51
|
Abstract
Phage display technology is an emerging drug discovery tool. Using that approach, short peptides that mimic part of a carbohydrate's conformation are selected by screening a peptide-displaying phage library with anti-carbohydrate antibodies. Chemically synthesized peptides with an identified sequence have been used as an alternative ligand to carbohydrate-binding proteins. These peptides represent research tools useful to assay the activities of glycosyltransferases and/or sulfotransferases or to inhibit the carbohydrate-dependent binding of proteins in vitro and in vivo. Peptides can also serve as immunogens to raise anti-carbohydrate antibodies in vivo in animals. Phage display has also been used in single-chain antibody technology by inserting an immunoglobulin's variable region sequence into the phage. A single-chain antibody library can then be screened with a carbohydrate antigen as the target, resulting in a recombinant anti-carbohydrate antibody with high affinity to the antigen. This review provides examples of successful applications of peptide-displaying phage technology to glycobiology. Such an approach should benefit translational research by supplying carbohydrate-mimetic peptides and carbohydrate-binding polypeptides.
Collapse
Affiliation(s)
- Michiko N Fukuda
- Cancer Center, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
52
|
Clark SJ, Keenan TDL, Fielder HL, Collinson LJ, Holley RJ, Merry CLR, van Kuppevelt TH, Day AJ, Bishop PN. Mapping the differential distribution of glycosaminoglycans in the adult human retina, choroid, and sclera. Invest Ophthalmol Vis Sci 2011; 52:6511-21. [PMID: 21746802 DOI: 10.1167/iovs.11-7909] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
PURPOSE. To map the distribution of different classes of glycosaminoglycans (GAGs) in the healthy human retina, choroid, and sclera. METHODS. Frozen tissue sections were made from adult human donor eyes. The GAG chains of proteoglycans (PGs) were detected with antibodies directed against various GAG structures (either directly or after pretreatment with GAG-degrading enzymes); hyaluronan (HA) was detected using biotinylated recombinant G1-domain of human versican. The primary detection reagents were identified with FITC-labeled probes and analyzed by fluorescence microscopy. RESULTS. Heparan sulfate (HS), chondroitin sulfate (CS), dermatan sulfate (DS), and HA were present throughout the retina and choroid, but keratan sulfate (KS) was detected only in the sclera. HS labeling was particularly strong in basement membrane-containing structures, the nerve fiber layer (NFL), and retinal pigment epithelium (RPE)-for example, intense staining was seen with an antibody that binds strongly to sequences containing 3-O-sulfation in the internal limiting membrane (ILM) and in the basement membrane of blood vessels. Unsulfated CS was seen throughout the retina, particularly in the ILM and interphotoreceptor matrix (IPM) with 6-O-sulfated CS also prominent in the IPM. There was labeling for DS throughout the retina and choroid, especially in the NFL, ganglion cell layer, and blood vessels. CONCLUSIONS. The detection of GAG chains with specific probes and fluorescence microscopy provides for the first time a detailed analysis of their compartmentalization in the human retina, by both GAG chain type and sulfation pattern. This reference map provides a basis for understanding the functional regulation of GAG-binding proteins in health and disease processes.
Collapse
|
53
|
Disruption of heparan sulfate proteoglycan conformation perturbs B-cell maturation and APRIL-mediated plasma cell survival. Blood 2011; 117:6162-71. [PMID: 21471524 DOI: 10.1182/blood-2010-12-325522] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The development and antigen-dependent differentiation of B lymphocytes are orchestrated by an array of growth factors, cytokines, and chemokines that require tight spatiotemporal regulation. Heparan sulfate proteoglycans specifically bind and regulate the bioavailability of soluble protein ligands, but their role in the immune system has remained largely unexplored. Modification of heparan sulfate by glucuronyl C5-epimerase (Glce) controls heparan sulfate-chain flexibility and thereby affects ligand binding. Here we show that Glce deficiency impairs B-cell maturation, resulting in decreased plasma cell numbers and immunoglobulin levels. We demonstrate that C5-epimerase modification of heparan sulfate is critical for binding of a proliferation inducing ligand (APRIL) and that Glce-deficient plasma cells fail to respond to APRIL-mediated survival signals. Our results identify heparan sulfate proteoglycans as novel players in B-cell maturation and differentiation and suggest that heparan sulfate conformation is crucial for recruitment of factors that control plasma cell survival.
Collapse
|
54
|
McCarty DM, DiRosario J, Gulaid K, Killedar S, Oosterhof A, van Kuppevelt TH, Martin PT, Fu H. Differential distribution of heparan sulfate glycoforms and elevated expression of heparan sulfate biosynthetic enzyme genes in the brain of mucopolysaccharidosis IIIB mice. Metab Brain Dis 2011; 26:9-19. [PMID: 21225451 PMCID: PMC3070083 DOI: 10.1007/s11011-010-9230-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Accepted: 12/21/2010] [Indexed: 12/17/2022]
Abstract
The primary pathology in mucopolysaccharidosis (MPS) IIIB is lysosomal storage of heparan sulfate (HS) glycosaminoglycans, leading to complex neuropathology and dysfunction, for which the detailed mechanisms remain unclear. Using antibodies that recognize specific HS glycoforms, we demonstrate differential cell-specific and domain-specific lysosomal HS-GAG distribution in MPS IIIB mouse brain. We also describe a novel neuron-specific brain HS epitope with broad, non-specific increase in the expression in all neurons in MPS IIIB mouse brain, including cerebellar granule neurons, which do not exhibit lysosomal storage pathology. This suggests that biosynthesis of certain HS glycoforms is enhanced throughout the CNS of MPS IIIB mice. Such a conclusion is further supported by demonstration of increased expression of multiple genes encoding enzymes essential in HS biosynthesis, including HS sulfotransferases and epimerases, as well as FGFs, for which HS serves as a co-receptor, in MPS IIIB brain. These data suggest that lysosomal storage of HS may lead to the increase in HS biosyntheses, which may contribute to the neuropathology of MPS IIIB by exacerbating the lysosomal HS storage.
Collapse
Affiliation(s)
- Douglas M. McCarty
- The Center for Gene Therapy, The Research Institute at Nationwide Children’s Hospital, The Ohio State University, 700 Children’s Drive, Columbus, OH 43205 USA
- Department of Pediatrics, College of Medicine and Public Health, The Ohio State University, 700 Children’s Drive, Columbus, OH 43205 USA
| | - Julianne DiRosario
- The Center for Gene Therapy, The Research Institute at Nationwide Children’s Hospital, The Ohio State University, 700 Children’s Drive, Columbus, OH 43205 USA
| | - Kadra Gulaid
- The Center for Gene Therapy, The Research Institute at Nationwide Children’s Hospital, The Ohio State University, 700 Children’s Drive, Columbus, OH 43205 USA
| | - Smruti Killedar
- The Center for Gene Therapy, The Research Institute at Nationwide Children’s Hospital, The Ohio State University, 700 Children’s Drive, Columbus, OH 43205 USA
- Department of Pediatrics, College of Medicine and Public Health, The Ohio State University, 700 Children’s Drive, Columbus, OH 43205 USA
| | - Arie Oosterhof
- Department of Biochemistry, Nijmegen Center for Molecular Life Sciences, Radboud University Nijmegen Medical Center, 6500 HB Nijmegen, The Netherlands
| | - Toin H. van Kuppevelt
- Department of Biochemistry, Nijmegen Center for Molecular Life Sciences, Radboud University Nijmegen Medical Center, 6500 HB Nijmegen, The Netherlands
| | - Paul T. Martin
- The Center for Gene Therapy, The Research Institute at Nationwide Children’s Hospital, The Ohio State University, 700 Children’s Drive, Columbus, OH 43205 USA
- Department of Pediatrics, College of Medicine and Public Health, The Ohio State University, 700 Children’s Drive, Columbus, OH 43205 USA
| | - Haiyan Fu
- The Center for Gene Therapy, The Research Institute at Nationwide Children’s Hospital, The Ohio State University, 700 Children’s Drive, Columbus, OH 43205 USA
- Department of Pediatrics, College of Medicine and Public Health, The Ohio State University, 700 Children’s Drive, Columbus, OH 43205 USA
| |
Collapse
|
55
|
Smits NC, Kurup S, Rops AL, ten Dam GB, Massuger LF, Hafmans T, Turnbull JE, Spillmann D, Li JP, Kennel SJ, Wall JS, Shworak NW, Dekhuijzen PNR, van der Vlag J, van Kuppevelt TH. The heparan sulfate motif (GlcNS6S-IdoA2S)3, common in heparin, has a strict topography and is involved in cell behavior and disease. J Biol Chem 2010; 285:41143-51. [PMID: 20837479 DOI: 10.1074/jbc.m110.153791] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Heparan sulfate (HS) is a structurally complex polysaccharide that interacts with a broad spectrum of extracellular effector ligands and thereby is thought to regulate a diverse array of biologic processes. The specificity of HS-ligand interactions is determined by the arrangement of sulfate groups on HS, which creates distinct binding motifs. Biologically important HS motifs are expected to exhibit regulated expression, yet there is a profound lack of tools to identify such motifs; consequently, little is known of their structures and functions. We have identified a novel phage display-derived antibody (NS4F5) that recognizes a highly regulated HS motif (HS(NS4F5)), which we have rigorously identified as (GlcNS6S-IdoA2S)(3). HS(NS4F5) exhibits a restricted expression in healthy adult tissues. Blocking HS(NS4F5) on cells in culture resulted in reduced proliferation and enhanced sensitivity to apoptosis. HS(NS4F5) is up-regulated in tumor endothelial cells, consistent with a role in endothelial cell activation. Indeed, TNF-α stimulated endothelial expression of HS(NS4F5), which contributed to leukocyte adhesion. In a mouse model of severe systemic amyloid protein A amyloidosis, HS(NS4F5) was expressed within amyloid deposits, which were successfully detected by microSPECT imaging using NS4F5 as a molecularly targeted probe. Combined, our results demonstrate that NS4F5 is a powerful tool for elucidating the biological function of HS(NS4F5) and can be exploited as a probe to detect novel polysaccharide biomarkers of disease processes.
Collapse
Affiliation(s)
- Nicole C Smits
- Department of Biochemistry, Radboud University Nijmegen Medical Centre, Nijmegen Centre for Molecular Life Sciences, 6500 HB Nijmegen, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Reijmers RM, Vondenhoff MFR, Roozendaal R, Kuil A, Li JP, Spaargaren M, Pals ST, Mebius RE. Impaired lymphoid organ development in mice lacking the heparan sulfate modifying enzyme glucuronyl C5-epimerase. THE JOURNAL OF IMMUNOLOGY 2010; 184:3656-64. [PMID: 20208005 DOI: 10.4049/jimmunol.0902200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The development of lymphoid organs depends on cross talk between hematopoietic cells and mesenchymal stromal cells and on vascularization of the lymphoid primordia. These processes are orchestrated by cytokines, chemokines, and angiogenic factors that require tight spatiotemporal regulation. Heparan sulfate (HS) proteoglycans are molecules designed to specifically bind and regulate the bioactivity of soluble protein ligands. Their binding capacity and specificity are controlled by modification of the HS side chain by HS-modifying enzymes. Although HS proteoglycans have been implicated in the morphogenesis of several organ systems, their role in controlling lymphoid organ development has thus far remained unexplored. In this study, we report that modification of HS by the HS-modifying enzyme glucuronyl C5-epimerase (Glce), which controls HS chain flexibility, is required for proper lymphoid organ development. Glce(-/-) mice show a strongly reduced size of the fetal spleen as well as a spectrum of defects in thymus and lymph node development, ranging from dislocation to complete absence of the organ anlage. Once established, however, the Glce(-/-) primordia recruited lymphocytes and developed normal architectural features. Furthermore, Glce(-/-) lymph node anlagen transplanted into wild-type recipient mice allowed undisturbed lymphocyte maturation. Our results indicate that modification of HS by Glce is required for controlling the activity of molecules that are instructive for early lymphoid tissue morphogenesis but may be dispensable at later developmental stages and for lymphocyte maturation and differentiation.
Collapse
Affiliation(s)
- Rogier M Reijmers
- Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
57
|
Bruinsma IB, te Riet L, Gevers T, ten Dam GB, van Kuppevelt TH, David G, Küsters B, de Waal RMW, Verbeek MM. Sulfation of heparan sulfate associated with amyloid-beta plaques in patients with Alzheimer's disease. Acta Neuropathol 2010; 119:211-20. [PMID: 19636575 DOI: 10.1007/s00401-009-0577-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2009] [Revised: 07/02/2009] [Accepted: 07/16/2009] [Indexed: 12/23/2022]
Abstract
Alzheimer's disease (AD) is characterized by pathological lesions such as amyloid-beta (Abeta) plaques and cerebral amyloid angiopathy. Both these lesions consist mainly of aggregated Abeta protein and this aggregation is affected by macromolecules such as heparan sulfate (HS) proteoglycans. Previous studies demonstrated that HS enhances fibrillogenesis of Abeta and that this enhancement is dependent on the degree of sulfation of HS. In addition, it has been reported that these sulfation epitopes do not occur randomly but have a defined tissue distribution. Until now, the distribution of sulfation epitopes of HS has not yet been studied in human brain. We investigated whether a specific HS epitope is associated with Abeta plaques by performing immunohistochemistry on occipital neocortical and hippocampal tissue sections from AD patients using five HS epitope-specific phage display antibodies. Antibodies recognizing highly N-sulfated HS demonstrated the highest level of staining in both fibrillar Abeta plaques and non-fibrillar Abeta plaques, whereas antibodies recognizing HS regions with a lower degree of N-sulfate modifications were only immunoreactive with fibrillar Abeta plaques. Thus, our results suggest that a larger variety of HS epitopes is associated with fibrillar Abeta plaques, but the HS epitopes associated with non-fibrillar Abeta plaques seem to be more restricted, selectively consisting of highly N-sulfated epitopes.
Collapse
Affiliation(s)
- Ilona B Bruinsma
- Department of Neurology and Alzheimer Centre, Donders Institute for Brain, Cognition and Behaviour, Centre for Neuroscience, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Tátrai P, Egedi K, Somorácz A, van Kuppevelt TH, Ten Dam G, Lyon M, Deakin JA, Kiss A, Schaff Z, Kovalszky I. Quantitative and qualitative alterations of heparan sulfate in fibrogenic liver diseases and hepatocellular cancer. J Histochem Cytochem 2010; 58:429-41. [PMID: 20124094 DOI: 10.1369/jhc.2010.955161] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Heparan sulfate (HS), due to its ability to interact with a multitude of HS-binding factors, is involved in a variety of physiological and pathological processes. Remarkably diverse fine structure of HS, shaped by non-exhaustive enzymatic modifications, influences the interaction of HS with its partners. Here we characterized the HS profile of normal human and rat liver, as well as alterations of HS related to liver fibrogenesis and carcinogenesis, by using sulfation-specific antibodies. The HS immunopattern was compared with the immunolocalization of selected HS proteoglycans. HS samples from normal liver and hepatocellular carcinoma (HCC) were subjected to disaccharide analysis. Expression changes of nine HS-modifying enzymes in human fibrogenic diseases and HCC were measured by quantitative RT-PCR. Increased abundance and altered immunolocalization of HS was paralleled by elevated mRNA levels of HS-modifying enzymes in the diseased liver. The strong immunoreactivity of the normal liver for 3-O-sulfated epitope further increased with disease, along with upregulation of 3-OST-1. Modest 6-O-undersulfation of HCC HS is probably explained by Sulf overexpression. Our results may prompt further investigation of the role of highly 3-O-sulfated and partially 6-O-desulfated HS in pathological processes such as hepatitis virus entry and aberrant growth factor signaling in fibrogenic liver diseases and HCC.
Collapse
Affiliation(s)
- Péter Tátrai
- Second Department of Pathology, Semmelweis University, 93 Ulloi út H-1091 Budapest, Hungary.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Timmer NM, Schirris TJJ, Bruinsma IB, Otte-Höller I, van Kuppevelt TH, de Waal RMW, Verbeek MM. Aggregation and cytotoxic properties towards cultured cerebrovascular cells of Dutch-mutated Abeta40 (DAbeta(1-40)) are modulated by sulfate moieties of heparin. Neurosci Res 2009; 66:380-9. [PMID: 20036698 DOI: 10.1016/j.neures.2009.12.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Revised: 12/11/2009] [Accepted: 12/14/2009] [Indexed: 11/15/2022]
Abstract
Glycosaminoglycans (GAGs), in particular as part of heparan sulfate proteoglycans, are associated with cerebral amyloid angiopathy (CAA). Similarly, GAGs are also associated with the severe CAA found in patients suffering from hereditary cerebral hemorrhage with amyloidosis of the Dutch type (HCHWA-D), where the amyloid beta (Abeta) peptide contains the Dutch mutation (DAbeta(1-40)). This suggests a role for GAGs in vascular Abeta aggregation. It was the aim of this study to investigate the effect of different GAGs (heparin, chondroitin sulfate, heparan sulfate), the macromolecule dextran sulfate and, using desulfated heparins, the role of GAG sulfate moieties on the in vitro aggregation of CAA-associated DAbeta(1-40) and on DAbeta(1-40)-induced toxicity of cultured cerebrovascular cells. We also aimed to study the in vivo distribution of various sulfated heparan sulfate GAG epitopes in CAA. Of all GAGs tested, heparin was the strongest inducer of aggregation of DAbeta(1-40) in the different aggregation assays, with both heparin and heparan sulfate reducing Abeta-induced cellular toxicity. Furthermore, (partial) removal of the sulfate moieties of heparin partially abolished the effects of heparin on aggregation and cellular toxicity, suggesting an essential role for the sulfate moieties in heparin. Finally, we demonstrated the in vivo association of sulfated heparan sulfate (HS) GAGs with CAA. We conclude that sulfate moieties within GAGs, like heparin and HS, have an important role in Abeta aggregation in CAA and in Abeta-mediated toxicity of cerebrovascular cells.
Collapse
Affiliation(s)
- Nienke M Timmer
- Radboud University Nijmegen Medical Centre, Department of Neurology, Department of Laboratory Medicine, Donders Centre for Brain, Cognition and Behavior, Alzheimer Centre Nijmegen, Nijmegen, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
60
|
Thompson SM, Fernig DG, Jesudason EC, Losty PD, van de Westerlo EMA, van Kuppevelt TH, Turnbull JE. Heparan sulfate phage display antibodies identify distinct epitopes with complex binding characteristics: insights into protein binding specificities. J Biol Chem 2009; 284:35621-31. [PMID: 19837661 PMCID: PMC2790993 DOI: 10.1074/jbc.m109.009712] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2009] [Revised: 10/02/2009] [Indexed: 01/03/2023] Open
Abstract
Heparan sulfate (HS) binds and modulates the transport and activity of a large repertoire of regulatory proteins. The HS phage display antibodies are powerful tools for the analysis of native HS structure in situ; however, their epitopes are not well defined. Analysis of the binding specificities of a set of HS antibodies by competitive binding assays with well defined chemically modified heparins demonstrates that O-sulfates are essential for binding; however, increasing sulfation does not necessarily correlate with increased antibody reactivity. IC50 values for competition with double modified heparins were not predictable from IC50 values with corresponding singly modified heparins. Binding assays and immunohistochemistry revealed that individual antibodies recognize distinct epitopes and that these are not single linear sequences but families of structurally similar motifs in which subtle variations in sulfation and conformation modify the affinity of interaction. Modeling of the antibodies demonstrates that they possess highly basic CDR3 and surrounding surfaces, presenting a number of possible orientations for HS binding. Unexpectedly, there are significant differences between the existence of epitopes in tissue sections and observed in vitro in dot blotted tissue extracts, demonstrating that in vitro specificity does not necessarily correlate with specificity in situ/vivo. The epitopes are therefore more complex than previously considered. Overall, these data have significance for structure-activity relationships of HS, because the model of one antibody recognizing multiple HS structures and the influence of other in situ HS-binding proteins on epitope availability are likely to reflect the selectivity of many HS-protein interactions in vivo.
Collapse
Affiliation(s)
- Sophie M. Thompson
- From the School of Biological Sciences, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | - David G. Fernig
- From the School of Biological Sciences, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | - Edwin C. Jesudason
- the Division of Child Health, School of Reproductive and Developmental Medicine, Royal Liverpool Children's Hospital, Alder Hey, Liverpool L12 2AP, United Kingdom, and
| | - Paul D. Losty
- the Division of Child Health, School of Reproductive and Developmental Medicine, Royal Liverpool Children's Hospital, Alder Hey, Liverpool L12 2AP, United Kingdom, and
| | - Els M. A. van de Westerlo
- the Department of Matrix Biochemistry, Radboud University Nijmegen Medical Centre, Nijmegen Centre for Molecular Life Sciences, P. O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Toin H. van Kuppevelt
- the Department of Matrix Biochemistry, Radboud University Nijmegen Medical Centre, Nijmegen Centre for Molecular Life Sciences, P. O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Jeremy E. Turnbull
- From the School of Biological Sciences, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| |
Collapse
|
61
|
Wittrup A, Zhang SH, ten Dam GB, van Kuppevelt TH, Bengtson P, Johansson M, Welch J, Mörgelin M, Belting M. ScFv antibody-induced translocation of cell-surface heparan sulfate proteoglycan to endocytic vesicles: evidence for heparan sulfate epitope specificity and role of both syndecan and glypican. J Biol Chem 2009; 284:32959-67. [PMID: 19783663 DOI: 10.1074/jbc.m109.036129] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Cellular uptake of several viruses and polybasic macromolecules requires the expression of cell-surface heparan sulfate proteoglycan (HSPG) through as yet ill defined mechanisms. We unexpectedly found that among several cell-surface-binding single chain variable fragment (scFv) anti-HS antibody (alphaHS) clones, only one, AO4B08, efficiently translocated macromolecular cargo to intracellular vesicles through induction of HSPG endocytosis. Interestingly, AO4B08-induced PG internalization was strictly dependent on HS 2-O-sulfation and appeared independent of intact N-sulfation. AO4B08 and human immunodeficiency virus (HIV)-Tat, i.e. a well known cell-penetrating peptide, were shown to compete for the internalizing PG population. To obtain a more detailed characterization of this pathway, we have developed a procedure for the isolation of endocytic vesicles by conjugating AO4B08 with superparamagnetic nanoparticles. [(35)S]sulfate-labeled HSPG was found to accumulate in isolated, AO4B08-containing vesicles, providing the first biochemical evidence for intact HSPG co-internalization with its ligand. Further analysis revealed the existence of both syndecan, i.e. a transmembrane HSPG, and glycosyl-phosphatidyl-inositol-anchored glypican in purified vesicles. Importantly, internalized syndecan and glypican were found to co-localize in AO4B08-containing vesicles. Our data establish HSPGs as true internalizing receptors of macromolecular cargo and indicate that the sorting of cell-surface HSPG to endocytic vesicles is determined by a specific HS epitope that can be carried by both syndecan and glypican core protein.
Collapse
Affiliation(s)
- Anders Wittrup
- Section of Oncology, Department of Clinical Sciences, Lund University, SE-221 85 Lund, Sweden.
| | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Zuberi RI, Ge XN, Jiang S, Bahaie NS, Kang BN, Hosseinkhani RM, Frenzel EM, Fuster MM, Esko JD, Rao SP, Sriramarao P. Deficiency of endothelial heparan sulfates attenuates allergic airway inflammation. THE JOURNAL OF IMMUNOLOGY 2009; 183:3971-9. [PMID: 19710461 DOI: 10.4049/jimmunol.0901604] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The effect of targeted inactivation of the gene encoding N-deacetylase/N-sulfotransferase-1 (Ndst1), a key enzyme involved in the biosynthesis of heparan sulfate (HS) chains, on the inflammatory response associated with allergic inflammation in a murine model of OVA-induced acute airway inflammation was investigated. OVA-exposed Ndst1(f/f)TekCre(+) (mutant) mice deficient in endothelial and leukocyte Ndst1 demonstrated significantly decreased allergen-induced airway hyperresponsiveness and inflammation characterized by a significant reduction in airway recruitment of inflammatory cells (eosinophils, macrophages, neutrophils, and lymphocytes), diminished IL-5, IL-2, TGF-beta1, and eotaxin levels, as well as decreased expression of TGF-beta1 and the angiogenic protein FIZZ1 (found in inflammatory zone 1) in lung tissue compared with OVA-exposed Ndst1(f/f)TekCre(-) wild-type littermates. Furthermore, murine eosinophils demonstrated significantly decreased rolling on lung endothelial cells (ECs) from mutant mice compared with wild-type ECs under conditions of flow in vitro. Treatment of wild-type ECs, but not eosinophils, with anti-HS Abs significantly inhibited eosinophil rolling, mimicking that observed with Ndst1-deficient ECs. In vivo, trafficking of circulating leukocytes in lung microvessels of allergen-challenged Ndst1-deficient mice was significantly lower than that observed in corresponding WT littermates. Endothelial-expressed HS plays an important role in allergic airway inflammation through the regulation of recruitment of inflammatory cells to the airways by mediating interaction of leukocytes with the vascular endothelium. Furthermore, HS may also participate by sequestering and modulating the activity of allergic asthma-relevant mediators such as IL-5, IL-2, and TGF-beta1.
Collapse
Affiliation(s)
- Riaz I Zuberi
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St Paul, MN 55108, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Lindahl U, Li JP. Interactions between heparan sulfate and proteins-design and functional implications. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2009; 276:105-59. [PMID: 19584012 DOI: 10.1016/s1937-6448(09)76003-4] [Citation(s) in RCA: 206] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Heparan sulfate (HS) proteoglycans at cell surfaces and in the extracellular matrix of most animal tissues are essential in development and homeostasis, and variously implicated in disease processes. Functions of HS polysaccharide chains depend on ionic interactions with a variety of proteins including growth factors and their receptors. Negatively charged sulfate and carboxylate groups are arranged in various types of domains, generated through strictly regulated biosynthetic reactions and with enormous potential for structural variability. The level of specificity of HS-protein interactions is assessed through binding experiments in vitro using saccharides of defined composition, signaling assays in cell culture, and targeted disruption of genes for biosynthetic enzymes followed by phenotype analysis. While some protein ligands appear to require strictly defined HS structure, others bind to variable saccharide domains without any apparent dependence on distinct saccharide sequence. These findings raise intriguing questions concerning the functional significance of regulation in HS biosynthesis.
Collapse
Affiliation(s)
- Ulf Lindahl
- Department of Medical Biochemistry and Microbiology, University of Uppsala, Uppsala, Sweden
| | | |
Collapse
|
64
|
Bülow HE, Tjoe N, Townley RA, Didiano D, van Kuppevelt TH, Hobert O. Extracellular sugar modifications provide instructive and cell-specific information for axon-guidance choices. Curr Biol 2008; 18:1978-85. [PMID: 19062279 DOI: 10.1016/j.cub.2008.11.023] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2008] [Revised: 10/28/2008] [Accepted: 11/10/2008] [Indexed: 10/21/2022]
Abstract
Heparan sulfates (HSs) are extraordinarily complex extracellular sugar molecules that are critical components of multiple signaling systems controlling neuronal development. The molecular complexity of HSs arises through a series of specific modifications, including sulfations of sugar residues and epimerizations of their glucuronic acid moieties. The modifications are introduced nonuniformly along protein-attached HS polysaccharide chains by specific enzymes. Genetic analysis has demonstrated the importance of specific HS-modification patterns for correct neuronal development. However, it remains unclear whether HS modifications provide a merely permissive substrate or whether they provide instructive patterning information during development. We show here with single-cell resolution that highly stereotyped motor axon projections in C. elegans depend on specific HS-modification patterns. By manipulating extracellular HS-modification patterns, we can cell specifically reroute axons, indicating that HS modifications are instructive. This axonal rerouting is dependent on the HS core protein lon-2/glypican and both the axon guidance cue slt-1/Slit and its receptor eva-1. These observations suggest that a changed sugar environment instructs slt-1/Slit-dependent signaling via eva-1 to redirect axons. Our experiments provide genetic in vivo evidence for the "HS code" hypothesis which posits that specific combinations of HS modifications provide specific and instructive information to mediate the specificity of ligand/receptor interactions.
Collapse
Affiliation(s)
- Hannes E Bülow
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | | | | | | | | | | |
Collapse
|
65
|
Tentacle type peptides as artificial lectins against sulfated Lewis X and A. Bioorg Med Chem Lett 2008; 18:4011-4. [PMID: 18565751 DOI: 10.1016/j.bmcl.2008.06.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2008] [Revised: 05/15/2008] [Accepted: 06/03/2008] [Indexed: 11/21/2022]
Abstract
An effort has generated peptides from a phage-displayed library that selectively bind to the sulfated carbohydrates HSO3-LeA and HSO3-LeX. Even though more than six phaged peptides were identified by using the biopanning procedure, only one synthesized peptide displayed a consistently high binding affinity and specificity against the cognate HSO3-LeA. This dimeric, tentacle type peptide has a low micromolar affinity against the cognate sugar, which is even more specific than an antibody (Table 2(b)). Thus, it suggests that tentacle type peptides can be used as alternatives to antibodies to bind to aberrant cell-surface carbohydrates that are either the causes or results of carbohydrate-indicating disease states.
Collapse
|
66
|
Properzi F, Lin R, Kwok J, Naidu M, van Kuppevelt TH, Ten Dam GB, Camargo LM, Raha-Chowdhury R, Furukawa Y, Mikami T, Sugahara K, Fawcett JW. Heparan sulphate proteoglycans in glia and in the normal and injured CNS: expression of sulphotransferases and changes in sulphation. Eur J Neurosci 2008; 27:593-604. [PMID: 18279312 DOI: 10.1111/j.1460-9568.2008.06042.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Heparan sulphate proteoglycans (HSPGs) have multiple functions relevant to the control of the CNS injury response, particularly in modulating the effects of growth factors and localizing molecules that affect axon growth. We examined the pattern of expression and glycanation of HSPGs in the normal and damaged CNS, and in astrocytes and oligodendrocyte precursors because of their participation in the injury reaction. The composition of HS glycosaminoglycan (GAG) chains was analysed by biochemical analysis and by the binding of antibodies that recognize sulphated epitopes. We also measured levels of HS sulphotransferases and syndecans. Compared with oligodendrocytes, oligodendrocyte precursors have more 2-O-sulphation in their HS GAG. This is accompanied by higher expression of the enzyme responsible for 2-O-sulphation, HS 2-O-sulphotransferase (HS2ST) and a fall in syndecan-1. Astrocytes treated with tumour growth factor (TGF)alpha or TGFbeta to mimic the injury response showed upregulation of syndecan-1 and HS2ST correlating with an increase in 2-O-sulphate residues in their HS GAGs. This also correlated with increased staining with AO4B08 anti-GAG antibody that recognizes high sulphation, and reduced staining with RB4EA12 recognizing low sulphation. After injury to the adult rat brain there was an overall increase in the quantity of HSPG around the injury site, mRNA for HS2ST was increased, and the changes in staining with sulphation-specific antibodies were consistent with an increase in 2-O-sulphated HS. Syndecan-1 was upregulated in astrocytes. The major injury-related change, seen in injured brain and cultured glia, was an increase in 2-O-sulphated HS and increased syndecan-1, suggesting novel approaches to modulating scar formation.
Collapse
Affiliation(s)
- Francesca Properzi
- Cambridge University Centre for Brain Repair, Robinson Way, Cambridge CB2 2PY, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Götte M, Spillmann D, Yip GW, Versteeg E, Echtermeyer FG, van Kuppevelt TH, Kiesel L. Changes in heparan sulfate are associated with delayed wound repair, altered cell migration, adhesion and contractility in the galactosyltransferase I (beta4GalT-7) deficient form of Ehlers-Danlos syndrome. Hum Mol Genet 2007; 17:996-1009. [PMID: 18158310 DOI: 10.1093/hmg/ddm372] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Reduced activity of beta4-galactosyltransferase 7 (beta4GalT-7), an enzyme involved in synthesizing the glycosaminoglycan linkage region of proteoglycans, is associated with the progeroid form of Ehlers-Danlos syndrome (EDS). In the invertebrates Drosophila melanogaster and Caenorhabditis elegans, mutations in beta4GalT-7 affect biosynthesis of heparan sulfate (HS), a modulator of several biological processes relevant to wound repair. We have analyzed structural alterations of HS and their functional consequences in human beta4GalT-7 Arg270Cys mutant EDS and control fibroblasts. HS disaccharide analysis by reversed phase ion-pairing chromatography revealed a reduced sulfation degree of HS paralleled by altered immunostaining patterns for the phage-display anti-HS antibodies HS4E4 and RB4EA12 in beta4GalT-7 mutant fibroblasts. Real-time PCR-analysis of 44 genes involved in glycosaminoglycan biosynthesis indicated that the structural alterations in HS were not caused by differential regulation at the transcriptional level. Scratch wound closure was delayed in beta4GalT-7-deficient cells, which could be mimicked by enzymatic removal of HS in control cells. siRNA-mediated knockdown of beta4GalT-7 expression induced morphological changes in control fibroblasts which suggested altered cell-matrix interactions. Adhesion of beta4GalT-7 deficient cells to fibronectin was increased while actin stress fiber formation was impaired relative to control cells. Also collagen gel contraction was delayed in the beta4GalT-7 mutants which showed a reduced formation of pseudopodia and filopodia, less efficient penetration of the collagen gels and a diminished formation of collagen suprastructures. Our study suggests an HS-dependent basic mechanism behind the altered wound repair phenotype of beta4GalT-7-deficient EDS patients.
Collapse
Affiliation(s)
- Martin Götte
- Department of Gynecology and Obstetrics, University of Münster, Medical Center, Albert-Schweitzer-Str. 33, D-48149 Münster, Germany.
| | | | | | | | | | | | | |
Collapse
|
68
|
Reduction of anionic sites in the glomerular basement membrane by heparanase does not lead to proteinuria. Kidney Int 2007; 73:278-87. [PMID: 18046314 DOI: 10.1038/sj.ki.5002706] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Heparan sulfate in the glomerular basement membrane has been considered crucial for charge-selective filtration. In many proteinuric diseases, increased glomerular expression of heparanase is associated with decreased heparan sulfate. Here, we used mice overexpressing heparanase and evaluated the expression of different heparan sulfate domains in the kidney and other tissues measured with anti-heparan sulfate antibodies. Glycosaminoglycan-associated anionic sites were visualized by the cationic dye cupromeronic blue. Transgenic mice showed a differential loss of heparan sulfate domains in several tissues. An unmodified and a sulfated heparan sulfate domain resisted heparanase action in vivo and in vitro. Glycosaminoglycan-associated anionic sites were reduced about fivefold in the glomerular basement membrane of transgenic mice, whereas glomerular ultrastructure and renal function remained normal. Heparanase-resistant heparan sulfate domains may represent remnant chains or chains not susceptible to cleavage. Importantly, the strong reduction of glycosaminoglycan-associated anionic sites in the glomerular basement membrane without development of a clear renal phenotype questions the primary role of heparan sulfate in charge-selective filtration. We cannot, however, exclude that overexpression of heparanase and heparan sulfate loss in the basement membrane in glomerular diseases contributes to proteinuria.
Collapse
|
69
|
Transgenic or tumor-induced expression of heparanase upregulates sulfation of heparan sulfate. Nat Chem Biol 2007; 3:773-8. [PMID: 17952066 DOI: 10.1038/nchembio.2007.41] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2007] [Accepted: 08/30/2007] [Indexed: 11/08/2022]
Abstract
Heparan sulfate proteoglycans (HSPGs) interact with numerous proteins of importance in animal development and homeostasis. Heparanase, which is expressed in normal tissues and upregulated in angiogenesis, cancer and inflammation, selectively cleaves beta-glucuronidic linkages in HS chains. In a previous study, we transgenically overexpressed heparanase in mice to assess the overall effects of heparanase on HS metabolism. Metabolic labeling confirmed extensive fragmentation of HS in vivo. In the current study we found that in liver showing excessive heparanase overexpression, HSPG turnover is accelerated along with upregulation of HS N- and O-sulfation, thus yielding heparin-like chains without the domain structure typical of HS. Heparanase overexpression in other mouse organs and in human tumors correlated with increased 6-O-sulfation of HS, whereas the domain structure was conserved. The heavily sulfated HS fragments strongly promoted formation of ternary complexes with fibroblast growth factor 1 (FGF1) or FGF2 and FGF receptor 1. Heparanase thus contributes to regulation of HS biosynthesis in a way that may promote growth factor action in tumor angiogenesis and metastasis.
Collapse
|
70
|
Rops AL, van den Hoven MJ, Baselmans MM, Lensen JF, Wijnhoven TJ, van den Heuvel LP, van Kuppevelt TH, Berden JH, van der Vlag J. Heparan sulfate domains on cultured activated glomerular endothelial cells mediate leukocyte trafficking. Kidney Int 2007; 73:52-62. [PMID: 17914352 DOI: 10.1038/sj.ki.5002573] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Heparan sulfate (HS) proteoglycans by playing key roles in the leukocyte-endothelial interactions are thought to mediate inflammatory cell influx in proliferative glomerulonephritis. Here, we evaluated the specific features within glomerular endothelial HS that promote leukocyte adhesion. Mouse and human glomerular endothelial cells activated by tumor necrosis factor (TNF)-alpha or interleukin (IL)-1beta increased expression of inflammatory N- and 6-O-sulfated HS domains. In addition, altered expression of HS-modifying enzymes occurred, a feature also found in mouse kidneys with anti-glomerular basement membrane disease or lupus nephritis. Inhibition of the nuclear factor (NF)-kappaB pathway repressed cytokine-induced alterations in HS and gene expression of modifying enzymes. Firm adhesion of leukocytes to activated mouse glomerular endothelial cells decreased after removal of endothelial HS or addition of sulfated heparinoids. Specific antibodies that block N- and 6-O-sulfated HS domains on activated mouse endothelial cells reduced the number of rolling and firmly adhering leukocytes under dynamic flow conditions, while they increased the average leukocyte-rolling velocity. Our study shows that N- and 6-O-sulfated domains in HS on activated glomerular endothelium are crucial for leukocyte trafficking and are possible therapeutic targets.
Collapse
Affiliation(s)
- A L Rops
- Nephrology Research Laboratory, Nijmegen Centre for Molecular Life Sciences, Division of Nephrology, Radboud University Nijmegen Medical Centre, Geert Grooteplein 26, 6525 GA Nijmegen, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Wijnhoven TJ, van de Westerlo EM, Smits NC, Lensen JF, Rops AL, van der Vlag J, Berden JH, van den Heuvel LP, van Kuppevelt TH. Characterization of anticoagulant heparinoids by immunoprofiling. Glycoconj J 2007; 25:177-85. [PMID: 17909966 PMCID: PMC2234449 DOI: 10.1007/s10719-007-9070-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2007] [Revised: 08/20/2007] [Accepted: 08/28/2007] [Indexed: 11/29/2022]
Abstract
Heparinoids are used in the clinic as anticoagulants. A specific pentasaccharide in heparinoids activates antithrombin III, resulting in inactivation of factor Xa and–when additional saccharides are present–inactivation of factor IIa. Structural and functional analysis of the heterogeneous heparinoids generally requires advanced equipment, is time consuming, and needs (extensive) sample preparation. In this study, a novel and fast method for the characterization of heparinoids is introduced based on reactivity with nine unique anti-heparin antibodies. Eight heparinoids were biochemically analyzed by electrophoresis and their reactivity with domain-specific anti-heparin antibodies was established by ELISA. Each heparinoid displayed a distinct immunoprofile matching its structural characteristics. The immunoprofile could also be linked to biological characteristics, such as the anti-Xa/anti-IIa ratio, which was reflected by reactivity of the heparinoids with antibodies HS4C3 (indicative for 3-O-sulfates) and HS4E4 (indicative for domains allowing anti-factor IIa activity). In addition, the immunoprofile could be indicative for heparinoid-induced side-effects, such as heparin-induced thrombocytopenia, as illustrated by reactivity with antibody NS4F5, which defines a very high sulfated domain. In conclusion, immunoprofiling provides a novel, fast, and simple methodology for the characterization of heparinoids, and allows high-throughput screening of (new) heparinoids for defined structural and biological characteristics.
Collapse
Affiliation(s)
- Tessa J. Wijnhoven
- Department of Matrix Biochemistry, Nijmegen Centre for Molecular Life Sciences, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
- Department of Pediatric Nephrology, Radboud University Nijmegen Medical Centre, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Els M. van de Westerlo
- Department of Matrix Biochemistry, Nijmegen Centre for Molecular Life Sciences, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Nicole C. Smits
- Department of Matrix Biochemistry, Nijmegen Centre for Molecular Life Sciences, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Joost F. Lensen
- Department of Matrix Biochemistry, Nijmegen Centre for Molecular Life Sciences, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Angelique L. Rops
- Nephrology Research Laboratory, Division of Nephrology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Johan van der Vlag
- Nephrology Research Laboratory, Division of Nephrology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Jo H. Berden
- Nephrology Research Laboratory, Division of Nephrology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Lambert P. van den Heuvel
- Department of Pediatric Nephrology, Radboud University Nijmegen Medical Centre, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Toin H. van Kuppevelt
- Department of Matrix Biochemistry, Nijmegen Centre for Molecular Life Sciences, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| |
Collapse
|