51
|
Lucas CR, Cordero-Nieves HM, Erbe RS, McAlees JW, Bhatia S, Hodes RJ, Campbell KS, Sanders VM. Prohibitins and the cytoplasmic domain of CD86 cooperate to mediate CD86 signaling in B lymphocytes. THE JOURNAL OF IMMUNOLOGY 2012; 190:723-36. [PMID: 23241883 DOI: 10.4049/jimmunol.1201646] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
CD86 engagement on a CD40L/IL-4-primed murine B cell activates signaling intermediates that promote NF-κB activation to increase Oct-2 and mature IgG1 mRNA and protein expression, as well as the rate of IgG1 transcription, without affecting class switch recombination. One of the most proximal signaling intermediates identified is phospholipase Cγ2, a protein reported to bind tyrosine residues, which are absent in the cytoplasmic domain of CD86. Using a proteomics-based identification approach, we show that the tyrosine-containing transmembrane adaptor proteins prohibitin (Phb)1 and Phb2 bind to CD86. The basal expression of Phb1/2 and association with CD86 was low in resting B cells, whereas the level of expression and association increased primarily after priming with CD40. The CD86-induced increase in Oct-2 and IgG1 was less when either Phb1/2 expression was reduced by short hairpin RNA or the cytoplasmic domain of CD86 was truncated or mutated at serine/threonine protein kinase C phosphorylation sites, which did not affect Phb1/2 binding to CD86. Using this approach, we also show that Phb1/2 and the CD86 cytoplasmic domain are required for the CD86-induced phosphorylation of IκBα, which we previously reported leads to NF-κB p50/p65 activation, whereas only Phb1/2 was required for the CD86-induced phosphorylation of phospholipase Cγ2 and protein kinase Cα/β(II), which we have previously reported leads to NF-κB (p65) phosphorylation and subsequent nuclear translocation. Taken together, these findings suggest that Phb1/2 and the CD86 cytoplasmic domain cooperate to mediate CD86 signaling in a B cell through differential phosphorylation of distal signaling intermediates required to increase IgG1.
Collapse
Affiliation(s)
- Christopher R Lucas
- Integrated Biomedical Science Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | | | | | |
Collapse
|
52
|
Tomazella GG, Kassahun H, Nilsen H, Thiede B. Quantitative proteome analysis reveals RNA processing factors as modulators of ionizing radiation-induced apoptosis in the C. elegans germline. J Proteome Res 2012; 11:4277-88. [PMID: 22757771 DOI: 10.1021/pr300386z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The nematode Caenorhabditis elegans is an organism most recognized for forward and reverse genetic and functional genomic approaches. Proteomic analyses of DNA damage-induced apoptosis have not been shown because of a limited number of cells undergoing apoptosis. We applied mass spectrometry-based quantitative proteomics to evaluate protein changes induced by ionizing radiation (IR) in isolated C. elegans germlines. For this purpose, we used isobaric peptide termini labeling (IPTL) combined with the data analysis tool IsobariQ, which utilizes MS/MS spectra for relative quantification of peak pairs formed during fragmentation. Using stringent statistical critera, we identified 48 proteins to be significantly up- or down-regulated, most of which are part of a highly interconnected protein-protein interaction network dominated by proteins involved in translational control. RNA-mediated depletion of a selection of the IR-regulated proteins revealed that the conserved CAR-1/CGH-1/CEY-3 germline RNP complex acts as a novel negative regulator of DNA-damage induced apoptosis. Finally, a central role of nucleolar proteins in orchestrating these responses was confirmed as the H/ACA snRNP protein GAR-1 was required for IR-induced apoptosis in the C. elegans germline.
Collapse
|
53
|
Downregulation of lung mitochondrial prohibitin in COPD. Respir Med 2012; 106:954-61. [DOI: 10.1016/j.rmed.2012.03.019] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Revised: 03/21/2012] [Accepted: 03/23/2012] [Indexed: 11/20/2022]
|
54
|
Yurugi H, Tanida S, Ishida A, Akita K, Toda M, Inoue M, Nakada H. Expression of prohibitins on the surface of activated T cells. Biochem Biophys Res Commun 2012; 420:275-80. [DOI: 10.1016/j.bbrc.2012.02.149] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 02/28/2012] [Indexed: 12/30/2022]
|
55
|
Liu D, Lin Y, Kang T, Huang B, Xu W, Garcia-Barrio M, Olatinwo M, Matthews R, Chen YE, Thompson WE. Mitochondrial dysfunction and adipogenic reduction by prohibitin silencing in 3T3-L1 cells. PLoS One 2012; 7:e34315. [PMID: 22479600 PMCID: PMC3316679 DOI: 10.1371/journal.pone.0034315] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 02/28/2012] [Indexed: 11/18/2022] Open
Abstract
Increase in mitochondrial biogenesis has been shown to accompany brown and white adipose cell differentiation. Prohibitins (PHBs), comprised of two evolutionarily conserved proteins, prohibitin-1 (PHB1) and prohibitin-2 (PHB2), are present in a high molecular-weight complex in the inner membrane of mitochondria. However, little is known about the effect of mitochondrial PHBs in adipogenesis. In the present study, we demonstrate that the levels of both PHB1 and PHB2 are significantly increased during adipogenesis of 3T3-L1 preadipocytes, especially in mitochondria. Knockdown of PHB1 or PHB2 by oligonucleotide siRNA significantly reduced the expression of adipogenic markers, the accumulation of lipids and the phosphorylation of extracellular signal-regulated kinases. In addition, fragmentation of mitochondrial reticulum, loss of mitochondrial cristae, reduction of mitochondrial content, impairment of mitochondrial complex I activity and excessive production of ROS were observed upon PHB-silencing in 3T3-L1 cells. Our results suggest that PHBs are critical mediators in promoting 3T3-L1 adipocyte differentiation and may be the potential targets for obesity therapies.
Collapse
Affiliation(s)
- Dong Liu
- Cardiovascular Research Institute, Morehouse School of Medicine, Atlanta, Georgia, United States of America
- Department of Physiology, Morehouse School of Medicine, Atlanta, Georgia, United States of America
- * E-mail: (DL); (WET)
| | - Yiming Lin
- Department of Endocrinology, School of Medicine, Emory University, Atlanta, Georgia, United States of America
| | - Ting Kang
- Cardiovascular Research Institute, Morehouse School of Medicine, Atlanta, Georgia, United States of America
- Division of Cardiology, the First Affiliated Hospital, Nanchang University, Nanchang, China
| | - Bo Huang
- Cardiovascular Research Institute, Morehouse School of Medicine, Atlanta, Georgia, United States of America
- Department of Clinical Laboratory Sciences, the Second Affiliated Hospital, Nanchang University, Nanchang, China
| | - Wei Xu
- Department of Obstetrics and Gynecology, Morehouse School of Medicine, Atlanta, Georgia, United States of America
| | - Minerva Garcia-Barrio
- Cardiovascular Research Institute, Morehouse School of Medicine, Atlanta, Georgia, United States of America
| | - Moshood Olatinwo
- Department of Obstetrics and Gynecology, Morehouse School of Medicine, Atlanta, Georgia, United States of America
| | - Roland Matthews
- Department of Obstetrics and Gynecology, Morehouse School of Medicine, Atlanta, Georgia, United States of America
| | - Y. Eugene Chen
- Cardiovascular Center, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Winston E. Thompson
- Department of Obstetrics and Gynecology, Morehouse School of Medicine, Atlanta, Georgia, United States of America
- * E-mail: (DL); (WET)
| |
Collapse
|
56
|
Mitra A, Ross JA, Rodriguez G, Nagy ZS, Wilson HL, Kirken RA. Signal transducer and activator of transcription 5b (Stat5b) serine 193 is a novel cytokine-induced phospho-regulatory site that is constitutively activated in primary hematopoietic malignancies. J Biol Chem 2012; 287:16596-608. [PMID: 22442148 DOI: 10.1074/jbc.m111.319756] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Signal transducer and activator of transcription 5b (Stat5b) is a critical node in the signaling network downstream of external (cytokines or growth factors) or internal (oncogenic tyrosine kinases) stimuli. Maximum transcriptional activation of Stat5b requires both tyrosine and serine phosphorylation. Although the mechanisms governing tyrosine phosphorylation and activation of Stat5b have been extensively studied, the role of serine phosphorylation remains to be fully elucidated. Using mass spectrometry and phospho-specific antibodies, we identified Ser-193 as a novel site of cytokine-induced phosphorylation within human Stat5b. Stat5b Ser(P)-193 was detected in activated primary human peripheral blood mononuclear cells or lymphoid cell lines in response to several γ common (γc) cytokines, including interleukin (IL)-2, IL-7, IL-9, and IL-15. Kinetic and spatial analysis indicated that Stat5b Ser-193 phosphorylation was rapid and transient and occurred in the cytoplasmic compartment of the cell prior to Stat5b translocation to the nucleus. Moreover, inducible Stat5b Ser-193 phosphorylation was sensitive to inhibitors of mammalian target of rapamycin (mTOR), whereas inhibition of protein phosphatase 2A (PP2A) induced phosphorylation of Ser-193. Reconstitution assays in HEK293 cells in conjunction with site-directed mutagenesis, EMSA, and reporter assays indicated that Ser(P)-193 is required for maximal Stat5b transcriptional activity. Indeed, Stat5b Ser-193 was found constitutively phosphorylated in several lymphoid tumor cell lines as well as primary leukemia and lymphoma patient tumor cells. Taken together, IL-2 family cytokines tightly control Stat5b Ser-193 phosphorylation through a rapamycin-sensitive mechanism. Furthermore, constitutive Ser-193 phosphorylation is associated with Stat5b proto-oncogenic activity and therefore may serve as a novel therapeutic target for treating hematopoietic malignancies.
Collapse
Affiliation(s)
- Abhisek Mitra
- Department of Biological Sciences and Border Biomedical Research Center, The University of Texas, El Paso, Texas 79968, USA
| | | | | | | | | | | |
Collapse
|
57
|
Mao HT, Wang DH, Lan Z, Zhou H, Yang WX. Gene expression profiles of prohibitin in testes of Octopus tankahkeei (ot-phb) revealing its possible role during spermiogenesis. Mol Biol Rep 2011; 39:5519-28. [DOI: 10.1007/s11033-011-1355-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2011] [Accepted: 12/12/2011] [Indexed: 10/14/2022]
|
58
|
|
59
|
Stomatin-like protein 2 binds cardiolipin and regulates mitochondrial biogenesis and function. Mol Cell Biol 2011; 31:3845-56. [PMID: 21746876 DOI: 10.1128/mcb.05393-11] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Stomatin-like protein 2 (SLP-2) is a widely expressed mitochondrial inner membrane protein of unknown function. Here we show that human SLP-2 interacts with prohibitin-1 and -2 and binds to the mitochondrial membrane phospholipid cardiolipin. Upregulation of SLP-2 expression increases cardiolipin content and the formation of metabolically active mitochondrial membranes and induces mitochondrial biogenesis. In human T lymphocytes, these events correlate with increased complex I and II activities, increased intracellular ATP stores, and increased resistance to apoptosis through the intrinsic pathway, ultimately enhancing cellular responses. We propose that the function of SLP-2 is to recruit prohibitins to cardiolipin to form cardiolipin-enriched microdomains in which electron transport complexes are optimally assembled. Likely through the prohibitin functional interactome, SLP-2 then regulates mitochondrial biogenesis and function.
Collapse
|
60
|
CaMK IV phosphorylates prohibitin 2 and regulates prohibitin 2-mediated repression of MEF2 transcription. Cell Signal 2011; 23:1686-90. [PMID: 21689744 PMCID: PMC7127762 DOI: 10.1016/j.cellsig.2011.06.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Accepted: 06/06/2011] [Indexed: 12/19/2022]
Abstract
Prohibitin 2 (PHB2) is an evolutionarily conserved and ubiquitously expressed multifunctional protein which is present in various cellular compartments including the nucleus. However, mechanisms underlying various functions of PHB2 are not fully explored yet. Previously we showed that PHB2 interacts with Akt and inhibits muscle differentiation by repressing the transcriptional activity of both MyoD and MEF2. Here we show that Calcium/Calmodulin-dependent kinase IV (CaMK IV) specifically binds to the C terminus of PHB2 and phosphorylates PHB2 at serine 91. Ectopic expression of CaMK IV and PHB2 in C2C12 cells results effectively in decreased PHB2-mediated repression of MEF2-dependent gene expression. Conversely, PHB2 mutant (S91A) resistant to CaMK IV phosphorylation has less effective in relieving the inhibition of MEF2 transcription by PHB2. Our findings suggest that CaMK IV interacts with and regulates PHB2 through phosphorylation, which could be one of the mechanisms underlying the CaMK-mediated activation of MEF2.
Collapse
|
61
|
Li BY, Li XL, Cai Q, Gao HQ, Cheng M, Zhang JH, Wang JF, Yu F, Zhou RH. Induction of lactadherin mediates the apoptosis of endothelial cells in response to advanced glycation end products and protective effects of grape seed procyanidin B2 and resveratrol. Apoptosis 2011; 16:732-45. [DOI: 10.1007/s10495-011-0602-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
62
|
Abstract
While specific signalling cascades involved in aging, such as the insulin/IGF-1 pathway, are well-described, the actual metabolic changes they elicit to prolong lifespan remain obscure. Nevertheless, the tuning of cellular metabolism towards maximal survival is the molecular basis of longevity. The eukaryotic mitochondrial prohibitin complex is a macromolecular structure at the inner mitochondrial membrane, implicated in several important cellular processes such as mitochondrial biogenesis and function, molecular signalling, replicative senescence, and cell death. Recent studies in C. elegans have revealed that prohibitin differentially influences aging by moderating fat metabolism and energy production, in response to both intrinsic signalling events and extrinsic cues. These findings indicate that prohibitin is a context-dependent modulator of longevity. The tight evolutionary conservation and ubiquitous expression of prohibitin proteins suggest a similar role for the mitochondrial prohibitin complex during aging in other organisms.
Collapse
Affiliation(s)
- Marta Artal-Sanz
- Laboratory for Bioinformatics and Molecular Genetics, Bio III, Albert-Ludwigs-University of Freiburg, D-79104 Freiburg, Germany. ‐freiburg.de
| | | |
Collapse
|
63
|
Nuclear coded mitochondrial protein prohibitin is an iron regulated iron binding protein. Mitochondrion 2011; 11:40-7. [DOI: 10.1016/j.mito.2010.07.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2010] [Revised: 06/12/2010] [Accepted: 07/08/2010] [Indexed: 12/17/2022]
|
64
|
Bauereis B, Haskins WE, Lebaron RG, Renthal R. Proteomic insights into the protective mechanisms of an in vitro oxidative stress model of early stage Parkinson's disease. Neurosci Lett 2010; 488:11-6. [PMID: 21056633 DOI: 10.1016/j.neulet.2010.10.071] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2010] [Revised: 10/20/2010] [Accepted: 10/29/2010] [Indexed: 01/01/2023]
Abstract
Previous studies in Parkinson's disease (PD) models suggest that early events along the path to neurodegeneration involve activation of the ubiquitin-proteasome system (UPS), endoplasmic reticulum-associated degradation (ERAD), and the unfolded protein response (UPR) pathways, in both the sporadic and familial forms of the disease, and thus ER stress may be a common feature. Furthermore, impairments in protein degradation have been linked to oxidative stress as well as pathways associated with ER stress. We hypothesize that oxidative stress is a primary initiator in a multi-factorial cascade driving dopaminergic (DA) neurons towards death in the early stages of the disease. We now report results from proteomic analysis of a rotenone-induced oxidative stress model of PD in the human neuroblastoma cell line, SH-SY5Y. Cells were exposed to sub-micromolar concentrations of rotenone for 48h prior to whole cell protein extraction and shotgun proteomic analysis. Evidence for activation of the UPR comes from our observation of up-regulated binding immunoglobulin protein (BiP), heat shock proteins, and foldases. We also observed up-regulation of proteins that contribute to the degradation of misfolded or unfolded proteins controlled by the UPS and ERAD pathways. Activation of the UPR may allow neurons to maintain protein homeostasis in the cytosol and ER despite an increase in reactive oxygen species due to oxidative stress, and activation of the UPS and ERAD may further augment clean-up and quality control in the cell.
Collapse
Affiliation(s)
- Brian Bauereis
- Department of Biology, University of Texas at San Antonio, San Antonio, TX 78249, United States
| | | | | | | |
Collapse
|
65
|
Comparative proteome study of apoptosis induced by As4S4 in retinoid acid resistant human acute promyelocytic leukemia NB4-R1 cells. Leuk Res 2010; 34:1506-16. [DOI: 10.1016/j.leukres.2010.03.038] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Revised: 02/23/2010] [Accepted: 03/23/2010] [Indexed: 12/18/2022]
|
66
|
Gu Y, Ande SR, Mishra S. Altered O-GlcNAc modification and phosphorylation of mitochondrial proteins in myoblast cells exposed to high glucose. Arch Biochem Biophys 2010; 505:98-104. [PMID: 20887712 DOI: 10.1016/j.abb.2010.09.024] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2010] [Revised: 09/22/2010] [Accepted: 09/25/2010] [Indexed: 12/30/2022]
Abstract
Hyperglycemia induced increased posttranslational modification of proteins by O-linked-β-N-acetyl glucosamine (O-GlcNAcylation) and mitochondrial dysfunction has been independently implicated in the development of insulin resistance. It is not known whether repertoire of O-GlcNAcylated proteins includes mitochondrial proteins and their altered O-GlcNAcylation impinges on their phosphorylation mediated normal functioning thus contribute to mitochondrial dysfunction and insulin resistance. We have explored the O-GlcNAcylation of mitochondrial proteins from myoblast cells under basal (4mM) and high glucose (30mM) conditions using a combination of proteomic approaches. Furthermore, we have assessed the accompanied changes in the phosphorylation of mitochondrial proteins. We report that a number of mitochondrial proteins are O-GlcNAcylated under basal condition which is altered under high glucose condition. In addition, we report that exposure to high glucose not only changes the O-GlcNAcylation of mitochondrial proteins but also changes their phosphorylation profiles. The dynamic and complex interplay between O-GlcNAcylation and phosphorylation of mitochondrial proteins was further validated by immunoblot analysis of HSP60, prohibitin, and voltage-dependent anion channel 1 as candidate proteins. O-GlcNAcylation of mitochondrial proteins may play a role in normal functioning of mitochondria. High glucose induced changes in O-GlcNAcylation and phosphorylation of mitochondrial proteins may be associated with mitochondrial dysfunction and insulin resistance.
Collapse
Affiliation(s)
- Yuanyuan Gu
- Department of Internal Medicine, University of Manitoba, Winnipeg, Canada
| | | | | |
Collapse
|
67
|
Ciccosanti F, Corazzari M, Soldani F, Matarrese P, Pagliarini V, Iadevaia V, Tinari A, Zaccarelli M, Perfettini JL, Malorni W, Kroemer G, Antinori A, Fimia GM, Piacentini M. Proteomic analysis identifies prohibitin down-regulation as a crucial event in the mitochondrial damage observed in HIV-infected patients. Antivir Ther 2010; 15:377-90. [PMID: 20516557 DOI: 10.3851/imp1530] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
BACKGROUND Highly active antiretroviral therapy (HAART) has largely reduced the occurrence of AIDS-related diseases and death in HIV-infected patients. However, HAART produces serious side effects mainly attributed to mitochondrial toxicity. METHODS To elucidate the molecular basis of HAART-related dysfunctions, we analysed the mitochondrial proteome of peripheral blood mononuclear cells from HIV-infected patients using two-dimensional gel electrophoresis and MALDI-TOF/TOF mass spectrometry. Proteomic analysis was performed on HIV patients who were either treatment-naive or under HAART therapy including zidovudine or stavudine as nucleoside reverse transcriptase inhibitors (NRTIs). RESULTS As compared to healthy donors, HAART-treated HIV-infected patients exhibited decreased levels of mitochondrial enzymes associated with energy production as well as mitochondrial chaperones. Moreover, significant alterations in the mitochondria-cytoskeleton network were observed. Notably, most of these changes were already detectable in untreated HIV carriers and persisted or worsened after HAART, indicating that relevant mitochondrial alterations were initially caused by HIV infection. Finally, in vitro experiments aimed at validating the proteomic results showed that down-regulation of the mitochondrial chaperone prohibitin is a causative event in NRTI-induced mitochondrial damage. CONCLUSIONS Our results indicate a major role of HIV infection in the mitochondrial toxicity of HAART-treated patients and identify novel candidate markers for assessing the risk of HIV- and HAART-related pathologies.
Collapse
Affiliation(s)
- Fabiola Ciccosanti
- National Institute for Infectious Diseases, 'Lazzaro Spallanzani' IRCCS, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Sievers C, Billig G, Gottschalk K, Rudel T. Prohibitins are required for cancer cell proliferation and adhesion. PLoS One 2010; 5:e12735. [PMID: 20856874 PMCID: PMC2939069 DOI: 10.1371/journal.pone.0012735] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Accepted: 08/06/2010] [Indexed: 12/25/2022] Open
Abstract
Prohibitin 1 (PHB1) is a highly conserved protein that together with its homologue prohibitin 2 (PHB2) mainly localizes to the inner mitochondrial membrane. Although it was originally identified by its ability to inhibit G1/S progression in human fibroblasts, its role as tumor suppressor is debated. To determine the function of prohibitins in maintaining cell homeostasis, we generated cancer cell lines expressing prohibitin-directed shRNAs. We show that prohibitin proteins are necessary for the proliferation of cancer cells. Down-regulation of prohibitin expression drastically reduced the rate of cell division. Furthermore, mitochondrial morphology was not affected, but loss of prohibitins did lead to the degradation of the fusion protein OPA1 and, in certain cancer cell lines, to a reduced capability to exhibit anchorage-independent growth. These cancer cells also exhibited reduced adhesion to the extracellular matrix. Taken together, these observations suggest prohibitins play a crucial role in adhesion processes in the cell and thereby sustaining cancer cell propagation and survival.
Collapse
Affiliation(s)
- Claudia Sievers
- Research Group for Molecular Infection and Cancer Biology, Department of Molecular Biology, Max-Planck Institute for Infection Biology, Berlin, Germany
- Department of Biochemistry, Free University Berlin, Berlin, Germany
| | - Gwendolyn Billig
- Research Group for Molecular Infection and Cancer Biology, Department of Molecular Biology, Max-Planck Institute for Infection Biology, Berlin, Germany
- Department of Biochemistry, Free University Berlin, Berlin, Germany
| | - Kathleen Gottschalk
- Research Group for Molecular Infection and Cancer Biology, Department of Molecular Biology, Max-Planck Institute for Infection Biology, Berlin, Germany
| | - Thomas Rudel
- Research Group for Molecular Infection and Cancer Biology, Department of Molecular Biology, Max-Planck Institute for Infection Biology, Berlin, Germany
- Biocenter, University of Würzburg, Würzburg, Germany
- * E-mail:
| |
Collapse
|
69
|
Muraguchi T, Kawawa A, Kubota S. Prohibitin protects against hypoxia-induced H9c2 cardiomyocyte cell death. ACTA ACUST UNITED AC 2010; 31:113-22. [PMID: 20460739 DOI: 10.2220/biomedres.31.113] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We recently demonstrated that short time exposure to hypoxia (15 min) in H9c2 cardiomyocytes protected cells against cell death, and longer exposure to hypoxia induced cell death. To understand the molecular mechanism concerning cell death and survival, it is intriguing to identify survival factors against cell death. Using proteomics analysis, levels of proteins derived from H9c2 cells exposed to hypoxia and normoxia were compared and candidates for survival factor were identified. One of the candidates was a prohibitin. Overexpression of prohibitin inhibited H9c2 cell death induced by hypoxia for longer hours. We further clarified the mechanism of cell death. Overexpression of prohibitin inhibited decrease of mitochondrial membrane potential levels, decrease of Bcl-2 level in mitochondria and cytochrome c release to cytosol from mitochondria induced by hypoxia. The mechanism for survival was that overexpression of prohibitin inhibited cytochrome c release by decrease of mitochondrial membrane potential levels and decrease of Bcl-2 level. Taken together, identified prohibitin may function as a survival factor against hypoxiainduced cell death.
Collapse
Affiliation(s)
- Takashi Muraguchi
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | | | | |
Collapse
|
70
|
Abstract
Prohibitin-1 (PHB, also known as PHB1), a member of the Band-7 family of proteins, is highly conserved evolutionarily, widely expressed, and present in different cellular compartments. Genetic studies with different organism models have provided strong evidence for an important biological role of PHB in mitochondrial function, cell proliferation, and development. Recent discoveries regarding the involvement of PHB in phophatidylinositol-3-kinase (PI3K)/protein kinase B (Akt) and transforming growth factor-β (TGF-β)/signal transducers and activators of transcription signaling pathways, and earlier reports on the interaction of PHB with Raf and its critical role in Ras/mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) signaling opened up the possibility that PHB has functions outside of the mitochondria (extramitochondrial) and may be a multifunctional protein. The PI3K/Akt and Ras/MAPK/ERK signaling cascades are versatile signaling processes that diverge from the same receptor tyrosine kinase root, and are involved in cell metabolism, proliferation, and development. Here, we review the emerging role of PHB and its post-translational modifications in signal transduction pathways, especially in PI3K/Akt and Ras/MAPK/ERK signaling. A recent discovery of opposing effects of PHB on longevity under different metabolic states and its potential connection with insulin/insulin-like growth factor-I signaling is also discussed.
Collapse
Affiliation(s)
- Suresh Mishra
- Department of Internal Medicine, University of Manitoba, Winnipeg, Manitoba, Canada.
| | | | | |
Collapse
|
71
|
Borro M, Gentile G, De Luca O, Torre MS, Aimati L, Tatarelli C, Antonietta Aloe Spiriti M, Christina Cox M, Simmaco M. Specific effects exerted by B-lymphoproliferative diseases on peripheral T-lymphocyte protein expression. Br J Haematol 2010; 150:463-72. [PMID: 20618332 DOI: 10.1111/j.1365-2141.2010.08285.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A proteomic approach was applied to study the protein expression profile of peripheral T-cells derived from patients at the onset of different B-lymphoproliferative diseases, because a rising interest in specific actions played by T-cells in such pathologies has emerged. Decreased levels of profilin-1 and cofilin-1 and increased levels of coronin1A and prohibitin were found in patients, compared with healthy controls. The protein-protein interaction network of these proteins was studied using a web-based bioinformatics tool, highlighting the actin cytoskeleton regulation as the main biological process involved in peripheral T-cells of such patients. Unsupervised cluster analysis of protein expression data shows that the recorded alteration of T-cell proteome was specifically induced by B-cell pathologies.
Collapse
Affiliation(s)
- Marina Borro
- 2nd Faculty of Medicine, Sant'Andrea Hospital, Sapienza University of Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Garg R, Qadri A. Hemoglobin Transforms Anti-InflammatorySalmonella typhiVirulence Polysaccharide into a TLR-2 Agonist. THE JOURNAL OF IMMUNOLOGY 2010; 184:5980-7. [DOI: 10.4049/jimmunol.0903512] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
73
|
Osman C, Merkwirth C, Langer T. Prohibitins and the functional compartmentalization of mitochondrial membranes. J Cell Sci 2010; 122:3823-30. [PMID: 19889967 DOI: 10.1242/jcs.037655] [Citation(s) in RCA: 237] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Prohibitins constitute an evolutionarily conserved and ubiquitously expressed family of membrane proteins that are essential for cell proliferation and development in higher eukaryotes. Roles for prohibitins in cell signaling at the plasma membrane and in transcriptional regulation in the nucleus have been proposed, but pleiotropic defects associated with the loss of prohibitin genes can be largely attributed to a dysfunction of mitochondria. Two closely related proteins, prohibitin-1 (PHB1) and prohibitin-2 (PHB2), form large, multimeric ring complexes in the inner membrane of mitochondria. The absence of prohibitins leads to an increased generation of reactive oxygen species, disorganized mitochondrial nucleoids, abnormal cristae morphology and an increased sensitivity towards stimuli-elicited apoptosis. It has been found that the processing of the dynamin-like GTPase OPA1, which regulates mitochondrial fusion and cristae morphogenesis, is a key process regulated by prohibitins. Furthermore, genetic analyses in yeast have revealed an intimate functional link between prohibitin complexes and the membrane phospholipids cardiolipin and phosphatidylethanolamine. In light of these findings, it is emerging that prohibitin complexes can function as protein and lipid scaffolds that ensure the integrity and functionality of the mitochondrial inner membrane.
Collapse
Affiliation(s)
- Christof Osman
- Institute for Genetics, Centre for Molecular Medicine (CMMC), Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | | | | |
Collapse
|
74
|
Zhu B, Zhai J, Zhu H, Kyprianou N. Prohibitin regulates TGF-beta induced apoptosis as a downstream effector of Smad-dependent and -independent signaling. Prostate 2010; 70:17-26. [PMID: 19725029 PMCID: PMC3762596 DOI: 10.1002/pros.21033] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
BACKGROUND Prohibitin (PHB), a protein located on the inner mitochondrial membrane and nuclei, is an intracellular effector of transforming growth factor-beta (TGF-beta) signaling in prostate cancer cells. This study investigated the involvement of PHB in the apoptosis and survival outcomes of human prostate cancer cell to TGF-beta. shRNA PHB loss of function in prostate cancer cells led to enhanced apoptotic response to TGF-beta via Smad-dependent mechanism. METHOD TGF-beta activation of Raf-Erk intracellular signaling, led to PHB phosphorylation, decreased inner mitochondrial permeability, and increased cell survival. Calcein-based immunofluorescence studies revealed the functional involvement of PHB in maintaining inner mitochondrial membrane permeability as an integral component of TGF-beta induced apoptosis in prostate cancer cells. RESULTS These finding indicates that induction of TGF-beta apoptosis is mediated by Smad-dependent and Smad-independent signaling (MAPK) converging at PHB as a downstream effector regulating inner mitochondrial permeability. Putative PHB associated proteins were identified by subjecting TGF-beta treated cells to immunoprecipitation with anti-PHB, and mass spectrometry. A screen for the kinase specific phosphorylation sites of PHB revealed three protein kinase (PKC) binding sites. CONCLUSION Our results demonstrate that TGF-beta led to upregulation of the PKC inhibitor 14-3-3 protein and promoted its association with PHB, while PHB association with PKC-delta, was inhibited by the MEK1 inhibitor, documenting a critical interdependence between the MEK-ERK signaling and prohibitin phosphorylation. These findings suggest a dual role for PHB as a downstream determinant of the cellular response to TGF-beta via Smad-dependent pathway (apoptosis) and MAPK intracellular signaling (survival).
Collapse
Affiliation(s)
- Brian Zhu
- Department of Surgery, Division of Urology, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | | | | | | |
Collapse
|
75
|
Ross JA, Cheng H, Nagy ZS, Frost JA, Kirken RA. Protein phosphatase 2A regulates interleukin-2 receptor complex formation and JAK3/STAT5 activation. J Biol Chem 2009; 285:3582-3591. [PMID: 19923221 DOI: 10.1074/jbc.m109.053843] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Reversible protein phosphorylation plays a key role in interleukin-2 (IL-2) receptor-mediated activation of Janus tyrosine kinase 3 (JAK3) and signal transducer and activator of transcription 5 (STAT5) in lymphocytes. Although the mechanisms governing IL-2-induced tyrosine phosphorylation and activation of JAK3/STAT5 have been extensively studied, the role of serine/threonine phosphorylation in controlling these effectors remains to be elucidated. Using phosphoamino acid analysis, JAK3 and STAT5 were determined to be serine and tyrosine-phosphorylated in response to IL-2 stimulation of the human natural killer-like cell line, YT. IL-2 stimulation also induced serine/threonine phosphorylation of IL-2Rbeta, but not IL-2Rgamma. To investigate the regulation of serine/threonine phosphorylation in IL-2 signaling, the roles of protein phosphatase 1 (PP1) and 2A (PP2A) were examined. Inhibition of phosphatase activity by calyculin A treatment of YT cells resulted in a significant induction of serine phosphorylation of JAK3 and STAT5, and serine/threonine phosphorylation of IL-2Rbeta. Moreover, inhibition of PP2A, but not PP1, diminished IL-2-induced tyrosine phosphorylation of IL-2Rbeta, JAK3, and STAT5, and abolished STAT5 DNA binding activity. Serine/threonine phosphorylation of IL-2Rbeta by a staurosporine-sensitive kinase also blocked its association with JAK3 and IL-2Rgamma in YT cells. Taken together, these data indicate that serine/threonine phosphorylation negatively regulates IL-2 signaling at multiple levels, including receptor complex formation and JAK3/STAT5 activation, and that this regulation is counteracted by PP2A. These findings also suggest that PP2A may serve as a therapeutic target for modulating JAK3/STAT5 activation in human disease.
Collapse
Affiliation(s)
- Jeremy A Ross
- From the Department of Biological Sciences, University of Texas, El Paso, Texas 79968
| | - Hanyin Cheng
- From the Department of Biological Sciences, University of Texas, El Paso, Texas 79968; the Department of Pathology, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, and
| | - Zsuzsanna S Nagy
- From the Department of Biological Sciences, University of Texas, El Paso, Texas 79968
| | - Jeffrey A Frost
- the Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, Texas 77030
| | - Robert A Kirken
- From the Department of Biological Sciences, University of Texas, El Paso, Texas 79968.
| |
Collapse
|
76
|
Artal-Sanz M, Tavernarakis N. Prohibitin and mitochondrial biology. Trends Endocrinol Metab 2009; 20:394-401. [PMID: 19733482 DOI: 10.1016/j.tem.2009.04.004] [Citation(s) in RCA: 226] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2009] [Revised: 04/12/2009] [Accepted: 04/14/2009] [Indexed: 12/15/2022]
Abstract
Prohibitins are ubiquitous, evolutionarily conserved proteins that are mainly localized in mitochondria. The mitochondrial prohibitin complex comprises two subunits, PHB1 and PHB2. These two proteins assemble into a ring-like macromolecular structure at the inner mitochondrial membrane and are implicated in diverse cellular processes: from mitochondrial biogenesis and function to cell death and replicative senescence. In humans, prohibitins have been associated with various types of cancer. While their biochemical function remains poorly understood, studies in organisms ranging from yeast to mammals have provided significant insights into the role of the prohibitin complex in mitochondrial biogenesis and metabolism. Here we review recent studies and discuss their implications for deciphering the function of prohibitins in mitochondria.
Collapse
Affiliation(s)
- Marta Artal-Sanz
- Instituto de Biomedicina de Valencia, CSIC, 46010 Valencia, Spain
| | | |
Collapse
|
77
|
Tsutsumi T, Matsuda M, Aizaki H, Moriya K, Miyoshi H, Fujie H, Shintani Y, Yotsuyanagi H, Miyamura T, Suzuki T, Koike K. Proteomics analysis of mitochondrial proteins reveals overexpression of a mitochondrial protein chaperon, prohibitin, in cells expressing hepatitis C virus core protein. Hepatology 2009; 50:378-86. [PMID: 19591124 DOI: 10.1002/hep.22998] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
UNLABELLED The hepatitis C virus (HCV) core protein is involved in viral pathogenesis such as oxidative stress induction and lipid metabolism disturbance, and is primarily located in the cytoplasm and endoplasmic reticulum in association with lipid droplets as well as in the mitochondria. To clarify the impact of the core protein on mitochondria, we analyzed the expression pattern of mitochondrial proteins in core protein-expressing cells by two-dimensional polyacrylamide gel electrophoresis. Several proteins related to the mitochondrial respiratory chain or protein chaperons were identified by mass spectrometry. Among the identified proteins with consistently different expressions, prohibitin, a mitochondrial protein chaperon, was up-regulated not only in core-expressing cells but also in full-genomic replicon cells and livers of core-gene transgenic mice. The stability of prohibitin was increased through interaction with the core protein. Further analysis demonstrated that interaction of prohibitin with mitochondrial DNA-encoded subunits of cytochrome c oxidase (COX) was disturbed by the core protein, resulting in a significant decrease in COX activity. CONCLUSION The HCV core protein affects the steady-state levels of a subset of mitochondrial proteins including prohibitin, which may lead to an impaired function of the mitochondrial respiratory chain with the overproduction of oxidative stress.
Collapse
Affiliation(s)
- Takeya Tsutsumi
- Department of Internal Medicine, Graduate School of Medicine, University of Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Insulin induced phosphorylation of prohibitin at tyrosine 114 recruits Shp1. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2009; 1793:1372-8. [PMID: 19497338 DOI: 10.1016/j.bbamcr.2009.05.008] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2009] [Revised: 05/14/2009] [Accepted: 05/26/2009] [Indexed: 12/22/2022]
Abstract
Prohibitin (PHB or PHB1) is an evolutionarily conserved ubiquitously expressed multifunctional protein and is present in various cellular compartments. Phosphorylation of PHB has been suggested as one of the potential mechanisms in the regulation of its various functions however exact sites of phosphorylation remain to be determined. To better understand the functional relevance of phosphorylation of PHB, we have explored the potential sites of phosphorylation using combination of approaches including phosphoamino specific immunoblotting, proteolysis, two-dimensional gel electrophoresis, phosphoamino acid analysis and site-directed mutagenesis techniques and report that tyrosine 114 (Tyr 114) in PHB is phosphorylated in response to insulin stimulation. In addition, using active insulin receptor (IR) and synthetic biotinylated PHB peptide (PHB(107-121)) we have shown that IR also phosphorylates Tyr 114 in an in vitro kinase assay. Phosphorylation of PHB at Tyr 114 was confirmed by immunoblotting using anti-phosphoTyr 114 specific antibody. Furthermore, we demonstrate that SH2 domain containing tyrosine phosphatase-1 (Shp1) co-immunoprecipitate with PHB antiserum after insulin induced phosphorylation of PHB. Biotinylated-PHB(107-121) peptide phosphorylated at Tyr 114 was also able to pull down Shp1 in pull down assays. Non-phosphorylated PHB(107-121) peptide, corresponding PHB2(121-135) peptide and Tyr114Phe mutant-PHB fail to pull down Shp1. In summary, we have identified Tyr 114 in PHB as an important site of phosphorylation and phosphorylation at this residue creates a binding site for Shp1 both in vivo and in vitro.
Collapse
|
79
|
Proulx DP, Aubin É, Lemieux R, Bazin R. Spontaneous internalization of IVIg in activated B cells. Immunol Lett 2009; 124:18-26. [DOI: 10.1016/j.imlet.2009.03.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2009] [Revised: 03/17/2009] [Accepted: 03/26/2009] [Indexed: 01/06/2023]
|
80
|
Merkwirth C, Langer T. Prohibitin function within mitochondria: essential roles for cell proliferation and cristae morphogenesis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1793:27-32. [PMID: 18558096 DOI: 10.1016/j.bbamcr.2008.05.013] [Citation(s) in RCA: 292] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 04/04/2008] [Revised: 05/14/2008] [Accepted: 05/16/2008] [Indexed: 12/23/2022]
Abstract
Prohibitins comprise an evolutionary conserved and ubiquitously expressed family of membrane proteins. Various roles in different cellular compartments have been proposed for prohibitin proteins. Recent experiments, however, identify large assemblies of two homologous prohibitin subunits, PHB1 and PHB2, in the inner membrane of mitochondria as the physiologically active structure. Mitochondrial prohibitin complexes control cell proliferation, cristae morphogenesis and the functional integrity of mitochondria. The processing of the dynamin-like GTPase OPA1, a core component of the mitochondrial fusion machinery, has been defined as a key process affected by prohibitins. The molecular mechanism of prohibitin function, however, remained elusive. The ring-like assembly of prohibitins and their sequence similarity with lipid raft-associated SPFH-family members suggests a scaffolding function of prohibitins, which may lead to functional compartmentalization in the inner membrane of mitochondria.
Collapse
Affiliation(s)
- Carsten Merkwirth
- Institute for Genetics, Centre for Molecular Medicine (CMMC), University of Cologne, 50674 Cologne, Germany
| | | |
Collapse
|