51
|
Song L, Li XX, Liu XY, Wang Z, Yu Y, Shi M, Jiang B, He XP. EFEMP2 Suppresses the Invasion of Lung Cancer Cells by Inhibiting Epithelial-Mesenchymal Transition (EMT) and Down-Regulating MMPs. Onco Targets Ther 2020; 13:1375-1396. [PMID: 32110039 PMCID: PMC7034775 DOI: 10.2147/ott.s236111] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 01/17/2020] [Indexed: 12/16/2022] Open
Abstract
Background Epidermal growth factor-containing fibulin-like extracellular matrix protein 2 (EFEMP2), also known as fibulin-4, MBP1 and UPH1, is an extracellular matrix protein associated with a variety of tumors. The purpose of this study was to investigate the prognostic value and the function of EFEMP2 in lung cancer. Methods The mRNA and protein expression of EFEMP2 in lung normal and cancer tissues, lung cancer cell lines (A549, H460, H1299 and H1650) and normal epithelial cell line BEAS-2B were evaluated by immunohistochemistry, RT-qPCR and Western blotting. The Public databases (Oncomine and Kaplan-Meier plotter) were used to investigate the prognostic value of EFEMP2 in lung cancer. RNA interference (RNAi) and overexpression transfection were performed to detect the effects of EFEMP2 up- or down-regulation on lung normal and cancer cell proliferation, invasion and metastasis in vitro and in vivo. Results EFEMP2 was lowly expressed in lung cancer tissues and cells, and its low expression was associated with malignant phenotype and poor prognosis of lung cancer. The same conclusion had been drawn from the Public databases. EFEMP2 overexpression significantly inhibited the invasion of lung cancer cells, hampered the process of EMT, and decreased the expression and activity of MMP2 and MMP9, while EFEMP2 knockdown remarkably enhanced the invasion of lung cancer cells, promoted EMT, and increased the expression and activity of MMP2 and MMP9. Conclusion The low expression of EFEMP2 was detected in lung cancer and was positively correlated with the poor prognosis of patients. EFEMP2 was a tumor suppressor gene that inhibited the progress of lung cancer, which suggested a new research objective for the future studies.
Collapse
Affiliation(s)
- Liang Song
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, People's Republic of China
| | - Xiang-Xin Li
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, People's Republic of China
| | - Xiang-Yan Liu
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, People's Republic of China
| | - Zhou Wang
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, People's Republic of China
| | - Yang Yu
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, People's Republic of China
| | - Mo Shi
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, People's Republic of China
| | - Bin Jiang
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, People's Republic of China
| | - Xiao-Peng He
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, People's Republic of China
| |
Collapse
|
52
|
Eckersley A, Ozols M, O'Cualain R, Keevill EJ, Foster A, Pilkington S, Knight D, Griffiths CEM, Watson REB, Sherratt MJ. Proteomic fingerprints of damage in extracellular matrix assemblies. Matrix Biol Plus 2020; 5:100027. [PMID: 33543016 PMCID: PMC7852314 DOI: 10.1016/j.mbplus.2020.100027] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 01/21/2020] [Accepted: 01/21/2020] [Indexed: 12/11/2022] Open
Abstract
In contrast to the dynamic intracellular environment, structural extracellular matrix (ECM) proteins with half-lives measured in decades, are susceptible to accumulating damage. Whilst conventional approaches such as histology, immunohistochemistry and mass spectrometry are able to identify age- and disease-related changes in protein abundance or distribution, these techniques are poorly suited to characterising molecular damage. We have previously shown that mass spectrometry can detect tissue-specific differences in the proteolytic susceptibility of protein regions within fibrillin-1 and collagen VI alpha-3. Here, we present a novel proteomic approach to detect damage-induced “peptide fingerprints” within complex multi-component ECM assemblies (fibrillin and collagen VI microfibrils) following their exposure to ultraviolet radiation (UVR) by broadband UVB or solar simulated radiation (SSR). These assemblies were chosen because, in chronically photoaged skin, fibrillin and collagen VI microfibril architectures are differentially susceptible to UVR. In this study, atomic force microscopy revealed that fibrillin microfibril ultrastructure was significantly altered by UVR exposure whereas the ultrastructure of collagen VI microfibrils was resistant. UVR-induced molecular damage was further characterised by proteolytic peptide generation with elastase followed by liquid chromatography tandem mass spectrometry (LC-MS/MS). Peptide mapping revealed that UVR exposure increased regional proteolytic susceptibility within the protein structures of fibrillin-1 and collagen VI alpha-3. This allowed the identification of UVR-induced molecular changes within these two key ECM assemblies. Additionally, similar changes were observed within protein regions of co-purifying, microfibril-associated receptors integrins αv and β1. This study demonstrates that LC-MS/MS mapping of peptides enables the characterisation of molecular post-translational damage (via direct irradiation and radiation-induced oxidative mechanisms) within a complex in vitro model system. This peptide fingerprinting approach reliably allows both the identification of UVR-induced molecular damage in and between proteins and the identification of specific protein domains with increased proteolytic susceptibility as a result of photo-denaturation. This has the potential to serve as a sensitive method of identifying accumulated molecular damage in vivo using conventional mass spectrometry data-sets. Mass spectrometry “peptide fingerprinting” can detect post-translational damage within extracellular matrix proteins. UVR-induced FBN1 and COL6A3 peptide fingerprints are reproducibly identified from purified microfibrils. Peptide mapping reveals increased regional susceptibilities to proteolysis in FBN1 and COL6A3 proteins. Regional changes are also observed in protein structures of microfibril-associated receptor integrins αv and β1. This “peptide fingerprinting” approach is applicable to conventional LC-MS/MS datasets.
Collapse
Key Words
- AFM, atomic force microscopy
- COL6A3, collagen VI alpha 3 chain
- Collagen VI microfibril
- ECM, extracellular matrix
- EGF, epidermal growth factor domain
- Fibrillin microfibril
- HDF, human dermal fibroblast
- LC-MS/MS, liquid chromatography tandem mass spectrometry
- Mass spectrometry
- PSM, peptide spectrum match
- Photodamage
- ROS, reactive oxygen species
- SSR, solar simulated radiation
- TGFβ, transforming growth factor beta
- UVR, ultraviolet radiation
- Ultraviolet radiation
- vWA, von Willebrand factor type A domain
Collapse
Affiliation(s)
- Alexander Eckersley
- Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Matiss Ozols
- Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Ronan O'Cualain
- Biological Mass Spectrometry Core Research Facility, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Emma-Jayne Keevill
- Biological Mass Spectrometry Core Research Facility, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - April Foster
- Division of Musculoskeletal & Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Suzanne Pilkington
- Division of Musculoskeletal & Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - David Knight
- Biological Mass Spectrometry Core Research Facility, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Christopher E M Griffiths
- Division of Musculoskeletal & Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.,NIHR Manchester Biomedical Research Centre, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Rachel E B Watson
- Division of Musculoskeletal & Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.,NIHR Manchester Biomedical Research Centre, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Michael J Sherratt
- Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| |
Collapse
|
53
|
Zhang H, Hui D, Fu X. Roles of Fibulin-2 in Carcinogenesis. Med Sci Monit 2020; 26:e918099. [PMID: 31915327 PMCID: PMC6977632 DOI: 10.12659/msm.918099] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 10/25/2019] [Indexed: 01/03/2023] Open
Abstract
Fibulin-2, an extracellular matrix (ECM) protein expressed in normal epithelia, is a kind of fibulin which is associated with basement membranes (BM) and elastic ECM fibers. The role of fibulin-2 has been recognized as an oncogene. The upregulation of fibulin-2 correlates with cancer development and progression. Furthermore, the upregulation of fibulin has been detected in ovarian cancer and stomach adenocarcinoma. However, the downregulation of fibulin has been detected in different intestinal and respiratory tumor cells. Additional studies have revealed that the role of fibulin-2 in carcinogenesis is context dependent and is caused by the interaction of fibulin proteins such as cell surface receptors and other ECM proteins, including integrins and syndecans. The present study summarizes the role of fibulin in carcinogenesis and its underlying molecular mechanism.
Collapse
Affiliation(s)
- Huayue Zhang
- Department of Medical Oncology, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| | - Dengcheng Hui
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| | - Xiaoling Fu
- Department of Medical Oncology, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| |
Collapse
|
54
|
Biallelic variants in EFEMP1 in a man with a pronounced connective tissue phenotype. Eur J Hum Genet 2019; 28:445-452. [PMID: 31792352 DOI: 10.1038/s41431-019-0546-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 10/29/2019] [Accepted: 11/01/2019] [Indexed: 12/30/2022] Open
Abstract
Connective tissue disorders are a spectrum of diseases that affect the integrity of tissues including skin, vasculature, and joints. They are often caused by variants that disrupt genes encoding components of extracellular matrix (ECM). The fibulin glycoproteins are ECM proteins important for integrity of tissues including dermis, retina, fascia, and vasculature. The fibulin family consists of seven members (fibulins-1 to -7) and is defined by a fibulin-type domain at the C-terminus. The family is associated with human diseases, for instance a variant in FBLN1, encoding fibulin-1, is associated with synpolydactyly, while one in EFEMP1, encoding fibulin-3, causes Doyne honeycomb degeneration of the retina. Loss-of-function of fibulins-4 and -5 causes cutis laxa, while variants in fibulins-5 and -6 are associated with age-related macular degeneration. Of note, EFEMP1 is not currently associated with any connective tissue disorder. Here we show biallelic loss-of-function variants in EFEMP1 in an individual with multiple and recurrent abdominal and thoracic herniae, myopia, hypermobile joints, scoliosis, and thin translucent skin. Fibroblasts from this individual express significantly lower EFEMP1 transcript than age-matched control cells. A skin biopsy, visualised using light microscopy, showed normal structure and abundance of elastic fibres. The phenotype of this individual is remarkably similar to the Efemp1 knockout mouse model that displays multiple herniae with premature aging and scoliosis. We conclude that loss of EFEMP1 function in this individual is the cause of a connective tissue disorder with a novel combination of phenotypic features, and can perhaps explain similar, previously reported cases in the literature.
Collapse
|
55
|
Gholamrezanezhad A, Shooli H, Jokar N, Nemati R, Assadi M. Radioimmunotherapy (RIT) in Brain Tumors. Nucl Med Mol Imaging 2019; 53:374-381. [PMID: 31867072 PMCID: PMC6898703 DOI: 10.1007/s13139-019-00618-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/02/2019] [Accepted: 10/11/2019] [Indexed: 12/27/2022] Open
Abstract
Annually, the incidence of brain tumors has slightly increased and also the patient prognosis is still disappointing, especially for high-grade neoplasms. So, researchers seek methods to improve therapeutic index as a critical aim of treatment. One of these new challenging methods is radioimmunotherapy (RIT) that involves recruiting a coupling of radionuclide component with monoclonal antibody (mAb) which are targeted against cell surface tumor-related antigens or antigens of cells within the tumor microenvironment. In the context of cancer care, precision medicine is exemplified by RIT; precision medicine can offer a tailored treatment to meet the needs for treatment of brain tumors. This review aims to discuss the molecular targets used in radioimmunotherapy of brain tumors, available and future radioimmunopharmaceutics, clinical trials of radioimmunotherapy in brain neoplasms, and eventually, conclusion and future perspective of application of radioimmunotherapy in neurooncology cancer care.
Collapse
Affiliation(s)
- Ali Gholamrezanezhad
- Department of Diagnostic Radiology, Keck School of Medicine, University of Southern California (USC), 1520 San Pablo Street, Suite L1600, Los Angeles, CA 90033 USA
| | - Hossein Shooli
- Department of Molecular Imaging and Radionuclide Therapy (MIRT), The Persian Gulf Nuclear Medicine Research Center, Bushehr Medical University Hospital, Faculty of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Narges Jokar
- Department of Molecular Imaging and Radionuclide Therapy (MIRT), The Persian Gulf Nuclear Medicine Research Center, Bushehr Medical University Hospital, Faculty of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Reza Nemati
- Department of Neurology, Bushehr Medical University Hospital, Faculty of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Majid Assadi
- Department of Molecular Imaging and Radionuclide Therapy (MIRT), The Persian Gulf Nuclear Medicine Research Center, Bushehr Medical University Hospital, Faculty of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| |
Collapse
|
56
|
Thompson S, Blodi FR, Larson DR, Anderson MG, Stasheff SF. The Efemp1R345W Macular Dystrophy Mutation Causes Amplified Circadian and Photophobic Responses to Light in Mice. Invest Ophthalmol Vis Sci 2019; 60:2110-2117. [PMID: 31095679 PMCID: PMC6735810 DOI: 10.1167/iovs.19-26881] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Purpose The R345W mutation in EFEMP1 causes malattia leventinese, an autosomal dominant eye disease with pathogenesis similar to an early-onset age-related macular degeneration. In mice, Efemp1R345W does not cause detectable degeneration but small subretinal deposits do accumulate. The purpose of this study was to determine whether there were abnormal responses to light at this presymptomatic stage in Efemp1R345W mice. Methods Responses to light were assessed by visual water task, circadian phase shifting, and negative masking behavior. The mechanism of abnormal responses was investigated by anterior eye exam, electroretinogram, melanopsin cell quantification, and multielectrode recording of retinal ganglion cell activity. Results Visual acuity was not different in Efemp1R345W mice. However, amplitudes of circadian phase shifting (P = 0.016) and negative masking (P < 0.0001) were increased in Efemp1R345W mice. This phenotype was not explained by anterior eye defects or amplified outer retina responses. Instead, we identified increased melanopsin-generated responses to light in the ganglion cell layer of the retina (P < 0.01). Conclusions Efemp1R345W increases the sensitivity to light of behavioral responses driven by detection of irradiance. An amplified response to light in melanopsin-expressing intrinsically photosensitive retinal ganglion cells (ipRGCs) is consistent with this phenotype. The major concern with this effect of the malattia leventinese mutation is the potential for abnormal regulation of physiology by light to negatively affect health.
Collapse
Affiliation(s)
- Stewart Thompson
- Department of Psychology, New Mexico Tech, Socorro, New Mexico, United States.,Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa, United States.,Institute for Vision Research, University of Iowa, Iowa City, Iowa, United States
| | - Frederick R Blodi
- Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa, United States.,Institute for Vision Research, University of Iowa, Iowa City, Iowa, United States.,Pediatrics, University of Iowa, Iowa City, Iowa, United States.,Ophthalmology and Visual Sciences, University of Louisville, Louisville, Kentucky, United States
| | - Demelza R Larson
- Institute for Vision Research, University of Iowa, Iowa City, Iowa, United States.,Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa, United States.,Biology Department, College of St. Benedict & St. John's University, Collegeville, Minnesota, United States
| | - Michael G Anderson
- Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa, United States.,Institute for Vision Research, University of Iowa, Iowa City, Iowa, United States.,Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa, United States.,VA Center for Prevention and Treatment of Visual Loss, Iowa City, Iowa, United States
| | - Steven F Stasheff
- Institute for Vision Research, University of Iowa, Iowa City, Iowa, United States.,Pediatrics, University of Iowa, Iowa City, Iowa, United States.,Unit on Retinal Neurophysiology, National Eye Institute, Bethesda, Maryland, United States.,Center for Neurosciences and Behavioral Medicine, Children's National Medical Center, Washington, DC, United States.,George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| |
Collapse
|
57
|
Recent updates on the molecular network of elastic fiber formation. Essays Biochem 2019; 63:365-376. [PMID: 31395654 DOI: 10.1042/ebc20180052] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/12/2019] [Accepted: 07/26/2019] [Indexed: 12/20/2022]
Abstract
Elastic fibers confer elasticity and recoiling to tissues and organs and play an essential role in induction of biochemical responses in a cell against mechanical forces derived from the microenvironment. The core component of elastic fibers is elastin (ELN), which is secreted as the monomer tropoelastin from elastogenic cells, and undergoes self-aggregation, cross-linking and deposition on to microfibrils, and assemble into insoluble ELN polymers. For elastic fibers to form, a microfibril scaffold (primarily formed by fibrillin-1 (FBN1)) is required. Numerous elastic fiber-associated proteins are involved in each step of elastogenesis and they instruct and/or facilitate the elastogenesis processes. In this review, we designated five proteins as key molecules in elastic fiber formation, including ELN, FBN1, fibulin-4 (FBLN4), fibulin-5 (FBLN5), and latent TGFβ-binding protein-4 (LTBP4). ELN and FBN1 serve as building blocks for elastic fibers. FBLN5, FBLN4 and LTBP4 have been demonstrated to play crucial roles in elastogenesis through knockout studies in mice. Using these molecules as a platform and expanding the elastic fiber network through the generation of an interactome map, we provide a concise review of elastogenesis with a recent update as well as discuss various biological functions of elastic fiber-associated proteins beyond elastogenesis in vivo.
Collapse
|
58
|
Tracing the first hematopoietic stem cell generation in human embryo by single-cell RNA sequencing. Cell Res 2019; 29:881-894. [PMID: 31501518 PMCID: PMC6888893 DOI: 10.1038/s41422-019-0228-6] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 08/13/2019] [Indexed: 12/20/2022] Open
Abstract
Tracing the emergence of the first hematopoietic stem cells (HSCs) in human embryos, particularly the scarce and transient precursors thereof, is so far challenging, largely due to the technical limitations and the material rarity. Here, using single-cell RNA sequencing, we constructed the first genome-scale gene expression landscape covering the entire course of endothelial-to-HSC transition during human embryogenesis. The transcriptomically defined HSC-primed hemogenic endothelial cells (HECs) were captured at Carnegie stage (CS) 12–14 in an unbiased way, showing an unambiguous feature of arterial endothelial cells (ECs) with the up-regulation of RUNX1, MYB and ANGPT1. Importantly, subcategorizing CD34+CD45− ECs into a CD44+ population strikingly enriched HECs by over 10-fold. We further mapped the developmental path from arterial ECs via HSC-primed HECs to hematopoietic stem progenitor cells, and revealed a distinct expression pattern of genes that were transiently over-represented upon the hemogenic fate choice of arterial ECs, including EMCN, PROCR and RUNX1T1. We also uncovered another temporally and molecularly distinct intra-embryonic HEC population, which was detected mainly at earlier CS 10 and lacked the arterial feature. Finally, we revealed the cellular components of the putative aortic niche and potential cellular interactions acting on the HSC-primed HECs. The cellular and molecular programs that underlie the generation of the first HSCs from HECs in human embryos, together with the ability to distinguish the HSC-primed HECs from others, will shed light on the strategies for the production of clinically useful HSCs from pluripotent stem cells.
Collapse
|
59
|
Fontanil T, Mohamedi Y, Cobo T, Cal S, Obaya ÁJ. Novel Associations Within the Tumor Microenvironment: Fibulins Meet ADAMTSs. Front Oncol 2019; 9:796. [PMID: 31508361 PMCID: PMC6714394 DOI: 10.3389/fonc.2019.00796] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 08/06/2019] [Indexed: 01/08/2023] Open
Abstract
The maintenance of tissue homeostasis in any organism is a very complex and delicate process in which numerous factors intervene. Cellular homeostasis not only depends on intrinsic factors but also relies on external factors that compose the microenvironment or cellular niche. Thus, extracellular matrix (ECM) components play a very important role in maintaining cell survival and behavior, and alterations in the ECM composition can lead to different pathologies. Fibulins and ADAMTS metalloproteases play crucial roles in the upkeep and function of the ECM in different tissues. In fact, members of both of these families of secreted multidomain proteins can interact with numerous other ECM components and thus shape or regulate the molecular environment. Individual members of both families have been implicated in tumor-related processes by exhibiting either pro- or antitumor properties. Recent studies have shown both an important relation among members of both families and their participation in several pathologies, including cardiogenesis or cancer. In this review, we summarize the associations among fibulins and ADAMTSs and the effects elicited by those interactions on cellular behavior.
Collapse
Affiliation(s)
- Tania Fontanil
- Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, Oviedo, Spain.,Departamento de Investigación, Instituto Órdoñez, Oviedo, Spain.,Instituto Universitario de Oncología, IUOPA, Universidad de Oviedo, Oviedo, Spain
| | - Yamina Mohamedi
- Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, Oviedo, Spain.,Instituto Universitario de Oncología, IUOPA, Universidad de Oviedo, Oviedo, Spain
| | - Teresa Cobo
- Departamento de Cirugía y Especialidades Médico-Quirúrgicas, Instituto Asturiano de Odontología, Universidad de Oviedo, Oviedo, Spain
| | - Santiago Cal
- Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, Oviedo, Spain.,Instituto Universitario de Oncología, IUOPA, Universidad de Oviedo, Oviedo, Spain
| | - Álvaro J Obaya
- Instituto Universitario de Oncología, IUOPA, Universidad de Oviedo, Oviedo, Spain.,Departamento de Biología Funcional, Área de Fisiología, Universidad de Oviedo, Oviedo, Spain
| |
Collapse
|
60
|
Zhou Q, Chen S, Lu M, Luo Y, Wang G, Xiao Y, Ju L, Wang X. EFEMP2 suppresses epithelial-mesenchymal transition via Wnt/β-catenin signaling pathway in human bladder cancer. Int J Biol Sci 2019; 15:2139-2155. [PMID: 31592144 PMCID: PMC6775297 DOI: 10.7150/ijbs.35541] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 06/26/2019] [Indexed: 12/24/2022] Open
Abstract
Epidermal growth factor-containing fibulin-like extracellular matrix protein 2 (EFEMP2), an extracellular matrix protein, is highly associated with tumor invasion and metastasis. However, influenced by the tumor microenvironment, EFEMP2 played different roles in different tumors. The current study focused on exploring the role of EFEMP2 in bladder cancer (BCa). The results suggested that the expression of EFEMP2 was significantly higher in normal tissues and cells compared with BCa samples and cells. And we found a negative correlation between EFEMP2 expression and high tumor stage, high tumor grade, patients with low EFEMP2 expression had a much poorer survival than those patients with high EFEMP2 expression. The multivariate analysis revealed that low EFEMP2 expression was a high-risk predictor of BCa survival. Furthermore, cell proliferation, migration and metastasis can be obviously affected by the changes of EFEMP2 expression both in vitro and in vivo. Our results also turned out that knockdown of EFEMP2 could significantly reduce the epithelial marker (E-cadherin), increase mesenchymal markers (N-cadherin, Vimentin, Snail and Slug) as well as the key factors of Wnt/β-catenin signaling pathway (β-catenin, c-Myc and cyclin D1). The reversed results were found in the EFEMP2 overexpression cells. Importantly, the related expression changes of epithelial-mesenchymal transition (EMT) markers and Wnt/β-catenin signaling pathway factors induced by EFEMP2 upregulation or downregulation can be rescued using LiCl or XAV939. Collectively, our observations revealed that EFEMP2 is a blocker of tumor progression and metastasis in BCa.
Collapse
Affiliation(s)
- Qiang Zhou
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Song Chen
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Mengxin Lu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yongwen Luo
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Gang Wang
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China.,Human Genetics Resource Preservation Center of Hubei Province, Wuhan, China.,Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yu Xiao
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China.,Human Genetics Resource Preservation Center of Hubei Province, Wuhan, China.,Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Lingao Ju
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China.,Human Genetics Resource Preservation Center of Hubei Province, Wuhan, China
| | - Xinghuan Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Medical Research Institute, Wuhan University, Wuhan, China.,Urological Clinical Research Center of Laparoscopy in Hubei Province, Wuhan, China
| |
Collapse
|
61
|
Sasaki T, von der Mark K, Lanig H. Molecular dynamics simulations on human fibulin-4 mutants D203A and E126K reveal conformational changes in EGF domains potentially responsible for enhanced protease lability and impaired extracellular matrix assembly. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1867:748-756. [PMID: 31125616 DOI: 10.1016/j.bbapap.2019.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 05/12/2019] [Accepted: 05/17/2019] [Indexed: 10/26/2022]
Abstract
Fibulin-4 is a 50 kDa glycoprotein of elastic fibers and plays an important role in development and function of elastic tissues. Fibulin-4 consists of a tandem array of five calcium-binding epidermal growth factor-like modules flanked by N- and C-terminal domains. Mutations in the human fibulin-4 gene EFEMP2 have been identified in patients affected with various arteriopathies including aneurysm, arterial tortuosity, or stenosis, but the molecular basis of most genotype-phenotype correlations is unknown. Here we present biochemical and computer modelling approaches designed to gain further insight into changes in structure and function of two fibulin-4 mutations (E126K and D203A), which are potentially involved in Ca2+ binding in the EGF2 and EGF4 domain, respectively. Using recombinantly produced fibulin-4 mutant and wild type proteins we show that both mutations introduced additional protease cleavage sites, impaired extracellular assembly into fibers, and affected binding to to fibrillin-1, latent TGF-β-binding proteins, and the lysyl oxidase LOXL2. Molecular dynamics studies indicated that the E126K and D203A mutations do not necessarily result in a direct loss of the complexed Ca2+ ion after 500 ns simulation time, but in significantly enhanced fluctuations within the connecting loop between EGF3 and EGF4 domains and other conformational changes. In contrast, intentionally removing Ca2+ from EGF4 (D203A ΔCa) predicted dramatic changes in the protein structure. These results may explain the changes in protease cleavage sites, reduced secretion and impaired extracellular assembly of the E126K and D203A fibulin-4 mutants and provide further insight into understanding the molecular basis of the associated clinical phenotypes.
Collapse
Affiliation(s)
- Takako Sasaki
- Dept. of Biochemistry, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama machi, Yufu, 879-5503, Oita, Japan; Nikolaus-Fiebiger Center of Molecular Medicine, Friedrich-Alexander University Erlangen-Nuremberg, Glueckstr. 6, Erlangen, Germany
| | - Klaus von der Mark
- Nikolaus-Fiebiger Center of Molecular Medicine, Friedrich-Alexander University Erlangen-Nuremberg, Glueckstr. 6, Erlangen, Germany.
| | - Harald Lanig
- Central Institute for Scientific Computing (ZISC), Friedrich-Alexander University Erlangen-Nuremberg, Martensstr. 5a, Erlangen, Germany.
| |
Collapse
|
62
|
Elastic fibers and biomechanics of the aorta: Insights from mouse studies. Matrix Biol 2019; 85-86:160-172. [PMID: 30880160 DOI: 10.1016/j.matbio.2019.03.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 02/28/2019] [Accepted: 03/04/2019] [Indexed: 12/14/2022]
Abstract
Elastic fibers are major components of the extracellular matrix (ECM) in the aorta and support a life-long cycling of stretch and recoil. Elastic fibers are formed from mid-gestation throughout early postnatal development and the synthesis is regulated at multiple steps, including coacervation, deposition, cross-linking, and assembly of insoluble elastin onto microfibril scaffolds. To date, more than 30 molecules have been shown to associate with elastic fibers and some of them play a critical role in the formation and maintenance of elastic fibers in vivo. Because the aorta is subjected to high pressure from the left ventricle, elasticity of the aorta provides the Windkessel effect and maintains stable blood flow to distal organs throughout the cardiac cycle. Disruption of elastic fibers due to congenital defects, inflammation, or aging dramatically reduces aortic elasticity and affects overall vessel mechanics. Another important component in the aorta is the vascular smooth muscle cells (SMCs). Elastic fibers and SMCs alternate to create a highly organized medial layer within the aortic wall. The physical connections between elastic fibers and SMCs form the elastin-contractile units and maintain cytoskeletal organization and proper responses of SMCs to mechanical strain. In this review, we revisit the components of elastic fibers and their roles in elastogenesis and how a loss of each component affects biomechanics of the aorta. Finally, we discuss the significance of elastin-contractile units in the maintenance of SMC function based on knowledge obtained from mouse models of human disease.
Collapse
|
63
|
Wang L, Yu F, Sun H, Lu L. Characterization of the interaction between outer-fiber protein VP55 of genotype III grass carp reovirus and Fibulin-4 of grass carp. FISH & SHELLFISH IMMUNOLOGY 2019; 86:355-360. [PMID: 30502460 DOI: 10.1016/j.fsi.2018.11.067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 11/22/2018] [Accepted: 11/27/2018] [Indexed: 06/09/2023]
Abstract
Genotype III grass carp reovirus (GCRV; representative strain, GCRV-104) belongs to the subfamily Spinareovirinae and encodes an outer-fiber protein, VP55, responsible for mediating the infection of target tissues by the virus and assisting the virus into cells. Fibulin-4/EFEMP2 protein was previously identified as a putative binding partner for VP55 in a yeast two-hybrid screening. Here, we have further characterized the association between Fibulin-4 and VP55 by using protein interaction assays. An intracellular co-localization assay showed that RFP-Fibulin-4 co-localized with GFP-VP55 in grass carp ovary (GCO) cells. Bacterially expressed GST-tagged Fibulin-4 was shown to associate with baculovirus-expressed His-tagged VP55 in a dot-blot overlay assay; moreover, baculovirus-expressed His-tagged VP55 was able to pull down GFP-Fibulin-4 expressed in the GCO cells. We performed real-time PCR and immunoblotting analysis and showed that endogenous Fibulin-4, although suppressed to a lower level in the late infection phase, is present throughout the infection course of GCRV-104 in CIK cells. In conclusion, our results indicate that grass carp Fibulin-4 interacts with VP55. The presence of Fibulin-4, a well-known secreted protein, during the infection course of GCRV-104 in grass carp cells implies its potential role during viral egression through interaction with VP55.
Collapse
Affiliation(s)
- Longlong Wang
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, PR China; Key Laboratory of Agriculture Ministry for Freshwater Aquatic Genetic Resources, Shanghai Ocean University, Shanghai, PR China
| | - Fei Yu
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, PR China; Key Laboratory of Agriculture Ministry for Freshwater Aquatic Genetic Resources, Shanghai Ocean University, Shanghai, PR China
| | - Hao Sun
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, PR China; Key Laboratory of Agriculture Ministry for Freshwater Aquatic Genetic Resources, Shanghai Ocean University, Shanghai, PR China
| | - Liqun Lu
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, PR China; Key Laboratory of Agriculture Ministry for Freshwater Aquatic Genetic Resources, Shanghai Ocean University, Shanghai, PR China; National Experimental Teaching Demonstration Center for Fishery Sciences, Shanghai Ocean University, Shanghai, PR China.
| |
Collapse
|
64
|
Doyne honeycomb retinal dystrophy - functional improvement following subthreshold nanopulse laser treatment: a case report. J Med Case Rep 2019; 13:5. [PMID: 30626431 PMCID: PMC6327555 DOI: 10.1186/s13256-018-1935-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 11/27/2018] [Indexed: 11/11/2022] Open
Abstract
Background Based on phenotypic similarities between age-related macular degeneration and the autosomal disorder Doyne honeycomb retinal dystrophy, we report on a single nanolaser treatment of a patient with genotype Doyne honeycomb retinal dystrophy confirmation and evidence of disease progression over 12 months. The case study is the first report of short-term results of subthreshold nanolaser treatment in a patient with Doyne honeycomb retinal dystrophy. Case presentation A 43-year-old Caucasian man with moderate loss of visual acuity in his left eye (20/40) and normal visual acuity in his right eye (20/20), with clinical Doyne honeycomb retinal dystrophy diagnosis and genetic confirmation of the common heterozygous mutation (EFEMP1) by genetic testing, underwent nanopulse subthreshold laser treatment in his left eye. A safety examination, carried out 7 days after treatment, and clinical follow-up, conducted 60 days following laser treatment, showed improvement of visual acuity from baseline by two letters and a subjective improvement of blurring. While no apparent morphological changes were found on fundoscopy, increased autofluorescence in the treated eye was observed on imaging. In addition, 2 months after nanopulse subthreshold laser treatment, rod-mediated and cone-mediated full-field electroretinography b-wave amplitudes showed an increase from baseline in both the treated eye (300%) and untreated eye (50%). At 2 months after nanopulse subthreshold laser treatment, multifocal electroretinograms showed improvement. Acuity and full-field electroretinography improvement persisted at 6-month follow-up. Conclusions Sustained improvements in retinal function on electroretinography persisted in both eyes 6 months after treatment, suggesting an enhancement of phototransduction and retinoid recycling induced by nanopulse subthreshold laser treatment. The functional improvement observed in the untreated eye is hypothesized to arise from an increased expression and release of metalloproteinases that circulate systemically.
Collapse
|
65
|
Tasaki M, Ueda M, Hoshii Y, Mizukami M, Matsumoto S, Nakamura M, Yamashita T, Ueda A, Misumi Y, Masuda T, Inoue Y, Torikai T, Nomura T, Tsuda Y, Kanenawa K, Isoguchi A, Okada M, Matsui H, Obayashi K, Ando Y. A novel age-related venous amyloidosis derived from EGF-containing fibulin-like extracellular matrix protein 1. J Pathol 2018; 247:444-455. [DOI: 10.1002/path.5203] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 09/28/2018] [Accepted: 11/16/2018] [Indexed: 12/18/2022]
Affiliation(s)
- Masayoshi Tasaki
- Department of Neurology, Graduate School of Medical Sciences; Kumamoto University; Kumamoto Japan
- Department of Morphological and Physiological Sciences, Graduate School of Health Sciences; Kumamoto University; Kumamoto Japan
| | - Mitsuharu Ueda
- Department of Neurology, Graduate School of Medical Sciences; Kumamoto University; Kumamoto Japan
| | - Yoshinobu Hoshii
- Department of Pathology; Yamaguchi University Graduate School of Medicine; Ube Japan
| | - Mayumi Mizukami
- Department of Neurology, Graduate School of Medical Sciences; Kumamoto University; Kumamoto Japan
| | - Sayaka Matsumoto
- Department of Neurology, Graduate School of Medical Sciences; Kumamoto University; Kumamoto Japan
| | - Makoto Nakamura
- Department of Neurology, Graduate School of Medical Sciences; Kumamoto University; Kumamoto Japan
| | - Taro Yamashita
- Department of Neurology, Graduate School of Medical Sciences; Kumamoto University; Kumamoto Japan
| | - Akihiko Ueda
- Department of Neurology, Graduate School of Medical Sciences; Kumamoto University; Kumamoto Japan
| | - Yohei Misumi
- Department of Neurology, Graduate School of Medical Sciences; Kumamoto University; Kumamoto Japan
| | - Teruaki Masuda
- Department of Neurology, Graduate School of Medical Sciences; Kumamoto University; Kumamoto Japan
| | - Yasuteru Inoue
- Department of Neurology, Graduate School of Medical Sciences; Kumamoto University; Kumamoto Japan
| | - Tessei Torikai
- Department of Neurology, Graduate School of Medical Sciences; Kumamoto University; Kumamoto Japan
| | - Toshiya Nomura
- Department of Neurology, Graduate School of Medical Sciences; Kumamoto University; Kumamoto Japan
| | - Yukimoto Tsuda
- Department of Neurology, Graduate School of Medical Sciences; Kumamoto University; Kumamoto Japan
| | - Kyosuke Kanenawa
- Department of Neurology, Graduate School of Medical Sciences; Kumamoto University; Kumamoto Japan
| | - Aito Isoguchi
- Department of Neurology, Graduate School of Medical Sciences; Kumamoto University; Kumamoto Japan
| | - Masamitsu Okada
- Department of Neurology, Graduate School of Medical Sciences; Kumamoto University; Kumamoto Japan
| | - Hirotaka Matsui
- Department of Molecular Laboratory Medicine, Graduate School of Medical Sciences; Kumamoto University; Kumamoto Japan
| | - Konen Obayashi
- Department of Morphological and Physiological Sciences, Graduate School of Health Sciences; Kumamoto University; Kumamoto Japan
| | - Yukio Ando
- Department of Neurology, Graduate School of Medical Sciences; Kumamoto University; Kumamoto Japan
| |
Collapse
|
66
|
Roles of short fibulins, a family of matricellular proteins, in lung matrix assembly and disease. Matrix Biol 2018; 73:21-33. [DOI: 10.1016/j.matbio.2018.02.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/26/2017] [Accepted: 02/01/2018] [Indexed: 12/19/2022]
|
67
|
Extracellular Interactions between Fibulins and Transforming Growth Factor (TGF)-β in Physiological and Pathological Conditions. Int J Mol Sci 2018; 19:ijms19092787. [PMID: 30227601 PMCID: PMC6163299 DOI: 10.3390/ijms19092787] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/11/2018] [Accepted: 09/12/2018] [Indexed: 12/25/2022] Open
Abstract
Transforming growth factor (TGF)-β is a multifunctional peptide growth factor that has a vital role in the regulation of cell growth, differentiation, inflammation, and repair in a variety of tissues, and its dysregulation mediates a number of pathological conditions including fibrotic disorders, chronic inflammation, cardiovascular diseases, and cancer progression. Regulation of TGF-β signaling is multifold, but one critical site of regulation is via interaction with certain extracellular matrix (ECM) microenvironments, as TGF-β is primarily secreted as a biologically inactive form sequestrated into ECM. Several ECM proteins are known to modulate TGF-β signaling via cell–matrix interactions, including thrombospondins, SPARC (Secreted Protein Acidic and Rich in Cystein), tenascins, osteopontin, periostin, and fibulins. Fibulin family members consist of eight ECM glycoproteins characterized by a tandem array of calcium-binding epidermal growth factor-like modules and a common C-terminal domain. Fibulins not only participate in structural integrity of basement membrane and elastic fibers, but also serve as mediators for cellular processes and tissue remodeling as they are highly upregulated during embryonic development and certain disease processes, especially at the sites of epithelial–mesenchymal transition (EMT). Emerging studies have indicated a close relationship between fibulins and TGF-β signaling, but each fibulin plays a different role in a context-dependent manner. In this review, regulatory interactions between fibulins and TGF-β signaling are discussed. Understanding biological roles of fibulins in TGF-β regulation may introduce new insights into the pathogenesis of some human diseases.
Collapse
|
68
|
Fibrillin microfibrils and elastic fibre proteins: Functional interactions and extracellular regulation of growth factors. Semin Cell Dev Biol 2018; 89:109-117. [PMID: 30016650 PMCID: PMC6461133 DOI: 10.1016/j.semcdb.2018.07.016] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 07/04/2018] [Accepted: 07/13/2018] [Indexed: 02/02/2023]
Abstract
Fibrillin microfibrils are extensible polymers that endow connective tissues with long-range elasticity and have widespread distributions in both elastic and non-elastic tissues. They act as a template for elastin deposition during elastic fibre formation and are essential for maintaining the integrity of tissues such as blood vessels, lung, skin and ocular ligaments. A reduction in fibrillin is seen in tissues in vascular ageing, chronic obstructive pulmonary disease, skin ageing and UV induced skin damage, and age-related vision deterioration. Most mutations in fibrillin cause Marfan syndrome, a genetic disease characterised by overgrowth of the long bones and other skeletal abnormalities with cardiovascular and eye defects. However, mutations in fibrillin and fibrillin-binding proteins can also cause short-stature pathologies. All of these diseases have been linked to dysregulated growth factor signalling which forms a major functional role for fibrillin.
Collapse
|
69
|
Li J, Qi C, Liu X, Li C, Chen J, Shi M. Fibulin-3 knockdown inhibits cervical cancer cell growth and metastasis in vitro and in vivo. Sci Rep 2018; 8:10594. [PMID: 30006571 PMCID: PMC6045626 DOI: 10.1038/s41598-018-28906-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 06/29/2018] [Indexed: 12/02/2022] Open
Abstract
To explore the function of fibulin-3 in cervical carcinoma malignant cell growth and metastasis, fibulin-3 expression in normal cervical tissue, cervical intraepithelial neoplasia (CIN), and cervical carcinoma were evaluated by immunohistochemistry. Quantitative real-time-polymerase chain reaction, western blotting, and immunocytochemistry were performed to assess the expression of fibulin-3 at mRNA and protein levels in different invasive clone sublines. Fibulin-3 shRNA and fibulin-3 cDNA were used to transfect the strongly and weakly invasive clone sublines. Using in vitro and in vivo functional assays, we investigated the effects of down-regulating and up-regulating fibulin-3 expression on the proliferation and invasion of different clone sublines. Epithelial mesenchymal transition (EMT) and its signaling pathways PI3K/AKT and ERK were studied carefully in lentiviral transfection systems. Fibulin-3 was upregulated in cervical carcinoma, and its overexpression was significantly related with malignant phenotype and poor prognosis of cervical carcinoma. Fibulin-3 promoted cervical cancer cell invasive capabilities by eliciting EMT and activating the PI3K-Akt-mTOR signal transduction pathway. Fibulin-3 could facilitate the process of cervical cancer development. The results presented here will help develop novel prognostic factors and possible therapeutic options for patients with cervical cancer.
Collapse
Affiliation(s)
- Juan Li
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital affiliated to Shandong University, Jinan, 250021, China
| | - Chen Qi
- Department of Obstetrics and Gynecology, Shan Xian Maternal and Child Care and family planning service center, Shan Xian, 274300, China
| | - Xia Liu
- Department of Obstetrics and Gynecology, Shan Xian Maternal and Child Care and family planning service center, Shan Xian, 274300, China
| | - Changzhong Li
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital affiliated to Shandong University, Jinan, 250021, China
| | - Jie Chen
- Department of Maternal and Child Health, School of Public Health, Shandong University, Jinan, 250012, China
| | - Min Shi
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital affiliated to Shandong University, Jinan, 250021, China.
| |
Collapse
|
70
|
Flister MJ, Bergom C. Genetic Modifiers of the Breast Tumor Microenvironment. Trends Cancer 2018; 4:429-444. [PMID: 29860987 DOI: 10.1016/j.trecan.2018.04.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 04/13/2018] [Accepted: 04/16/2018] [Indexed: 02/06/2023]
Abstract
Multiple nonmalignant cell types in the tumor microenvironment (TME) impact breast cancer risk, metastasis, and response to therapy, yet most heritable mechanisms that influence TME cell function and breast cancer outcomes are largely unknown. Breast cancer risk is ∼30% heritable and >170 genetic loci have been associated with breast cancer traits. However, the majority of candidate genes have poorly defined mechanistic roles in breast cancer biology. Research indicates that breast cancer risk modifiers directly impact cancer cells, yet it is equally plausible that some modifier alleles impact the nonmalignant TME. The objective of this review is to examine the list of current breast cancer candidate genes that may modify breast cancer risk and outcome through the TME.
Collapse
Affiliation(s)
- Michael J Flister
- Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | - Carmen Bergom
- Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
71
|
Munson P, Lam YW, MacPherson M, Beuschel S, Shukla A. Mouse serum exosomal proteomic signature in response to asbestos exposure. J Cell Biochem 2018; 119:6266-6273. [PMID: 29663493 DOI: 10.1002/jcb.26863] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 03/13/2018] [Indexed: 11/07/2022]
Abstract
Asbestos-induced diseases like fibrosis and mesothelioma are very aggressive, without any treatment options. These diseases are diagnosed only at the terminal stages due to lack of early stage biomarkers. The recent discovery of exosomes as circulating biomarkers led us to look for exosomal biomarkers of asbestos exposure in mouse blood. In our model, mice were exposed to asbestos as a single bolus dose by oropharyngeal aspiration. Fifty-six days later blood was collected, exosomes were isolated from plasma and characterized and subjected to proteomic analysis using Tandem Mass Tag labeling. We identified many proteins, some of which were more abundant in asbestos exposed mouse serum exosomes, and three selected proteins were validated by immunoblotting. Our study is the first to show that serum exosomal proteomic signatures can reveal some important proteins relevant to asbestos exposure that have the potential to be validated as candidate biomarkers. We hope to extrapolate the positive findings of this study to humans in future studies.
Collapse
Affiliation(s)
- Phillip Munson
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont
| | - Ying-Wai Lam
- Department of Biology, University of Vermont, Burlington, Vermont
| | - Maximilian MacPherson
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont
| | - Stacie Beuschel
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont
| | - Arti Shukla
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont
| |
Collapse
|
72
|
Manders DB, Kishore HA, Gazdar AF, Keller PW, Tsunezumi J, Yanagisawa H, Lea J, Word RA. Dysregulation of fibulin-5 and matrix metalloproteases in epithelial ovarian cancer. Oncotarget 2018; 9:14251-14267. [PMID: 29581841 PMCID: PMC5865667 DOI: 10.18632/oncotarget.24484] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 02/01/2018] [Indexed: 12/20/2022] Open
Abstract
Fibulin 5 (FBLN5) is an extracellular matrix glycoprotein that suppresses matrix metalloprotease 9 (MMP-9), angiogenesis and epithelial cell motility. Here, we investigated the regulation and function of FBLN5 in epithelial ovarian cancer (EOC). FBLN5 mRNA was down-regulated 5-fold in EOC relative to benign ovary. Not surprisingly, MMP9 mRNA and enzyme activity were increased significantly, and inversely correlated with FBLN5 gene expression. FBLN5 degradation products of 52.8 and 41.3 kDa were increased substantially in EOC. We identified two candidate proteases (serine elastase and MMP-7, but not MMP-9) that cleave FBLN5. MMP-7, but not neutrophil elastase, gene expression was increased dramatically in EOC. Recombinant FBLN5 significantly inhibited adhesion of EOC cells to both laminin and collagen I. Finally, using immunohistochemistry, we found immunoreactive FBLN5 within tumor macrophages throughout human EOC tumors. This work indicates that FBLN5 is degraded in EOC most likely by proteases enriched in macrophages of the tumor microenvironment. Proteolysis of FBLN5 serves as a mechanism to promote cell adhesion and local metastasis of ovarian cancer cells. Promotion of a stable ECM with intact FBLN5 in the tumor matrix may serve as a novel therapeutic adjunct to prevent spread of ovarian cancer.
Collapse
Affiliation(s)
- Dustin B Manders
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Hari Annavarapu Kishore
- Department of Obstetrics and Gynecology, Green Center for Reproductive Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Adi F Gazdar
- Hamon Center for Therapeutic Oncology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Patrick W Keller
- Department of Obstetrics and Gynecology, Green Center for Reproductive Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jun Tsunezumi
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Hiromi Yanagisawa
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Current address: Life Science Center, Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Jayanthi Lea
- Department of Obstetrics and Gynecology, Green Center for Reproductive Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Ruth Ann Word
- Department of Obstetrics and Gynecology, Green Center for Reproductive Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
73
|
EFEMP2 Mediates GALNT14-Dependent Breast Cancer Cell Invasion. Transl Oncol 2018; 11:346-352. [PMID: 29428518 PMCID: PMC5884205 DOI: 10.1016/j.tranon.2018.01.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 01/09/2018] [Accepted: 01/16/2018] [Indexed: 01/21/2023] Open
Abstract
N-Acetylgalactosaminyltransferase-14 (GALNT14) is a member of acetylgalactosaminyltransferases family. We have shown that GALNT14 could promote breast cancer cell invasion. However, the underlying molecular mechanism is unclear. Here, using yeast two hybrid, we find that EGF-containing fibulin-like extracellular matrix protein 2 (EFEMP2) interacts with GALNT14. Both in vitro and in vivo binding assays show that EFEMP2 is associated with GALNT14. Moreover, we find that GALNT14 mediates glycosylation of EFEMP2. EFEMP2 significantly increased the invasion ability of breast cancer cells including MCF-7 and MBA-MD-231 cells, and this phenomenon is suppressed by knockdown expression of GALNT14. In addition, the GALNT14-dependent O-glycosylation of EFEMP-2 regulates the stability of EFEMP-2 protein in breast cancer cells. Taken together, our results demonstrate a novel molecular mechanism underlying breast cancer invasion.
Collapse
|
74
|
Hanada K, Sasaki T. Expression and purification of recombinant fibulins in mammalian cells. Methods Cell Biol 2018; 143:247-259. [DOI: 10.1016/bs.mcb.2017.08.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
75
|
Kwak JH, Lee NH, Lee HY, Hong IS, Nam JS. HIF2α/EFEMP1 cascade mediates hypoxic effects on breast cancer stem cell hierarchy. Oncotarget 2017; 7:43518-43533. [PMID: 27270657 PMCID: PMC5190041 DOI: 10.18632/oncotarget.9846] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 05/05/2016] [Indexed: 02/06/2023] Open
Abstract
Breast cancer stem cells (BCSCs) have been shown to contribute to tumor growth, metastasis, and recurrence. They are also markedly resistant to conventional cancer treatments, such as chemotherapy and radiation. Recent studies have suggested that hypoxia is one of the prominent micro-environmental factors that increase the self-renewal ability of BCSCs, partially by enhancing CSC phenotypes. Thus, the identification and development of new therapeutic approaches based on targeting the hypoxia-dependent responses in BCSCs is urgent. Through various in vitro studies, we found that hypoxia specifically up-regulates BCSC sphere formation and a subset of CD44+/CD24-/low CSCs. Hypoxia inducible factors 2α (HIF2α) depletion suppressed CSC-like phenotypes and CSC-mediated drug resistance in breast cancer. Furthermore, the stimulatory effects of hypoxia-induced HIF2α on BCSC sphere formation were successfully attenuated by epidermal growth factor-containing fibulin-like extracellular matrix protein 1 (EFEMP1) knockdown. Taken together, these data suggest that HIF2α mediates hypoxia-induced cancer growth/metastasis and that EFEMP1 is a downstream effector of hypoxia-induced HIF2α during breast tumorigenesis.
Collapse
Affiliation(s)
- Ji-Hye Kwak
- Laboratory of Stem Cell Research, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, 406-840, Republic of Korea.,Department of Molecular Medicine, School of Medicine, Gachon University, Incheon, 406-840, Republic of Korea
| | - Na-Hee Lee
- Laboratory of Stem Cell Research, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, 406-840, Republic of Korea.,Department of Molecular Medicine, School of Medicine, Gachon University, Incheon, 406-840, Republic of Korea
| | - Hwa-Yong Lee
- The Faculty of Liberal Arts, Jungwon University, Chungbuk, 367-805, Republic of Korea
| | - In-Sun Hong
- Laboratory of Stem Cell Research, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, 406-840, Republic of Korea.,Department of Molecular Medicine, School of Medicine, Gachon University, Incheon, 406-840, Republic of Korea
| | - Jeong-Seok Nam
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 500-712, Republic of Korea
| |
Collapse
|
76
|
Wu Q, Sun X, Du L. Association of fibulin-3 concentrations with the presence and severity of knee osteoarthritis: A cross-sectional study. Knee 2017; 24:1369-1373. [PMID: 29195846 DOI: 10.1016/j.knee.2017.04.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 04/20/2017] [Accepted: 04/27/2017] [Indexed: 02/02/2023]
Abstract
BACKGROUND Fibulin-3, a member of the extracellular matrix glycoproteins family, negatively regulates chondrocyte differentiation. This study aims to assess the correlation of fibulin-3 concentrations with the presence and severity of knee osteoarthritis. METHODS This cross-sectional study was performed in a population of 209 knee osteoarthritis subjects who received hyaluronic acid treatment and 165 healthy controls. Knee osteoarthritis diagnosis was made according to the criteria of the American College of Rheumatology. Osteoarthritis severity was scored by the Kellgren-Lawrence grading method. Synovial fluid was obtained from the knees of osteoarthritis subjects who received the treatment of hyaluronic acid injection for the first time. Serum and synovial fluid fibulin-3 concentrations were examined by enzyme-linked immunosorbent assay method. RESULTS Mann-Whitney U-test showed that there were higher serum fibulin-3 concentrations in the case group compared with the controls. Higher serum and synovial fluid fibulin-3 concentrations were found in knee osteoarthritis subjects compared with those with Kellgren-Lawrence grades 2 and 3. Knee osteoarthritis subjects with Kellgren-Lawrence grade 3 had higher serum and synovial fluid fibulin-3 concentrations compared with those with Kellgren-Lawrence grade 2. Serum and synovial fluid fibulin-3 concentrations were significantly correlated with Kellgren-Lawrence grading after Pearson correlation analysis (r=0.532, P<0.001 and r=0.613, P<0.001). Multinomial logistic regression analysis demonstrated a significant association between serum and synovial fluid fibulin-3 concentrations with Kellgren-Lawrence grades (P<0.001 and P<0.001). CONCLUSION Serum and synovial fluid fibulin-3 concentrations were correlated with the presence and severity of knee osteoarthritis.
Collapse
Affiliation(s)
- Qian Wu
- Department of Trauma Surgery, Weifang People's Hospital, Shandong, China
| | - Xuecheng Sun
- Department of Trauma Surgery, Weifang People's Hospital, Shandong, China
| | - Lei Du
- Department of Sterilization and Supply, Weifang People's Hospital, Shandong, China.
| |
Collapse
|
77
|
Nandhu MS, Behera P, Bhaskaran V, Longo SL, Barrera-Arenas LM, Sengupta S, Rodriguez-Gil DJ, Chiocca EA, Viapiano MS. Development of a Function-Blocking Antibody Against Fibulin-3 as a Targeted Reagent for Glioblastoma. Clin Cancer Res 2017; 24:821-833. [PMID: 29146721 DOI: 10.1158/1078-0432.ccr-17-1628] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 10/10/2017] [Accepted: 11/08/2017] [Indexed: 12/23/2022]
Abstract
Purpose: We sought a novel approach against glioblastomas (GBM) focused on targeting signaling molecules localized in the tumor extracellular matrix (ECM). We investigated fibulin-3, a glycoprotein that forms the ECM scaffold of GBMs and promotes tumor progression by driving Notch and NFκB signaling.Experimental Design: We used deletion constructs to identify a key signaling motif of fibulin-3. An mAb (mAb428.2) was generated against this epitope and extensively validated for specific detection of human fibulin-3. mAb428.2 was tested in cultures to measure its inhibitory effect on fibulin-3 signaling. Nude mice carrying subcutaneous and intracranial GBM xenografts were treated with the maximum achievable dose of mAb428.2 to measure target engagement and antitumor efficacy.Results: We identified a critical 23-amino acid sequence of fibulin-3 that activates its signaling mechanisms. mAb428.2 binds to that epitope with nanomolar affinity and blocks the ability of fibulin-3 to activate ADAM17, Notch, and NFκB signaling in GBM cells. mAb428.2 treatment of subcutaneous GBM xenografts inhibited fibulin-3, increased tumor cell apoptosis, and enhanced the infiltration of inflammatory macrophages. The antibody reduced tumor growth and extended survival of mice carrying GBMs as well as other fibulin-3-expressing tumors. Locally infused mAb428.2 showed efficacy against intracranial GBMs, increasing tumor apoptosis and reducing tumor invasion and vascularization, which are enhanced by fibulin-3.Conclusions: To our knowledge, this is the first rationally developed, function-blocking antibody against an ECM target in GBM. Our results offer a proof of principle for using "anti-ECM" strategies toward more efficient targeted therapies for malignant glioma. Clin Cancer Res; 24(4); 821-33. ©2017 AACR.
Collapse
Affiliation(s)
- Mohan S Nandhu
- Department of Neurosurgery, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts.,Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, New York
| | - Prajna Behera
- Department of Neurosurgery, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts.,Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, New York
| | - Vivek Bhaskaran
- Department of Neurosurgery, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Sharon L Longo
- Department of Neurosurgery, SUNY Upstate Medical University, Syracuse, New York
| | - Lina M Barrera-Arenas
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, New York
| | - Sadhak Sengupta
- Brain Tumor Laboratory, Roger Williams Medical Center, Providence, Rhode Island
| | - Diego J Rodriguez-Gil
- Department of Biomedical Sciences, East Tennessee State University, Johnson City, Tennessee
| | - E Antonio Chiocca
- Department of Neurosurgery, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Mariano S Viapiano
- Department of Neurosurgery, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts. .,Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, New York.,Department of Neurosurgery, SUNY Upstate Medical University, Syracuse, New York
| |
Collapse
|
78
|
Diagnostic and prognostic utilities of humoral fibulin-3 in malignant pleural mesothelioma: Evidence from a meta-analysis. Oncotarget 2017; 8:13030-13038. [PMID: 28103581 PMCID: PMC5355074 DOI: 10.18632/oncotarget.14712] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 01/08/2017] [Indexed: 12/29/2022] Open
Abstract
Fibulin-3 has emerged as a promising novel biomarker in conforming or monitoring malignant pleural mesothelioma (MPM). This study sought to evaluate the diagnostic and prognostic efficacies of humoral fibulin-3 for MPM. Seven eligible publications comprising 468 MPM cases for diagnosis, and 138 for prognosis were identified. Results manifested that humoral fibulin-3 sustained a pooled sensitivity of 0.62 (95% CI: 0.45–0.77) and specificity of 0.82 (95% CI: 0.73–0.89) in discriminating MPM patients from cancer-free individuals, corresponding to an AUC (area under the curve) of 0.81. For the survival analysis, fibulin-3 expression was not markedly associated with overall survival (OS) time of the MPM patients [HR (hazard ratio): 1.84, 95% CI: 0.75–4.56, P = 0.185]. In the subgroup analyses stratified by test matrix and ethnicity, data revealed that serum-based fibulin-3 examination achieved superior accuracy than plasma-based analysis (sensitivity: 0.77 versus 0.54; specificity: 0.85 versus 0.77; AUC: 0.92 versus 0.69); additionally, testing of fibulin-3 in Europeans retained higher efficacy than those in Americans and Australians. Taken together, fibulin-3 confers a relatively high diagnostic efficacy and is acceptable to be an auxiliary biomarker to aid in MPM identification.
Collapse
|
79
|
Bartels EM, Henrotin Y, Bliddal H, Centonze P, Henriksen M. Relationship between weight loss in obese knee osteoarthritis patients and serum biomarkers of cartilage breakdown: secondary analyses of a randomised trial. Osteoarthritis Cartilage 2017; 25:1641-1646. [PMID: 28689920 DOI: 10.1016/j.joca.2017.06.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 06/26/2017] [Accepted: 06/30/2017] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To explore effects of weight loss and maintenance on serum cartilage biomarkers denaturation neoepitope for Collagen2 (Coll2-1) and Fibulin3 fragment (Fib3-2), as well as correlations between Coll2-1 and Fib3-2 and symptomatic improvement, in a knee osteoarthritis (KOA) population. DESIGN 192 obese KOA patients followed a 16 week weight loss intervention and 52 weeks weight maintenance (ClinicalTrials.gov identifier: NCT00655941). Assessments were at 0, 8, 16 and 68 weeks. Serum Coll2-1 and Fib3-2 were determined with ELISA, and symptoms by the Knee Osteoarthritis Outcome Score (KOOS) questionnaire. Changes from week 0 and association between changes from baseline in body weight and Coll2-1, Fib3-2, and the 5 KOOS domains were assessed at all time points. RESULTS Coll2-1 changes from baseline showed a decrease at week 8 (P = 0.0002), no change at week 16 (P = 0.49), and an increase at week 68 (P = 0.036). Fib3-2 showed an increase from baseline at week 8 (P = 0.0015) and 16 (P < 0.0001), but none at week 68 (P = 0.23). No statistically significant correlations were found between changes in body weight and Coll2-1 and Fib3-2 at any time point (r < 0.05; P > 0.49). At all time-points there were significant positive correlations between changes from baseline in Coll2-1 and in KOOSSports/Recreation (week 8, 16, 68: r = 0.17; P = 0.03; r = 0.16; P = 0.04; and r = 0.17; P = 0.04, respectively). CONCLUSION The clinical improvement after a substantial weight loss and weight maintenance in KOA patients was not associated with decrease in markers of cartilage breakdown Coll2-1 or Fib3-2, even with indications of a slightly negative effect.
Collapse
Affiliation(s)
- E M Bartels
- The Parker Institute, Copenhagen University Hospital, Bispebjerg and Frederiksberg, Denmark.
| | - Y Henrotin
- Bone and Cartilage Research Unit, Arthropôle Liège, Institute of Pathology, Level 5, CHU Sart-Tilman, 4000 Liège, Belgium; Department of Physical Therapy and Rehabilitation, Princess Paola Hospital, Vivalia, Marche-en-Famenne, Belgium.
| | - H Bliddal
- The Parker Institute, Copenhagen University Hospital, Bispebjerg and Frederiksberg, Denmark; Faculty of Health Science, University of Copenhagen, Denmark.
| | - P Centonze
- Bone and Cartilage Research Unit, Arthropôle Liège, Institute of Pathology, Level 5, CHU Sart-Tilman, 4000 Liège, Belgium.
| | - M Henriksen
- The Parker Institute, Copenhagen University Hospital, Bispebjerg and Frederiksberg, Denmark; Department of Physical and Occupational Therapy, Copenhagen University Hospital, Bispebjerg and Frederiksberg, Denmark.
| |
Collapse
|
80
|
Yamashiro Y, Yanagisawa H. Crossing Bridges between Extra- and Intra-Cellular Events in Thoracic Aortic Aneurysms. J Atheroscler Thromb 2017; 25:99-110. [PMID: 28943527 PMCID: PMC5827090 DOI: 10.5551/jat.rv17015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Thoracic aortic aneurysms (TAAs) are common, life-threatening diseases and are a major cause of mortality and morbidity. Over the past decade, genetic approaches have revealed that 1) activation of the transforming growth factor beta (TGF-β) signaling, 2) alterations in the contractile apparatus of vascular smooth muscle cells (SMCs), and 3) defects in the extracellular matrix (ECM) were responsible for development of TAAs. Most recently, a fourth mechanism has been proposed in that dysfunction of mechanosensing in the aortic wall in response to hemodynamic stress may be a key driver of TAAs. Interestingly, the elastin-contractile unit, which is an anatomical and functional unit connecting extracellular elastic laminae to the intracellular SMC contractile filaments, via cell surface receptors, has been shown to play a critical role in the mechanosensing of SMCs, and many genes identified in TAAs encode for proteins along this continuum. However, it is still debated whether these four pathways converge into a common pathway. Currently, an effective therapeutic strategy based on the underlying mechanism of each type of TAAs has not been established. In this review, we will update the present knowledge on the molecular mechanism of TAAs with a focus on the signaling pathways potentially involved in the initiation of TAAs. Finally, we will evaluate current therapeutic strategies for TAAs and propose new directions for future treatment of TAAs.
Collapse
Affiliation(s)
- Yoshito Yamashiro
- Life Science Center of Tsukuba Advanced Research Alliance, University of Tsukuba
| | - Hiromi Yanagisawa
- Life Science Center of Tsukuba Advanced Research Alliance, University of Tsukuba
| |
Collapse
|
81
|
Nine differentially expressed genes from a post mortem study and their association with suicidal status in a sample of suicide completers, attempters and controls. J Psychiatr Res 2017; 91:98-104. [PMID: 28327445 DOI: 10.1016/j.jpsychires.2017.03.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 03/01/2017] [Accepted: 03/09/2017] [Indexed: 01/28/2023]
Abstract
Several lines of evidence indicate that suicidal behaviour is partly heritable, with multiple genes implicated in its aetiology. We focused on nine genes (S100A13, EFEMP1, PCDHB5, PDGFRB, CDCA7L, SCN2B, PTPRR, MLC1 and ZFP36) which we previously detected as differentially expressed in the cortex of suicide victims compared to controls. We investigated 84 variants within these genes in 495 suicidal subjects (299 completers and 196 attempters) and 1513 controls (109 post-mortem and 1404 healthy). We evaluated associations with: 1) suicidal phenotype; 2) possible endophenotypes for suicidal behaviour. Overall positive results did not survive the correction threshold. However, we found a nominally different distribution of EFEMP1 genotypes, alleles and haplotypes between suicidal subjects and controls, results that were partially replicated when we separately considered the subgroup of suicide completers and post-mortem controls. A weaker association emerged also for PTPRR. Both EFEMP1 and PTPRR genes were also related to possible endophenotypes for suicidal behaviour such as anger, depression-anxiety and fatigue. Because of the large number of analyses performed and the low significance values further replication are mandatory. Nevertheless, neurotrophic gene variants, in particular EFEMP1 and PTPRR, may have a role in the pathogenesis of suicidal behaviour.
Collapse
|
82
|
Wang S, Zhang D, Han S, Gao P, Liu C, Li J, Pan X. Fibulin-3 promotes osteosarcoma invasion and metastasis by inducing epithelial to mesenchymal transition and activating the Wnt/β-catenin signaling pathway. Sci Rep 2017; 7:6215. [PMID: 28740094 PMCID: PMC5524709 DOI: 10.1038/s41598-017-06353-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 05/08/2017] [Indexed: 11/09/2022] Open
Abstract
This study explored the role of fibulin-3 in osteosarcoma progression and the possible signaling pathway involved. Fibulin-3 mRNA and protein expression in normal tissue, benign fibrous dysplasia, osteosarcoma, osteosarcoma cell lines (HOS and U-2OS), the normal osteoblastic cell line hFOB, and different invasive subclones was evaluated by immunohistochemistry (IHC) or immunocytochemistry (ICC) and real time reverse transcriptase-polymerase chain reaction (real time qRT-PCR). To assess the role of fibulin-3 in the invasion and metastasis of osteosarcoma cells, lentiviral vectors with fibulin-3 small hairpin RNA (shRNA) and pLVX-fibulin-3 were constructed and used to infect the highly invasive and low invasive subclones. The effects of fibulin-3 knockdown and upregulation on the biological behavior of osteosarcoma cells were investigated by functional in vitro and in vivo assays. The results revealed that fibulin-3 expression was upregulated in osteosarcoma, and was positively correlated with low differentiation, lymph node metastasis, and poor prognosis. Fibulin-3 could promote osteosarcoma cell invasion and metastasis by inducing EMT and activating the Wnt/β-catenin signaling pathway. Collectively, our findings demonstrate that fibulin-3 is a promoter of osteosarcoma development and progression, and suggest a novel therapeutic target for future studies.
Collapse
Affiliation(s)
- Songgang Wang
- Department of orthopedics, Qilu Hospital, Shandong University, Jinan, 250012, China
| | - Dong Zhang
- Department of orthopedics, Qilu Hospital, Shandong University, Jinan, 250012, China
| | - Shasha Han
- Department of orthopedics, Qilu Hospital, Shandong University, Jinan, 250012, China
| | - Peng Gao
- Department of orthopedics, People's Hospital of zhangqiu, Zhangqiu, 250200, China
| | - Changying Liu
- Department of orthopedics, People's Hospital of Yinan, linyi, 276000, China
| | - Jianmin Li
- Department of orthopedics, Qilu Hospital, Shandong University, Jinan, 250012, China
| | - Xin Pan
- Department of orthopedics, Qilu Hospital, Shandong University, Jinan, 250012, China.
| |
Collapse
|
83
|
Schiavinato A, Keene DR, Imhof T, Doliana R, Sasaki T, Sengle G. Fibulin-4 deposition requires EMILIN-1 in the extracellular matrix of osteoblasts. Sci Rep 2017; 7:5526. [PMID: 28717224 PMCID: PMC5514116 DOI: 10.1038/s41598-017-05835-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 06/05/2017] [Indexed: 11/09/2022] Open
Abstract
Tissue microenvironments formed by extracellular matrix networks play an important role in regulating tissue structure and function. Extracellular microfibrillar networks composed of fibrillins and their associated ligands such as LTBPs, fibulins, and EMILINs are of particular interest in this regard since they provide a specialized cellular microenvironment guiding proper morphology and functional behavior of specialized cell types. To understand how cellular microenvironments composed of intricate microfibrillar networks influence cell fate decisions in a contextual manner, more information about the spatiotemporal localization, deposition, and function of their components is required. By employing confocal immunofluorescence and electron microscopy we investigated the localization and extracellular matrix deposition of EMILIN-1 and -2 in tissues of the skeletal system such as cartilage and bone as well as in in vitro cultures of osteoblasts. We found that upon RNAi mediated depletion of EMILIN-1 in primary calvarial osteoblasts and MC3T3-E1 cells only fibulin-4 matrix deposition was lost while other fibulin family members or LTBPs remained unaffected. Immunoprecipitation and ELISA-style binding assays confirmed a direct interaction between EMILIN-1 and fibulin-4. Our data suggest a new function for EMILIN-1 which implies the guidance of linear fibulin-4 matrix deposition and thereby fibulin-4 fiber formation.
Collapse
Affiliation(s)
- Alvise Schiavinato
- Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany
| | | | - Thomas Imhof
- Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany.,Institute for Dental Research and Oral Musculoskeletal Biology, Medical Faculty, University of Cologne, 50931, Cologne, Germany
| | - Roberto Doliana
- Experimental Oncology 2, CRO, IRCCS, National Cancer Institute, Aviano, PN, Italy
| | - Takako Sasaki
- Department of Biochemistry II, Faculty of Medicine, Oita University, Oita, 879-5593, Japan
| | - Gerhard Sengle
- Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany. .,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.
| |
Collapse
|
84
|
Liu Q, Jiang C, Xu J, Zhao MT, Van Bortle K, Cheng X, Wang G, Chang HY, Wu JC, Snyder MP. Genome-Wide Temporal Profiling of Transcriptome and Open Chromatin of Early Cardiomyocyte Differentiation Derived From hiPSCs and hESCs. Circ Res 2017; 121:376-391. [PMID: 28663367 DOI: 10.1161/circresaha.116.310456] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Revised: 06/21/2017] [Accepted: 06/28/2017] [Indexed: 01/13/2023]
Abstract
RATIONALE Recent advances have improved our ability to generate cardiomyocytes from human induced pluripotent stem cells (hiPSCs) and human embryonic stem cells (hESCs). However, our understanding of the transcriptional regulatory networks underlying early stages (ie, from mesoderm to cardiac mesoderm) of cardiomyocyte differentiation remains limited. OBJECTIVE To characterize transcriptome and chromatin accessibility during early cardiomyocyte differentiation from hiPSCs and hESCs. METHODS AND RESULTS We profiled the temporal changes in transcriptome and chromatin accessibility at genome-wide levels during cardiomyocyte differentiation derived from 2 hiPSC lines and 2 hESC lines at 4 stages: pluripotent stem cells, mesoderm, cardiac mesoderm, and differentiated cardiomyocytes. Overall, RNA sequencing analysis revealed that transcriptomes during early cardiomyocyte differentiation were highly concordant between hiPSCs and hESCs, and clustering of 4 cell lines within each time point demonstrated that changes in genome-wide chromatin accessibility were similar across hiPSC and hESC cell lines. Weighted gene co-expression network analysis (WGCNA) identified several modules that were strongly correlated with different stages of cardiomyocyte differentiation. Several novel genes were identified with high weighted connectivity within modules and exhibited coexpression patterns with other genes, including noncoding RNA LINC01124 and uncharacterized RNA AK127400 in the module related to the mesoderm stage; E-box-binding homeobox 1 (ZEB1) in the module correlated with postcardiac mesoderm. We further demonstrated that ZEB1 is required for early cardiomyocyte differentiation. In addition, based on integrative analysis of both WGCNA and transcription factor motif enrichment analysis, we determined numerous transcription factors likely to play important roles at different stages during cardiomyocyte differentiation, such as T and eomesodermin (EOMES; mesoderm), lymphoid enhancer-binding factor 1 (LEF1) and mesoderm posterior BHLH transcription factor 1 (MESP1; from mesoderm to cardiac mesoderm), meis homeobox 1 (MEIS1) and GATA-binding protein 4 (GATA4) (postcardiac mesoderm), JUN and FOS families, and MEIS2 (cardiomyocyte). CONCLUSIONS Both hiPSCs and hESCs share similar transcriptional regulatory mechanisms underlying early cardiac differentiation, and our results have revealed transcriptional regulatory networks and new factors (eg, ZEB1) controlling early stages of cardiomyocyte differentiation.
Collapse
Affiliation(s)
- Qing Liu
- From the Department of Genetics (Q.L., C.J., K.V.B., M.P.S.), Center for Personal Dynamic Regulomes (J.X., H.Y.C.), Stanford Cardiovascular Institute (M.T.Z., J.C.W.), and Stem Cell Core Facility, Department of Genetics (X.C., G.W.), Stanford University School of Medicine, CA
| | - Chao Jiang
- From the Department of Genetics (Q.L., C.J., K.V.B., M.P.S.), Center for Personal Dynamic Regulomes (J.X., H.Y.C.), Stanford Cardiovascular Institute (M.T.Z., J.C.W.), and Stem Cell Core Facility, Department of Genetics (X.C., G.W.), Stanford University School of Medicine, CA
| | - Jin Xu
- From the Department of Genetics (Q.L., C.J., K.V.B., M.P.S.), Center for Personal Dynamic Regulomes (J.X., H.Y.C.), Stanford Cardiovascular Institute (M.T.Z., J.C.W.), and Stem Cell Core Facility, Department of Genetics (X.C., G.W.), Stanford University School of Medicine, CA
| | - Ming-Tao Zhao
- From the Department of Genetics (Q.L., C.J., K.V.B., M.P.S.), Center for Personal Dynamic Regulomes (J.X., H.Y.C.), Stanford Cardiovascular Institute (M.T.Z., J.C.W.), and Stem Cell Core Facility, Department of Genetics (X.C., G.W.), Stanford University School of Medicine, CA
| | - Kevin Van Bortle
- From the Department of Genetics (Q.L., C.J., K.V.B., M.P.S.), Center for Personal Dynamic Regulomes (J.X., H.Y.C.), Stanford Cardiovascular Institute (M.T.Z., J.C.W.), and Stem Cell Core Facility, Department of Genetics (X.C., G.W.), Stanford University School of Medicine, CA
| | - Xun Cheng
- From the Department of Genetics (Q.L., C.J., K.V.B., M.P.S.), Center for Personal Dynamic Regulomes (J.X., H.Y.C.), Stanford Cardiovascular Institute (M.T.Z., J.C.W.), and Stem Cell Core Facility, Department of Genetics (X.C., G.W.), Stanford University School of Medicine, CA
| | - Guangwen Wang
- From the Department of Genetics (Q.L., C.J., K.V.B., M.P.S.), Center for Personal Dynamic Regulomes (J.X., H.Y.C.), Stanford Cardiovascular Institute (M.T.Z., J.C.W.), and Stem Cell Core Facility, Department of Genetics (X.C., G.W.), Stanford University School of Medicine, CA
| | - Howard Y Chang
- From the Department of Genetics (Q.L., C.J., K.V.B., M.P.S.), Center for Personal Dynamic Regulomes (J.X., H.Y.C.), Stanford Cardiovascular Institute (M.T.Z., J.C.W.), and Stem Cell Core Facility, Department of Genetics (X.C., G.W.), Stanford University School of Medicine, CA
| | - Joseph C Wu
- From the Department of Genetics (Q.L., C.J., K.V.B., M.P.S.), Center for Personal Dynamic Regulomes (J.X., H.Y.C.), Stanford Cardiovascular Institute (M.T.Z., J.C.W.), and Stem Cell Core Facility, Department of Genetics (X.C., G.W.), Stanford University School of Medicine, CA
| | - Michael P Snyder
- From the Department of Genetics (Q.L., C.J., K.V.B., M.P.S.), Center for Personal Dynamic Regulomes (J.X., H.Y.C.), Stanford Cardiovascular Institute (M.T.Z., J.C.W.), and Stem Cell Core Facility, Department of Genetics (X.C., G.W.), Stanford University School of Medicine, CA.
| |
Collapse
|
85
|
Fibulins and matrilins are novel structural components of the periodontium in the mouse. Arch Oral Biol 2017; 82:216-222. [PMID: 28654783 DOI: 10.1016/j.archoralbio.2017.06.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 05/16/2017] [Accepted: 06/11/2017] [Indexed: 11/23/2022]
Abstract
Periodontitis refers to inflammatory disease of the periodontal structures (the gingiva, dental cementum, periodontal ligament (PDL) and alveolar bone) that ultimately leads to their destruction. Whereas collagens are well-examined main components of the periodontium, little is known about the other structural proteins that make up this tissue. The aim of this study was to identify new extracellular matrix (ECM) components, including fibulins and matrilins, in the periodontium of mice. After sacrificing 14 mice (Sv/129 strain), jaws were prepared. Each tissue sample contained a molar and its surrounding alveolar bone. Immunohistochemistry was carried out on paraffin-embedded sections. Our results show that mice exhibit fibulin-3, -4 and -5 and matrilin-1, -2, -3 and -4 in PDL and in blood vessels of alveolar bone and PDL as well as in the pericellular matrix of osteocytes and cementocytes. In dental cementum, only fibulin-4 is expressed. For the first time, we show that fibulin-3, -4 and -5 and matrilin-1, -2, -3 and -4 are essential components of the periodontal tissues. Our findings indicate an association of these proteins with collagens and oxytalan fibers that might be of future interest in regenerative periodontitis therapy.
Collapse
|
86
|
Stanton JB, Marmorstein AD, Zhang Y, Marmorstein LY. Deletion of Efemp1 Is Protective Against the Development of Sub-RPE Deposits in Mouse Eyes. Invest Ophthalmol Vis Sci 2017; 58:1455-1461. [PMID: 28264101 PMCID: PMC5361459 DOI: 10.1167/iovs.16-20955] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Purpose EFEMP1 (fibulin-3) is mutated in Malattia Leventinese/Doyne's honeycomb retinal dystrophy (ML/DHRD), an inherited macular dystrophy similar to AMD. Both ML/DHRD and AMD are characterized by the presence of sub-RPE deposits. Efemp1 knockout mice do not develop sub-RPE deposits. This study was to test whether sub-RPE deposits can be induced in Efemp1 knockout mice by experimentally applied stress conditions that cause wild-type mice to develop sub-RPE deposits. Methods Efemp1 knockout and control mice at 6, 18, or 24 months old were fed with a synthetic high-fat diet (HFD). Beginning 1 month after starting the HFD, one group of mice was exposed to cigarette smoke daily for 1 month, and another group of mice was subjected to photochemical injury every other day for 2 weeks from a 488-nm argon laser. After the treatments, histologic analysis was performed to assess whether sub-RPE deposits were induced. Results Basal laminar deposits (BLamDs), a form of sub-RPE deposits, were observed in the 18- and 24-month-old wild-type mice but not in Efemp1 knockout mice in any age groups after exposure to HFD and cigarette smoke or laser injury. Conclusions Mice lacking fibulin-3 do not develop sub-RPE deposits. Environmental oxidative stressors (HFD/cigarette smoke or HFD/laser) known to cause BLamD formation in wild-type mice failed to induce BLamD formation in Efemp1 knockout mice. These results suggest that fibulin-3 is a central player in the development of BLamD, and deletion of fibulin-3 is protective against the development of BLamD.
Collapse
Affiliation(s)
- James B Stanton
- Department of Ophthalmology & Vision Science, University of Arizona, Tucson, Arizona, United States
| | - Alan D Marmorstein
- Department of Ophthalmology, Mayo Clinic, Rochester, Minnesota, United States
| | - Youwen Zhang
- Department of Ophthalmology, Mayo Clinic, Rochester, Minnesota, United States
| | - Lihua Y Marmorstein
- Department of Ophthalmology, Mayo Clinic, Rochester, Minnesota, United States
| |
Collapse
|
87
|
Fibulin-4 reduces extracellular matrix production and suppresses chondrocyte differentiation via DKK1- mediated canonical Wnt/β-catenin signaling. Int J Biol Macromol 2017; 99:293-299. [DOI: 10.1016/j.ijbiomac.2017.02.087] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 02/14/2017] [Accepted: 02/23/2017] [Indexed: 01/11/2023]
|
88
|
A quantitative label-free analysis of the extracellular proteome of human supraspinatus tendon reveals damage to the pericellular and elastic fibre niches in torn and aged tissue. PLoS One 2017; 12:e0177656. [PMID: 28542244 PMCID: PMC5436668 DOI: 10.1371/journal.pone.0177656] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 05/01/2017] [Indexed: 11/24/2022] Open
Abstract
Tears of the human supraspinatus tendon are common and often cause painful and debilitating loss of function. Progressive failure of the tendon leading to structural abnormality and tearing is accompanied by numerous cellular and extra-cellular matrix (ECM) changes in the tendon tissue. This proteomics study aimed to compare torn and aged rotator cuff tissue to young and healthy tissue, and provide the first ECM inventory of human supraspinatus tendon generated using label-free quantitative LC-MS/MS. Employing two digestion protocols (trypsin and elastase), we analysed grain-sized tendon supraspinatus biopsies from older patients with torn tendons and from healthy, young controls. Our findings confirm measurable degradation of collagen fibrils and associated proteins in old and torn tendons, suggesting a significant loss of tissue organisation. A particularly marked reduction of cartilage oligomeric matrix protein (COMP) raises the possibility of using changes in levels of this glycoprotein as a marker of abnormal tissue, as previously suggested in horse models. Surprisingly, and despite using an elastase digestion for validation, elastin was not detected, suggesting that it is not highly abundant in human supraspinatus tendon as previously thought. Finally, we identified marked changes to the elastic fibre, fibrillin-rich niche and the pericellular matrix. Further investigation of these regions may yield other potential biomarkers and help to explain detrimental cellular processes associated with tendon ageing and tendinopathy.
Collapse
|
89
|
Halabi CM, Broekelmann TJ, Lin M, Lee VS, Chu ML, Mecham RP. Fibulin-4 is essential for maintaining arterial wall integrity in conduit but not muscular arteries. SCIENCE ADVANCES 2017; 3:e1602532. [PMID: 28508064 PMCID: PMC5415335 DOI: 10.1126/sciadv.1602532] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 02/28/2017] [Indexed: 06/07/2023]
Abstract
Homozygous or compound heterozygous mutations in fibulin-4 (FBLN4) lead to autosomal recessive cutis laxa type 1B (ARCL1B), a multisystem disorder characterized by significant cardiovascular abnormalities, including abnormal elastin assembly, arterial tortuosity, and aortic aneurysms. We sought to determine the consequences of a human disease-causing mutation in FBLN4 (E57K) on the cardiovascular system and vascular elastic fibers in a mouse model of ARCL1B. Fbln4E57K/E57K mice were hypertensive and developed arterial elongation, tortuosity, and ascending aortic aneurysms. Smooth muscle cell organization within the arterial wall of large conducting vessels was abnormal, and elastic fibers were fragmented and had a moth-eaten appearance. In contrast, vessel wall structure and elastic fiber integrity were normal in resistance/muscular arteries (renal, mesenteric, and saphenous). Elastin cross-linking and total elastin content were unchanged in large or small arteries, whereas elastic fiber architecture was abnormal in large vessels. While the E57K mutation did not affect Fbln4 mRNA levels, FBLN4 protein was lower in the ascending aorta of mutant animals compared to wild-type arteries but equivalent in mesenteric arteries. We found a differential role of FBLN4 in elastic fiber assembly, where it functions mainly in large conduit arteries. These results suggest that elastin assembly has different requirements depending on vessel type. Normal levels of elastin cross-links in mutant tissue call into question FBLN4's suggested role in mediating lysyl oxidase-elastin interactions. Future studies investigating tissue-specific elastic fiber assembly may lead to novel therapeutic interventions for ARCL1B and other disorders of elastic fiber assembly.
Collapse
Affiliation(s)
- Carmen M. Halabi
- Division of Nephrology, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Thomas J. Broekelmann
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Michelle Lin
- Division of Nephrology, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Vivian S. Lee
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Mon-Li Chu
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Robert P. Mecham
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
90
|
Nandhu MS, Kwiatkowska A, Bhaskaran V, Hayes J, Hu B, Viapiano MS. Tumor-derived fibulin-3 activates pro-invasive NF-κB signaling in glioblastoma cells and their microenvironment. Oncogene 2017; 36:4875-4886. [PMID: 28414309 PMCID: PMC5570669 DOI: 10.1038/onc.2017.109] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 02/19/2017] [Accepted: 03/04/2017] [Indexed: 12/19/2022]
Abstract
Molecular profiling of glioblastomas has revealed the presence of key signaling hubs that contribute to tumor progression and acquisition of resistance. One of these main signaling mechanisms is the NF-κB pathway, which integrates multiple extracellular signals into transcriptional programs for tumor growth, invasion, and maintenance of the tumor-initiating population. We show here that an extracellular protein released by glioblastoma cells, fibulin-3, drives oncogenic NF-κB in the tumor and increases NF-κB activation in peritumoral astrocytes. Fibulin-3 expression correlates with a NF-κB-regulated “invasive signature” linked to poorer survival, being a possible tissue marker for regions of active tumor progression. Accordingly, fibulin-3 promotes glioblastoma invasion in a manner that requires NF-κB activation both in the tumor cells and their microenvironment. Mechanistically, we found that fibulin-3 activates the metalloprotease ADAM17 by competing with its endogenous inhibitor, TIMP3. This results in sustained release of soluble TNFα by ADAM17, which in turn activates TNF receptors and canonical NF-κB signaling. Taken together, our results underscore fibulin-3 as a novel extracellular signal with strong activating effect on NF-κB in malignant gliomas. Because fibulin-3 is produced de novo in these tumors and is absent from normal brain we propose that targeting the fibulin-3/NF-κB axis may provide a novel avenue to disrupt oncogenic NF-κB signaling in combination therapies for malignant brain tumors.
Collapse
Affiliation(s)
- M S Nandhu
- Department of Neurosurgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.,Department of Neuroscience and Physiology, State University of New York, Upstate Medical University, Syracuse, NY, USA
| | - A Kwiatkowska
- Department of Neurosurgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - V Bhaskaran
- Department of Neurosurgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - J Hayes
- Department of Neurological Surgery, Helen Diller Family Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - B Hu
- Department of Neurological Surgery, The Ohio State University, Columbus, OH, USA
| | - M S Viapiano
- Department of Neurosurgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.,Department of Neuroscience and Physiology, State University of New York, Upstate Medical University, Syracuse, NY, USA
| |
Collapse
|
91
|
Mithieux SM, Weiss AS. Design of an elastin-layered dermal regeneration template. Acta Biomater 2017; 52:33-40. [PMID: 27903444 PMCID: PMC5402719 DOI: 10.1016/j.actbio.2016.11.054] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Revised: 11/04/2016] [Accepted: 11/23/2016] [Indexed: 02/01/2023]
Abstract
We demonstrate a novel approach for the production of tunable quantities of elastic fibers. We also show that exogenous tropoelastin is rate-limiting for elastin synthesis regardless of the age of the dermal fibroblast donor. Additionally, we provide a strategy to further enhance synthesis by older cells through the application of conditioned media. We show that this approach delivers an elastin layer on one side of the leading dermal repair template for contact with the deep dermis in order to deliver prefabricated elastic fibers to a physiologically appropriate site during subsequent surgery. This system is attractive because it provides for the first time a viable path for sufficient, histologically detectable levels of patient elastin into full-thickness wound sites that have until now lacked this elastic underlayer. STATEMENT OF SIGNIFICANCE The scars of full thickness wounds typically lack elasticity. Elastin is essential for skin elasticity and is enriched in the deep dermis. This paper is significant because it shows that: (1) we can generate elastic fibers in tunable quantities, (2) tropoelastin is the rate-limiting component in elastin synthesis in vitro, (3) we can generate elastin fibers regardless of donor age, (4) we describe a novel approach to further increase the numbers and thickness of elastic fibers for older donors, (5) we improve on Integra Dermal Regeneration Template and generate a new hybrid biomaterial intended to subsequently surgically deliver these elastic fibers, (6) the elastic fiber layer is presented on the side of Integra that is intended for delivery into its physiologically appropriate site i.e. the deep dermis.
Collapse
Affiliation(s)
- Suzanne M Mithieux
- Charles Perkins Centre, University of Sydney, NSW 2006, Australia; School of Life and Environmental Sciences, University of Sydney, NSW 2006, Australia
| | - Anthony S Weiss
- Charles Perkins Centre, University of Sydney, NSW 2006, Australia; School of Life and Environmental Sciences, University of Sydney, NSW 2006, Australia; Bosch Institute, University of Sydney, NSW 2006, Australia.
| |
Collapse
|
92
|
Zhang D, Wang S, Chen J, Liu H, Lu J, Jiang H, Huang A, Chen Y. Fibulin-4 promotes osteosarcoma invasion and metastasis by inducing epithelial to mesenchymal transition via the PI3K/Akt/mTOR pathway. Int J Oncol 2017; 50:1513-1530. [PMID: 28339091 PMCID: PMC5403358 DOI: 10.3892/ijo.2017.3921] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 03/13/2017] [Indexed: 01/01/2023] Open
Abstract
This study explored the role of fibulin-4 in osteosarcoma progression and the possible signaling pathway involved. Fibulin-4 mRNA and protein expression in normal tissue, benign fibrous dysplasia, osteosarcoma, osteosarcoma cell lines, the normal osteoblastic cell line hFOB, and different invasive subclones were evaluated by immunohistochemistry (IHC) or immunocytochemistry (ICC) and real-time reverse transcriptase-polymerase chain reaction (real-time qRT-PCR). Using in vitro functional assays, we analyzed the invasive and proliferative abilities of different osteosarcoma cell lines and subclones with differing invasive potential. To assess the role of fibulin-4 in the invasion and metastasis of osteosarcoma cells, lentiviral vectors with fibulin-4 small hairpin RNA (shRNA) and pLVX-fibulin-4 were constructed and used to infect the highly invasive and low invasive subclones and osteosarcoma cell lines. The effects of fibulin-4 knockdown and upregulation on the biological behavior of osteosarcoma cells were investigated by functional in vitro and in vivo assays. The results revealed that fibulin-4 expression was upregulated in osteosarcoma, and was positively correlated with low differentiation, lymph node metastasis, and poor prognosis. Fibulin-4 was also found to be over-expressed in highly invasive cell lines and in the highly invasive subclones. Fibulin-4 could promote osteosarcoma cell invasion and metastasis by inducing EMT via the PI3K/AKT/mTOR pathway. Collectively, our findings demonstrate that fibulin-4 is a promoter of osteosarcoma development and progression, and suggest a novel therapeutic target for future studies.
Collapse
Affiliation(s)
- Dong Zhang
- Department of Orthopedics, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Songgang Wang
- Department of Orthopedics, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Jie Chen
- Department of Maternal and Child Health, School of Public Health, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Haitao Liu
- Department of Orthopedics, Xiangcheng No. 2 People's Hospital, Suzhou, Jiangsu 215143, P.R. China
| | - Jinfa Lu
- Department of Orthopedics, Xiangcheng No. 2 People's Hospital, Suzhou, Jiangsu 215143, P.R. China
| | - Hua Jiang
- Department of Orthopedics, Xiangcheng No. 2 People's Hospital, Suzhou, Jiangsu 215143, P.R. China
| | - Aimin Huang
- Department of Orthopedics, Xiangcheng No. 2 People's Hospital, Suzhou, Jiangsu 215143, P.R. China
| | - Yunzhen Chen
- Department of Orthopedics, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
93
|
Shen H, Zhang L, Zhou J, Chen Z, Yang G, Liao Y, Zhu M. Epidermal Growth Factor-Containing Fibulin-Like Extracellular Matrix Protein 1 (EFEMP1) Acts as a Potential Diagnostic Biomarker for Prostate Cancer. Med Sci Monit 2017; 23:216-222. [PMID: 28085790 PMCID: PMC5256367 DOI: 10.12659/msm.898809] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background The aim of this study was to detect the expression of epidermal growth factor-containing fibulin-like extracellular matrix protein 1 (EFEMP1) and estimate its diagnostic value in prostate cancer (PCa). Material/Methods EFEMP1 expression in serum and urine of patients with PCa, benign controls and healthy controls at mRNA and protein level were measured by quantitative reverse transcription polymerase chain reaction (qRT-PCR) and enzyme-linked immunosorbent assay (ELISA) analysis, respectively. The chi-square test was used to analyze the relationship between EFEMP1 expression and clinical factors of patients with PCa. A receiver operating characteristic (ROC) curve was established to evaluate the potential values of EFEMP1 for the diagnosis of PCa. Results The relative expression of EFEMP1 was significantly decreased in patients with PCa compared with that in the benign controls and healthy individuals, both at mRNA and protein levels (P<0.05). In the postoperative serum, the EFEMP1 expression was significantly higher than that in preoperative serum at 2 levels. Urine EFEMP1 expression was also down-regulated in patients with PCa compared to that in the other 2 control groups. The low expression of EFEMP1 was obviously affected by Gleason’s score, serum PSA, pathological stage, and lymph node metastasis. Moreover, there was a significant inverse correlation between EFEMP1 expression and PSA levels. The ROC curve revealed that EFEMP1 distinguished PCa patients from healthy controls, with a high AUC of 0.908, corresponding with high sensitivity and specificity, which was significantly higher than the PSA value. Conclusions Serum EFEMP1 is down-regulated and involved in the progression of PCa. It may serve as a useful diagnostic biomarker, with better diagnostic accuracy than PSA in PCa.
Collapse
Affiliation(s)
- Hao Shen
- Department of Urology, The Second Clinical Medical College, Yangtze University, Jingzhou, Hubei, China (mainland)
| | - Ling Zhang
- Department of Pathology, The Second Clinical Medical College, Yangtze University, Jingzhou, Hubei, China (mainland)
| | - Jiajie Zhou
- Department of Urology, The Second Clinical Medical College, Yangtze University, Jingzhou, Hubei, China (mainland)
| | - Zhongjun Chen
- Department of Urology, The Second Clinical Medical College, Yangtze University, Jingzhou, Hubei, China (mainland)
| | - Guanghua Yang
- Department of Urology, The Second Clinical Medical College, Yangtze University, Jingzhou, Hubei, China (mainland)
| | - Yixiang Liao
- Department of Urology, The Second Clinical Medical College, Yangtze University, Jingzhou, Hubei, China (mainland)
| | - Min Zhu
- Department of Urology, The Second Clinical Medical College, Yangtze University, Jingzhou, Hubei, China (mainland)
| |
Collapse
|
94
|
Nienaber CA, Clough RE. Management of Acute Aortic Syndromes. Interv Cardiol 2016. [DOI: 10.1002/9781118983652.ch71] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
95
|
Abstract
A characteristic feature of liver cirrhosis is the accumulation of large amounts of connective tissue with the prevailing content of type I collagen. Elastin is a minor connective tissue component in normal liver but it is actively synthesized by hepatic stellate cells and portal fibroblasts in diseased liver. The accumulation of elastic fibers in later stages of liver fibrosis may contribute to the decreasing reversibility of the disease with advancing time. Elastin is formed by polymerization of tropoelastin monomers. It is an amorphous protein highly resistant to the action of proteases that forms the core of elastic fibers. Microfibrils surrounding the core are composed of fibrillins that bind a number of proteins involved in fiber formation. They include microfibril-associated glycoproteins (MAGPs), microfibrillar-associated proteins (MFAPs) and fibulins. Lysyl oxidase (LOX) and lysyl oxidase-like proteins (LOXLs) are responsible for tropoelastin cross-linking and polymerization. TGF-β complexes attached to microfibrils release this cytokine and influence the behavior of the cells in the neighborhood. The role of TGF-β as the main profibrotic cytokine in the liver is well-known and the release of the cytokines of TGF-β superfamily from their storage in elastic fibers may affect the course of fibrosis. Elastic fibers are often studied in the tissues where they provide elasticity and resilience but their role is no longer viewed as purely mechanical. Tropoelastin, elastin polymer and elastin peptides resulting from partial elastin degradation influence fibroblastic and inflammatory cells as well as angiogenesis. A similar role may be performed by elastin in the liver. This article reviews the results of the research of liver elastic fibers on the background of the present knowledge of elastin biochemistry and physiology. The regulation of liver elastin synthesis and degradation may be important for the outcome of liver fibrosis.
Collapse
Affiliation(s)
- Jiří Kanta
- Department of Medical Biochemistry, Faculty of Medicine in Hradec Kralove, Charles University in Prague Hradec Kralove, Czechia
| |
Collapse
|
96
|
Rapisarda V, Ledda C, Migliore M, Salemi R, Musumeci A, Bracci M, Marconi A, Loreto C, Libra M. FBLN-3 as a biomarker of pleural plaques in workers occupationally exposed to carcinogenic fibers: a pilot study. Future Oncol 2016; 11:35-7. [PMID: 26638921 DOI: 10.2217/fon.15.271] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
FBLN-3 has recently been proposed as a biomarker for malignant mesothelioma. A significantly increased standardized mortality rate from malignant mesothelioma has been reported in Biancavilla, Italy. Its cause has been identified in environmental exposure to fluoro-edenite. The aim of this study was to seek a correlation between plasma FBLN-3 concentration and pleural plaques in subjects exposed to fluoro-edenite and in a nonexposed control group. Pleural plaques was never detected in the control group, whereas it was found in 52% of exposed subjects. Median FBLN-3 concentrations were 12.96 and 5.29 ng/ml in the exposed and the control group, respectively (p < 0.001). FBLN-3 plasma levels exhibited a high predictive value for the presence of pleural plaques.
Collapse
Affiliation(s)
- Venerando Rapisarda
- Section of Occupational Medicine, Department of Clinical & Experimental Medicine, University of Catania, Catania, Italy
| | - Caterina Ledda
- Section of Occupational Medicine, Department of Clinical & Experimental Medicine, University of Catania, Catania, Italy
| | - Marcello Migliore
- Academic Thoracic Surgery Unit, University Hospital 'Policlinico-Vittorio Emanuele', Department of Surgery, University of Catania, Catania, Italy
| | - Rossella Salemi
- Section of Clinical & General Pathology & Oncology, Department of Biomedical & Biotechnological Sciences, University of Catania, Catania, Italy
| | - Andrea Musumeci
- Division of Radiology, University Hospital 'Policlinico - Vittorio Emanuele', Catania, Italy
| | - Massimo Bracci
- Section of Occupational Medicine, Department of Clinical & Molecular Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Andrea Marconi
- Section of Occupational Medicine, Department of Clinical & Experimental Medicine, University of Catania, Catania, Italy
| | - Carla Loreto
- Section of Anatomy & Histology, Department of Biomedical & Biotechnological Sciences, University of Catania, Catania, Italy
| | - Massimo Libra
- Section of Clinical & General Pathology & Oncology, Department of Biomedical & Biotechnological Sciences, University of Catania, Catania, Italy
| |
Collapse
|
97
|
Bakilan F, Armagan O, Ozgen M, Tascioglu F, Bolluk O, Alatas O. Effects of Native Type II Collagen Treatment on Knee Osteoarthritis: A Randomized Controlled Trial. Eurasian J Med 2016; 48:95-101. [PMID: 27551171 DOI: 10.5152/eurasianjmed.2015.15030] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
OBJECTIVE The aim of this randomized controlled study was to evaluate the efficacy of oral native type II collagen treatment on the symptoms and biological markers of cartilage degradation, when given concomitantly with acetaminophen in patients with knee osteoarthritis. MATERIALS AND METHODS Thirty-nine patients diagnosed with knee osteoarthritis were included and randomly distributed into two groups: one treated with 1500 mg/day of acetaminophen (group AC; n=19) and the other treated with 1500 mg/day of acetaminophen plus 10 mg/day of native type II collagen (group AC+CII; n=20) for 3 months. Visual Analogue Scale (VAS) at rest and during walking, Western Ontario McMaster (WOMAC) pain, WOMAC function, and Short Form-36 (SF-36) scores, were recorded. Coll2-1, Coll2-1NO2 and Fibulin-3 levels were quantified in urine as biomarkers of disease progression. ClinicalTrials.gov: NCT02237989. RESULTS After 3 months of treatment, significant improvements compared to baseline were reported in joint pain (VAS walking), function (WOMAC) and quality of life (SF-36) in the AC+CII group, while only improvements in some subscales of the SF-36 survey and VAS walking were detected in the AC group. Comparisons between the groups revealed a significant difference in VAS walking score in favour of the AC+CII group as compared to AC group. Biochemical markers of cartilage degradation in urine did not significantly improve in any of the groups. CONCLUSION All in all, these results suggest that native type II collagen treatment combined with acetaminophen is superior to only acetaminophen for symptomatic treatment of patients with knee osteoarthritis.
Collapse
Affiliation(s)
- Fulya Bakilan
- Department of Physical Medicine and Rehabilitation of Yerkoy/Yozgat Public Hospital, Yozgat, Turkey
| | - Onur Armagan
- Department of Physical Medicine and Rehabilitation, Eskişehir Osmangazi University School of Medicine, Eskişehir, Turkey
| | - Merih Ozgen
- Department of Physical Medicine and Rehabilitation, Eskişehir Osmangazi University School of Medicine, Eskişehir, Turkey
| | - Funda Tascioglu
- Department of Physical Medicine and Rehabilitation, Eskişehir Osmangazi University School of Medicine, Eskişehir, Turkey
| | - Ozge Bolluk
- Department of Biostatistics, Eskişehir Osmangazi University School of Medicine, Eskişehir, Turkey
| | - Ozkan Alatas
- Department of Biochemistry, Eskişehir Osmangazi University School of Medicine, Eskişehir, Turkey
| |
Collapse
|
98
|
Fibulin-2 is essential for angiotensin II-induced myocardial fibrosis mediated by transforming growth factor (TGF)-β. J Transl Med 2016; 96:773-83. [PMID: 27111286 PMCID: PMC4920723 DOI: 10.1038/labinvest.2016.52] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 03/14/2016] [Accepted: 03/20/2016] [Indexed: 12/20/2022] Open
Abstract
Fibrosis is an ominous pathological process in failing myocardium, but its pathogenesis is poorly understood. We recently reported that loss of an extracellular matrix (ECM) protein, fibulin-2, protected against ventricular dysfunction after myocardial infarction (MI) in association with absence of activation of transforming growth factor (TGF)-β signaling and suppressed upregulation of ECM protein expression during myocardial remodeling. Here we investigated the role of fibulin-2 in the development of myocardial hypertrophy and fibrosis induced by continuous pressor-dosage of angiotensin II (Ang II) infusion. Both wild type (WT) and fibulin-2 null (Fbln2KO) mice developed comparable hypertension and myocardial hypertrophy by Ang II infusion. However, myocardial fibrosis with significant upregulation of collagen type I and III mRNA was only seen in WT but not in Fbln2KO mice.Transforming growth factor (TGF)-β1 mRNA and its downstream signal, Smad2, were significantly upregulated in WT by Ang II, whereas there were no Ang II-induced changes in Flbn2KO, suggesting fibulin-2 is necessary for Ang II-induced TGF-β signaling that induces myocardial fibrosis. To test whether fibulin-2 is sufficient for Ang II-induced TGF-β upregulation, isolated Flbn2KO cardiac fibroblasts were treated with Ang II after transfecting with fibulin-2 expression vector or pretreating with recombinant fibulin-2 protein. Ang II-induced TGF-β signaling in Fbln2KO cells was partially rescued by exogenous fibulin-2, suggesting that fibulin-2 is required and probably sufficient for Ang II-induced TGF-β activation. Smad2 phosphorylation was induced just by adding recombinant fibulin-2 to KO cells, suggesting that extracellular interaction between fibulin-2 and latent TGF-β triggered initial TGF-β activation. Our study indicates that Ang II cannot induce TGF-β activation without fibulin-2 and that fibulin-2 has an essential role in Ang II-induced TGF-β signaling and subsequent myocardial fibrosis. Fibulin-2 can be considered as a critical regulator of TGF-β that induces myocardial fibrosis.
Collapse
|
99
|
Sasaki T, Hanisch FG, Deutzmann R, Sakai LY, Sakuma T, Miyamoto T, Yamamoto T, Hannappel E, Chu ML, Lanig H, von der Mark K. Functional consequence of fibulin-4 missense mutations associated with vascular and skeletal abnormalities and cutis laxa. Matrix Biol 2016; 56:132-149. [PMID: 27339457 DOI: 10.1016/j.matbio.2016.06.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 06/06/2016] [Accepted: 06/14/2016] [Indexed: 01/17/2023]
Abstract
Fibulin-4 is a 60kDa calcium binding glycoprotein that has an important role in development and integrity of extracellular matrices. It interacts with elastin, fibrillin-1 and collagen IV as well as with lysyl oxidases and is involved in elastogenesis and cross-link formation. To date, several mutations in the fibulin-4 gene (FBLN4/EFEMP2) are known in patients whose major symptoms are vascular deformities, aneurysm, cutis laxa, joint laxity, or arachnodactyly. The pathogenetic mechanisms how these mutations translate into the clinical phenotype are, however, poorly understood. In order to elucidate these mechanisms, we expressed fibulin-4 mutants recombinantly in HEK293 cells, purified the proteins in native forms and analyzed alterations in protein synthesis, secretion, matrix assembly, and interaction with other proteins in relation to wild type fibulin-4. Our studies show that different mutations affect these properties in multiple ways, resulting in fibulin-4 deficiency and/or impaired ability to form elastic fibers. The substitutions E126K and C267Y impaired secretion of the protein, but not mRNA synthesis. Furthermore, the E126K mutant showed less resistance to proteases, reduced binding to collagen IV and fibrillin-1, as well as to LTBP1s and LTBP4s. The A397T mutation introduced an extra O-glycosylation site and deleted binding to LTBP1s. We show that fibulin-4 binds stronger than fibulin-3 and -5 to LTBP1s, 3, and 4s, and to the lysyl oxidases LOX and LOXL1; the binding of fibulin-4 to the LOX propeptide was strongly reduced by the mutation E57K. These findings show that different mutations in the fibulin-4 gene result in different molecular defects affecting secretion rates, protein stability, LOX-induced cross-linking, or binding to other ECM components and molecules of the TGF-β pathway, and thus illustrate the complex role of fibulin-4 in connective tissue assembly.
Collapse
Affiliation(s)
- Takako Sasaki
- Department of Experimental Medicine I, Nikolaus-Fiebiger Center of Molecular Medicine, University of Erlangen-Nürnberg, 91054 Erlangen, Germany; Department of Biochemistry II, Faculty of Medicine, Oita University, Oita 879-5593, Japan.
| | - Franz-Georg Hanisch
- Institute for Biochemistry II, Medical Faculty, Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Rainer Deutzmann
- Institute of Biochemistry, Microbiology and Genetics, University of Regensburg, 93053 Regensburg, Germany
| | - Lynn Y Sakai
- Shriners Hospital for Children, Portland Research Center, Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, Oregon 97239, USA
| | - Tetsushi Sakuma
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Hiroshima 739-8526, Japan
| | - Tatsuo Miyamoto
- Department of Genetics and Cell Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8553, Japan
| | - Takashi Yamamoto
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Hiroshima 739-8526, Japan
| | - Ewald Hannappel
- Institut für Biochemie, Emil-Fischer-Zentrum, University of Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Mon-Li Chu
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Harald Lanig
- Central Institute for Scientific Computing (ZISC), University of Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Klaus von der Mark
- Department of Experimental Medicine I, Nikolaus-Fiebiger Center of Molecular Medicine, University of Erlangen-Nürnberg, 91054 Erlangen, Germany
| |
Collapse
|
100
|
LIN ZHONGWEI, WANG ZHUO, LI GUOBIAO, LI BOWEI, XIE WENLIN, XIANG DINGCHENG. Fibulin-3 may improve vascular health through inhibition of MMP-2/9 and oxidative stress in spontaneously hypertensive rats. Mol Med Rep 2016; 13:3805-12. [PMID: 27035767 PMCID: PMC4838143 DOI: 10.3892/mmr.2016.5036] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 03/01/2016] [Indexed: 11/11/2022] Open
Abstract
Fibulin-3 has been suggested to function in the remodeling of the extracellular matrix, however its role remains unclear in hypertensive vascular remodeling. In the current study, 10 Wistar-Kyoto (WKY) rats (control group) and 30 spontaneously hypertensive rats (SHRs) were used. SHRs were randomized into three groups: The placebo group, intravenous (I.V.) physiological saline; the FBLN‑1 group, low‑dose fibulin‑3 protein (I.V.; 120 ng/kg); and the FBLN-2 group, high-dose fibulin-3 protein (I.V.; 240 ng/kg). Histological analysis was used to analyze vascular remodeling. The expression of fibulin‑3, matrix metalloproteinase (MMP)‑2, MMP‑9 and tissue inhibitor of metalloproteinase (TIMP)‑3 were detected by immunohistochemistry, western blotting and reverse transcription‑quantitative polymerase chain reaction. Oxidative stress was detected by dihydroethidium staining. The systolic blood pressure (SBP) of SHRs was observed to be significantly greater than that of WKY rats (P<0.05). SBP in the FBLN‑2 group was significantly reduced compared with the placebo group (182±12 mmHg vs. 224±14 mmHg; P<0.05). The thoracic aortic wall thickness in the SHR groups (placebo group, FBLN‑1 group and FBLN‑2 group) was observed to tbe significantly thicker than in the control group (P<0.01). The wall thickness of the FBLN‑2 group was significantly greater than that of the placebo and FBLN-1 groups (124.2±11.8 µm vs. 106.9±9.5 µm and 96.8±10.2 µm; P<0.05). The wall‑to‑lumen ratios of the placebo, FBLN‑1 and FBLN-2 groups were significantly greater than that of the control group (P<0.05). In addition, the expression levels of fibulin‑3 and MMP‑2/9 at protein and mRNA levels were significantly increased in the thoracic aorta of the placebo group compared with the control group (P<0.05). The levels of MMP‑2/9 were significantly reduced in the FBLN‑2 group compared with the placebo group (P<0.05). Levels of TIMP‑3 however, exhibited no significant differences in the four groups (P>0.05). Reactive oxygen species (ROS) were increased in the placebo group vs. the control group. Fibulin‑3 was able to alleviate the levels of ROS in the FBLN groups. It is suggested that fibulin‑3 may act as a growth factor in the arteries. In addition, the results indicated that fibulin‑3 may reduce the levels of MMP‑2 and ‑9 and oxidative stress in hypertensive vascular remodeling. Upregulating fibulin-3 may be beneficial for improving vascular health and offsetting certain cardiovascular risk factors of hypertension.
Collapse
Affiliation(s)
- ZHONGWEI LIN
- Department of Cardiology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong 510000, P.R. China
- Correspondence to: Dr Zhongwei Lin, Department of Cardiology, The First Affiliated Hospital of Guangdong Pharmaceutical University, 19 Nonglinxia Road, Guangzhou, Guangdong 510000, P.R. China, E-mail:
| | - ZHUO WANG
- Department of Pathology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - GUOBIAO LI
- Department of Cardiology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong 510000, P.R. China
| | - BOWEI LI
- Department of Cardiology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong 510000, P.R. China
| | - WENLIN XIE
- Department of Pathology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - DINGCHENG XIANG
- Department of Cardiology, Guangzhou General Hospital of Guangzhou Military Command, Southern Medical University, Guangzhou, Guangdong 510110, P.R. China
| |
Collapse
|