51
|
Choi S, Bird AJ. Zinc'ing sensibly: controlling zinc homeostasis at the transcriptional level. Metallomics 2014; 6:1198-215. [PMID: 24722954 DOI: 10.1039/c4mt00064a] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Zinc-responsive transcription factors are found in all kingdoms of life and include the transcriptional activators ZntR, SczA, Zap1, bZip19, bZip23, and MTF-1, and transcriptional repressors Zur, AdcR, Loz1, and SmtB. These factors have two defining features; their activity is regulated by zinc and they all play a central role in zinc homeostasis by controlling the expression of genes that directly affect zinc levels or its availability. This review summarizes what is known about the mechanisms by which each of these factors sense changes in intracellular zinc levels and how they control zinc homeostasis through target gene regulation. Other factors that influence zinc ion sensing are also discussed.
Collapse
Affiliation(s)
- Sangyong Choi
- Department of Human Sciences, The Ohio State University, Columbus, OH 43210, USA
| | | |
Collapse
|
52
|
Rodriguez GM, Neyrolles O. Metallobiology of Tuberculosis. Microbiol Spectr 2014; 2:10.1128/microbiolspec.MGM2-0012-2013. [PMID: 26103977 PMCID: PMC5180607 DOI: 10.1128/microbiolspec.mgm2-0012-2013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Indexed: 11/20/2022] Open
Abstract
Transition metals are essential constituents of all living organisms, playing crucial structural and catalytic parts in many enzymes and transcription factors. However, transition metals can also be toxic when present in excess. Their uptake and efflux rates must therefore be carefully controlled by biological systems. In this chapter, we summarize the current knowledge about uptake and efflux systems in Mycobacterium tuberculosis for mainly three of these metals, namely iron, zinc, and copper. We also propose questions for future research in the field of metallobiology of host-pathogen interactions in tuberculosis.
Collapse
Affiliation(s)
- G. Marcela Rodriguez
- Public Health Research Institute Center & Department of Medicine, University of Medicine and Dentistry of New Jersey, Newark, NJ 07103
| | - Olivier Neyrolles
- Centre National de la Recherche Scientifique & Université de Toulouse, Université Paul Sabatier, Institut de Pharmacologie et de Biologie Structurale, Toulouse, France
| |
Collapse
|
53
|
Fillat MF. The FUR (ferric uptake regulator) superfamily: diversity and versatility of key transcriptional regulators. Arch Biochem Biophys 2014; 546:41-52. [PMID: 24513162 DOI: 10.1016/j.abb.2014.01.029] [Citation(s) in RCA: 217] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 01/27/2014] [Accepted: 01/31/2014] [Indexed: 11/17/2022]
Abstract
Control of metal homeostasis is essential for life in all kingdoms. In most prokaryotic organisms the FUR (ferric uptake regulator) family of transcriptional regulators is involved in the regulation of iron and zinc metabolism through control by Fur and Zur proteins. A third member of this family, the peroxide-stress response PerR, is present in most Gram-positives, establishing a tight functional interaction with the global regulator Fur. These proteins play a pivotal role for microbial survival under adverse conditions and in the expression of virulence in most pathogens. In this paper we present the current state of the art in the knowledge of the FUR family, including those members only present in more reduced numbers of bacteria, namely Mur, Nur and Irr. The huge amount of work done in the two last decades shows that FUR proteins present considerable diversity in their regulatory mechanisms and interesting structural differences. However, much work needs to be done to obtain a more complete picture of this family, especially in connection with the roles of some members as gas and redox sensors as well as to fully characterize their participation in bacterial adaptative responses.
Collapse
Affiliation(s)
- María F Fillat
- Department of Biochemistry and Molecular and Cell Biology, Institute for Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, Pedro Cerbuna, 12, 50009 Zaragoza, Spain.
| |
Collapse
|
54
|
Cerasi M, Ammendola S, Battistoni A. Competition for zinc binding in the host-pathogen interaction. Front Cell Infect Microbiol 2013; 3:108. [PMID: 24400228 PMCID: PMC3872050 DOI: 10.3389/fcimb.2013.00108] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 12/11/2013] [Indexed: 11/13/2022] Open
Abstract
Due to its favorable chemical properties, zinc is used as a structural or catalytic cofactor in a very large number of proteins. Despite the apparent abundance of this metal in all cell types, the intracellular pool of loosely bound zinc ions available for biological exchanges is in the picomolar range and nearly all zinc is tightly bound to proteins. In addition, to limit bacterial growth, some zinc-sequestering proteins are produced by eukaryotic hosts in response to infections. Therefore, to grow and multiply in the infected host, bacterial pathogens must produce high affinity zinc importers, such as the ZnuABC transporter which is present in most Gram-negative bacteria. Studies carried in different bacterial species have established that disruption of ZnuABC is usually associated with a remarkable loss of pathogenicity. The critical involvement of zinc in a plethora of metabolic and virulence pathways and the presence of very low number of zinc importers in most bacterial species mark zinc homeostasis as a very promising target for the development of novel antimicrobial strategies.
Collapse
Affiliation(s)
- Mauro Cerasi
- Dipartimento di Biologia, Università di Roma Tor Vergata Rome, Italy
| | - Serena Ammendola
- Dipartimento di Biologia, Università di Roma Tor Vergata Rome, Italy
| | - Andrea Battistoni
- Dipartimento di Biologia, Università di Roma Tor Vergata Rome, Italy ; Istituto Nazionale Biostrutture e Biosistemi, Consorzio Interuniversitario Rome, Italy
| |
Collapse
|
55
|
Mihai C, Chrisler WB, Xie Y, Hu D, Szymanski CJ, Tolic A, Klein JA, Smith JN, Tarasevich BJ, Orr G. Intracellular accumulation dynamics and fate of zinc ions in alveolar epithelial cells exposed to airborne ZnO nanoparticles at the air-liquid interface. Nanotoxicology 2013; 9:9-22. [PMID: 24289294 DOI: 10.3109/17435390.2013.859319] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Airborne nanoparticles (NPs) that enter the respiratory tract are likely to reach the alveolar region. Accumulating observations support a role for zinc oxide (ZnO) NP dissolution in toxicity, but the majority of in-vitro studies were conducted in cells exposed to NPs in growth media, where large doses of dissolved ions are shed into the exposure solution. To determine the precise intracellular accumulation dynamics and fate of zinc ions (Zn(2+)) shed by airborne NPs in the cellular environment, we exposed alveolar epithelial cells to aerosolized NPs at the air-liquid interface (ALI). Using a fluorescent indicator for Zn(2+), together with organelle-specific fluorescent proteins, we quantified Zn(2+) in single cells and organelles over time. We found that at the ALI, intracellular Zn(2+) values peaked 3 h post exposure and decayed to normal values by 12 h, while in submerged cultures, intracellular Zn(2+) values continued to increase over time. The lowest toxic NP dose at the ALI generated peak intracellular Zn(2+) values that were nearly three-folds lower than the peak values generated by the lowest toxic dose of NPs in submerged cultures, and eight-folds lower than the peak values generated by the lowest toxic dose of ZnSO4 or Zn(2+). At the ALI, the majority of intracellular Zn(2+) was found in endosomes and lysosomes as early as 1 h post exposure. In contrast, the majority of intracellular Zn(2+) following exposures to ZnSO4 was found in other larger vesicles, with less than 10% in endosomes and lysosomes. Together, our observations indicate that low but critical levels of intracellular Zn(2+) have to be reached, concentrated specifically in endosomes and lysosomes, for toxicity to occur, and point to the focal dissolution of the NPs in the cellular environment and the accumulation of the ions specifically in endosomes and lysosomes as the processes underlying the potent toxicity of airborne ZnO NPs.
Collapse
|
56
|
Ellison ML, Farrow JM, Farrow JM, Parrish W, Danell AS, Pesci EC. The transcriptional regulator Np20 is the zinc uptake regulator in Pseudomonas aeruginosa. PLoS One 2013; 8:e75389. [PMID: 24086521 PMCID: PMC3781045 DOI: 10.1371/journal.pone.0075389] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 08/15/2013] [Indexed: 11/18/2022] Open
Abstract
Zinc is essential for all bacteria, but excess amounts of the metal can have toxic effects. To address this, bacteria have developed tightly regulated zinc uptake systems, such as the ZnuABC zinc transporter which is regulated by the Fur-like zinc uptake regulator (Zur). In Pseudomonas aeruginosa, a Zur protein has yet to be identified experimentally, however, sequence alignment revealed that the zinc-responsive transcriptional regulator Np20, encoded by np20 (PA5499), shares high sequence identity with Zur found in other bacteria. In this study, we set out to determine whether Np20 was functioning as Zur in P. aeruginosa. Using RT-PCR, we determined that np20 (hereafter known as zur) formed a polycistronic operon with znuC and znuB. Mutant strains, lacking the putative znuA, znuB, or znuC genes were found to grow poorly in zinc deplete conditions as compared to wild-type strain PAO1. Intracellular zinc concentrations in strain PAO-Zur (Δzur) were found to be higher than those for strain PAO1, further implicating the zur as the zinc uptake regulator. Reporter gene fusions and real time RT-PCR revealed that transcription of znuA was repressed in a zinc-dependent manner in strain PAO1, however zinc-dependent transcriptional repression was alleviated in strain PAO-Zur, suggesting that the P. aeruginosa Zur homolog (ZurPA) directly regulates expression of znuA. Electrophoretic mobility shift assays also revealed that recombinant ZurPA specifically binds to the promoter region of znuA and does not bind in the presence of the zinc chelator N,N',N-tetrakis(2-pyridylmethyl) ethylenediamine (TPEN). Taken together, these data support the notion that Np20 is the P. aeruginosa Zur, which regulates the transcription of the genes encoding the high affinity ZnuABC zinc transport system.
Collapse
Affiliation(s)
- Matthew L Ellison
- Department of Microbiology and Immunology, East Carolina University, Greenville, North Carolina, United State of America ; Department of Biology and Chemistry, Morehead State University, Morehead, Kentucky, United State of America
| | | | | | | | | | | |
Collapse
|
57
|
Wang P, Dadhwal P, Cheng Z, Zianni MR, Rikihisa Y, Liang FT, Li X. Borrelia burgdorferi oxidative stress regulator BosR directly represses lipoproteins primarily expressed in the tick during mammalian infection. Mol Microbiol 2013; 89:1140-53. [PMID: 23869590 DOI: 10.1111/mmi.12337] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2013] [Indexed: 12/16/2022]
Abstract
Differential gene expression is a key strategy adopted by the Lyme disease spirochaete, Borrelia burgdorferi, for adaptation and survival in the mammalian host and the tick vector. Many B. burgdorferi surface lipoproteins fall into two distinct groups according to their expression patterns: one group primarily expressed in the tick and the other group primarily expressed in the mammal. Here, we show that the Fur homologue in this bacterium, also known as Borrelia oxidative stress regulator (BosR), is required for repression of outer surface protein A (OspA) and OspD in the mammal. Furthermore, BosR binds directly to sequences upstream of the ospAB operon and the ospD gene through recognition of palindromic motifs similar to those recognized by other Fur homologues but with a 1 bp variation in the spacer length. Putative BosR binding sites have been identified upstream of 156 B. burgdorferi genes. Some of these genes share the same expression pattern as ospA and ospD. Most notably, 12 (67%) of the 18 genes previously identified in a genome-wide microarray study to be most significantly repressed in the mammal are among the putative BosR regulon. These data indicate that BosR may directly repress transcription of many genes that are downregulated in the mammal.
Collapse
Affiliation(s)
- Peng Wang
- Department of Veterinary Biosciences, The Ohio State University, 1900 Coffey Road, Columbus, OH, 43210, USA
| | | | | | | | | | | | | |
Collapse
|
58
|
Kim MK, Lee S, An YJ, Jeong CS, Ji CJ, Lee JW, Cha SS. In-house zinc SAD phasing at Cu Kα edge. Mol Cells 2013; 36:74-81. [PMID: 23686432 PMCID: PMC3887929 DOI: 10.1007/s10059-013-0074-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 04/09/2013] [Accepted: 04/11/2013] [Indexed: 10/26/2022] Open
Abstract
De novo zinc single-wavelength anomalous dispersion (Zn-SAD) phasing has been demonstrated with the 1.9 Å resolution data of glucose isomerase and 2.6 Å resolution data of Staphylococcus aureus Fur (SaFur) collected using in-house Cu Kα X-ray source. The successful in-house Zn-SAD phasing of glucose isomerase, based on the anomalous signals of both zinc ions introduced to crystals by soaking and native sulfur atoms, drove us to determine the structure of SaFur, a zinc-containing transcription factor, by Zn-SAD phasing using in-house X-ray source. The abundance of zinc-containing proteins in nature, the easy zinc derivatization of the protein surface, no need of synchrotron access, and the successful experimental phasing with the modest 2.6 Å resolution SAD data indicate that inhouse Zn-SAD phasing can be widely applicable to structure determination.
Collapse
Affiliation(s)
- Min-Kyu Kim
- Marine Biotechnology Research Division, Korea Institute of Ocean Science and Technology, Ansan 426-744,
Korea
| | - Sangmin Lee
- Marine Biotechnology Research Division, Korea Institute of Ocean Science and Technology, Ansan 426-744,
Korea
- Ocean Science and Technology School, Pusan 606-791,
Korea
| | - Young Jun An
- Marine Biotechnology Research Division, Korea Institute of Ocean Science and Technology, Ansan 426-744,
Korea
| | - Chang-Sook Jeong
- Marine Biotechnology Research Division, Korea Institute of Ocean Science and Technology, Ansan 426-744,
Korea
| | - Chang-Jun Ji
- Department of Life Science and Institute for Natural Sciences, Hanyang University, Seoul 133-791,
Korea
| | - Jin-Won Lee
- Department of Life Science and Institute for Natural Sciences, Hanyang University, Seoul 133-791,
Korea
| | - Sun-Shin Cha
- Marine Biotechnology Research Division, Korea Institute of Ocean Science and Technology, Ansan 426-744,
Korea
- Ocean Science and Technology School, Pusan 606-791,
Korea
- Department of Marine Biotechnology, University of Science and Technology, Daejeon 305-333
Korea
| |
Collapse
|
59
|
Makthal N, Rastegari S, Sanson M, Ma Z, Olsen RJ, Helmann JD, Musser JM, Kumaraswami M. Crystal structure of peroxide stress regulator from Streptococcus pyogenes provides functional insights into the mechanism of oxidative stress sensing. J Biol Chem 2013; 288:18311-24. [PMID: 23645680 DOI: 10.1074/jbc.m113.456590] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Regulation of oxidative stress responses by the peroxide stress regulator (PerR) is critical for the in vivo fitness and virulence of group A Streptococcus. To elucidate the molecular mechanism of DNA binding, peroxide sensing, and gene regulation by PerR, we performed biochemical and structural characterization of PerR. Sequence-specific DNA binding by PerR does not require regulatory metal occupancy. However, metal binding promotes higher affinity PerR-DNA interactions. PerR metallated with iron directly senses peroxide stress and dissociates from operator sequences. The crystal structure revealed that PerR exists as a homodimer with two metal-binding sites per subunit as follows: a structural zinc site and a regulatory metal site that is occupied in the crystals by nickel. The regulatory metal-binding site in PerR involves a previously unobserved HXH motif located in its unique N-terminal extension. Mutational analysis of the regulatory site showed that the PerR metal ligands are involved in regulatory metal binding, and integrity of this site is critical for group A Streptococcus virulence. Interestingly, the metal-binding HXH motif is not present in the structurally characterized members of ferric uptake regulator (Fur) family but is fully conserved among PerR from the genus Streptococcus. Thus, it is likely that the PerR orthologs from streptococci share a common mechanism of metal binding, peroxide sensing, and gene regulation that is different from that of well characterized PerR from Bacillus subtilis. Together, our findings provide key insights into the peroxide sensing and regulation of the oxidative stress-adaptive responses by the streptococcal subfamily of PerR.
Collapse
Affiliation(s)
- Nishanth Makthal
- Center for Molecular and Translational Human Infectious Diseases Research, The Methodist Hospital Research Institute, and Department of Pathology and Genomic Medicine, The Methodist Hospital System, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
60
|
Katigbak J, Zhang Y. Iron Binding Site in a Global Regulator in Bacteria - Ferric Uptake Regulator (Fur) Protein: Structure, Mössbauer Properties, and Functional Implication. J Phys Chem Lett 2012; 2012:3503-3508. [PMID: 23205186 PMCID: PMC3507992 DOI: 10.1021/jz301689b] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Fur protein plays key roles in regulating numerous genes in bacteria and is essential for intracellular iron concentration regulation. However, atomic level pictures of the iron binding site and its functional mechanism remain to be established. Here we present results of the first quantum chemical investigation of various first- and second-shell models and experimental Mössbauer data of E. Coli Fur, including 1) the first robust evidence that site 2 is the Fe binding site with a 3His/2Glu ligand set, being the first case in non-heme proteins, with computed Mössbauer data in excellent accord with experiment; 2) the first discovery of a conservative hydrogen bonding interaction in the iron binding site based on X-ray and homology structures; 3) the first atomic level hypothesis of active site reorganization upon iron concentration increase, triggering the conformational change needed for its function. These results shall facilitate structural and functional studies of Fur family proteins.
Collapse
|
61
|
Teramoto H, Inui M, Yukawa H. Corynebacterium glutamicumZur acts as a zinc-sensing transcriptional repressor of both zinc-inducible and zinc-repressible genes involved in zinc homeostasis. FEBS J 2012; 279:4385-97. [DOI: 10.1111/febs.12028] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 09/24/2012] [Accepted: 10/09/2012] [Indexed: 01/06/2023]
Affiliation(s)
- Haruhiko Teramoto
- Research Institute of Innovative Technology for the Earth; Kyoto; Japan
| | - Masayuki Inui
- Research Institute of Innovative Technology for the Earth; Kyoto; Japan
| | - Hideaki Yukawa
- Research Institute of Innovative Technology for the Earth; Kyoto; Japan
| |
Collapse
|
62
|
Ma Z, Faulkner MJ, Helmann JD. Origins of specificity and cross-talk in metal ion sensing by Bacillus subtilis Fur. Mol Microbiol 2012; 86:1144-55. [PMID: 23057863 DOI: 10.1111/mmi.12049] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2012] [Indexed: 11/28/2022]
Abstract
Fur (ferric uptake regulator) is the master regulator of iron homeostasis in many bacteria, but how it responds specifically to Fe(II) in vivo is not clear. Biochemical analyses of Bacillus subtilis Fur (BsFur) reveal that in addition to Fe(II), both Zn(II) and Mn(II) allosterically activate BsFur-DNA binding. Dimeric BsFur co-purifies with site 1 structural Zn(II) (Fur(2) Zn(2) ) and can bind four additional Zn(II) or Mn(II) ions per dimer. Metal ion binding at previously described site 3 occurs with highest affinity, but the Fur(2) Zn(2) :Me(2) form has only a modest increase in DNA binding affinity (approximately sevenfold). Metallation of site 2 (Fur(2) Zn(2) :Me(4) ) leads to a ~ 150-fold further enhancement in DNA binding affinity. Fe(II) binding studies indicate that BsFur buffers the intracellular Fe(II) concentration at ~ 1 μM. Both Mn(II) and Zn(II) are normally buffered at levels insufficient for metallation of BsFur site 2, thereby accounting for the lack of cross-talk observed in vivo. However, in a perR mutant, where the BsFur concentration is elevated, BsFur may now use Mn(II) as a co-repressor and inappropriately repress iron uptake. Since PerR repression of fur is enhanced by Mn(II), and antagonized by Fe(II), PerR may co-regulate Fe(II) homeostasis by modulating BsFur levels in response to the Mn(II)/Fe(II) ratio.
Collapse
Affiliation(s)
- Zhen Ma
- Department of Microbiology, Cornell University, Ithaca, NY 14853-8101, USA
| | | | | |
Collapse
|
63
|
Structure and regulon of Campylobacter jejuni ferric uptake regulator Fur define apo-Fur regulation. Proc Natl Acad Sci U S A 2012; 109:10047-52. [PMID: 22665794 DOI: 10.1073/pnas.1118321109] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The full regulatory potential of the ferric uptake regulator (Fur) family of proteins remains undefined despite over 20 years of study. We report herein an integrated approach that combines both genome-wide technologies and structural studies to define the role of Fur in Campylobacter jejuni (Cj). CjFur ChIP-chip assays identified 95 genomic loci bound by CjFur associated with functions as diverse as iron acquisition, flagellar biogenesis, and non-iron ion transport. Comparative analysis with transcriptomic data revealed that CjFur regulation extends beyond solely repression and also includes both gene activation and iron-independent regulation. Computational analysis revealed the presence of an elongated holo-Fur repression motif along with a divergent holo-Fur activation motif. This diversity of CjFur DNA-binding elements is supported by the crystal structure of CjFur, which revealed a unique conformation of its DNA-binding domain and the absence of metal in the regulatory site. Strikingly, our results indicate that the apo-CjFur structure retains the canonical V-shaped dimer reminiscent of previously characterized holo-Fur proteins enabling DNA interaction. This conformation stems from a structurally unique hinge domain that is poised to further contribute to CjFur's regulatory functions by modulating the orientation of the DNA-binding domain upon binding of iron. The unique features of the CjFur crystal structure rationalize the binding sequence diversity that was uncovered during ChIP-chip analysis and defines apo-Fur regulation.
Collapse
|
64
|
Pellicer S, González A, Peleato ML, Martinez JI, Fillat MF, Bes MT. Site-directed mutagenesis and spectral studies suggest a putative role of FurA from Anabaena sp. PCC 7120 as a heme sensor protein. FEBS J 2012; 279:2231-46. [DOI: 10.1111/j.1742-4658.2012.08606.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
65
|
Barnett JP, Millard A, Ksibe AZ, Scanlan DJ, Schmid R, Blindauer CA. Mining genomes of marine cyanobacteria for elements of zinc homeostasis. Front Microbiol 2012; 3:142. [PMID: 22514551 PMCID: PMC3323870 DOI: 10.3389/fmicb.2012.00142] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 03/25/2012] [Indexed: 12/13/2022] Open
Abstract
Zinc is a recognized essential element for the majority of organisms, and is indispensable for the correct function of hundreds of enzymes and thousands of regulatory proteins. In aquatic photoautotrophs including cyanobacteria, zinc is thought to be required for carbonic anhydrase and alkaline phosphatase, although there is evidence that at least some carbonic anhydrases can be cambialistic, i.e., are able to acquire in vivo and function with different metal cofactors such as Co2+ and Cd2+. Given the global importance of marine phytoplankton, zinc availability in the oceans is likely to have an impact on both carbon and phosphorus cycles. Zinc concentrations in seawater vary over several orders of magnitude, and in the open oceans adopt a nutrient-like profile. Most studies on zinc handling by cyanobacteria have focused on freshwater strains and zinc toxicity; much less information is available on marine strains and zinc limitation. Several systems for zinc homeostasis have been characterized in the freshwater species Synechococcus sp. PCC 7942 and Synechocystis sp. PCC 6803, but little is known about zinc requirements or zinc handling by marine species. Comparative metallo-genomics has begun to explore not only the putative zinc proteome, but also specific protein families predicted to have an involvement in zinc homeostasis, including sensors for excess and limitation (SmtB and its homologs as well as Zur), uptake systems (ZnuABC), putative intracellular zinc chaperones (COG0523) and metallothioneins (BmtA), and efflux pumps (ZiaA and its homologs).
Collapse
|
66
|
Guerra AJ, Giedroc DP. Metal site occupancy and allosteric switching in bacterial metal sensor proteins. Arch Biochem Biophys 2012; 519:210-22. [PMID: 22178748 PMCID: PMC3312040 DOI: 10.1016/j.abb.2011.11.021] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 11/23/2011] [Accepted: 11/29/2011] [Indexed: 12/22/2022]
Abstract
All prokaryotes encode a panel of metal sensor or metalloregulatory proteins that govern the expression of genes that allows an organism to quickly adapt to toxicity or deprivation of both biologically essential transition metal ions, e.g., Zn, Cu, Fe, and heavy metal pollutants. As such, metal sensor proteins can be considered arbiters of intracellular transition metal bioavailability and thus potentially control the metallation state of the metalloproteins in the cell. Metal sensor proteins are specialized allosteric proteins that regulate transcription as a result direct binding of one or two cognate metal ions, to the exclusion of all others. In most cases, the binding of the cognate metal ion induces a structural change in a protein oligomer that either activates or inhibits operator DNA binding. A quantitative measure of the degree to which a particular metal drives metalloregulation of operator DNA-binding is the allosteric coupling free energy, ΔGc. In this review, we summarize recent work directed toward understanding metal occupancy and metal selectivity of these allosteric switches in selected families of metal sensor proteins and examine the structural origins of ΔGc in the functional context a thermodynamic "set-point" model of intracellular metal homeostasis.
Collapse
Affiliation(s)
- Alfredo J. Guerra
- Department of Chemistry, Indiana University, 212 S. Hawthorne Drive, Bloomington, IN USA 47405-7102
| | - David P. Giedroc
- Department of Chemistry, Indiana University, 212 S. Hawthorne Drive, Bloomington, IN USA 47405-7102
| |
Collapse
|
67
|
Characterization of the response to zinc deficiency in the cyanobacterium Anabaena sp. strain PCC 7120. J Bacteriol 2012; 194:2426-36. [PMID: 22389488 DOI: 10.1128/jb.00090-12] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Zur regulators control zinc homeostasis by repressing target genes under zinc-sufficient conditions in a wide variety of bacteria. This paper describes how part of a survey of duplicated genes led to the identification of the open reading frame all2473 as the gene encoding the Zur regulator of the cyanobacterium Anabaena sp. strain PCC 7120. All2473 binds to DNA in a zinc-dependent manner, and its DNA-binding sequence was characterized, which allowed us to determine the relative contribution of particular nucleotides to Zur binding. A zur mutant was found to be impaired in the regulation of zinc homeostasis, showing sensitivity to elevated concentrations of zinc but not other metals. In an effort to characterize the Zur regulon in Anabaena, 23 genes containing upstream putative Zur-binding sequences were identified and found to be regulated by Zur. These genes are organized in six single transcriptional units and six operons, some of them containing multiple Zur-regulated promoters. The identities of genes of the Zur regulon indicate that Anabaena adapts to conditions of zinc deficiency by replacing zinc metalloproteins with paralogues that fulfill the same function but presumably with a lower zinc demand, and with inducing putative metallochaperones and membrane transport systems likely being involved in the scavenging of extracellular zinc, including plasma membrane ABC transport systems and outer membrane TonB-dependent receptors. Among the Zur-regulated genes, the ones showing the highest induction level encode proteins of the outer membrane, suggesting a primary role for components of this cell compartment in the capture of zinc cations from the extracellular medium.
Collapse
|
68
|
Abstract
The dramatic changes in the environmental conditions that organisms encountered during evolution and adaptation to life in specific niches, have influenced intracellular and extracellular metal ion contents and, as a consequence, the cellular ability to sense and utilize different metal ions. This metal-driven differentiation is reflected in the specific panels of metal-responsive transcriptional regulators found in different organisms, which finely tune the intracellular metal ion content and all metal-dependent processes. In order to understand the processes underlying this complex metal homeostasis network, the study of the molecular processes that determine the protein-metal ion recognition, as well as how this event is transduced into a transcriptional output, is necessary. This chapter describes how metal ion binding to specific proteins influences protein interaction with DNA and how this event can influence the fate of genetic expression, leading to specific transcriptional outputs. The features of representative metal-responsive transcriptional regulators, as well as the molecular basis of metal-protein and protein-DNA interactions, are discussed on the basis of the structural information available. An overview of the recent advances in the understanding of how these proteins choose specific metal ions among the intracellular metal ion pool, as well as how they allosterically respond to their effector binding, is given.
Collapse
|
69
|
He H, Bretl DJ, Penoske RM, Anderson DM, Zahrt TC. Components of the Rv0081-Rv0088 locus, which encodes a predicted formate hydrogenlyase complex, are coregulated by Rv0081, MprA, and DosR in Mycobacterium tuberculosis. J Bacteriol 2011; 193:5105-18. [PMID: 21821774 PMCID: PMC3187382 DOI: 10.1128/jb.05562-11] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 07/27/2011] [Indexed: 01/04/2023] Open
Abstract
Mycobacterium tuberculosis, the etiological agent of tuberculosis, remains a significant cause of morbidity and mortality throughout the world despite a vaccine and cost-effective antibiotics. The success of this organism can be attributed, in part, to its ability to adapt to potentially harmful stress within the host and establish, maintain, and reactivate from long-term persistent infection within granulomatous structures. The DosRS-DosT/DevRS-Rv2027c, and MprAB two-component signal transduction systems have previously been implicated in aspects of persistent infection by M. tuberculosis and are known to be responsive to conditions likely to be found within the granuloma. Here, we describe initial characterization of a locus (Rv0081-Rv0088) encoding components of a predicted formate hydrogenylase enzyme complex that is directly regulated by DosR/DevR and MprA, and the product of the first gene in this operon, Rv0081. In particular, we demonstrate that Rv0081 negatively regulates its own expression and that of downstream genes by binding an inverted repeat element in its upstream region. In contrast, DosR/DevR and MprA positively regulate Rv0081 expression by binding to recognition sequences that either partially or completely overlap that recognized by Rv0081, respectively. Expression of Rv0081 initiates from two promoter elements; one promoter located downstream of the DosR/DevR binding site but overlapping the sequence recognized by both Rv0081 and MprA and another promoter downstream of the DosR/DevR, Rv0081, and MprA binding sites. Interestingly, Rv0081 represses Rv0081 and downstream determinants following activation of DosRS-DosT/DevRS-Rv2027c by nitric oxide, suggesting that expression of this locus is complex and subject to multiple levels of regulation. Based on this and other published information, a model is proposed detailing Rv0081-Rv0088 expression by these transcription factors within particular growth environments.
Collapse
Affiliation(s)
- Hongjun He
- Department of Microbiology and Molecular Genetics, Center for Infectious Disease Research, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226-0509
| | - Daniel J. Bretl
- Department of Microbiology and Molecular Genetics, Center for Infectious Disease Research, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226-0509
| | - Renee M. Penoske
- Department of Microbiology and Molecular Genetics, Center for Infectious Disease Research, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226-0509
| | - David M. Anderson
- Department of Microbiology and Molecular Genetics, Center for Infectious Disease Research, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226-0509
| | - Thomas C. Zahrt
- Department of Microbiology and Molecular Genetics, Center for Infectious Disease Research, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226-0509
| |
Collapse
|
70
|
Ma Z, Gabriel SE, Helmann JD. Sequential binding and sensing of Zn(II) by Bacillus subtilis Zur. Nucleic Acids Res 2011; 39:9130-8. [PMID: 21821657 PMCID: PMC3241647 DOI: 10.1093/nar/gkr625] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Bacillus subtilis Zur (BsZur) represses high-affinity zinc-uptake systems and alternative ribosomal proteins in response to zinc replete conditions. Sequence alignments and structural studies of related Fur family proteins suggest that BsZur may contain three zinc-binding sites (sites 1–3). Mutational analyses confirm the essential structural role of site 1, while mutants affected in sites 2 and 3 retain partial repressor function. Purified BsZur binds a maximum of two Zn(II) per monomer at site 1 and site 2. Site 3 residues are important for dimerization, but do not directly bind Zn(II). Analyses of metal-binding affinities reveals negative cooperativity between the two site 2 binding events in each dimer. DNA-binding studies indicate that BsZur is sequentially activated from an inactive dimer (Zur2:Zn2) to a partially active asymmetric dimer (Zur2:Zn3), and finally to the fully zinc-loaded active form (Zur2:Zn4). BsZur with a C84S mutation in site 2 forms a Zur2:Zn3 form with normal metal- and DNA-binding affinities but is impaired in formation of the Zur2:Zn4 high affinity DNA-binding state. This mutant retains partial repressor activity in vivo, thereby supporting a model in which stepwise activation by zinc serves to broaden the physiological response to a wider range of metal concentrations.
Collapse
Affiliation(s)
- Zhen Ma
- Department of Microbiology, Cornell University, Ithaca, NY 14853-8101, USA
| | | | | |
Collapse
|
71
|
Gao CH, Yang M, He ZG. An ArsR-like transcriptional factor recognizes a conserved sequence motif and positively regulates the expression of phoP in mycobacteria. Biochem Biophys Res Commun 2011; 411:726-31. [DOI: 10.1016/j.bbrc.2011.07.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2011] [Accepted: 07/05/2011] [Indexed: 02/01/2023]
|
72
|
Reyes-Caballero H, Campanello GC, Giedroc DP. Metalloregulatory proteins: metal selectivity and allosteric switching. Biophys Chem 2011; 156:103-14. [PMID: 21511390 DOI: 10.1016/j.bpc.2011.03.010] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Revised: 03/29/2011] [Accepted: 03/29/2011] [Indexed: 01/13/2023]
Abstract
Prokaryotic organisms have evolved the capacity to quickly adapt to a changing and challenging microenvironment in which the availability of both biologically required and non-essential transition metal ions can vary dramatically. In all bacteria, a panel of metalloregulatory proteins controls the expression of genes encoding membrane transporters and metal trafficking proteins that collectively manage metal homeostasis and resistance. These "metal sensors" are specialized allosteric proteins, in which the direct binding of a specific or small number of "cognate" metal ion(s) drives a conformational change in the regulator that allosterically activates or inhibits operator DNA binding, or alternatively, distorts the promoter structure thereby converting a poor promoter to a strong one. In this review, we discuss our current understanding of the features that control metal specificity of the allosteric response in these systems, and the role that structure, thermodynamics and conformational dynamics play in mediating allosteric activation or inhibition of DNA binding.
Collapse
|
73
|
Ma Z, Lee JW, Helmann JD. Identification of altered function alleles that affect Bacillus subtilis PerR metal ion selectivity. Nucleic Acids Res 2011; 39:5036-44. [PMID: 21398634 PMCID: PMC3130269 DOI: 10.1093/nar/gkr095] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Bacillus subtilis PerR is a Fur family repressor that senses hydrogen peroxide by metal-catalyzed oxidation. PerR contains a structural Zn(II) ion (Site 1) and a regulatory metal binding site (Site 2) that, upon association with either Mn(II) or Fe(II), allosterically activates DNA binding. In addition, a third less conserved metal binding site (Site 3) is present near the dimer interface in several crystal structures of homologous Fur family proteins. Here, we show that PerR proteins with substitutions of putative Site 3 residues (Y92A, E114A and H128A) are functional as repressors, but are unexpectedly compromised in their ability to sense H(2)O(2). Consistently, these mutants utilize Mn(II) but not Fe(II) as a co-repressor in vivo. Metal titrations failed to identify a third binding site in PerR, and inspection of the PerR structure suggests that these residues instead constitute a hydrogen binding network that modulates the architecture, and consequently the metal selectivity, of Site 2. PerR H128A binds DNA with high affinity, but has a significantly reduced affinity for Fe(II), and to a lesser extent for Mn(II). The ability of PerR H128A to bind Fe(II) in vivo and to thereby respond efficiently to H(2)O(2) was restored in a fur mutant strain with elevated cytosolic iron concentration.
Collapse
Affiliation(s)
- Zhen Ma
- Department of Microbiology, Cornell University, Ithaca, NY 14853-8101, USA
| | | | | |
Collapse
|
74
|
Graded expression of zinc-responsive genes through two regulatory zinc-binding sites in Zur. Proc Natl Acad Sci U S A 2011; 108:5045-50. [PMID: 21383173 DOI: 10.1073/pnas.1017744108] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Zinc is one of the essential transition metals in cells. Excess or lack of zinc is detrimental, and cells exploit highly sensitive zinc-binding regulators to achieve homeostasis. In this article, we present a crystal structure of active Zur from Streptomyces coelicolor with three zinc-binding sites (C-, M-, and D-sites). Mutations of the three sites differentially affected sporulation and transcription of target genes, such that C- and M-site mutations inhibited sporulation and derepressed all target genes examined, whereas D-site mutations did not affect sporulation and derepressed only a sensitive gene. Biochemical and spectroscopic analyses of representative metal site mutants revealed that the C-site serves a structural role, whereas the M- and D-sites regulate DNA-binding activity as an on-off switch and a fine-tuner, respectively. Consistent with differential effect of mutations on target genes, zinc chelation by TPEN derepressed some genes (znuA, rpmF2) more sensitively than others (rpmG2, SCO7682) in vivo. Similar pattern of TPEN-sensitivity was observed for Zur-DNA complexes formed on different promoters in vitro. The sensitive promoters bound Zur with lower affinity than the less sensitive ones. EDTA-treated apo-Zur gained its DNA binding activity at different concentrations of added zinc for the two promoter groups, corresponding to free zinc concentrations of 4.5×10(-16) M and 7.9×10(-16) M for the less sensitive and sensitive promoters, respectively. The graded expression of target genes is a clever outcome of subtly modulating Zur-DNA binding affinities in response to zinc availability. It enables bacteria to detect metal depletion with improved sensitivity and optimize gene-expression pattern.
Collapse
|
75
|
Dian C, Vitale S, Leonard GA, Bahlawane C, Fauquant C, Leduc D, Muller C, de Reuse H, Michaud-Soret I, Terradot L. The structure of the Helicobacter pylori ferric uptake regulator Fur reveals three functional metal binding sites. Mol Microbiol 2011; 79:1260-75. [PMID: 21208302 DOI: 10.1111/j.1365-2958.2010.07517.x] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Fur, the ferric uptake regulator, is a transcription factor that controls iron metabolism in bacteria. Binding of ferrous iron to Fur triggers a conformational change that activates the protein for binding to specific DNA sequences named Fur boxes. In Helicobacter pylori, HpFur is involved in acid response and is important for gastric colonization in model animals. Here we present the crystal structure of a functionally active HpFur mutant (HpFur2M; C78S-C150S) bound to zinc. Although its fold is similar to that of other Fur and Fur-like proteins, the crystal structure of HpFur reveals a unique structured N-terminal extension and an unusual C-terminal helix. The structure also shows three metal binding sites: S1 the structural ZnS₄ site previously characterized biochemically in HpFur and the two zinc sites identified in other Fur proteins. Site-directed mutagenesis and spectroscopy analyses of purified wild-type HpFur and various mutants show that the two metal binding sites common to other Fur proteins can be also metallated by cobalt. DNA protection and circular dichroism experiments demonstrate that, while these two sites influence the affinity of HpFur for DNA, only one is absolutely required for DNA binding and could be responsible for the conformational changes of Fur upon metal binding while the other is a secondary site.
Collapse
Affiliation(s)
- Cyril Dian
- Structural Biology Group, European Synchrotron Radiation Facility, BP 220 F-38043 Grenoble cedex 9, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Abstract
Both the essentiality and toxicity of transition metals are exploited as part of mammalian immune defenses against bacterial infection. Salmonella serovars continue to cause serious medical and veterinary problems worldwide and detecting deficiency and excess of different metal ions (such as copper, iron, zinc, manganese, nickel, and cobalt) is fundamental to their virulence. This involves multiple DNA-binding metal-responsive transcription factors that discriminate between elements and trigger expression of genes that mediate appropriate responses to metal fluxes. This review focuses on the metal stresses encountered by Salmonella during infection and the roles of the different metal-sensing regulatory proteins and their target genes in adapting to these changing metal levels. Current knowledge regarding the mechanisms of metal-regulated gene expression and the structural features of sensory metal binding sites are described. In addition, the principles governing the ability of the different sensors to detect specific metals within a cell to control cytosolic metal levels are also discussed. These proteins represent potential targets for the development of new therapeutic approaches.
Collapse
|
77
|
Herbst RW, Perovic I, Martin-Diaconescu V, O'Brien K, Chivers PT, Pochapsky SS, Pochapsky TC, Maroney MJ. Communication between the zinc and nickel sites in dimeric HypA: metal recognition and pH sensing. J Am Chem Soc 2010; 132:10338-51. [PMID: 20662514 DOI: 10.1021/ja1005724] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Helicobacter pylori , a pathogen that colonizes the human stomach, requires the nickel-containing metalloenzymes urease and NiFe-hydrogenase to survive this low pH environment. The maturation of both enzymes depends on the metallochaperone, HypA. HypA contains two metal sites, an intrinsic zinc site and a low-affinity nickel binding site. X-ray absorption spectroscopy (XAS) shows that the structure of the intrinsic zinc site of HypA is dynamic and able to sense both nickel loading and pH changes. At pH 6.3, an internal pH that occurs during acid shock, the zinc site undergoes unprecedented ligand substitutions to convert from a Zn(Cys)(4) site to a Zn(His)(2)(Cys)(2) site. NMR spectroscopy shows that binding of Ni(II) to HypA results in paramagnetic broadening of resonances near the N-terminus. NOEs between the beta-CH(2) protons of Zn cysteinyl ligands are consistent with a strand-swapped HypA dimer. Addition of nickel causes resonances from the zinc binding motif and other regions to double, indicating more than one conformation can exist in solution. Although the structure of the high-spin, 5-6 coordinate Ni(II) site is relatively unaffected by pH, the nickel binding stoichiometry is decreased from one per monomer to one per dimer at pH = 6.3. Mutation of any cysteine residue in the zinc binding motif results in a zinc site structure similar to that found for holo-WT-HypA at low pH and is unperturbed by the addition of nickel. Mutation of the histidines that flank the CXXC motifs results in a zinc site structure that is similar to holo-WT-HypA at neutral pH (Zn(Cys)(4)) and is no longer responsive to nickel binding or pH changes. Using an in vitro urease activity assay, it is shown that the recombinant protein is sufficient for recovery of urease activity in cell lysate from a HypA deletion mutant, and that mutations in the zinc-binding motif result in a decrease in recovered urease activity. The results are interpreted in terms of a model wherein HypA controls the flow of nickel traffic in the cell in response to nickel availability and pH.
Collapse
Affiliation(s)
- Robert W Herbst
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | | | | | | | | | | | | | | |
Collapse
|
78
|
Reyes-Caballero H, Guerra AJ, Jacobsen FE, Kazmierczak KM, Cowart D, Koppolu UMK, Scott RA, Winkler ME, Giedroc DP. The metalloregulatory zinc site in Streptococcus pneumoniae AdcR, a zinc-activated MarR family repressor. J Mol Biol 2010; 403:197-216. [PMID: 20804771 DOI: 10.1016/j.jmb.2010.08.030] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Revised: 08/14/2010] [Accepted: 08/16/2010] [Indexed: 12/11/2022]
Abstract
Streptococcus pneumoniae D39 AdcR (adhesin competence repressor) is the first metal-sensing member of the MarR (multiple antibiotic resistance repressor) family to be characterized. Expression profiling with a ΔadcR strain grown in liquid culture (brain-heart infusion) under microaerobic conditions revealed upregulation of 13 genes, including adcR and adcCBA, encoding a high-affinity ABC uptake system for zinc, and genes encoding cell-surface zinc-binding pneumococcal histidine triad (Pht) proteins and AdcAII (Lmb, laminin binding). The ΔadcR, H108Q and H112Q adcR mutant allelic strains grown in 0.2 mM Zn(II) exhibit a slow-growth phenotype and an approximately twofold increase in cell-associated Zn(II). Apo- and Zn(II)-bound AdcR are homodimers in solution and binding to a 28-mer DNA containing an adc operator is strongly stimulated by Zn(II) with K(DNA-Zn)=2.4 × 10(8) M(-1) (pH 6.0, 0.2 M NaCl, 25 °C). AdcR binds two Zn(II) per dimer, with stepwise Zn(II) affinities K(Zn1) and K(Zn2) of ≥10(9) M(-1) at pH 6.0 and ≥10(12) M(-1) at pH 8.0, and one to three lower affinity Zn(II) depending on the pH. X-ray absorption spectroscopy of the high-affinity site reveals a pentacoordinate N/O complex and no cysteine coordination, the latter finding corroborated by wild type-like functional properties of C30A AdcR. Alanine substitution of conserved residues His42 in the DNA-binding domain, and His108 and His112 in the C-terminal regulatory domain, abolish high-affinity Zn(II) binding and greatly reduce Zn(II)-activated binding to DNA. NMR studies reveal that these mutants adopt the same folded conformation as dimeric wild type apo-AdcR, but fail to conformationally switch upon Zn(II) binding. These studies implicate His42, His108 and H112 as metalloregulatory zinc ligands in S. pneumoniae AdcR.
Collapse
|
79
|
Mutagenesis of conserved amino acids of Helicobacter pylori fur reveals residues important for function. J Bacteriol 2010; 192:5037-52. [PMID: 20644138 DOI: 10.1128/jb.00198-10] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The ferric uptake regulator (Fur) of the medically important pathogen Helicobacter pylori is unique in that it has been shown to function as a repressor both in the presence of an Fe2+ cofactor and in its apo (non-Fe2+-bound) form. However, virtually nothing is known concerning the amino acid residues that are important for Fur functioning. Therefore, mutations in six conserved amino acid residues of H. pylori Fur were constructed and analyzed for their impact on both iron-bound and apo repression. In addition, accumulation of the mutant proteins, protein secondary structure, DNA binding ability, iron binding capacity, and the ability to form higher-order structures were also examined for each mutant protein. While none of the mutated residues completely abrogated the function of Fur, we were able to identify residues that were critical for both iron-bound and apo-Fur repression. One mutation, V64A, did not alter regulation of any target genes. However, each of the five remaining mutations showed an effect on either iron-bound or apo regulation. Of these, H96A, E110A, and E117A mutations altered iron-bound Fur regulation and were all shown to influence iron binding to different extents. Additionally, the H96A mutation was shown to alter Fur oligomerization, and the E110A mutation was shown to impact oligomerization and DNA binding. Conversely, the H134A mutant exhibited changes in apo-Fur regulation that were the result of alterations in DNA binding. Although the E90A mutant exhibited alterations in apo-Fur regulation, this mutation did not affect any of the assessed protein functions. This study is the first for H. pylori to analyze the roles of specific amino acid residues of Fur in function and continues to highlight the complexity of Fur regulation in this organism.
Collapse
|
80
|
Singleton C, White GF, Todd JD, Marritt SJ, Cheesman MR, Johnston AWB, Le Brun NE. Heme-responsive DNA binding by the global iron regulator Irr from Rhizobium leguminosarum. J Biol Chem 2010; 285:16023-31. [PMID: 20233710 PMCID: PMC2871471 DOI: 10.1074/jbc.m109.067215] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2009] [Revised: 03/13/2010] [Indexed: 11/06/2022] Open
Abstract
Heme, a physiologically crucial form of iron, is a cofactor for a very wide range of proteins and enzymes. These include DNA regulatory proteins in which heme is a sensor to which an analyte molecule binds, effecting a change in the DNA binding affinity of the regulator. Given that heme, and more generally iron, must be carefully regulated, it is surprising that there are no examples yet in bacteria in which heme itself is sensed directly by a reversibly binding DNA regulatory protein. Here we show that the Rhizobium leguminosarum global iron regulatory protein Irr, which has many homologues within the alpha-proteobacteria and is a member of the Fur superfamily, binds heme, resulting in a dramatic decrease in affinity between the protein and its cognate, regulatory DNA operator sequence. Spectroscopic studies of wild-type and mutant Irr showed that the principal (but not only) heme-binding site is at a conserved HXH motif, whose substitution led to loss of DNA binding in vitro and of regulatory function in vivo. The R. leguminosarum Irr behaves very differently to the Irr of Bradyrhizobium japonicum, which is rapidly degraded in vivo by an unknown mechanism in conditions of elevated iron or heme, but whose DNA binding affinity in vitro does not respond to heme.
Collapse
Affiliation(s)
- Chloe Singleton
- From the Centre for Molecular and Structural Biochemistry, School of Chemistry, and
| | - Gaye F. White
- From the Centre for Molecular and Structural Biochemistry, School of Chemistry, and
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - Jonathan D. Todd
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - Sophie J. Marritt
- From the Centre for Molecular and Structural Biochemistry, School of Chemistry, and
| | - Myles R. Cheesman
- From the Centre for Molecular and Structural Biochemistry, School of Chemistry, and
| | - Andrew W. B. Johnston
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - Nick E. Le Brun
- From the Centre for Molecular and Structural Biochemistry, School of Chemistry, and
| |
Collapse
|
81
|
Schröder J, Jochmann N, Rodionov DA, Tauch A. The Zur regulon of Corynebacterium glutamicum ATCC 13032. BMC Genomics 2010; 11:12. [PMID: 20055984 PMCID: PMC2823685 DOI: 10.1186/1471-2164-11-12] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Accepted: 01/07/2010] [Indexed: 12/30/2022] Open
Abstract
Background Zinc is considered as an essential element for all living organisms, but it can be toxic at large concentrations. Bacteria therefore tightly regulate zinc metabolism. The Cg2502 protein of Corynebacterium glutamicum was a candidate to control zinc metabolism in this species, since it was classified as metalloregulator of the zinc uptake regulator (Zur) subgroup of the ferric uptake regulator (Fur) family of DNA-binding transcription regulators. Results The cg2502 (zur) gene was deleted in the chromosome of C. glutamicum ATCC 13032 by an allelic exchange procedure to generate the zur-deficient mutant C. glutamicum JS2502. Whole-genome DNA microarray hybridizations and real-time RT-PCR assays comparing the gene expression in C. glutamicum JS2502 with that of the wild-type strain detected 18 genes with enhanced expression in the zur mutant. The expression data were combined with results from cross-genome comparisons of shared regulatory sites, revealing the presence of candidate Zur-binding sites in the mapped promoter regions of five transcription units encoding components of potential zinc ABC-type transporters (cg0041-cg0042/cg0043; cg2911-cg2912-cg2913), a putative secreted protein (cg0040), a putative oxidoreductase (cg0795), and a putative P-loop GTPase of the COG0523 protein family (cg0794). Enhanced transcript levels of the respective genes in C. glutamicum JS2502 were verified by real-time RT-PCR, and complementation of the mutant with a wild-type zur gene reversed the effect of differential gene expression. The zinc-dependent expression of the putative cg0042 and cg2911 operons was detected in vivo with a gfp reporter system. Moreover, the zinc-dependent binding of purified Zur protein to double-stranded 40-mer oligonucleotides containing candidate Zur-binding sites was demonstrated in vitro by DNA band shift assays. Conclusion Whole-genome expression profiling and DNA band shift assays demonstrated that Zur directly represses in a zinc-dependent manner the expression of nine genes organized in five transcription units. Accordingly, the Zur (Cg2502) protein is the key transcription regulator for genes involved in zinc homeostasis in C. glutamicum.
Collapse
Affiliation(s)
- Jasmin Schröder
- Institut für Genomforschung und Systembiologie, Centrum für Biotechnologie, Universität Bielefeld, D-33615 Bielefeld, Germany
| | | | | | | |
Collapse
|
82
|
Maret W. Metalloproteomics, metalloproteomes, and the annotation of metalloproteins. Metallomics 2010; 2:117-25. [DOI: 10.1039/b915804a] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
83
|
Affiliation(s)
- Wolfgang Maret
- Department of Preventive Medicine & Community Health, The University of Texas Medical Branch, Galveston, Texas 77555-1109, USA.
| | | |
Collapse
|
84
|
Ma Z, Jacobsen FE, Giedroc DP. Coordination chemistry of bacterial metal transport and sensing. Chem Rev 2009; 109:4644-81. [PMID: 19788177 PMCID: PMC2783614 DOI: 10.1021/cr900077w] [Citation(s) in RCA: 434] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Zhen Ma
- Department of Chemistry, Indiana University, Bloomington, IN 47401-7005 USA
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843-2128 USA
| | - Faith E. Jacobsen
- Department of Chemistry, Indiana University, Bloomington, IN 47401-7005 USA
| | - David P. Giedroc
- Department of Chemistry, Indiana University, Bloomington, IN 47401-7005 USA
| |
Collapse
|
85
|
Cook GM, Berney M, Gebhard S, Heinemann M, Cox RA, Danilchanka O, Niederweis M. Physiology of mycobacteria. Adv Microb Physiol 2009; 55:81-182, 318-9. [PMID: 19573696 DOI: 10.1016/s0065-2911(09)05502-7] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Mycobacterium tuberculosis is a prototrophic, metabolically flexible bacterium that has achieved a spread in the human population that is unmatched by any other bacterial pathogen. The success of M. tuberculosis as a pathogen can be attributed to its extraordinary stealth and capacity to adapt to environmental changes throughout the course of infection. These changes include: nutrient deprivation, hypoxia, various exogenous stress conditions and, in the case of the pathogenic species, the intraphagosomal environment. Knowledge of the physiology of M. tuberculosis during this process has been limited by the slow growth of the bacterium in the laboratory and other technical problems such as cell aggregation. Advances in genomics and molecular methods to analyze the M. tuberculosis genome have revealed that adaptive changes are mediated by complex regulatory networks and signals, resulting in temporal gene expression coupled to metabolic and energetic changes. An important goal for bacterial physiologists will be to elucidate the physiology of M. tuberculosis during the transition between the diverse conditions encountered by M. tuberculosis. This review covers the growth of the mycobacterial cell and how environmental stimuli are sensed by this bacterium. Adaptation to different environments is described from the viewpoint of nutrient acquisition, energy generation, and regulation. To gain quantitative understanding of mycobacterial physiology will require a systems biology approach and recent efforts in this area are discussed.
Collapse
Affiliation(s)
- Gregory M Cook
- Department of Microbiology and Immunology, Otago School of Medical Sciences, University of Otago, Dunedin, New Zealand
| | | | | | | | | | | | | |
Collapse
|
86
|
At the crossroads of bacterial metabolism and virulence factor synthesis in Staphylococci. Microbiol Mol Biol Rev 2009; 73:233-48. [PMID: 19487727 DOI: 10.1128/mmbr.00005-09] [Citation(s) in RCA: 288] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Bacteria live in environments that are subject to rapid changes in the availability of the nutrients that are necessary to provide energy and biosynthetic intermediates for the synthesis of macromolecules. Consequently, bacterial survival depends on the ability of bacteria to regulate the expression of genes coding for enzymes required for growth in the altered environment. In pathogenic bacteria, adaptation to an altered environment often includes activating the transcription of virulence genes; hence, many virulence genes are regulated by environmental and nutritional signals. Consistent with this observation, the regulation of most, if not all, virulence determinants in staphylococci is mediated by environmental and nutritional signals. Some of these external signals can be directly transduced into a regulatory response by two-component regulators such as SrrAB; however, other external signals require transduction into intracellular signals. Many of the external environmental and nutritional signals that regulate virulence determinant expression can also alter bacterial metabolic status (e.g., iron limitation). Altering the metabolic status results in the transduction of external signals into intracellular metabolic signals that can be "sensed" by regulatory proteins (e.g., CodY, Rex, and GlnR). This review uses information derived primarily using Bacillus subtilis and Escherichia coli to articulate how gram-positive pathogens, with emphasis on Staphylococcus aureus and Staphylococcus epidermidis, regulate virulence determinant expression in response to a changing environment.
Collapse
|
87
|
Giedroc DP. Hydrogen peroxide sensing in Bacillus subtilis: it is all about the (metallo)regulator. Mol Microbiol 2009; 73:1-4. [PMID: 19508286 DOI: 10.1111/j.1365-2958.2009.06752.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Microorganisms have evolved an impressive array of mechanisms to adapt to stress induced by reactive oxygen species (ROS) of virtually any kind. One such regulator is Bacillus subtilis PerR, a member of the ubiquitous Fur (Ferric uptake regulator) family of metalloregulatory repressors, which senses hydrogen peroxide. In this issue of Molecular Microbiology, Duarte, Latour and colleagues report the structure of the Mn(II)-bound form of PerR, a first for the Fe/Mn-selective members of the Fur family. The structure reveals how a regulatory metal drives a quaternary structural switch that allosterically activates the PerR dimer to bind its DNA operator, while also providing detailed insight into the mechanism of metal-catalysed ligand oxidation and transcriptional derepression that uniquely characterizes PerR.
Collapse
Affiliation(s)
- David P Giedroc
- Department of Chemistry, Indiana University, Bloomington, IN 47405-7002, USA.
| |
Collapse
|
88
|
Jacquamet L, Traoré DAK, Ferrer JL, Proux O, Testemale D, Hazemann JL, Nazarenko E, El Ghazouani A, Caux-Thang C, Duarte V, Latour JM. Structural characterization of the active form of PerR: insights into the metal-induced activation of PerR and Fur proteins for DNA binding. Mol Microbiol 2009; 73:20-31. [PMID: 19508285 DOI: 10.1111/j.1365-2958.2009.06753.x] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In Bacillus subtilis, the transcription factor PerR is an iron dependant sensor of H(2)O(2). The sensing mechanism relies on a selective metal catalysed oxidation of two histidine residues of the regulatory site. Here we present the first crystal structure of the active PerR protein in complex with a Mn(2+) ion. In addition, X-ray absorption spectroscopy experiments were performed to characterize the corresponding iron form of the protein. Both studies reveal a penta-coordinate arrangement of the regulatory site that involves three histidines and two aspartates. One of the histidine ligand belongs to the N-terminal domain. Binding of this residue to the regulatory metal allows the protein to adopt a caliper-like conformation suited to DNA binding. Since this histidine is conserved in all PerR and a vast majority of Fur proteins, it is likely that the allosteric switch induced by the regulatory metal is general for this family of metalloregulators.
Collapse
Affiliation(s)
- L Jacquamet
- Institut de Biologie Structurale CEA-CNRS-UJF, LCCP, GSY, 41 rue Jules Horowitz, 38027 Grenoble Cedex 1, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Vitale S, Fauquant C, Lascoux D, Schauer K, Saint-Pierre C, Michaud-Soret I. A ZnS4 Structural Zinc Site in the Helicobacter pylori Ferric Uptake Regulator. Biochemistry 2009; 48:5582-91. [DOI: 10.1021/bi9004396] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Sylvia Vitale
- CNRS UMR 5249 Laboratoire de Chimie et Biologie des Métaux, Commissariat à l’Energie Atomique (CEA), Direction des Sciences du Vivant (DSV), l’Institut de Recherches en Technologies et Sciences pour le Vivant (iRTSV), and Université Joseph Fourier, 17 rue des Martyrs, F-38054 Grenoble Cedex 9, France
| | - Caroline Fauquant
- CNRS UMR 5249 Laboratoire de Chimie et Biologie des Métaux, Commissariat à l’Energie Atomique (CEA), Direction des Sciences du Vivant (DSV), l’Institut de Recherches en Technologies et Sciences pour le Vivant (iRTSV), and Université Joseph Fourier, 17 rue des Martyrs, F-38054 Grenoble Cedex 9, France
| | - David Lascoux
- Laboratoire de Spectrométrie de Masse des Protéines, Institut de Biologie Structurale, Jean-Pierre Ebel (UMR 5075 CNRS/CEA/UJF), F-38027 Grenoble Cedex 1, France
| | - Kristine Schauer
- Unité Pathogenèse de Helicobacter, Institut Pasteur, 28 rue du Docteur Roux, 75724 Paris Cedex 15, France
| | - Christine Saint-Pierre
- Laboratoire des Lésions des Acides Nucléiques, DSM/INAC/Service de Chimie Inorganique et Biologique, UMR E-3 CEA/UJF CNRS FRE 3200, 17 rue des Martyrs, Grenoble F-38054 Cedex 9, France
| | - Isabelle Michaud-Soret
- CNRS UMR 5249 Laboratoire de Chimie et Biologie des Métaux, Commissariat à l’Energie Atomique (CEA), Direction des Sciences du Vivant (DSV), l’Institut de Recherches en Technologies et Sciences pour le Vivant (iRTSV), and Université Joseph Fourier, 17 rue des Martyrs, F-38054 Grenoble Cedex 9, France
| |
Collapse
|
90
|
Ahmad R, Brandsdal BO, Michaud-Soret I, Willassen NP. Ferric uptake regulator protein: Binding free energy calculations and per-residue free energy decomposition. Proteins 2009; 75:373-86. [DOI: 10.1002/prot.22247] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
91
|
Sheikh MA, Taylor GL. Crystal structure of the Vibrio cholerae ferric uptake regulator (Fur) reveals insights into metal co-ordination. Mol Microbiol 2009; 72:1208-20. [PMID: 19400801 DOI: 10.1111/j.1365-2958.2009.06718.x] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The ferric uptake regulator (Fur) is a metal-dependent DNA-binding protein that acts as both a repressor and an activator of numerous genes involved in maintaining iron homeostasis in bacteria. It has also been demonstrated in Vibrio cholerae that Fur plays an additional role in pathogenesis, opening up the potential of Fur as a drug target for cholera. Here we present the crystal structure of V. cholerae Fur that reveals a very different orientation of the DNA-binding domains compared with that observed in Pseudomonas aeruginosa Fur. Each monomer of the dimeric Fur protein contains two metal binding sites occupied by zinc in the crystal structure. In the P. aeruginosa study these were designated as the regulatory site (Zn1) and structural site (Zn2). This V. cholerae Fur study, together with studies on Fur homologues and paralogues, suggests that in fact the Zn2 site is the regulatory iron binding site and the Zn1 site plays an auxiliary role. There is no evidence of metal binding to the cysteines that are conserved in many Fur homologues, including Escherichia coli Fur. An analysis of the metal binding properties shows that V. cholerae Fur can be activated by a range of divalent metals.
Collapse
Affiliation(s)
- Md Arif Sheikh
- Centre for Biomolecular Sciences, University of St Andrews, St Andrews, Fife KY16 9ST, UK
| | | |
Collapse
|
92
|
An YJ, Ahn BE, Han AR, Kim HM, Chung KM, Shin JH, Cho YB, Roe JH, Cha SS. Structural basis for the specialization of Nur, a nickel-specific Fur homolog, in metal sensing and DNA recognition. Nucleic Acids Res 2009; 37:3442-51. [PMID: 19336416 PMCID: PMC2691836 DOI: 10.1093/nar/gkp198] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Nur, a member of the Fur family, is a nickel-responsive transcription factor that controls nickel homeostasis and anti-oxidative response in Streptomyces coelicolor. Here we report the 2.4-Å resolution crystal structure of Nur. It contains a unique nickel-specific metal site in addition to a nonspecific common metal site. The identification of the 6-5-6 motif of the Nur recognition box and a Nur/DNA complex model reveals that Nur mainly interacts with terminal bases of the palindrome on complex formation. This contrasts with more distributed contacts between Fur and the n-1-n type of the Fur-binding motif. The disparity between Nur and Fur in the conformation of the S1-S2 sheet in the DNA-binding domain can explain their different DNA-recognition patterns. Furthermore, the fact that the specificity of Nur in metal sensing and DNA recognition is conferred by the specific metal site suggests that its introduction drives the evolution of Nur orthologs in the Fur family.
Collapse
Affiliation(s)
- Young Jun An
- Marine and Extreme Genome Research Center, Korea Ocean Research & Development Institute, Ansan 426-744, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Saha B, Mukherjee S, Dutta D, Das AK. Expression, purification, crystallization and preliminary X-ray diffraction analysis of the transcriptional repressor SirR from Mycobacterium tuberculosis H37Rv. Acta Crystallogr Sect F Struct Biol Cryst Commun 2009; 65:154-8. [PMID: 19194009 PMCID: PMC2635875 DOI: 10.1107/s1744309108043534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2008] [Accepted: 12/22/2008] [Indexed: 11/10/2022]
Abstract
SirR, a metal-dependent transcriptional repressor from Mycobacterium tuberculosis (Rv2788), was cloned in pQE30 expression vector with an N-terminal His(6) tag for heterologous overexpression in Escherichia coli M15 (pREP4) cells and purified to homogeneity using chromatographic procedures. The purified protein was crystallized using the sitting-drop vapour-diffusion technique. The crystals belonged to the tetragonal space group P4(1)2(1)2/P4(3)2(1)2, with unit-cell parameters a = 105.21, b = 105.21, c = 144.85 A. The X-ray diffraction data were processed to a maximum resolution of 2.5 A. The Matthews coefficient suggests the presence of two (V(M) = 4.01 A(3) Da(-1)) to four (V(M) = 2.0 A(3) Da(-1)) molecules in the asymmetric unit. Calculation of the self-rotation function shows a crystallographic fourfold symmetry axis along the z axis (chi = 90 degrees) and also a twofold symmetry axis around the z axis (chi = 180 degrees).
Collapse
Affiliation(s)
- Baisakhee Saha
- Department of Biotechnology, Indian Institute of Technology, Kharagpur 721 302, India
| | - Somnath Mukherjee
- Department of Biotechnology, Indian Institute of Technology, Kharagpur 721 302, India
| | - Debajyoti Dutta
- Department of Biotechnology, Indian Institute of Technology, Kharagpur 721 302, India
| | - Amit Kumar Das
- Department of Biotechnology, Indian Institute of Technology, Kharagpur 721 302, India
| |
Collapse
|
94
|
New insights into the role of Fur proteins: FurB (All2473) from Anabaena protects DNA and increases cell survival under oxidative stress. Biochem J 2009; 418:201-7. [DOI: 10.1042/bj20081066] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Fur (ferric uptake regulator) is a prokaryotic transcriptional regulator that controls a large number of genes mainly related to iron metabolism. Several Fur homologues with different physiological roles are frequently found in the same organism. The genome of the filamentous cyanobacterium Anabaena (Nostoc) sp. PCC 7120 codes for three different fur genes. FurA is an essential protein involved in iron homoeostasis that also modulates dinitrogen fixation. FurA interacts with haem, impairing its DNA-binding ability. To explore functional differences between Fur homologues in Anabaena, factors affecting their regulation, as well as some biochemical characteristics, have been investigated. Although incubation of FurB with haem severely hinders its ability to interact with DNA, binding of haem to FurC could not be detected. Oxidative stress enhances the transcription of the three fur genes, especially that of furB and furC. In addition, overexpression of FurA and FurB in Escherichia coli increases survival when the cells are challenged with H2O2 or Methyl Viologen (paraquat), a superoxide-anion-generating reagent. When present in saturating concentrations, FurB exhibits unspecific DNA-binding activity and protects DNA from cleavage produced by hydroxyl radicals or DNaseI. On the basis of these results, we suggest that, whereas at low concentrations FurB would act as a member of the Fur family, at saturating concentrations FurB protects DNA, showing a DNA-protection-during-starvation-like behaviour.
Collapse
|
95
|
Wellenreuther G, Cianci M, Tucoulou R, Meyer-Klaucke W, Haase H. The ligand environment of zinc stored in vesicles. Biochem Biophys Res Commun 2009; 380:198-203. [PMID: 19171119 DOI: 10.1016/j.bbrc.2009.01.074] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2009] [Accepted: 01/14/2009] [Indexed: 11/28/2022]
Abstract
Zinc serves regulatory functions in cells and thus, several mechanisms exist for tight control of its homeostasis. One mechanism is storage in and retrieval from vesicles, so-called zincosomes, but the chemical speciation of zincosomal zinc has remained enigmatic. Here, we determine the intravesicular zinc-coordination in isolated zincosomes in comparison to intact RAW264.7 murine macrophage cells. In elemental maps of a cell monolayer, generated by microbeam X-ray fluorescence, zincosomes were identified as spots of high zinc accumulation. A fingerprint for the binding motif obtained by muXANES (X-ray absorption near edge structure) matches the XANES from isolated vesicles; zinc is not free, but present as a complexed form (average coordination; 1.0 sulfur, 2,5 histidines 30 and 1.0 oxygen), resembling regulatory or catalytic zinc sites in proteins. Such coordination enables reversible binding, acting as a 'zinc sink', facilitating the accumulation of high amounts of zinc against a concentration gradient.
Collapse
Affiliation(s)
- Gerd Wellenreuther
- European Molecular Biology Laboratory, Hamburg Outstation, c/o DESY, Notkestrasse 85, D-22603 Hamburg, Germany
| | | | | | | | | |
Collapse
|
96
|
Abstract
Zinc is a constituent of all six classes of enzymes, plays important roles in gene regulation, and is thought to be essential for most organisms. Despite initial discoveries of cyanobacterial metallothioneins, zinc efflux pumps and uptake systems, and zinc sensors, our knowledge of the zinc requirements, uptake, and detoxification mechanisms of cyanobacteria is still limited. Although cyanobacteria occupy extremely diverse habitats, most available data pertains to freshwater species, and almost no studies of zinc-handling mechanisms have been conducted in marine species. The current report highlights what is known about zinc homeostasis in cyanobacteria, and presents an analysis of the 40 sequenced cyanobacterial genomes.
Collapse
|
97
|
Binding of the Zn2+ ion to ferric uptake regulation protein from E. coli and the competition with Fe2+ binding: a molecular modeling study of the effect on DNA binding and conformational changes of Fur. J Comput Aided Mol Des 2008; 23:199-208. [DOI: 10.1007/s10822-008-9251-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2008] [Accepted: 11/03/2008] [Indexed: 10/21/2022]
|
98
|
Riccardi G, Milano A, Pasca MR, Nies DH. Genomic analysis of zinc homeostasis inMycobacterium tuberculosis. FEMS Microbiol Lett 2008; 287:1-7. [DOI: 10.1111/j.1574-6968.2008.01320.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
99
|
The Metal-Dependent Regulators FurA and FurB from Mycobacterium Tuberculosis. Int J Mol Sci 2008; 9:1548-1560. [PMID: 19169435 PMCID: PMC2630230 DOI: 10.3390/ijms9081548] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2008] [Revised: 07/29/2008] [Accepted: 07/30/2008] [Indexed: 11/17/2022] Open
Abstract
The ferric uptake regulators (Fur) form a large family of bacterial metal-activated DNA-binding proteins that control a diverse set of genes at the transcriptional level. Mycobacterium tuberculosis, the causative agent of tuberculosis, expresses two members of the Fur family, designated FurA and FurB. Although both belong to the same family, they share only approximately 25% sequence identity and as a consequence, they differ significantly in some of their key biological functions. FurA appears to be a specialized iron-dependent regulator that controls the katG gene, which encodes for a catalase-peroxidase involved in the response of M. tuberculosis to oxidative stress. KatG is also the key mycobacterial enzyme responsible for the activation of the first-line tuberculosis drug Isoniazid. FurB in contrast requires Zn(2+) rather than Fe(2+), to bind to its target sequence in regulated genes, which include those involved in Zn(2+)-homeostasis. Recent biochemical, crystallographic and spectroscopic data have now shed light on the activation and metal discrimination mechanisms in this protein family.
Collapse
|
100
|
Functional definition and global regulation of Zur, a zinc uptake regulator in a Streptococcus suis serotype 2 strain causing streptococcal toxic shock syndrome. J Bacteriol 2008; 190:7567-78. [PMID: 18723622 DOI: 10.1128/jb.01532-07] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Zinc is an essential trace element for all living organisms and plays pivotal roles in various cellular processes. However, an excess of zinc is extremely deleterious to cells. Bacteria have evolved complex machineries (such as efflux/influx systems) to control the concentration at levels appropriate for the maintenance of zinc homeostasis in cells and adaptation to the environment. The Zur (zinc uptake regulator) protein is one of these functional members involved in the precise control of zinc homeostasis. Here we identified a zur homologue designated 310 from Streptococcus suis serotype 2, strain 05ZYH33, a highly invasive isolate causing streptococcal toxic shock syndrome. Biochemical analysis revealed that the protein product of gene 310 exists as a dimer form and carries zinc ions. An isogenic gene replacement mutant of gene 310, the Delta310 mutant, was obtained by homologous recombination. Physiological tests demonstrated that the Delta310 mutant is specifically sensitive to Zn(2+), while functional complementation of the Delta310 mutant can restore its duration capability, suggesting that 310 is a functional member of the Zur family. Two-dimensional electrophoresis indicated that nine proteins in the Delta310 mutant are overexpressed in comparison with those in the wild type. DNA microarray analyses suggested that 121 genes in the Delta310 mutant are affected, of which 72 genes are upregulated and 49 are downregulated. The transcriptome of S. suis serotype 2 with high Zn(2+) concentrations also showed 117 differentially expressed genes, with 71 upregulated and 46 downregulated. Surprisingly, more than 70% of the genes differentially expressed in the Delta310 mutant were the same as those in S. suis serotype 2 that were differentially expressed in response to high Zn(2+) concentration, consistent with the notion that 310 is involved in zinc homeostasis. We thus report for the first time a novel zinc-responsive regulator, Zur, from Streptococcus suis serotype 2.
Collapse
|