonic brains. Depletion of Usp9x in cultured human neural progenitors resulted in Wnt-reporter activation. Usp9x also regulated components of the Notch signalling pathway. Usp9x co-localized and associated with both Itch and Numb in embryonic neocortices. Loss of Usp9x led to decreased Itch and Numb levels, and a concomitant increase in levels of the Notch intracellular domain as well as, increased expression of the Notch target gene Hes5. Therefore Usp9x modulates and potentially coordinates multiple fate determinants in neural progenitors.
Collapse
|
64
|
Benoit YD, Mitchell RR, Risueño RM, Orlando L, Tanasijevic B, Boyd AL, Aslostovar L, Salci KR, Shapovalova Z, Russell J, Eguchi M, Golubeva D, Graham M, Xenocostas A, Trus MR, Foley R, Leber B, Collins TJ, Bhatia M. Sam68 Allows Selective Targeting of Human Cancer Stem Cells. Cell Chem Biol 2017. [PMID: 28648376 DOI: 10.1016/j.chembiol.2017.05.026] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Targeting of human cancer stem cells (CSCs) requires the identification of vulnerabilities unique to CSCs versus healthy resident stem cells (SCs). Unfortunately, dysregulated pathways that support transformed CSCs, such as Wnt/β-catenin signaling, are also critical regulators of healthy SCs. Using the ICG-001 and CWP family of small molecules, we reveal Sam68 as a previously unappreciated modulator of Wnt/β-catenin signaling within CSCs. Disruption of CBP-β-catenin interaction via ICG-001/CWP induces the formation of a Sam68-CBP complex in CSCs that alters Wnt signaling toward apoptosis and differentiation induction. Our study identifies Sam68 as a regulator of human CSC vulnerability.
Collapse
Affiliation(s)
- Yannick D Benoit
- McMaster Stem Cell and Cancer Research Institute, Faculty of Health Sciences, McMaster University, 1280 Main Street West, MDCL 5029, Hamilton, ON L8S 4L8, Canada
| | - Ryan R Mitchell
- McMaster Stem Cell and Cancer Research Institute, Faculty of Health Sciences, McMaster University, 1280 Main Street West, MDCL 5029, Hamilton, ON L8S 4L8, Canada
| | - Ruth M Risueño
- McMaster Stem Cell and Cancer Research Institute, Faculty of Health Sciences, McMaster University, 1280 Main Street West, MDCL 5029, Hamilton, ON L8S 4L8, Canada
| | - Luca Orlando
- McMaster Stem Cell and Cancer Research Institute, Faculty of Health Sciences, McMaster University, 1280 Main Street West, MDCL 5029, Hamilton, ON L8S 4L8, Canada
| | - Borko Tanasijevic
- McMaster Stem Cell and Cancer Research Institute, Faculty of Health Sciences, McMaster University, 1280 Main Street West, MDCL 5029, Hamilton, ON L8S 4L8, Canada
| | - Allison L Boyd
- McMaster Stem Cell and Cancer Research Institute, Faculty of Health Sciences, McMaster University, 1280 Main Street West, MDCL 5029, Hamilton, ON L8S 4L8, Canada
| | - Lili Aslostovar
- McMaster Stem Cell and Cancer Research Institute, Faculty of Health Sciences, McMaster University, 1280 Main Street West, MDCL 5029, Hamilton, ON L8S 4L8, Canada; Department of Biochemistry and Biomedical Sciences, Faculty of Health Sciences, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada
| | - Kyle R Salci
- Department of Biochemistry and Biomedical Sciences, Faculty of Health Sciences, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada
| | - Zoya Shapovalova
- McMaster Stem Cell and Cancer Research Institute, Faculty of Health Sciences, McMaster University, 1280 Main Street West, MDCL 5029, Hamilton, ON L8S 4L8, Canada
| | - Jennifer Russell
- McMaster Stem Cell and Cancer Research Institute, Faculty of Health Sciences, McMaster University, 1280 Main Street West, MDCL 5029, Hamilton, ON L8S 4L8, Canada
| | - Masakatsu Eguchi
- Theriac Pharmaceutical Corporation Research Institute, 600 Broadway Suite 580 Fl 5, Seattle, WA 98122, USA
| | - Diana Golubeva
- Department of Biochemistry and Biomedical Sciences, Faculty of Health Sciences, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada
| | - Monica Graham
- McMaster Stem Cell and Cancer Research Institute, Faculty of Health Sciences, McMaster University, 1280 Main Street West, MDCL 5029, Hamilton, ON L8S 4L8, Canada
| | - Anargyros Xenocostas
- Department of Medicine, Division of Hematology, Schulich School of Medicine, University of Western Ontario, London, ON N6A 3K7, Canada
| | - Michael R Trus
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Ronan Foley
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Brian Leber
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Tony J Collins
- McMaster Stem Cell and Cancer Research Institute, Faculty of Health Sciences, McMaster University, 1280 Main Street West, MDCL 5029, Hamilton, ON L8S 4L8, Canada
| | - Mickie Bhatia
- McMaster Stem Cell and Cancer Research Institute, Faculty of Health Sciences, McMaster University, 1280 Main Street West, MDCL 5029, Hamilton, ON L8S 4L8, Canada; Department of Biochemistry and Biomedical Sciences, Faculty of Health Sciences, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada.
| |
Collapse
|
65
|
Thorvaldsen TE. Targeting Tankyrase to Fight WNT-dependent Tumours. Basic Clin Pharmacol Toxicol 2017; 121:81-88. [PMID: 28371398 DOI: 10.1111/bcpt.12786] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 03/21/2017] [Indexed: 12/11/2022]
Abstract
Aberrant WNT signalling activity is linked to various diseases due to the WNT dependency of fundamental processes during development and in adult tissue homeostasis. Mutations in components of the multi-protein β-catenin destruction complex promote excessive amounts of the main transcriptional activator β-catenin and are particularly common in colorectal cancer (CRC). The tankyrase enzymes were recently implicated as negative regulators of destruction complex activity by mediating degradation of the scaffolding protein AXIN. Indeed, tankyrase inhibitors (TNKSi) have emerged as promising therapeutics by restoring functional signal-limiting destruction complexes in CRCs. Furthermore, as TNKSi-induced destruction complexes (so-called degradasomes) can be visualized by microscopy, they have served as a valuable experimental model system to address unresolved aspects regarding the structure, function and composition of the β-catenin destruction complex. This MiniReview provides an overview of the current knowledge on the regulatory mechanisms and interactions that govern the β-catenin destruction complex activity. It further highlights the potential of TNKSi as anticancer drugs and as a novel research tool to dissect the WNT signalling pathway.
Collapse
Affiliation(s)
- Tor Espen Thorvaldsen
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Montebello, Oslo, Norway.,Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, Oslo, Norway
| |
Collapse
|
66
|
Serebryannyy LA, Yemelyanov A, Gottardi CJ, de Lanerolle P. Nuclear α-catenin mediates the DNA damage response via β-catenin and nuclear actin. J Cell Sci 2017; 130:1717-1729. [PMID: 28348105 DOI: 10.1242/jcs.199893] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 03/20/2017] [Indexed: 12/29/2022] Open
Abstract
α-Catenin is an F-actin-binding protein widely recognized for its role in cell-cell adhesion. However, a growing body of literature indicates that α-catenin is also a nuclear protein. In this study, we show that α-catenin is able to modulate the sensitivity of cells to DNA damage and toxicity. Furthermore, nuclear α-catenin is actively recruited to sites of DNA damage. This recruitment occurs in a β-catenin-dependent manner and requires nuclear actin polymerization. These findings provide mechanistic insight into the WNT-mediated regulation of the DNA damage response and suggest a novel role for the α-catenin-β-catenin complex in the nucleus.
Collapse
Affiliation(s)
- Leonid A Serebryannyy
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Alex Yemelyanov
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Cara J Gottardi
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Primal de Lanerolle
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
67
|
Liu K, Fan J, Wu J. Forkhead Box Protein J1 (FOXJ1) is Overexpressed in Colorectal Cancer and Promotes Nuclear Translocation of β-Catenin in SW620 Cells. Med Sci Monit 2017; 23:856-866. [PMID: 28209947 PMCID: PMC5328203 DOI: 10.12659/msm.902906] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background FOXJ1, which is a forkhead transcription factor, has been previously studied mostly as a ciliary transcription factor. The role of FOXJ1 in cancer progression is still elusive and controversial. In the present study, the effect of FOXJ1 in progression of colorectal cancer (CRC) was investigated. Material/Methods The pattern of FOXJ1 expression was investigated using the method of immunohistochemistry (IHC) in a tissue microarray (TMA) incorporating 50 pairs of colon cancer specimens and adjacent normal tissue. In addition, the correlation of FOXJ1 expression with clinicopathological characteristics was evaluated in the other TMA containing 208 cases of colon cancer. Moreover, the influence of regulating FOXJ1 level on the proliferation, migration, and invasion ability of colorectal cancer (CRC) cells was evaluated. Results Increased expression of FOXJ1was significantly associated with clinical stage (p<0.05), metastasis of lymph node (p<0.05), and invasion depth (p<0.001) in colon cancer, suggesting FOXJ1 is a tumor promoter in CRC. Consistently, FOXJ1 overexpression significantly enhanced the proliferation, migration, and invasion of CRC cells, while silencing of FOXJ1 induced the opposite effect. Furthermore, up-regulation of FOXJ1 in SW620 cells markedly inhibited the level of truncated APC and the phosphorylation of β-catenin, while the level of cyclinD1 was decreased. In addition, overexpression of FOXJ1 significantly promoted nuclear translocation of β-catenin in SW620 cells. Conclusions These findings demonstrate that increased FOXJ1 contributes to the progression of CRC, which might be associated with the promotion effect of β-catenin nuclear translocation. FOXJ1 may be a novel therapeutic target in CRC.
Collapse
Affiliation(s)
- Kuiliang Liu
- Department of Gastroenterology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China (mainland)
| | - Jianghao Fan
- Department of Gastroenterology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China (mainland)
| | - Jing Wu
- Department of Gastroenterology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China (mainland)
| |
Collapse
|
68
|
Gul IS, Hulpiau P, Saeys Y, van Roy F. Metazoan evolution of the armadillo repeat superfamily. Cell Mol Life Sci 2017; 74:525-541. [PMID: 27497926 PMCID: PMC11107757 DOI: 10.1007/s00018-016-2319-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 07/05/2016] [Accepted: 07/25/2016] [Indexed: 02/08/2023]
Abstract
The superfamily of armadillo repeat proteins is a fascinating archetype of modular-binding proteins involved in various fundamental cellular processes, including cell-cell adhesion, cytoskeletal organization, nuclear import, and molecular signaling. Despite their diverse functions, they all share tandem armadillo (ARM) repeats, which stack together to form a conserved three-dimensional structure. This superhelical armadillo structure enables them to interact with distinct partners by wrapping around them. Despite the important functional roles of this superfamily, a comprehensive analysis of the composition, classification, and phylogeny of this protein superfamily has not been reported. Furthermore, relatively little is known about a subset of ARM proteins, and some of the current annotations of armadillo repeats are incomplete or incorrect, often due to high similarity with HEAT repeats. We identified the entire armadillo repeat superfamily repertoire in the human genome, annotated each armadillo repeat, and performed an extensive evolutionary analysis of the armadillo repeat proteins in both metazoan and premetazoan species. Phylogenetic analyses of the superfamily classified them into several discrete branches with members showing significant sequence homology, and often also related functions. Interestingly, the phylogenetic structure of the superfamily revealed that about 30 % of the members predate metazoans and represent an ancient subset, which is gradually evolving to acquire complex and highly diverse functions.
Collapse
Affiliation(s)
- Ismail Sahin Gul
- Inflammation Research Center (IRC), VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, FSVM Building, Technologiepark 927, 9052, Ghent, Belgium
| | - Paco Hulpiau
- Inflammation Research Center (IRC), VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, FSVM Building, Technologiepark 927, 9052, Ghent, Belgium
| | - Yvan Saeys
- Inflammation Research Center (IRC), VIB, Ghent, Belgium
- Department of Respiratory Medicine, Ghent University, Ghent, Belgium
| | - Frans van Roy
- Inflammation Research Center (IRC), VIB, Ghent, Belgium.
- Department of Biomedical Molecular Biology, Ghent University, FSVM Building, Technologiepark 927, 9052, Ghent, Belgium.
| |
Collapse
|
69
|
Fujii K, Luo Y, Fujiwara-Tani R, Kishi S, He S, Yang S, Sasaki T, Ohmori H, Kuniyasu H. Pro-metastatic intracellular signaling of the elaidic trans fatty acid. Int J Oncol 2016; 50:85-92. [PMID: 27959384 DOI: 10.3892/ijo.2016.3797] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 12/02/2016] [Indexed: 11/05/2022] Open
Abstract
Trans fatty acids (TFAs) are risk factors of cardiovascular disorders, and a few studies have reported the cancer-promoting effects of TFAs. In the present study, we examined the effects and signaling of elaidic acid (EA), a TFA, in colorectal cancer (CRC) cells. Oral intake of EA increased the metastasis of CT26 mouse CRC cells by inducing the expression of stemness markers nucleostemin (NS) and CD133. Mechanisms underlying EA-induced signaling were confirmed by determining the binding of EA to G-protein coupled receptor 40 (GPR40) and GPR120 by performing surface protein internalization assay. We found that c-SRC mediated EGFR transactivation was induced by the binding of EA to GPR40 and GPR120. Moreover, EGFR signaling upregulated NS and Snail expression and downregulated E-cadherin expression in wild-type APC-containing CT26 cells, and upregulated NS, Wnt5a and CD44 expression in APC-null HT29 cells. These results indicate that EA enhances the stemness and epithelial-mesenchymal transition of CRC cells. These results also indicate the prominent metastatic potential of EA-treated cancer cells and highlight the important implications of EA on public health.
Collapse
Affiliation(s)
- Kiyomu Fujii
- Department of Molecular Pathology, Nara Medical University, Kashihara 634-8521, Japan
| | - Yi Luo
- Department of Molecular Pathology, Nara Medical University, Kashihara 634-8521, Japan
| | - Rina Fujiwara-Tani
- Department of Molecular Pathology, Nara Medical University, Kashihara 634-8521, Japan
| | - Shingo Kishi
- Department of Molecular Pathology, Nara Medical University, Kashihara 634-8521, Japan
| | - Song He
- Department of Pathology, Nantong University Cancer Hospital, Nantong, Jiangsu 226361, P.R. China
| | - Shuyun Yang
- Department of Pathology, Nantong University Cancer Hospital, Nantong, Jiangsu 226361, P.R. China
| | - Takamitsu Sasaki
- Department of Gastroenterological Surgery, Fukuoka University School of Medicine, Jonan-ku, Fukuoka 814-0180, Japan
| | - Hitoshi Ohmori
- Department of Molecular Pathology, Nara Medical University, Kashihara 634-8521, Japan
| | - Hiroki Kuniyasu
- Department of Molecular Pathology, Nara Medical University, Kashihara 634-8521, Japan
| |
Collapse
|
70
|
Häggblad Sahlberg S, Mortensen AC, Haglöf J, Engskog MKR, Arvidsson T, Pettersson C, Glimelius B, Stenerlöw B, Nestor M. Different functions of AKT1 and AKT2 in molecular pathways, cell migration and metabolism in colon cancer cells. Int J Oncol 2016; 50:5-14. [PMID: 27878243 PMCID: PMC5182003 DOI: 10.3892/ijo.2016.3771] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 10/12/2016] [Indexed: 01/07/2023] Open
Abstract
AKT is a central protein in many cellular pathways such as cell survival, proliferation, glucose uptake, metabolism, angiogenesis, as well as radiation and drug response. The three isoforms of AKT (AKT1, AKT2 and AKT3) are proposed to have different physiological functions, properties and expression patterns in a cell type-dependent manner. As of yet, not much is known about the influence of the different AKT isoforms in the genome and their effects in the metabolism of colorectal cancer cells. In the present study, DLD-1 isogenic AKT1, AKT2 and AKT1/2 knockout colon cancer cell lines were used as a model system in conjunction with the parental cell line in order to further elucidate the differences between the AKT isoforms and how they are involved in various cellular pathways. This was done using genome wide expression analyses, metabolic profiling and cell migration assays. In conclusion, downregulation of genes in the cell adhesion, extracellular matrix and Notch-pathways and upregulation of apoptosis and metastasis inhibitory genes in the p53-pathway, confirm that the knockout of both AKT1 and AKT2 will attenuate metastasis and tumor cell growth. This was verified with a reduction in migration rate in the AKT1 KO and AKT2 KO and most explicitly in the AKT1/2 KO. Furthermore, the knockout of AKT1, AKT2 or both, resulted in a reduction in lactate and alanine, suggesting that the metabolism of carbohydrates and glutathione was impaired. This was further verified in gene expression analyses, showing downregulation of genes involved in glucose metabolism. Additionally, both AKT1 KO and AKT2 KO demonstrated an impaired fatty acid metabolism. However, genes were upregulated in the Wnt and cell proliferation pathways, which could oppose this effect. AKT inhibition should therefore be combined with other effectors to attain the best effect.
Collapse
Affiliation(s)
- Sara Häggblad Sahlberg
- Department of Immunology, Genetics and Pathology, The Rudbeck Laboratory, Uppsala University, SE-751 85 Uppsala, Sweden
| | - Anja C Mortensen
- Department of Immunology, Genetics and Pathology, The Rudbeck Laboratory, Uppsala University, SE-751 85 Uppsala, Sweden
| | - Jakob Haglöf
- Division of Analytical Pharmaceutical Chemistry, Department of Medicinal Chemistry, Uppsala University, SE-751 23 Uppsala, Sweden
| | - Mikael K R Engskog
- Division of Analytical Pharmaceutical Chemistry, Department of Medicinal Chemistry, Uppsala University, SE-751 23 Uppsala, Sweden
| | - Torbjörn Arvidsson
- Division of Analytical Pharmaceutical Chemistry, Department of Medicinal Chemistry, Uppsala University, SE-751 23 Uppsala, Sweden
| | - Curt Pettersson
- Division of Analytical Pharmaceutical Chemistry, Department of Medicinal Chemistry, Uppsala University, SE-751 23 Uppsala, Sweden
| | - Bengt Glimelius
- Department of Immunology, Genetics and Pathology, The Rudbeck Laboratory, Uppsala University, SE-751 85 Uppsala, Sweden
| | - Bo Stenerlöw
- Department of Immunology, Genetics and Pathology, The Rudbeck Laboratory, Uppsala University, SE-751 85 Uppsala, Sweden
| | - Marika Nestor
- Department of Immunology, Genetics and Pathology, The Rudbeck Laboratory, Uppsala University, SE-751 85 Uppsala, Sweden
| |
Collapse
|
71
|
Liu Y, Huang D, Wang Z, Wu C, Zhang Z, Wang D, Li Z, Zhu T, Yang S, Sun W. LMO2 attenuates tumor growth by targeting the Wnt signaling pathway in breast and colorectal cancer. Sci Rep 2016; 6:36050. [PMID: 27779255 PMCID: PMC5078767 DOI: 10.1038/srep36050] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 10/06/2016] [Indexed: 12/23/2022] Open
Abstract
The proto-oncogene LIM-domain only 2 (lmo2) was traditionally considered to be a pivotal transcriptional regulator in hematopoiesis and leukemia. Recently, the cytosolic localization of LMO2 was revealed in multiple epithelial tissues and a variety of solid tumors. However, the function of LMO2 in these epithelia and solid tumors remains largely unclear. The Wnt signaling pathway is a crucial determinant of development, and abnormalities in several key segments of this pathway contribute to oncogenesis. The current study demonstrated that LMO2 participates in the regulation of canonical Wnt signaling in the cytoplasm by binding to Dishevelled-1/2 (DVL-1/2) proteins. These interactions occurred at the PDZ domain of Dishevelled, and LMO2 subsequently attenuated the activation of the key factor β-catenin in the canonical Wnt signaling pathway. Meanwhile, significantly decreased expression of LMO2 was detected in breast and colorectal cancers, and the downregulation of LMO2 in these cells increased cell proliferation and reduced apoptosis. Taken together, the data in this study revealed a novel crosstalk between LMO2 and the Wnt signaling pathway during tumorigenesis and suggested that LMO2 might be a tumor suppressor in certain solid tumors, in contrast to its traditional oncogenic role in the hematopoietic system.
Collapse
Affiliation(s)
- Ye Liu
- Laboratory of Molecular Genetics in School of Medicine, Nankai University, Tianjin, China
| | - Di Huang
- Laboratory of Molecular Genetics in School of Medicine, Nankai University, Tianjin, China
| | - Zhaoyang Wang
- Laboratory of Molecular Genetics in School of Medicine, Nankai University, Tianjin, China
| | - Chao Wu
- Laboratory of Molecular Genetics in School of Medicine, Nankai University, Tianjin, China
| | - Zhao Zhang
- Department of Anorectal, Tianjin Union Medical Center, Tianjin, China
| | - Dan Wang
- Department of Pathology, General Hospital of Tianjin Medical University, Tianjin, China
| | - Zongjin Li
- Laboratory of Stem cells in School of Medicine, Nankai University, Tianjin, China
| | - Tianhui Zhu
- Laboratory of Molecular Genetics in School of Medicine, Nankai University, Tianjin, China
| | - Shuang Yang
- Laboratory of Molecular Genetics in School of Medicine, Nankai University, Tianjin, China
| | - Wei Sun
- Laboratory of Molecular Genetics in School of Medicine, Nankai University, Tianjin, China
| |
Collapse
|
72
|
Essien BE, Sundaresan S, Ocadiz-Ruiz R, Chavis A, Tsao AC, Tessier AJ, Hayes MM, Photenhauer A, Saqui-Salces M, Kang AJ, Shah YM, Győrffy B, Merchant JL. Transcription Factor ZBP-89 Drives a Feedforward Loop of β-Catenin Expression in Colorectal Cancer. Cancer Res 2016; 76:6877-6887. [PMID: 27758879 DOI: 10.1158/0008-5472.can-15-3150] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 09/12/2016] [Accepted: 09/28/2016] [Indexed: 01/24/2023]
Abstract
In colorectal cancer, APC-mediated induction of unregulated cell growth involves posttranslational mechanisms that prevent proteasomal degradation of proto-oncogene β-catenin (CTNNB1) and its eventual translocation to the nucleus. However, about 10% of colorectal tumors also exhibit increased CTNNB1 mRNA. Here, we show in colorectal cancer that increased expression of ZNF148, the gene coding for transcription factor ZBP-89, correlated with reduced patient survival. Tissue arrays showed that ZBP-89 protein was overexpressed in the early stages of colorectal cancer. Conditional deletion of Zfp148 in a mouse model of Apc-mediated intestinal polyps demonstrated that ZBP-89 was required for polyp formation due to induction of Ctnnb1 gene expression. Chromatin immunoprecipitation (ChIP) and EMSA identified a ZBP-89-binding site in the proximal promoter of CTNNB1 Reciprocally, siRNA-mediated reduction of CTNNB1 expression also decreased ZBP-89 protein. ChIP identified TCF DNA binding sites in the ZNF148 promoter through which Wnt signaling regulates ZNF148 gene expression. Suppression of either ZNF148 or CTNNB1 reduced colony formation in WNT-dependent, but not WNT-independent cell lines. Therefore, the increase in intracellular β-catenin protein initiated by APC mutations is sustained by ZBP-89-mediated feedforward induction of CTNNB1 mRNA. Cancer Res; 76(23); 6877-87. ©2016 AACR.
Collapse
Affiliation(s)
- Bryan E Essien
- Department of Internal Medicine-Gastroenterology, University of Michigan, Ann Arbor, Michigan
| | - Sinju Sundaresan
- Department of Internal Medicine-Gastroenterology, University of Michigan, Ann Arbor, Michigan
| | - Ramon Ocadiz-Ruiz
- Department of Internal Medicine-Gastroenterology, University of Michigan, Ann Arbor, Michigan
| | - Aaron Chavis
- Department of Internal Medicine-Gastroenterology, University of Michigan, Ann Arbor, Michigan
| | - Amy C Tsao
- Department of Internal Medicine-Gastroenterology, University of Michigan, Ann Arbor, Michigan
| | - Arthur J Tessier
- Department of Internal Medicine-Gastroenterology, University of Michigan, Ann Arbor, Michigan
| | - Michael M Hayes
- Department of Internal Medicine-Gastroenterology, University of Michigan, Ann Arbor, Michigan
| | - Amanda Photenhauer
- Department of Internal Medicine-Gastroenterology, University of Michigan, Ann Arbor, Michigan
| | - Milena Saqui-Salces
- Department of Internal Medicine-Gastroenterology, University of Michigan, Ann Arbor, Michigan
| | - Anthony J Kang
- Department of Internal Medicine-Gastroenterology, University of Michigan, Ann Arbor, Michigan
| | - Yatrik M Shah
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Balazs Győrffy
- MTA TTK Lendület Cancer Biomarker Research Group, Budapest, Hungary
| | - Juanita L Merchant
- Department of Internal Medicine-Gastroenterology, University of Michigan, Ann Arbor, Michigan. .,Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
73
|
Subramaniyan B, Polachi N, Mathan G. Isocoreopsin: An active constituent of n-butanol extract of Butea monosperma flowers against colorectal cancer (CRC). J Pharm Anal 2016; 6:318-325. [PMID: 29403999 PMCID: PMC5762627 DOI: 10.1016/j.jpha.2016.04.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Revised: 04/26/2016] [Accepted: 04/27/2016] [Indexed: 01/19/2023] Open
Abstract
The herb Butea monosperma constitutes several human health beneficial components, which are mostly studied for their anticancer effects. In this study, the activity of n-butanol fractions of B. monosperma floral extract was examined on inhibiting aberrant crypt foci (ACF) formation in azoxymethane induced Wistar albino rats. The n-butanol extracts (150 mg/kg) decreased the ACF formation (per rat) by 92% and 78% in short- and long-term in vivo treatments, respectively. All the compounds in the n-butanol extract were isolated and purified using column and reverse-phase high pressure liquid chromatography (HPLC). Their structures were characterized using UV-visible spectroscopy, nuclear magnetic resonance (NMR) and electrospray-ionisation mass spectrometry (ESI-MS) to determine important flavonoids, namely isocoreopsin, butrin and isobutrin. These compounds were studied for their free radical scavenging and anticancer activities. The compound isocoreopsin showed significantly greater efficacy in cell death on human colon and liver cancer cell lines (50 μg/mL in HT-29 and 100 μg/mL in HepG2) than butrin (100 μg/mL in HT-29 and 500 μg/mL in HepG2) and isobutrin (80 μg/mL in HT-29 and 150 μg/mL in HepG2). These results suggest that isocoreopsin, butrin and isobutrin are the important key compounds for the chemoprevention of colon cancer and isocoreopsin can be considered as a promising novel drug.
Collapse
Affiliation(s)
| | | | - Ganeshan Mathan
- Department of Biomedical Science, School of Basic Medical Science, Bharathidasan University, Tiruchirappalli 620 024, TN, India
| |
Collapse
|
74
|
Lin Y, Ohkawara B, Ito M, Misawa N, Miyamoto K, Takegami Y, Masuda A, Toyokuni S, Ohno K. Molecular hydrogen suppresses activated Wnt/β-catenin signaling. Sci Rep 2016; 6:31986. [PMID: 27558955 PMCID: PMC5001535 DOI: 10.1038/srep31986] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 08/01/2016] [Indexed: 01/23/2023] Open
Abstract
Molecular hydrogen (H2) is effective for many diseases. However, molecular bases of H2 have not been fully elucidated. Cumulative evidence indicates that H2 acts as a gaseous signal modulator. We found that H2 suppresses activated Wnt/β-catenin signaling by promoting phosphorylation and degradation οf β-catenin. Either complete inhibition of GSK3 or mutations at CK1- and GSK3-phosphorylation sites of β-catenin abolished the suppressive effect of H2. H2 did not increase GSK3-mediated phosphorylation of glycogen synthase, indicating that H2 has no direct effect on GSK3 itself. Knock-down of adenomatous polyposis coli (APC) or Axin1, which form the β-catenin degradation complex, minimized the suppressive effect of H2 on β-catenin accumulation. Accordingly, the effect of H2 requires CK1/GSK3-phosphorylation sites of β-catenin, as well as the β-catenin degradation complex comprised of CK1, GSK3, APC, and Axin1. We additionally found that H2 reduces the activation of Wnt/β-catenin signaling in human osteoarthritis chondrocytes. Oral intake of H2 water tended to ameliorate cartilage degradation in a surgery-induced rat osteoarthritis model through attenuating β-catenin accumulation. We first demonstrate that H2 suppresses abnormally activated Wnt/β-catenin signaling, which accounts for the protective roles of H2 in a fraction of diseases.
Collapse
Affiliation(s)
- Yingni Lin
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Bisei Ohkawara
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mikako Ito
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Nobuaki Misawa
- Department of Pathology and Biological Responses, Graduate school of Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kentaro Miyamoto
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yasuhiko Takegami
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Akio Masuda
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shinya Toyokuni
- Department of Pathology and Biological Responses, Graduate school of Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kinji Ohno
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
75
|
Satelli A, Hu J, Xia X, Li S. Potential Function of Exogenous Vimentin on the Activation of Wnt Signaling Pathway in Cancer Cells. J Cancer 2016; 7:1824-1832. [PMID: 27698922 PMCID: PMC5039366 DOI: 10.7150/jca.15622] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 06/30/2016] [Indexed: 12/15/2022] Open
Abstract
Cancer cell signaling, growth, morphology, proliferation and tumorigenic potential are largely depending on the signaling molecules present naturally in the tumor microenvironment and the identification of key molecules that drive the tumor progression is critical for the development of new modalities for the prevention of tumor progression. High concentrations of vimentin in the blood of cancer patients have been reported, however the function of blood circulating vimentin remains unknown. Here, we investigated the functional role of exogenously supplemented vimentin on colon cancer cells and examined the Wnt Signaling activation and cancer cell invasion. Vimentin when supplemented to the cancer cells remained bound to the surface of the cancer cells. Furthermore, bound vimentin activates Wnt signaling pathway as detectable by increased β-catenin accumulation in the nucleus with concomitant activation of β-catenin-dependent transcription of Wnt signaling downstream targets. Functionally, there was an increase in the rate of cellular invasion in these cancer cells upon binding with vimentin. Our results thus suggest that free vimentin in the tumor microenvironment acts as a positive regulator of the β-catenin signaling pathway, thus providing a basis for cancer invasive properties.
Collapse
Affiliation(s)
- Arun Satelli
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jiemiao Hu
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Xueqing Xia
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Shulin Li
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas;; The University of Texas Graduate School of Biomedical Sciences, Houston, Texas
| |
Collapse
|
76
|
TCF7L1 Modulates Colorectal Cancer Growth by Inhibiting Expression of the Tumor-Suppressor Gene EPHB3. Sci Rep 2016; 6:28299. [PMID: 27333864 PMCID: PMC4917863 DOI: 10.1038/srep28299] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 06/01/2016] [Indexed: 12/31/2022] Open
Abstract
Dysregulation of the Wnt pathway leading to accumulation of β-catenin (CTNNB1) is a hallmark of colorectal cancer (CRC). Nuclear CTNNB1 acts as a transcriptional coactivator with TCF/LEF transcription factors, promoting expression of a broad set of target genes, some of which promote tumor growth. However, it remains poorly understood how CTNNB1 interacts with different transcription factors in different contexts to promote different outcomes. While some CTNNB1 target genes are oncogenic, others regulate differentiation. Here, we found that TCF7L1, a Wnt pathway repressor, buffers CTNNB1/TCF target gene expression to promote CRC growth. Loss of TCF7L1 impaired growth and colony formation of HCT116 CRC cells and reduced tumor growth in a mouse xenograft model. We identified a group of CTNNB1/TCF target genes that are activated in the absence of TCF7L1, including EPHB3, a marker of Paneth cell differentiation that has also been implicated as a tumor suppressor in CRC. Knockdown of EPHB3 partially restores growth and normal cell cycle progression of TCF7L1-Null cells. These findings suggest that while CTNNB1 accumulation is critical for CRC progression, activation of specific Wnt target genes in certain contexts may in fact inhibit tumor growth.
Collapse
|
77
|
Sancho SC, Olson SL, Young So E, Shimomura K, Ouchi T, Preuss F. Fibersol-2 induces apoptosis of Apc-deficient colorectal Cancer (SW480) cells and decreases polyp formation in Apc MIN mice. Cancer Biol Ther 2016; 17:657-63. [PMID: 27143108 DOI: 10.1080/15384047.2016.1177685] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The consumption of dietary fibers has been implicated with a lowered risk of human colorectal cancer. Proposed mechanisms involve alterations in the stool consistency, transit time, and formation of short-chain fatty acid by dietary fiber fermentation, and the reorganization of gut microbiota. Here we show that Fibersol-2, a digest-resistant maltodextrin, not only inhibits proliferation of colorectal SW480 cancer cell lines by increasing reactive oxygen species (ROS), but decreases the numbers of the adenoma count in Multiple Intestinal Neoplasia (MIN) mice carrying a mutation in the Adenomatous Polyposis Coli gene by 84 d of age. These observations provide direct evidence that Fibersol-2 intrinsically contains anti-cancer activity, independent of the intestinal metabolism and any potential interactions with the microbiota.
Collapse
Affiliation(s)
- Sara Cuesta Sancho
- a Department of Cancer Genetics , Roswell Park Cancer Institute , Buffalo , NY , USA
| | - Susan Losee Olson
- b Deparment of Biological Sciences , University of Wisconsin Parkside , Kenosha , WI , USA
| | - Eui Young So
- a Department of Cancer Genetics , Roswell Park Cancer Institute , Buffalo , NY , USA
| | | | - Toru Ouchi
- a Department of Cancer Genetics , Roswell Park Cancer Institute , Buffalo , NY , USA
| | - Fabian Preuss
- b Deparment of Biological Sciences , University of Wisconsin Parkside , Kenosha , WI , USA
| |
Collapse
|
78
|
Interaction between APC and Fen1 during breast carcinogenesis. DNA Repair (Amst) 2016; 41:54-62. [PMID: 27088617 DOI: 10.1016/j.dnarep.2016.04.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 04/06/2016] [Indexed: 02/07/2023]
Abstract
Aberrant DNA base excision repair (BER) contributes to malignant transformation. However, inter-individual variations in DNA repair capacity plays a key role in modifying breast cancer risk. We review here emerging evidence that two proteins involved in BER - adenomatous polyposis coli (APC) and flap endonuclease 1 (Fen1) - promote the development of breast cancer through novel mechanisms. APC and Fen1 expression and interaction is increased in breast tumors versus normal cells, APC interacts with and blocks Fen1 activity in Pol-β-directed LP-BER, and abrogation of LP-BER is linked with cigarette smoke condensate-induced transformation of normal breast epithelial cells. Carcinogens increase expression of APC and Fen1 in spontaneously immortalized human breast epithelial cells, human colon cancer cells, and mouse embryonic fibroblasts. Since APC and Fen1 are tumor suppressors, an increase in their levels could protect against carcinogenesis; however, this does not seem to be the case. Elevated Fen1 levels in breast and lung cancer cells may reflect the enhanced proliferation of cancer cells or increased DNA damage in cancer cells compared to normal cells. Inactivation of the tumor suppressor functions of APC and Fen1 is due to their interaction, which may act as a susceptibility factor for breast cancer. The increased interaction of APC and Fen1 may occur due to polypmorphic and/or mutational variation in these genes. Screening of APC and Fen1 polymorphic and/or mutational variations and APC/Fen1 interaction may permit assessment of individual DNA repair capability and the risk for breast cancer development. Such individuals might lower their breast cancer risk by reducing exposure to carcinogens. Stratifying individuals according to susceptibility would greatly assist epidemiologic studies of the impact of suspected environmental carcinogens. Additionally, a mechanistic understanding of the interaction of APC and Fen1 may provide the basis for developing new and effective targeted chemopreventive and chemotherapeutic agents.
Collapse
|
79
|
Monin MB, Krause P, Stelling R, Bocuk D, Niebert S, Klemm F, Pukrop T, Koenig S. The anthelmintic niclosamide inhibits colorectal cancer cell lines via modulation of the canonical and noncanonical Wnt signaling pathway. J Surg Res 2016; 203:193-205. [PMID: 27338550 DOI: 10.1016/j.jss.2016.03.051] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Revised: 03/09/2016] [Accepted: 03/22/2016] [Indexed: 01/01/2023]
Abstract
BACKGROUND Wnt/β-catenin signaling is known to play an important role in colorectal cancer (CRC). Niclosamide, a salicylamide derivative used in the treatment of tapeworm infections, targets the Wnt/β-catenin pathway. The objective of this study was to investigate niclosamide as a therapeutic agent against CRC. METHODS The antiproliferative effects of 1, 3, 10, and 50 μM concentrations of niclosamide on human (SW480 and SW620) and rodent (CC531) CRC cell lines were determined by MTS assay and direct cell count. The lymphoid enhancer-binding factor 1/transcription factor (LEF/TCF) reporter assay monitored the activity of Wnt signaling. Immunofluorescence staining demonstrated the expression pattern of active β-catenin. Gene expression of canonical and noncanonical Wnt signaling components was analyzed using qRT-PCR. Western blot analysis was performed with antibodies detecting nuclear localization of β-catenin and c-jun. RESULTS Cell proliferation in CRC cell lines was blocked dose dependently after 12 and 24 h of incubation. The Wnt promoter activity of LEF/TCF significantly decreased with niclosamide concentrations of 10 and 50 μM after 12 h of incubation. Active β-catenin did not shift from the nuclear to the cytosolic pool. However, canonical target genes (met, MMP7, and cyclin D1) as well as the coactivating factor Bcl9 were downregulated, whereas the noncanonical key player c-jun was clearly activated. CONCLUSIONS Niclosamide treatment is associated with an inhibitory effect on CRC development and reduced Wnt activity. It may exert its effect by interfering with the nuclear β-catenin-Bcl9-LEF/TCF triple-complex and by upregulation of c-jun representing noncanonical Wnt/JNK signaling. Thus, our findings warrant further research into this substance as a treatment option for patients with advanced CRC.
Collapse
Affiliation(s)
- Malte B Monin
- Department of General, Visceral and Paediatric Surgery, University Medical Centre, Georg-August-University Goettingen, Göttingen, Germany
| | - Petra Krause
- Department of General, Visceral and Paediatric Surgery, University Medical Centre, Georg-August-University Goettingen, Göttingen, Germany
| | - Robin Stelling
- Department of General, Visceral and Paediatric Surgery, University Medical Centre, Georg-August-University Goettingen, Göttingen, Germany
| | - Derya Bocuk
- Department of General, Visceral and Paediatric Surgery, University Medical Centre, Georg-August-University Goettingen, Göttingen, Germany
| | - Sabine Niebert
- Department of General, Visceral and Paediatric Surgery, University Medical Centre, Georg-August-University Goettingen, Göttingen, Germany
| | - Florian Klemm
- Department of Haematology and Oncology, University Medical Centre, Georg-August-University Goettingen, Göttingen, Germany
| | - Tobias Pukrop
- Department of Haematology and Oncology, University Medical Centre, Georg-August-University Goettingen, Göttingen, Germany; Department for Internal Medicine III, Hematology/Oncology, University Clinic Regensburg, Regensburg, Germany
| | - Sarah Koenig
- Department of General, Visceral and Paediatric Surgery, University Medical Centre, Georg-August-University Goettingen, Göttingen, Germany; University Hospital Wuerzburg, Julius-Maximilians-University Wuerzburg, Chair of Medical Teaching and Medical Education Research, Josef-Schneider-Str. 2/D6, D-97080 Wuerzburg, Germany.
| |
Collapse
|
80
|
Wnt/β-catenin signaling plays an ever-expanding role in stem cell self-renewal, tumorigenesis and cancer chemoresistance. Genes Dis 2016; 3:11-40. [PMID: 27077077 PMCID: PMC4827448 DOI: 10.1016/j.gendis.2015.12.004] [Citation(s) in RCA: 206] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Wnt signaling transduces evolutionarily conserved pathways which play important roles in initiating and regulating a diverse range of cellular activities, including cell proliferation, calcium homeostasis, and cell polarity. The role of Wnt signaling in controlling cell proliferation and stem cell self-renewal is primarily carried out through the canonical pathway, which is the best-characterized the multiple Wnt signaling branches. The past 10 years has seen a rapid expansion in our understanding of the complexity of this pathway, as many new components of Wnt signaling have been identified and linked to signaling regulation, stem cell functions, and adult tissue homeostasis. Additionally, a substantial body of evidence links Wnt signaling to tumorigenesis of cancer types and implicates it in the development of cancer drug resistance. Thus, a better understanding of the mechanisms by which dysregulation of Wnt signaling precedes the development and progression of human cancer may hasten the development of pathway inhibitors to augment current therapy. This review summarizes and synthesizes our current knowledge of the canonical Wnt pathway in development and disease. We begin with an overview of the components of the canonical Wnt signaling pathway and delve into the role this pathway has been shown to play in stemness, tumorigenesis, and cancer drug resistance. Ultimately, we hope to present an organized collection of evidence implicating Wnt signaling in tumorigenesis and chemoresistance to facilitate the pursuit of Wnt pathway modulators that may improve outcomes of cancers in which Wnt signaling contributes to aggressive disease and/or treatment resistance.
Collapse
|
81
|
Association of Wnt signaling pathway genetic variants in gallbladder cancer susceptibility and survival. Tumour Biol 2015; 37:8083-95. [PMID: 26715268 DOI: 10.1007/s13277-015-4728-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 12/21/2015] [Indexed: 12/15/2022] Open
Abstract
Gallbladder cancer (GBC) is the most common malignancy of the biliary tract with adverse prognosis and poor survival. Wnt signaling plays an important role in embryonic development and regeneration of tissues in all the species. Deregulation of expression and mutations in this pathway may lead to disease state such as cancer. In this study, we assessed the association of common germline variants of Wnt pathway genes (SFRP2, SFRP4, DKK2, DKK3, WISP3, APC, β-catenin, AXIN-2, GLI-1) to evaluate their contribution in predisposition to GBC and treatment outcomes. The study included 564 GBC patients and 250 controls. Out of 564, 200 patients were followed up for treatment response and survival. Tumor response (RECIST 1.1) was recorded in 116 patients undergoing non-adjuvant chemotherapy (NACT). Survival was assessed by Kaplan-Meier curve and Cox-proportional hazard regression. Single locus analysis showed significant association of SFRP4 rs1802073G > T [p value = 0.0001], DKK2 rs17037102C > T [p value = 0.0001], DKK3 rs3206824C > T [p value = 0.012], APC rs4595552 A/T [p value = 0.021], APC rs11954856G > T [p value = 0.047], AXIN-2 rs4791171C > T [p value = 0.001], β-catenin rs4135385A > G [p value = 0.031], and GLI-1 rs222826C > G [p value = 0.001] with increased risk of GBC. Gene-gene interaction using GMDR analysis predicted APC rs11954856 and AXIN2 rs4791171 as significant in conferring GBC susceptibility. Cox-proportional hazard model showed GLI-1 rs2228226 CG/GG and AXIN-2 rs4791171 TT genotype higher hazard ratio. In recursive partitioning, AXIN-2 rs4791171 TT genotype showed higher mortality and hazard. Most of studied genetic variants influence GBC susceptibility. APC rs11954856, GLI-1 rs2228226, and AXIN-2 rs4791171 were found to be associated with poor survival in advanced GBC patients.
Collapse
|
82
|
Min J, Liu L, Li X, Jiang J, Wang J, Zhang B, Cao D, Yu D, Tao D, Hu J, Gong J, Xie D. Absence of DAB2IP promotes cancer stem cell like signatures and indicates poor survival outcome in colorectal cancer. Sci Rep 2015; 5:16578. [PMID: 26564738 PMCID: PMC4643237 DOI: 10.1038/srep16578] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 10/09/2015] [Indexed: 12/13/2022] Open
Abstract
Metastasis is a critical factor for the high mortality of colorectal cancer (CRC), but its mechanism is not completely understood. Epithelial-mesenchymal transition (EMT) is thought to play a key role in metastasis and also increases the cancer stem cell (CSC) feature that facilitates metastatic colonization. In this study, we investigated the biological roles of DAB2IP regulating EMT and stem cell-like features in human CRC. We demonstrate that DAB2IP suppresses NF-κB-mediated EMT and CSC features in CRC cells. In DAB2IP knockout mice, we discovered the hyperplasia in colonic epithelium which aberrantly represents the mesenchymal feature and NF-κB pathway activation. In clinic CRC tissue, we also reveal that reduced DAB2IP can enrich the CD133(+) subpopulation. DAB2IP expression was inversely correlated with tumor differentiation and metastasis, and patients with lower DAB2IP expression had shorter overall survival time. Taken together, our study demonstrates that DAB2IP inhibits NF-κB-inducing EMT and CSC to suppress the CRC progression, and also suggests that DAB2IP is a beneficial prediction factor for CRC patient prognosis.
Collapse
Affiliation(s)
- Jiang Min
- Tongji Cancer Research Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. of China.,Gastrointestinal Surgery Department, The First Affiliated Hospital of ChongQing Medical University, Chongqing 400016, P.R. of China
| | - Liang Liu
- Tongji Cancer Research Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. of China.,Department of Gastrointestinal Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. of China
| | - Xiaolan Li
- Tongji Cancer Research Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. of China
| | - Jianwu Jiang
- Tongji Cancer Research Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. of China
| | - Jingtao Wang
- Tongji Cancer Research Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. of China
| | - Bo Zhang
- Tongji Cancer Research Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. of China
| | - Dengyi Cao
- Tongji Cancer Research Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. of China
| | - Dongdong Yu
- Tongji Cancer Research Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. of China
| | - Deding Tao
- Tongji Cancer Research Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. of China
| | - Junbo Hu
- Tongji Cancer Research Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. of China.,Department of Gastrointestinal Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. of China
| | - Jianping Gong
- Tongji Cancer Research Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. of China.,Department of Gastrointestinal Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. of China
| | - Daxing Xie
- Tongji Cancer Research Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. of China.,Department of Gastrointestinal Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. of China
| |
Collapse
|
83
|
Pronobis MI, Rusan NM, Peifer M. A novel GSK3-regulated APC:Axin interaction regulates Wnt signaling by driving a catalytic cycle of efficient βcatenin destruction. eLife 2015; 4:e08022. [PMID: 26393419 PMCID: PMC4568445 DOI: 10.7554/elife.08022] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 08/20/2015] [Indexed: 01/11/2023] Open
Abstract
APC, a key negative regulator of Wnt signaling in development and oncogenesis, acts in the destruction complex with the scaffold Axin and the kinases GSK3 and CK1 to target βcatenin for destruction. Despite 20 years of research, APC's mechanistic function remains mysterious. We used FRAP, super-resolution microscopy, functional tests in mammalian cells and flies, and other approaches to define APC's mechanistic role in the active destruction complex when Wnt signaling is off. Our data suggest APC plays two roles: (1) APC promotes efficient Axin multimerization through one known and one novel APC:Axin interaction site, and (2) GSK3 acts through APC motifs R2 and B to regulate APC:Axin interactions, promoting high-throughput of βcatenin to destruction. We propose a new dynamic model of how the destruction complex regulates Wnt signaling and how this goes wrong in cancer, providing insights into how this multiprotein signaling complex is assembled and functions via multivalent interactions. DOI:http://dx.doi.org/10.7554/eLife.08022.001 An embryo starts off as a small ball of stem cells, each of which has the potential to become any type of cell in the body. Adult organs and tissues also contain small numbers of stem cells that can replace old or damaged cells. In both of these processes, stem cells need to ‘decide’ when they should start to change into a more specialized cell type, and which cell fate to choose (e.g., liver cell vs kidney cell). A signaling pathway involving Wnt proteins helps to direct many of these decisions. But if the ‘Wnt signaling pathway’ becomes activated at the wrong time, it can lead to cancer. For example, the first step in development of colon cancer is the inappropriate activation of Wnt signaling, and is most often caused by mutations in the gene that encodes a protein called APC. The APC protein is a tumor suppressor and normally inhibits Wnt signaling. However, even after over 20 years of effort, it remains largely mysterious how APC does this. APC is known to work with another protein called Axin as part of a large protein machine. This protein complex performs one of the first steps in a process that ultimately marks a key component of the Wnt signaling pathway for destruction. Pronobis et al. have now used a range of techniques to define APC's role in this so-called ‘destruction complex’. This analysis revealed the internal structure of a complex made from APC and Axin, and showed that cable- and sheet-like assemblies of Axin were intertwined with APC cables. Further experiments then revealed how APC and Axin proteins are added into or leave these complexes, and showed that this is critical for this protein machine to work. Pronobis et al.'s data also suggest that APC plays two roles, which make the destruction complex more efficient. Firstly, it can interact with Axin via two separate interaction sites that help to assemble the destruction complex. Secondly, specific features in APC allow it to interact with a third protein (called GSK3), which can then regulate how APC interacts with Axin. One of the next challenges will be to uncover how APC helps to transfer the components of Wnt signaling to the next step of their destruction, and to clear up the role played by GSK3. DOI:http://dx.doi.org/10.7554/eLife.08022.002
Collapse
Affiliation(s)
- Mira I Pronobis
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Nasser M Rusan
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, Bethesda, United States
| | - Mark Peifer
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, United States
| |
Collapse
|
84
|
Wiedermann G, Bone RA, Silva JC, Bjorklund M, Murray PJ, Dale JK. A balance of positive and negative regulators determines the pace of the segmentation clock. eLife 2015; 4:e05842. [PMID: 26357015 PMCID: PMC4601006 DOI: 10.7554/elife.05842] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 09/02/2015] [Indexed: 12/20/2022] Open
Abstract
Somitogenesis is regulated by a molecular oscillator that drives dynamic gene expression within the pre-somitic mesoderm. Previous mathematical models of the somitogenesis clock that invoke the mechanism of delayed negative feedback predict that its oscillation period depends on the sum of delays inherent to negative-feedback loops and inhibitor half-lives. We develop a mathematical model that explores the possibility that positive feedback also plays a role in determining the period of clock oscillations. The model predicts that increasing the half-life of the positive regulator, Notch intracellular domain (NICD), can lead to elevated NICD levels and an increase in the oscillation period. To test this hypothesis, we investigate a phenotype induced by various small molecule inhibitors in which the clock is slowed. We observe elevated levels and a prolonged half-life of NICD. Reducing NICD production rescues these effects. These data provide the first indication that tight control of the turnover of positive as well as negative regulators of the clock determines its periodicity. DOI:http://dx.doi.org/10.7554/eLife.05842.001 During embryo development, animals with backbones (also called vertebrates) repeatedly lay down pairs of segments along the axis that runs from the head to the tail of the embryo. These segments, known as somites, eventually form part of the skeleton, as well as the associated muscle, cartilage, tendons and some skin. Importantly, the segments in some species take longer to form than those in other species, and they also form in proportion to the overall size of the animal. A ‘segmentation clock’ regulates the timing of somite formation via cycles in which genes are repeatedly switched on and then off again. Some aspects of this process are well understood. Firstly, many ‘clock genes’ are known to produce proteins that can inhibit their own production. However, this ‘negative feedback’ is typically delayed because it takes time to produce and transport protein within a cell. The inhibitory proteins are also unstable and their breakdown leads to an end of their inhibitiory effect. It is also known that: some proteins send signals to neighbouring cells while others, including one called Notch, receive them; and the received signals activate the expression of clock genes. However, until now, no one had studied how the turnover (that is, the production and breakdown) of the proteins that activate clock gene expression could regulate the pace of the clock. Wiedermann, Bone et al. used a two-pronged approach to investigate this question. First, they developed a computational model that accounted for both inhibition and activation of clock gene expression. The model predicts that the clock slows down when the levels of a positive regulator called Notch intracellular domain (or NICD for short) are high. This is because the negative regulators would have to overcome the increased positive regulators to switch off the clock genes. A slower segmentation clock would be expected to give rise to fewer, larger somites in a given length of time when compared to a similar clock with a faster pace. To test these predictions, Wiedermann, Bone et al. next conducted experiments on chicken embryos, which are commonly used in studies of animal development. The experiments agreed with the model predictions. That is, when treated with a variety of drugs that affected NICD turnover and thereby increased the levels of NICD, the clock slowed and these chicken embryos developed fewer, but larger somites. As predicted by the mathematical model, these effects were rescued when Wiedermann, Bone et al. reduced the production of NICD. These findings show that a balance of positive and negative regulators determines the pace of the segmentation clock. DOI:http://dx.doi.org/10.7554/eLife.05842.002
Collapse
Affiliation(s)
- Guy Wiedermann
- Division of Cell and Developmental Biology, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Robert Alexander Bone
- Division of Cell and Developmental Biology, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Joana Clara Silva
- Division of Cell and Developmental Biology, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Mia Bjorklund
- Division of Cell and Developmental Biology, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Philip J Murray
- Division of Mathematics, University of Dundee, Dundee, United Kingdom
| | - J Kim Dale
- Division of Cell and Developmental Biology, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
85
|
Ohishi K, Toume K, Arai MA, Sadhu SK, Ahmed F, Ishibashi M. Coronaridine, an iboga type alkaloid from Tabernaemontana divaricata, inhibits the Wnt signaling pathway by decreasing β-catenin mRNA expression. Bioorg Med Chem Lett 2015; 25:3937-40. [DOI: 10.1016/j.bmcl.2015.07.036] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 07/03/2015] [Accepted: 07/15/2015] [Indexed: 01/18/2023]
|
86
|
Venugopal A, Subramaniam D, Balmaceda J, Roy B, Dixon DA, Umar S, Weir SJ, Anant S. RNA binding protein RBM3 increases β-catenin signaling to increase stem cell characteristics in colorectal cancer cells. Mol Carcinog 2015; 55:1503-1516. [PMID: 26331352 DOI: 10.1002/mc.22404] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 08/10/2015] [Accepted: 08/17/2015] [Indexed: 12/21/2022]
Abstract
Colorectal cancer (CRC) is the second leading cause of cancer deaths in the United States. It arises from loss of intestinal epithelial homeostasis and hyperproliferation of the crypt epithelium. In order to further understand the pathogenesis of CRC it is important to further understand the factors regulating intestinal epithelial proliferation and more specifically, regulation of the intestinal epithelial stem cell compartment. Here, we investigated the role of the RNA binding protein RBM3 in stem cell homeostasis in colorectal cancers. Using a doxycycline (Dox) inducible RBM3 overexpressing cell lines HCT 116 and DLD-1, we measured changes in side population (SP) cells that have high xenobiotic efflux capacity and increased capacity for self-renewal. In both cell lines, RBM3 induction showed significant increases in the percentage of side population cells. Additionally, we observed increases in spheroid formation and in cells expressing DCLK1, LGR5 and CD44Hi . As the Wnt/β-catenin signaling pathway is important for both physiologic and cancer stem cells, we next investigated the effects of RBM3 overexpression on β-catenin activity. RBM3 overexpression increased levels of nuclear β-catenin as well as TCF/LEF transcriptional activity. In addition, there was inactivation of GSK3β leading to decreased β-catenin phosphorylation. Pharmacologic inhibition of GSK3β using (2'Z,3'E)-6-Bromoindirubin-3'-oxime (BIO) also recapitulates the RBM3 induced β-catenin activity. In conclusion, we see that RNA binding protein RBM3 induces stemness in colorectal cancer cells through a mechanism involving suppression of GSK3β activity thereby enhancing β-catenin signaling. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Anand Venugopal
- Department of Molecular and Integrative Physiology, The University of Kansas Medical Center, Kansas City, Kansas
| | - Dharmalingam Subramaniam
- Department of Molecular and Integrative Physiology, The University of Kansas Medical Center, Kansas City, Kansas
| | - Julia Balmaceda
- Department of Molecular and Integrative Physiology, The University of Kansas Medical Center, Kansas City, Kansas
| | - Badal Roy
- Department of Molecular and Integrative Physiology, The University of Kansas Medical Center, Kansas City, Kansas
| | - Dan A Dixon
- Department of Cancer Biology, The University of Kansas Medical Center, Kansas City, Kansas
| | - Shahid Umar
- Department of Molecular and Integrative Physiology, The University of Kansas Medical Center, Kansas City, Kansas
| | - Scott J Weir
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, Kansas
| | - Shrikant Anant
- Department of Molecular and Integrative Physiology, The University of Kansas Medical Center, Kansas City, Kansas.
| |
Collapse
|
87
|
Gerlach JP, Emmink BL, Nojima H, Kranenburg O, Maurice MM. Wnt signalling induces accumulation of phosphorylated β-catenin in two distinct cytosolic complexes. Open Biol 2015; 4:140120. [PMID: 25392450 PMCID: PMC4248064 DOI: 10.1098/rsob.140120] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Wnt/β-catenin signalling controls development and adult tissue homeostasis and causes cancer when inappropriately activated. In unstimulated cells, an Axin1-centred multi-protein complex phosphorylates the transcriptional co-activator β-catenin, marking it for degradation. Wnt signalling antagonizes β-catenin proteolysis, leading to its accumulation and target gene expression. How Wnt stimulation alters the size distribution, composition and activity of endogenous Axin1 complexes remains poorly understood. Here, we employed two-dimensional blue native/SDS-PAGE to analyse endogenous Axin1 and β-catenin complexes during Wnt signalling. We show that the size range of Axin1 complexes is conserved between species and remains largely unaffected by Wnt stimulation. We detect a striking Wnt-dependent, cytosolic accumulation of both non-phosphorylated and phosphorylated β-catenin within a 450 kDa Axin1-based complex and in a distinct, Axin1-free complex of 200 kDa. These results argue that during Wnt stimulation, phosphorylated β-catenin is released from the Axin1 complex but fails to undergo immediate degradation. Importantly, in APC-mutant cancer cells, the distribution of Axin1 and β-catenin complexes strongly resembles that of Wnt-stimulated cells. Our findings argue that Wnt signals and APC mutations interfere with the turnover of phosphorylated β-catenin. Furthermore, our results suggest that the accumulation of small-sized β-catenin complexes may serve as an indicator of Wnt pathway activity in primary cancer cells.
Collapse
Affiliation(s)
- Jan P Gerlach
- Department of Cell Biology, Center for Molecular Medicine, Heidelberglaan 100, Utrecht 3584CX, The Netherlands
| | - Benjamin L Emmink
- Department of Surgery, University Medical Center Utrecht, Heidelberglaan 100, Utrecht 3584CX, The Netherlands
| | - Hisashi Nojima
- MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - Onno Kranenburg
- Department of Surgery, University Medical Center Utrecht, Heidelberglaan 100, Utrecht 3584CX, The Netherlands
| | - Madelon M Maurice
- Department of Cell Biology, Center for Molecular Medicine, Heidelberglaan 100, Utrecht 3584CX, The Netherlands
| |
Collapse
|
88
|
Deubiquitinase USP47/UBP64E Regulates β-Catenin Ubiquitination and Degradation and Plays a Positive Role in Wnt Signaling. Mol Cell Biol 2015; 35:3301-11. [PMID: 26169834 DOI: 10.1128/mcb.00373-15] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 07/09/2015] [Indexed: 12/15/2022] Open
Abstract
Wnt signaling plays important roles in development and tumorigenesis. A central question about the Wnt pathway is the regulation of β-catenin. Phosphorylation of β-catenin by CK1α and GSK3 promotes β-catenin binding to β-TrCP, leading to β-catenin degradation through the proteasome. The phosphorylation and ubiquitination of β-catenin have been well characterized; however, it is unknown whether and how a deubiquitinase is involved. In this study, by screening RNA interference (RNAi) libraries, we identified USP47 as a deubiquitinase that prevents β-catenin ubiquitination. Inactivation of USP47 by RNAi increased β-catenin ubiquitination, attenuated Wnt signaling, and repressed cancer cell growth. Furthermore, USP47 deubiquitinates itself, whereas β-TrCP promotes USP47 ubiquitination through interaction with an atypical motif in USP47. Finally, in vivo studies in the Drosophila wing suggest that UBP64E, the USP47 counterpart in Drosophila, is required for Armadillo stabilization and plays a positive role in regulating Wnt target gene expression.
Collapse
|
89
|
Tan BL, Norhaizan ME, Huynh K, Heshu SR, Yeap SK, Hazilawati H, Roselina K. Water extract of brewers' rice induces apoptosis in human colorectal cancer cells via activation of caspase-3 and caspase-8 and downregulates the Wnt/β-catenin downstream signaling pathway in brewers' rice-treated rats with azoxymethane-induced colon carcinogenesis. Altern Ther Health Med 2015; 15:205. [PMID: 26122204 PMCID: PMC4487214 DOI: 10.1186/s12906-015-0730-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 06/17/2015] [Indexed: 12/16/2022]
Abstract
BACKGROUND Brewers' rice, is locally known as temukut, is a mixture of broken rice, rice bran, and rice germ. The current study is an extension of our previous work, which demonstrated that water extract of brewers' rice (WBR) induced apoptosis in human colorectal cancer (HT-29) cells. We also identified that brewers' rice was effective in reducing the tumor incidence and multiplicity in azoxymethane (AOM)-injected colon cancer rats. Our present study was designed to identify whether WBR confers an inhibitory effect via the regulation of upstream components in the Wnt signaling pathway in HT-29 cells. To further determine whether the in vitro mechanisms of action observed in the HT-29 cells inhibit the downstream signaling target of the Wnt/β-catenin pathway, we evaluated the mechanistic action of brewers' rice in regulating the expressions and key protein markers during colon carcinogenesis in male Sprague-Dawley rats. METHODS The mRNA levels of several upstream-related genes in the Wnt signaling pathway in HT-29 cells treated with WBR were determined by quantitative real-time PCR analyses. Caspase-3 and -8 were evaluated using a colorimetric assay. Male Sprague-Dawley rats were administered two intraperitoneal injections of AOM in saline (15 mg/kg body weight) over a two-week period and received with 10, 20, and 40% (w/w) brewers' rice. The expressions and protein levels of cyclin D1 and c-myc were evaluated by immunohistochemical staining and western blotting, respectively. RESULTS The overall analyses revealed that the treatment of HT-29 cells with WBR inhibited Wnt signaling activity through upregulation of the casein kinase 1 (CK1) and adenomatous polyposis coli (APC) mRNA levels. We discovered that the treatment of HT-29 cells with WBR resulted in the induction of apoptosis by the significant activation of caspase-3 and -8 activities compared with the control (P < 0.05). In vivo analyses indicated that brewers' rice diminished the β-catenin, cyclin D1, and c-myc protein levels. CONCLUSIONS We provide evidence that brewers' rice can induce apoptosis and inhibit the proliferation of HT-29 cells through regulation of caspase-dependent pathways and inhibit the Wnt/β-catenin downstream signaling pathway in vivo. We suggest that brewers' rice may be a useful dietary agent for colorectal cancer.
Collapse
|
90
|
Luo Y, El Agha E, Turcatel G, Chen H, Chiu J, Warburton D, Bellusci S, Qian BP, Menke DB, Shi W. Mesenchymal adenomatous polyposis coli plays critical and diverse roles in regulating lung development. BMC Biol 2015; 13:42. [PMID: 26092405 PMCID: PMC4702410 DOI: 10.1186/s12915-015-0153-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 06/11/2015] [Indexed: 01/07/2023] Open
Abstract
Background Adenomatous polyposis coli (Apc) is a tumor suppressor that inhibits Wnt/Ctnnb1. Mutations of Apc will not only lead to familial adenomatous polyposis with associated epithelial lesions, but will also cause aggressive fibromatosis in mesenchymal cells. However, the roles of Apc in regulating mesenchymal cell biology and organogenesis during development are unknown. Results We have specifically deleted the Apc gene in lung mesenchymal cells during early lung development in mice. Loss of Apc function resulted in immediate mesenchymal cell hyperproliferation through abnormal activation of Wnt/Ctnnb1, followed by a subsequent inhibition of cell proliferation due to cell cycle arrest at G0/G1, which was caused by a mechanism independent of Wnt/Ctnnb1. Meanwhile, abrogation of Apc also disrupted lung mesenchymal cell differentiation, including decreased airway and vascular smooth muscle cells, the presence of Sox9-positive mesenchymal cells in the peripheral lung, and excessive versican production. Moreover, lung epithelial branching morphogenesis was drastically inhibited due to disrupted Bmp4-Fgf10 morphogen production and regulation in surrounding lung mesenchyme. Lastly, lung mesenchyme-specific Apc conditional knockout also resulted in altered lung vasculogenesis and disrupted pulmonary vascular continuity through a paracrine mechanism, leading to massive pulmonary hemorrhage and lethality at mid-gestation when the pulmonary circulation should have started. Conclusions Our study suggests that Apc in lung mesenchyme plays central roles in coordinating the proper development of several quite different cellular compartments including lung epithelial branching and pulmonary vascular circulation during lung organogenesis. Electronic supplementary material The online version of this article (doi:10.1186/s12915-015-0153-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yongfeng Luo
- Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, 90027, USA.,Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90027, USA
| | - Elie El Agha
- Excellence Cluster Cardio-Pulmonary System, Justus Liebig University Giessen, 35392, Giessen, Hessen, Germany
| | - Gianluca Turcatel
- Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, 90027, USA.,Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90027, USA
| | - Hui Chen
- Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, 90027, USA
| | - Joanne Chiu
- Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, 90027, USA
| | - David Warburton
- Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, 90027, USA.,Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90027, USA
| | - Saverio Bellusci
- Excellence Cluster Cardio-Pulmonary System, Justus Liebig University Giessen, 35392, Giessen, Hessen, Germany.,Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008, Kazan, Russian Federation
| | - Bang-Ping Qian
- Spine Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Douglas B Menke
- Department of Genetics, University of Georgia, Athens, GA, 30602, USA
| | - Wei Shi
- Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, 90027, USA. .,Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90027, USA.
| |
Collapse
|
91
|
Involvement of trefoil factor family 2 in the enlargement of intestinal tumors in Apc(Min/+) mice. Biochem Biophys Res Commun 2015; 463:859-63. [PMID: 26056002 DOI: 10.1016/j.bbrc.2015.06.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 06/03/2015] [Indexed: 02/02/2023]
Abstract
It is assumed that tumor size may be associated with malignant tumor conversion. However, the molecules responsible for determination of tumor size are not well understood. We counted the number of intestinal tumors in 8, 12 and 30-week-old Apc(Min/+) mice and measured tumor sizes, respectively. Genes involved in determining tumor size were examined using microarray analysis. Cultured cells were then, transfected with a mammalian expression vector containing a candidate gene to examine the functional role of the gene. The effect of forced expression of candidate gene on cell growth was evaluated by measuring the doubling time of the cultured cells and the growth of grafted cells in nude mice. Unexpectedly, microarray analysis identified trefoil factor family 2 (Tff2) rather than growth related genes and/or oncogenes as a most variable gene. Overexpressing Tff2 in cultured cells reduced doubling time in vitro and rapidly increased xenograft tumor size in vivo. We found Tff2 as a novel important factor that to be able to enlarge an intestinal tumor size.
Collapse
|
92
|
GRP78 enhances the glutamine metabolism to support cell survival from glucose deficiency by modulating the β-catenin signaling. Oncotarget 2015; 5:5369-80. [PMID: 24977433 PMCID: PMC4170599 DOI: 10.18632/oncotarget.2105] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
To support the high rates of proliferation, cancer cells undergo the metabolic reprogramming: aerobic glycolysis and glutamine addiction. Though glucose regulated protein 78 (GRP78) is a glucose-sensing protein and frequently highly expressed in tumor cells, its roles in glucose and glutamine metabolic regulation remain poorly unknown. We report here that glucose deficiency-induced GRP78 enhances β-catenin signaling and consequently promotes its downstream c-Myc-mediated glutamine metabolism in colorectal cancer cells. Mechanistically, GRP78 elevates intracellular free β-catenin level via disruption of adenomatous polyposis coli (APC)-β-catenin and E-cadherin-β-catenin protein complexes. Notably, overexpression of GRP78 causes APC protein downregulation in proteasome- and lysosome-independent manners. Further mechanistic studies reveal that GRP78 facilitates the extracellular release of APC, thereby rendering the liberation of β-catenin from APC. Furthermore, GRP78 acts through both hindering E-cadherin expression and impairing the interaction of E-cadherin with β-catenin to indirectly and directly influence E-cadherin-β-catenin complex stability. Our study reveals that GRP78 is a novel molecular link between metabolic alterations and signal transduction during tumor progression.
Collapse
|
93
|
Ohishi K, Toume K, Arai MA, Koyano T, Kowithayakorn T, Mizoguchi T, Itoh M, Ishibashi M. 9-Hydroxycanthin-6-one, a β-Carboline Alkaloid from Eurycoma longifolia, Is the First Wnt Signal Inhibitor through Activation of Glycogen Synthase Kinase 3β without Depending on Casein Kinase 1α. JOURNAL OF NATURAL PRODUCTS 2015; 78:1139-1146. [PMID: 25905468 DOI: 10.1021/acs.jnatprod.5b00153] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Wnt signaling regulates various processes such as cell proliferation, differentiation, and embryo development. However, numerous diseases have been attributed to the aberrant transduction of Wnt signaling. We screened a plant extract library targeting TCF/β-catenin transcriptional modulating activity with a cell-based luciferase assay. Activity-guided fractionation of the MeOH extract of the E. longifolia root led to the isolation of 9-hydroxycanthin-6-one (1). Compound 1 exhibited TCF/β-catenin inhibitory activity. Compound 1 decreased the expression of Wnt signal target genes, mitf and zic2a, in zebrafish embryos. Treatment of SW480 cells with 1 decreased β-catenin and increased phosphorylated β-catenin (Ser 33, 37, Tyr 41) protein levels. The degradation of β-catenin by 1 was suppressed by GSK3β-siRNA, while compound 1 decreased β-catenin even in the presence of CK1α-siRNA. These results suggest that 1 inhibits Wnt signaling through the activation of GSK3β independent of CK1α.
Collapse
Affiliation(s)
- Kensuke Ohishi
- †Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Kazufumi Toume
- †Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Midori A Arai
- †Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Takashi Koyano
- ‡Temko Corporation, 4-27-4 Honcho, Nakano, Tokyo 164-0012, Japan
| | | | - Takamasa Mizoguchi
- †Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Motoyuki Itoh
- †Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Masami Ishibashi
- †Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| |
Collapse
|
94
|
Garnier A, Vykoukal J, Hubertus J, Alt E, von Schweinitz D, Kappler R, Berger M, Ilmer M. Targeting the neurokinin-1 receptor inhibits growth of human colon cancer cells. Int J Oncol 2015; 47:151-60. [PMID: 25998227 DOI: 10.3892/ijo.2015.3016] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 04/15/2015] [Indexed: 12/20/2022] Open
Abstract
The substance P (SP)/neurokinin-1 receptor (NK1R) complex and the Wnt cascade are pivotal signaling pathways in the regulation of cell growth and hence, potent targets for future anticancer therapies. However, while the Wnt cascade has long been associated with colon cancer, little is known about the expression of the NK1R complex as a potential target in this tumor and its molecular basis in tumorigenesis in general. We treated the human colon cancer cell lines LiM6 and DLD1 with the NK1R antagonist and the clinical drug aprepitant (AP) and analyzed both growth response and downstream mechanisms using MTT-assay, reverse phase protein array (RPPA), western blot, Super TOP/FOP, confocal microscopy, and sphere formation ability (SFA) assays. Following NK1R blockage, we found significant growth inhibition of both colon cancer cell lines. When analyzing downstream mechanisms, we found a striking inhibition of the canonical Wnt pathway represented by decreased Super TOP/FOP and increased membrane stabilization of β-catenin. This effect was independent from baseline Wnt activity and mutational status of β-catenin. Further, treatment of colon cancer cells grown under cancer stem cell (CSC) conditions reduced sphere formation in both number and size after a single treatment period. We show that the NK1R can be a potent anticancer target in colon cancer and that NK1R antagonists could potentially serve as future anticancer drugs. This effect was seen not only in primary cancer cells but, for the first time, also in CSC-like cells, potentially including these cells in a therapeutic effect. Also, we describe the robust inhibition of canonical Wnt signaling through targeting the SP/NK1R signaling cascade. These findings give important insight into the molecular mechanisms of the SP/NK1R complex as a critical component in tumorigenesis and could help to identify future anticancer therapies for colon and other Wnt-activated cancers.
Collapse
Affiliation(s)
- Agnès Garnier
- Department of Pediatric Surgery, Research Laboratories, Dr von Hauner Children's Hospital, Ludwig Maximilians University Munich, Munich, Germany
| | - Jody Vykoukal
- Department of Translational Molecular Pathology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Jochen Hubertus
- Department of Pediatric Surgery, Research Laboratories, Dr von Hauner Children's Hospital, Ludwig Maximilians University Munich, Munich, Germany
| | - Eckhard Alt
- Department of Medicine, Tulane University Health Science Center, New Orleans, LA, USA
| | - Dietrich von Schweinitz
- Department of Pediatric Surgery, Research Laboratories, Dr von Hauner Children's Hospital, Ludwig Maximilians University Munich, Munich, Germany
| | - Roland Kappler
- Department of Pediatric Surgery, Research Laboratories, Dr von Hauner Children's Hospital, Ludwig Maximilians University Munich, Munich, Germany
| | - Michael Berger
- Department of Pediatric Surgery, Research Laboratories, Dr von Hauner Children's Hospital, Ludwig Maximilians University Munich, Munich, Germany
| | - Matthias Ilmer
- Department of Translational Molecular Pathology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
95
|
Fuentes RG, Arai MA, Ishibashi M. Natural compounds with Wnt signal modulating activity. Nat Prod Rep 2015; 32:1622-8. [DOI: 10.1039/c5np00074b] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This article highlights natural compounds that are reported to modulate the Wnt signalling activity. The plausible mechanisms of action of the natural Wnt modulators are also presented.
Collapse
Affiliation(s)
- Rolly G. Fuentes
- Graduate School of Pharmaceutical Sciences
- Chiba University
- Chiba 260-8675
- Japan
- Division of Natural Sciences and Mathematics
| | - Midori A. Arai
- Graduate School of Pharmaceutical Sciences
- Chiba University
- Chiba 260-8675
- Japan
| | - Masami Ishibashi
- Graduate School of Pharmaceutical Sciences
- Chiba University
- Chiba 260-8675
- Japan
| |
Collapse
|
96
|
Fujiwara M, Fujimura K, Obata S, Yanagibashi R, Sakuma T, Yamamoto T, T. Suzuki S. Epithelial DLD-1 Cells with Disrupted E-cadherin Gene Retain the Ability to Form Cell Junctions and Apico-basal Polarity. Cell Struct Funct 2015; 40:79-94. [DOI: 10.1247/csf.15002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Miwako Fujiwara
- Department of Bioscience, School of Science and Technology, Kwansei Gakuin University
| | - Kihito Fujimura
- Department of Bioscience, School of Science and Technology, Kwansei Gakuin University
| | - Shuichi Obata
- Department of Anatomical Science, School of Allied Health Sciences, Kitasato University
- Department of Histology and Cell Biology, Yokohama City University School of Medicine
| | - Ryo Yanagibashi
- Department of Bioscience, School of Science and Technology, Kwansei Gakuin University
| | - Tetsushi Sakuma
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University
| | - Takashi Yamamoto
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University
| | - Shintaro T. Suzuki
- Department of Bioscience, School of Science and Technology, Kwansei Gakuin University
| |
Collapse
|
97
|
Mukherjee S, Kong J, Brat DJ. Cancer stem cell division: when the rules of asymmetry are broken. Stem Cells Dev 2014; 24:405-16. [PMID: 25382732 DOI: 10.1089/scd.2014.0442] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Asymmetric division of stem cells is a highly conserved and tightly regulated process by which a single stem cell produces two daughter cells and simultaneously directs the differential fate of both: one retains its stem cell identity while the other becomes specialized and loses stem cell properties. Coordinating these events requires control over numerous intra- and extracellular biological processes and signaling networks. In the initial stages, critical events include the compartmentalization of fate determining proteins within the mother cell and their subsequent passage to the appropriate daughter cell. Disturbance of these events results in an altered dynamic of self-renewing and differentiation within the cell population, which is highly relevant to the growth and progression of cancer. Other critical events include proper asymmetric spindle assembly, extrinsic regulation through micro-environmental cues, and noncanonical signaling networks that impact cell division and fate determination. In this review, we discuss mechanisms that maintain the delicate balance of asymmetric cell division in normal tissues and describe the current understanding how some of these mechanisms are deregulated in cancer. The universe is asymmetric and I am persuaded that life, as it is known to us, is a direct result of the asymmetry of the universe or of its indirect consequences. The universe is asymmetric. -Louis Pasteur.
Collapse
Affiliation(s)
- Subhas Mukherjee
- 1 Department of Pathology and Laboratory Medicine, Emory University , Atlanta, Georgia
| | | | | |
Collapse
|
98
|
Oncogenic KRAS signalling promotes the Wnt/β-catenin pathway through LRP6 in colorectal cancer. Oncogene 2014; 34:4914-27. [PMID: 25500543 PMCID: PMC4687460 DOI: 10.1038/onc.2014.416] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 11/04/2014] [Accepted: 11/08/2014] [Indexed: 12/14/2022]
Abstract
Aberrant regulation of the Wnt/β-catenin signaling pathway is one of the major causes of colorectal cancer (CRC). Loss-of-function mutations in APC are commonly found in CRC, leading to inappropriate activation of canonical Wnt signaling. Conversely, gain-of-function mutations in KRAS and BRAF genes are detected in up to 60% of CRCs. Whereas KRAS/mitogen-activated protein kinase (MAPK) and canonical Wnt/β-catenin pathways are critical for intestinal tumorigenesis, mechanisms integrating these two important signaling pathways during CRC development are unknown. Results herein demonstrate that transformation of normal intestinal epithelial cells (IECs) by oncogenic forms of KRAS, BRAF or MEK1 was associated with a marked increase in β-catenin/TCF4 and c-MYC promoter transcriptional activities and mRNA levels of c-Myc, Axin2 and Lef1. Notably, expression of a dominant-negative mutant of T-Cell Factor 4 (ΔNTCF4) severely attenuated IEC transformation induced by oncogenic MEK1 and markedly reduced their tumorigenic and metastatic potential in immunocompromised mice. Interestingly, the Frizzled co-receptor LRP6 was phosphorylated in a MEK-dependent manner in transformed IECs and in human CRC cell lines. Expression of LRP6 mutant in which serine/threonine residues in each particular ProlineProlineProlineSerine/ThreonineProline motif were mutated to alanines (LRP6-5A) significantly reduced β-catenin/TCF4 transcriptional activity. Accordingly, MEK inhibition in human CRC cells significantly diminished β-catenin/TCF4 transcriptional activity and c-MYC mRNA and protein levels without affecting β-catenin expression or stability. Lastly, LRP6 phosphorylation was also increased in human colorectal tumors, including adenomas, in comparison with healthy adjacent normal tissues. Our data indicate that oncogenic activation of KRAS/BRAF/MEK signaling stimulates the canonical Wnt/β-catenin pathway, which in turn promotes intestinal tumor growth and invasion. Moreover, LRP6 phosphorylation by ERK1/2 may provide a unique point of convergence between KRAS/MAPK and Wnt/β-catenin signalings during oncogenesis.
Collapse
|
99
|
Fujii S, Matsumoto S, Nojima S, Morii E, Kikuchi A. Arl4c expression in colorectal and lung cancers promotes tumorigenesis and may represent a novel therapeutic target. Oncogene 2014; 34:4834-44. [PMID: 25486429 DOI: 10.1038/onc.2014.402] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 10/29/2014] [Accepted: 10/30/2014] [Indexed: 12/27/2022]
Abstract
We recently demonstrated that expression of ADP-ribosylation factor (ARF)-like 4c (Arl4c) induced by a combination of Wnt/β-catenin and epidermal growth factor/Ras signaling in normal epithelial cells grown in three-dimensional culture promotes cellular migration and proliferation, resulting in formation of tube-like structures, suggesting the involvement of Arl4c in epithelial morphogenesis. It is conceivable that there could be a common mechanism between epithelial morphogenesis and carcinogenesis. Therefore the current study was conducted to investigate whether Arl4c might be involved in tumorigenesis. Immunohistochemical analyses of tissue specimens obtained from colorectal and lung cancer patients revealed that Arl4c was not observed in non-tumor regions but was strongly expressed at high frequencies in tumor lesions. Inhibition of Wnt/β-catenin or Ras/mitogen-activated protein kinase signaling reduced Arl4c mRNA levels in HCT116 colorectal cancer cells and A549 lung cancer cells. Knockdown of Arl4c inhibited Rac activity and also prevented nuclear localization of yes-associated protein (YAP)/transcriptional co-activator with PDZ-binding motif (TAZ) in these cancer cells. Arl4c-depleted cancer cells consistently showed decreased migration, invasion and proliferation capabilities both in vitro and in vivo. Furthermore, direct injection of Arl4c small interfering RNA (siRNA) into HCT116 cell-derived tumors (in vivo treatment with siRNA) inhibited tumor growth in immunodeficient mice. These results suggest that Arl4c is involved in tumorigenesis and might represent a novel therapeutic target for suppressing proliferation and invasion of colorectal and lung cancer cells.
Collapse
Affiliation(s)
- S Fujii
- Department of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University, Suita, Japan.,Interdisciplinary Program for Biomedical Sciences (IPBS), Institute for Academic Initiatives, Osaka University, Suita, Japan
| | - S Matsumoto
- Department of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University, Suita, Japan
| | - S Nojima
- Department of Pathology, Graduate School of Medicine, Osaka University, Suita, Japan
| | - E Morii
- Department of Pathology, Graduate School of Medicine, Osaka University, Suita, Japan
| | - A Kikuchi
- Department of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University, Suita, Japan
| |
Collapse
|
100
|
Nuclear factor-kappaB sensitizes to benzyl isothiocyanate-induced antiproliferation in p53-deficient colorectal cancer cells. Cell Death Dis 2014; 5:e1534. [PMID: 25412312 PMCID: PMC4260753 DOI: 10.1038/cddis.2014.495] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 10/20/2014] [Accepted: 10/21/2014] [Indexed: 11/29/2022]
Abstract
Benzyl isothiocyanate (BITC), a dietary isothiocyanate derived from cruciferous vegetables, inhibits the proliferation of colorectal cancer cells, most of which overexpress β-catenin as a result of mutations in the genes for adenomatous polyposis coli or mutations in β-catenin itself. Because nuclear factor-κB (NF-κB) is a plausible target of BITC signaling in inflammatory cell models, we hypothesized that it is also involved in BITC-inhibited proliferation of colorectal cancer cells. siRNA-mediated knockdown of the NF-κB p65 subunit significantly decreased the BITC sensitivity of human colorectal cancer HT-29 cells with mutated p53 tumor suppressor protein. Treating HT-29 cells with BITC induced the phosphorylation of IκB kinase, IκB-α and p65, the degradation of IκB-α, the translocation of p65 to the nucleus and the upregulation of NF-κB transcriptional activity. BITC also decreased β-catenin binding to a positive cis element of the cyclin D1 promoter and thus inhibited β-catenin-dependent cyclin D1 transcription, possibly through a direct interaction between p65 and β-catenin. siRNA-mediated knockdown of p65 confirmed that p65 negatively affects cyclin D1 expression. On the other hand, when human colorectal cancer HCT-116 cells with wild-type p53 were treated with BITC, translocation of p65 to the nucleus was inhibited rather than enhanced. p53 knockout increased the BITC sensitivity of HCT-116 cells in a p65-dependent manner, suggesting that p53 negatively regulates p65-dependent effects. Together, these results identify BITC as a novel type of antiproliferative agent that regulates the NF-κB pathway in p53-deficient colorectal cancer cells.
Collapse
|