51
|
Jia SN, Lin C, Chen DF, Li AQ, Dai L, Zhang L, Zhao LL, Yang JS, Yang F, Yang WJ. The Transcription Factor p8 Regulates Autophagy in Response to Palmitic Acid Stress via a Mammalian Target of Rapamycin (mTOR)-independent Signaling Pathway. J Biol Chem 2016; 291:4462-72. [PMID: 26733200 DOI: 10.1074/jbc.m115.675793] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Indexed: 12/31/2022] Open
Abstract
Autophagy is an evolutionarily conserved degradative process that allows cells to maintain homoeostasis in numerous physiological situations. This process also functions as an essential protective response to endoplasmic reticulum (ER) stress, which promotes the removal and degradation of unfolded proteins. However, little is known regarding the mechanism by which autophagy is initiated and regulated in response to ER stress. In this study, different types of autophagy were identified in human gastric cancer MKN45 cells in response to the stress induced by nutrient starvation or lipotoxicity in which the regulation of these pathways is mammalian target of rapamycin (mTOR)-dependent or -independent, respectively. Interestingly, we found that p8, a stress-inducible transcription factor, was enhanced in MKN45 cells treated with palmitic acid to induce lipotoxicity. Furthermore, an increase in autophagy was observed in MKN45 cells stably overexpressing p8 using a lentivirus system, and autophagy induced by palmitic acid was blocked by p8 RNAi compared with the control. Western blotting analyses showed that autophagy was regulated by p8 or mTOR in response to the protein kinase-like endoplasmic reticulum kinase/activating transcription factor 6-mediated ER stress of lipotoxicity or the parkin-mediated mitochondrial stress of nutrient starvation, respectively. Furthermore, our results indicated that autophagy induced by palmitic acid is mTOR-independent, but this autophagy pathway was regulated by p8 via p53- and PKCα-mediated signaling in MKN45 cells. Our findings provide insights into the role of p8 in regulating autophagy induced by the lipotoxic effects of excess fat accumulation in cells.
Collapse
Affiliation(s)
- Sheng-Nan Jia
- From the College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Cheng Lin
- From the College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Dian-Fu Chen
- From the College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - An-Qi Li
- From the College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Li Dai
- From the College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Li Zhang
- From the College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ling-Ling Zhao
- From the College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jin-Shu Yang
- From the College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Fan Yang
- From the College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wei-Jun Yang
- From the College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
52
|
Isaac DT, Berkes CA, English BC, Murray DH, Lee YN, Coady A, Sil A. Macrophage cell death and transcriptional response are actively triggered by the fungal virulence factor Cbp1 during H. capsulatum infection. Mol Microbiol 2015; 98:910-929. [PMID: 26288377 PMCID: PMC5002445 DOI: 10.1111/mmi.13168] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2015] [Indexed: 01/10/2023]
Abstract
Microbial pathogens induce or inhibit death of host cells during infection, with significant consequences for virulence and disease progression. Death of an infected host cell can either facilitate release and dissemination of intracellular pathogens or promote pathogen clearance. Histoplasma capsulatum is an intracellular fungal pathogen that replicates robustly within macrophages and triggers macrophage lysis by unknown means. To identify H. capsulatum effectors of macrophage lysis, we performed a genetic screen and discovered three mutants that grew to wild-type levels within macrophages but failed to elicit host-cell death. Each mutant was defective in production of the previously identified secreted protein Cbp1 (calcium-binding protein 1), whose role in intracellular growth had not been fully investigated. We found that Cbp1 was dispensable for high levels of intracellular growth but required to elicit a unique transcriptional signature in macrophages, including genes whose induction was previously associated with endoplasmic reticulum stress and host-cell death. Additionally, Cbp1 was required for activation of cell-death caspases-3/7, and macrophage death during H. capsulatum infection was dependent on the pro-apoptotic proteins Bax and Bak. Taken together, these findings strongly suggest that the ability of Cbp1 to actively program host-cell death is an essential step in H. capsulatum pathogenesis.
Collapse
Affiliation(s)
- Dervla T. Isaac
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA 94143-0414
| | - Charlotte A. Berkes
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA 94143-0414
- Department of Biology, Merrimack College, North Andover, MA
| | - Bevin C. English
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA 94143-0414
| | - Davina Hocking Murray
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA 94143-0414
| | - Young Nam Lee
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA 94143-0414
| | - Alison Coady
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA 94143-0414
| | - Anita Sil
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA 94143-0414
- Howard Hughes Medical Institute, San Francisco, CA
| |
Collapse
|
53
|
Grasso D, Bintz J, Lomberk G, Molejon MI, Loncle C, Garcia MN, Lopez MB, Urrutia R, Iovanna JL. Pivotal Role of the Chromatin Protein Nupr1 in Kras-Induced Senescence and Transformation. Sci Rep 2015; 5:17549. [PMID: 26617245 PMCID: PMC4663475 DOI: 10.1038/srep17549] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 09/15/2015] [Indexed: 12/21/2022] Open
Abstract
Nupr1 is a chromatin protein, which cooperates with KrasG12D to induce PanIN formation and pancreatic cancer development in mice, though the molecular mechanisms underlying this effect remain to be fully characterized. In the current study, we report that Nupr1 acts as a gene modifier of the effect of KrasG12D-induced senescence by regulating Dnmt1 expression and consequently genome-wide levels of DNA methylation. Congruently, 5-aza-2′-deoxycytydine, a general inhibitor of DNA methylation, reverses the KrasG12D-induced PanIN development by promoting senescence. This requirement of Nupr1 expression, however, is not restricted to the pancreas since in lung of Nupr1–/– mice the expression of KrasG12D induces senescence instead of transformation. Therefore, mechanistically this data reveals that epigenetic events, at least at the level of DNA methylation, modulate the functional outcome of common genetic mutations, such as KrasG12D, during carcinogenesis. The biomedical relevance of these findings lies in that they support the rational for developing similar therapeutic interventions in human aimed at controlling either the initiation or progression of cancer.
Collapse
Affiliation(s)
- Daniel Grasso
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
| | - Jennifer Bintz
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
| | - Gwen Lomberk
- Laboratory of Epigenetics and Chromatin Dynamics, Gastroenterology Research Unit, Departments of Biochemistry and Molecular Biology, Biophysics, and Medicine, Mayo Clinic, Rochester, USA
| | - Maria Ines Molejon
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
| | - Celine Loncle
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
| | - Maria Noé Garcia
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
| | - Maria Belen Lopez
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
| | - Raul Urrutia
- Laboratory of Epigenetics and Chromatin Dynamics, Gastroenterology Research Unit, Departments of Biochemistry and Molecular Biology, Biophysics, and Medicine, Mayo Clinic, Rochester, USA
| | - Juan L Iovanna
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
| |
Collapse
|
54
|
Lopez MB, Garcia MN, Grasso D, Bintz J, Molejon MI, Velez G, Lomberk G, Neira JL, Urrutia R, Iovanna J. Functional Characterization of Nupr1L, A Novel p53-Regulated Isoform of the High-Mobility Group (HMG)-Related Protumoral Protein Nupr1. J Cell Physiol 2015; 230:2936-50. [PMID: 25899918 DOI: 10.1002/jcp.25022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 04/15/2015] [Indexed: 12/18/2022]
Abstract
We have previously demonstrated a crucial role of nuclear protein 1 (NUPR1) in tumor development and progression. In this work, we report the functional characterization of a novel Nupr1-like isoform (NUPR1L) and its functional interaction with the protumoral factor NUPR1. Through the use of primary sequence analysis, threading, and homology-based molecular modeling, as well as expression and immunolocalization, studies reveal that NUPR1L displays properties, which are similar to member of the HMG-like family of chromatin regulators, including its ability to translocate to the cell nucleus and bind to DNA. Analysis of the NUPR1L promoter showed the presence of two p53-response elements at positions -37 and -7, respectively. Experiments using reporter assays combined with site-directed mutagenesis and using cells with controllable p53 expression demonstrate that both of these sequences are responsible for the regulation of NUPR1L expression by p53. Congruently, NUPR1L gene expression is activated in response to DNA damage induced by oxaliplatin treatment or cell cycle arrest induced by serum starvation, two well-validated methods to achieve p53 activation. Interestingly, expression of NUPR1L downregulates the expression of NUPR1, its closely related protumoral isoform, by a mechanism that involves the inhibition of its promoter activity. At the cellular level, overexpression of NUPR1L induces G1 cell cycle arrest and a decrease in their cell viability, an effect that is mediated, at least in part, by downregulating NUPR1 expression. Combined, these experiments constitute the first functional characterization of NUPR1L as a new p53-induced gene, which negatively regulates the protumoral factor NUPR1.
Collapse
Affiliation(s)
- Maria Belen Lopez
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
| | - Maria Noé Garcia
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
| | - Daniel Grasso
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
| | - Jennifer Bintz
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
| | - Maria Inés Molejon
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
| | - Gabriel Velez
- Laboratory of Epigenetics and Chromatin Dynamics, Gastroenterology Research Unit, Departments of Biochemistry and Molecular Biology, Biophysics, and Medicine, Mayo Clinic, Rochester, Minnesota
| | - Gwen Lomberk
- Laboratory of Epigenetics and Chromatin Dynamics, Gastroenterology Research Unit, Departments of Biochemistry and Molecular Biology, Biophysics, and Medicine, Mayo Clinic, Rochester, Minnesota
| | - Jose Luis Neira
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Elche (Alicante), Spain
| | - Raul Urrutia
- Laboratory of Epigenetics and Chromatin Dynamics, Gastroenterology Research Unit, Departments of Biochemistry and Molecular Biology, Biophysics, and Medicine, Mayo Clinic, Rochester, Minnesota
| | - Juan Iovanna
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
| |
Collapse
|
55
|
Bak Y, Shin HJ, Bak IS, Yoon DY, Yu DY. Hepatitis B virus X promotes hepatocellular carcinoma development via nuclear protein 1 pathway. Biochem Biophys Res Commun 2015; 466:676-81. [PMID: 26392315 DOI: 10.1016/j.bbrc.2015.09.082] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 09/14/2015] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignancies and chronic hepatitis B virus (HBV) infection is a major risk factor for HCC. Hepatitis B virus X (HBx) protein relates to trigger oncogenesis. HBx has oncogenic properties with a hyperproliferative response to HCC. Nuclear protein 1 (NUPR1) is a stress-response protein, frequently upregulated in several cancers. Recent data revealed that NUPR1 is involved in tumor progression, but its function in HCC is not revealed yet. Here we report HBx can induce NUPR1 in patients, mice, and HCC cell lines. In an HBx transgenic mouse model, we found that HBx overexpression upregulates NUPR1 expression consistently with tumor progression. Further, in cultured HBV positive cells, HBx knockdown induces downregulation of NUPR1. Smad4 is a representative transcription factor, regulated by HBx, and we showed that HBx upregulates NUPR1 by Smad4 dependent way. We found that NUPR1 can inhibit cell death and induce vasculogenic mimicry in HCC cell lines. Moreover, NUPR1 silencing in HepG2-HBx showed reduced cell motility. These results suggest that HBx can modulate NUPR1 expression through the Smad4 pathway and NUPR1 has a role in hepatocellular carcinoma progression.
Collapse
Affiliation(s)
- Yesol Bak
- Disease Model Research Laboratory, Aging Intervention Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
| | - Hye-jun Shin
- Disease Model Research Laboratory, Aging Intervention Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
| | - In seon Bak
- Disease Model Research Laboratory, Aging Intervention Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
| | - Do-young Yoon
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul, South Korea
| | - Dae-Yeul Yu
- Disease Model Research Laboratory, Aging Intervention Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea.
| |
Collapse
|
56
|
Global Transcriptome Analysis Reveals That Poly(ADP-Ribose) Polymerase 1 Regulates Gene Expression through EZH2. Mol Cell Biol 2015; 35:3934-44. [PMID: 26370511 DOI: 10.1128/mcb.00635-15] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 09/08/2015] [Indexed: 11/20/2022] Open
Abstract
Posttranslational modifications, such as poly(ADP-ribosyl)ation (PARylation), regulate chromatin-modifying enzymes, ultimately affecting gene expression. This study explores the role of poly(ADP-ribose) polymerase (PARP) on global gene expression in a lymphoblastoid B cell line. We found that inhibition of PARP catalytic activity with olaparib resulted in global gene deregulation, affecting approximately 11% of the genes expressed. Gene ontology analysis revealed that PARP could exert these effects through transcription factors and chromatin-remodeling enzymes, including the polycomb repressive complex 2 (PRC2) member EZH2. EZH2 mediates the trimethylation of histone H3 at lysine 27 (H3K27me3), a modification associated with chromatin compaction and gene silencing. Both pharmacological inhibition of PARP and knockdown of PARP1 induced the expression of EZH2, which resulted in increased global H3K27me3. Chromatin immunoprecipitation confirmed that PARP1 inhibition led to H3K27me3 deposition at EZH2 target genes, which resulted in gene silencing. Moreover, increased EZH2 expression is attributed to the loss of the occupancy of the transcription repressor E2F4 at the EZH2 promoter following PARP inhibition. Together, these data show that PARP plays an important role in global gene regulation and identifies for the first time a direct role of PARP1 in regulating the expression and function of EZH2.
Collapse
|
57
|
Pedrola N, Devis L, Llauradó M, Campoy I, Martinez-Garcia E, Garcia M, Muinelo-Romay L, Alonso-Alconada L, Abal M, Alameda F, Mancebo G, Carreras R, Castellví J, Cabrera S, Gil-Moreno A, Matias-Guiu X, Iovanna JL, Colas E, Reventós J, Ruiz A. Nidogen 1 and Nuclear Protein 1: novel targets of ETV5 transcription factor involved in endometrial cancer invasion. Clin Exp Metastasis 2015; 32:467-78. [PMID: 25924802 DOI: 10.1007/s10585-015-9720-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Accepted: 04/20/2015] [Indexed: 11/28/2022]
Abstract
Endometrial cancer is the most frequent malignancy of the female genital tract in western countries. Our group has previously characterized the upregulation of the transcription factor ETV5 in endometrial cancer with a specific and significant increase in those tumor stages associated with myometrial invasion. We have shown that ETV5 overexpression in Hec1A endometrial cancer cells induces epithelial to mesenchymal transition resulting in the acquisition of migratory and invasive capabilities. In the present work, we have identified Nidogen 1 (NID1) and Nuclear Protein 1 (NUPR1) as direct transcriptional targets of ETV5 in endometrial cancer cells. Inhibition of NID1 and NUPR1 in ETV5 overexpressing cells reduced cell migration and invasion in vitro and reduced tumor growth and dissemination in an orthotopic endometrial cancer model. Importantly, we confirmed a significant increase of NUPR1 and NID1 protein expression in the invasion front of the tumor compared to their paired superficial zone, concomitant to ETV5 overexpression. Altogether, we conclude that NID1 and NUPR1 are novel targets of ETV5 and are actively cooperating with ETV5 at the invasion front of the tumor in the acquisition of an invasive phenotype to jointly drive endometrial cancer invasion.
Collapse
Affiliation(s)
- Núria Pedrola
- Biomedical Research Group in Ginaecology, Hospital Universitari Vall d'Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d'Hebron, 119-129, 08035, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Mizuno D, Konoha-Mizuno K, Mori M, Sadakane Y, Koyama H, Ohkawara S, Kawahara M. Protective activity of carnosine and anserine against zinc-induced neurotoxicity: a possible treatment for vascular dementia. Metallomics 2015; 7:1233-9. [PMID: 25846004 DOI: 10.1039/c5mt00049a] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Carnosine (β-alanyl-L-histidine) is a small dipeptide with numerous beneficial effects, including the maintenance of the acid-base balance, antioxidant properties, chelating agent, anti-crosslinking, and anti-glycation activities. High levels of carnosine and its analogue anserine (1-methyl carnosine) are found in skeletal muscle and the brain. Zinc (Zn)-induced neurotoxicity plays a crucial role in the pathogenesis of vascular dementia (VD), and carnosine inhibits Zn-induced neuronal death. Here, the protective activity of carnosine against Zn-induced neurotoxicity and its molecular mechanisms such as cellular Zn influx and Zn-induced gene expression were investigated using immortalised hypothalamic neurons (GT1-7 cells). Carnosine and anserine protected against Zn-induced neurotoxicity not by preventing increases in intracellular Zn(2+) but by participating in the regulation of the endoplasmic reticulum (ER) stress pathway and the activity-regulated cytoskeletal protein (Arc). Accordingly, carnosine and anserine protected against neurotoxicity induced by ER-stress inducers thapsigargin and tunicamycin. Hence, carnosine and anserine are expected to have future therapeutic potential for VD and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Dai Mizuno
- Laboratory of Bio-Analytical Chemistry, Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo 202-8585, Japan.
| | | | | | | | | | | | | |
Collapse
|
59
|
Frances D, Sharma N, Pofahl R, Maneck M, Behrendt K, Reuter K, Krieg T, Klein CA, Haase I, Niemann C. A role for Rac1 activity in malignant progression of sebaceous skin tumors. Oncogene 2015; 34:5505-12. [DOI: 10.1038/onc.2014.471] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 10/28/2014] [Accepted: 12/19/2014] [Indexed: 11/09/2022]
|
60
|
Weis S, Bielow T, Sommerer I, Iovanna J, Malicet C, Mössner J, Hoffmeister A. P8 deficiency increases cellular ROS and induces HO-1. Arch Biochem Biophys 2014; 565:89-94. [PMID: 25475530 DOI: 10.1016/j.abb.2014.11.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 11/07/2014] [Accepted: 11/18/2014] [Indexed: 10/24/2022]
Abstract
The gene p8 encodes for a small cytoprotective protein with no apparent enzymatic activity being proposed to act as co-transcription factor whose expression is increased during inflammation. Recent data from astrocytes demonstrates that p8 suppression leads to induction of heme oxygenase 1 (HO-1). Here, we assessed the cross-talk between p8 and HO-1 in mouse embryonic fibroblasts (MEF) observing an increased expression of HO-1 in p8-deficient (p8(-/-)) MEFs in non-treated and treated conditions. This effect was independent of the cell cycle. Our findings revealed that generation of reactive oxygen species (ROS) was higher in p8(-/-) MEFs. Mitochondria and NADPH oxidases were not the origin of ROS. This observation was not restricted to MEF as suppression of p8 gene transcription in MiaPaCa-2 cells also led to increased intracellular ROS. Additionally, p8 deficiency did not affect the Rac1 dependant NADPH oxidase complex. Our data shows that p8 deficiency increases ROS and subsequently the expression of anti-oxidative enzymes, such as HO-1, suggesting an involvement in the anti-oxidative defense. Moreover, we suggest that the severity of AP observed in p8(-/-) mice is induced by an impaired anti oxidative capacity of the pancreas, which is caused by increased generation of ROS.
Collapse
Affiliation(s)
- Sebastian Weis
- Division of Gastroenterology and Rheumatology, Department of Internal Medicine, Neurology and Dermatology, University Hospital Leipzig, Germany; Center for Sepsis Control & Care, Jena University Hospital, Jena, Germany; Center for Infectious Diseases and Infection Control, Jena University Hospital, Jena, Germany.
| | - Tobias Bielow
- Division of Gastroenterology and Rheumatology, Department of Internal Medicine, Neurology and Dermatology, University Hospital Leipzig, Germany
| | - Ines Sommerer
- Division of Gastroenterology and Rheumatology, Department of Internal Medicine, Neurology and Dermatology, University Hospital Leipzig, Germany
| | - Juan Iovanna
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
| | | | - Joachim Mössner
- Division of Gastroenterology and Rheumatology, Department of Internal Medicine, Neurology and Dermatology, University Hospital Leipzig, Germany
| | - Albrecht Hoffmeister
- Division of Gastroenterology and Rheumatology, Department of Internal Medicine, Neurology and Dermatology, University Hospital Leipzig, Germany
| |
Collapse
|
61
|
Abstract
OBJECTIVES The gene p8 was initially described in pancreatic tissue during acute experimental pancreatitis, a disease that is characterized by a systemic immune response. Although early reports suggested that p8 affects leukocyte migration during acute pancreatitis (AP), no studies revealing its immune-modulatory effects have been performed. METHODS We investigated the composition of the cellular immune system in naive p8 knockout (p8(−/−)) mice and compared with matched wild-type mice during pancreatitis. RESULTS In young mice, there were no relevant differences in the composition of peripheral and splenic CD3(+), CD3(+)CD4(+), CD3(+)CD8(+), CD11b(+)Gr-1(-), and Gr-1 cells. In mature p8(−/−) mice, increased splenic CD4CD25FoxP3 cells, spleen siderosis, and increased marginal zones in the splenic white pulp were found. During AP, peripheral and splenic CD3(+) and CD3CD4 declined stronger in the p8(−/−) mice. The spleen of the p8(−/−) mice showed severe hypoplasia of the white pulp and mild hyperplasia of the red pulp. This was associated with a significantly increased rate of apoptosis. CONCLUSIONS We conclude that p8 has no impact on the cellular composition of the adaptive and innate immune systems in noninflammatory conditions. However, it may limit apoptosis and maintain homeostasis of the immune reaction during AP.
Collapse
|
62
|
Yammani RR, Loeser RF. Brief report: stress-inducible nuclear protein 1 regulates matrix metalloproteinase 13 expression in human articular chondrocytes. Arthritis Rheumatol 2014; 66:1266-71. [PMID: 24497499 DOI: 10.1002/art.38391] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 01/30/2014] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Nuclear protein 1 (Nupr1) is a stress-inducible protein that is involved in gene transcription. The present study was undertaken to determine whether chondrocytes express Nupr1 and whether Nupr1 regulates matrix metalloproteinase 13 (MMP-13) expression. METHODS Paraffin-embedded cartilage sections from normal human and osteoarthritic (OA) cartilage were immunostained using anti-Nupr1 antibody. To measure Nupr1 expression, total RNA was isolated from joint tissue obtained 8 weeks after surgery from young (12-week-old) and older (12-month-old) mice that underwent destabilization of the medial meniscus (DMM) to induce OA. Human chondrocytes were stimulated with 1-10 ng/ml interleukin-1β (IL-1β), 25 μM tert-butyl-hydroperoxide (tBHP), or 2 μM thapsigargin, and Nupr1 expression was analyzed by quantitative polymerase chain reaction. In addition, chondrocytes were transfected with small interfering RNA to knock down Nupr1 expression and then stimulated overnight with IL-1β. After incubation, the conditioned medium was collected and MMP levels measured. RESULTS Increased Nupr1 immunostaining was noted in human OA cartilage compared to normal cartilage. Expression was also increased in joint tissue from 12-month-old mice that underwent DMM surgery compared to sham-operated controls. Stimulation of chondrocytes with IL-1β induced a 2-fold increase in Nupr1 messenger RNA (mRNA) within 1 hour, with the increase peaking to 4-fold at 6 hours. Treatment of chondrocytes with tBHP to induce oxidative stress increased Nupr1 mRNA expression by >2-fold; treatment with thapsigargin to induce endoplasmic reticulum stress did not produce a similar effect. Knockdown of Nupr1 inhibited IL-1β-mediated induction of MMP-13. CONCLUSION Nupr1 is expressed in cartilage, and its levels are increased in OA. Nupr1 expression is required for IL-1β-mediated expression of MMP-13. These findings provide evidence of a novel pathway for regulation of IL-1β-mediated production of MMPs in chondrocytes.
Collapse
|
63
|
Evidence supporting the existence of a NUPR1-like family of helix-loop-helix chromatin proteins related to, yet distinct from, AT hook-containing HMG proteins. J Mol Model 2014; 20:2357. [PMID: 25056123 PMCID: PMC4139591 DOI: 10.1007/s00894-014-2357-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 06/15/2014] [Indexed: 12/29/2022]
Abstract
NUPR1, a small chromatin protein, plays a critical role in cancer development, progression, and resistance to therapy. Here, using a combination of structural bioinformatics and molecular modeling methods, we report several novel findings that enhance our understanding of the biochemical function of this protein. We find that NUPR1 has been conserved throughout evolution, and over time it has undergone duplications and transpositions to form other transcriptional regulators. Using threading, homology-based molecular modeling, molecular mechanics calculations, and molecular dynamics simulations, we generated structural models for four of these proteins: NUPR1a, NUPR1b, NUPR2, and the NUPR-like domain of GTF2-I. Comparative analyses of these models combined with extensive linear motif identification reveal that these four proteins, though similar in their propensities for folding, differ in size, surface changes, and sites amenable for posttranslational modification. Lastly, taking NUPR1a as the paradigm for this family, we built models of a NUPR–DNA complex. Additional structural comparisons revealed that NUPR1 defines a new family of small-groove-binding proteins that share structural features with, yet are distinct from, helix-loop-helix AT-hook-containing HMG proteins. These models and inferences should lead to a better understanding of the function of this group of chromatin proteins, which play a critical role in the development of human malignant diseases.
Collapse
|
64
|
Grasso D, Garcia MN, Hamidi T, Cano C, Calvo E, Lomberk G, Urrutia R, Iovanna JL. Genetic inactivation of the pancreatitis-inducible gene Nupr1 impairs PanIN formation by modulating Kras(G12D)-induced senescence. Cell Death Differ 2014; 21:1633-41. [PMID: 24902898 PMCID: PMC4158688 DOI: 10.1038/cdd.2014.74] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 04/01/2014] [Accepted: 04/30/2014] [Indexed: 12/29/2022] Open
Abstract
Nuclear protein 1 (Nupr1), a small chromatin protein, has a critical role in cancer development, progression and resistance to therapy. Previously, we had demonstrated that Nupr1 cooperates with KrasG12D to induce pancreas intraepithelial neoplasias (PanIN) formation and pancreatic ductal adenocarcinoma development in mice. However, the molecular mechanisms by which Nupr1 influences Kras-mediated preneoplastic growth remain to be fully characterized. In the current study, we report evidence supporting a role for Nupr1 as a gene modifier of KrasG12D-induced senescence, which must be overcome to promote PanIN formation. We found that genetic inactivation of Nupr1 in mice impairs Kras-induced PanIN, leading to an increase in β-galactosidase-positive cells and an upregulation of surrogate marker genes for senescence. More importantly, both of these cellular and molecular changes are recapitulated by the results of mechanistic experiments using RNAi-based inactivation of Nupr1 in human pancreatic cancer cell models. In addition, the senescent phenotype, which results from Nupr1 inactivation, is accompanied by activation of the FoxO3a-Skp2-p27Kip1-pRb-E2F pathway in vivo and in vitro. Thus, combined, these results show, for the first time, that Nupr1 aids oncogenic Kras to bypass senescence in a manner that cooperatively promotes PanIN formation. Besides its mechanistic importance, this new knowledge bears medical relevance as it delineates early pathobiological events that may be targeted in the future as a means to interfere with the formation of preneoplastic lesions early during pancreatic carcinogenesis.
Collapse
Affiliation(s)
- D Grasso
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
| | - M N Garcia
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
| | - T Hamidi
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
| | - C Cano
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
| | - E Calvo
- Molecular Endocrinology and Oncology Research Center, CHUL Research Center, Quebec City, QC, Canada
| | - G Lomberk
- Laboratory of Epigenetics and Chromatin Dynamics, Gastroenterology Research Unit, Departments of Biochemistry and Molecular Biology, Biophysics, and Medicine, Mayo Clinic, Rochester, MN, USA
| | - R Urrutia
- Laboratory of Epigenetics and Chromatin Dynamics, Gastroenterology Research Unit, Departments of Biochemistry and Molecular Biology, Biophysics, and Medicine, Mayo Clinic, Rochester, MN, USA
| | - J L Iovanna
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
| |
Collapse
|
65
|
Cano CE, Hamidi T, Garcia MN, Grasso D, Loncle C, Garcia S, Calvo E, Lomberk G, Dusetti N, Bartholin L, Urrutia R, Iovanna JL. Genetic inactivation of Nupr1 acts as a dominant suppressor event in a two-hit model of pancreatic carcinogenesis. Gut 2014; 63:984-95. [PMID: 24026351 DOI: 10.1136/gutjnl-2013-305221] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Nuclear protein 1 (Nupr1) is a major factor in the cell stress response required for Kras(G12D)-driven formation of pancreatic intraepithelial neoplastic lesions (PanINs). We evaluated the relevance of Nupr1 in the development of pancreatic cancer. METHODS We investigated the role of Nupr1 in pancreatic ductal adenocarcinoma (PDAC) progression beyond PanINs in Pdx1-cre;LSL-Kras(G12D);Ink4a/Arf(fl/fl)(KIC) mice. RESULTS Even in the context of the second tumorigenic hit of Ink4a/Arf deletion, Nupr1 deficiency led to suppression of malignant transformation involving caspase 3 activation in premalignant cells of KIC pancreas. Only half of Nupr1-deficient;KIC mice achieved PDAC development, and incident cases survived longer than Nupr1(wt);KIC mice. This was associated with the development of well-differentiated PDACs in Nupr1-deficient;KIC mice, which displayed enrichment of genes characteristic of the recently identified human classical PDAC subtype. Nupr1-deficient;KIC PDACs also shared with human classical PDACs the overexpression of the Kras-activation gene signature. In contrast, Nupr1(wt);KIC mice developed invasive PDACs with enriched gene signature of human quasi-mesenchymal (QM) PDACs. Cells derived from Nupr1-deficient;KIC PDACs growth in an anchorage-independent manner in vitro had higher aldehyde dehydrogenase activity and overexpressed nanog, Oct-4 and Sox2 transcripts compared with Nupr1(wt);KIC cells. Moreover, Nupr1-deficient and Nurpr1(wt);KIC cells differed in their sensitivity to the nucleoside analogues Ly101-4b and WJQ63. Together, these findings show the pivotal role of Nupr1 in both the initiation and late stages of PDAC in vivo, with a potential impact on PDAC cell stemness. CONCLUSIONS According to Nupr1 status, KIC mice develop tumours that phenocopy human classical or QM-PDAC, respectively, and present differential drug sensitivity, thus becoming attractive models for preclinical drug trials.
Collapse
Affiliation(s)
- Carla E Cano
- Centre de Recherche en Carcérologie de Marseille (CRCM), INSERM UMR 1068, CNRS UMR 7258, Aix-Marseille University and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, , Marseille, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Cholesterol biosynthesis and ER stress in peroxisome deficiency. Biochimie 2014; 98:75-85. [DOI: 10.1016/j.biochi.2013.10.019] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 10/22/2013] [Indexed: 12/27/2022]
|
67
|
The molecular mechanisms of zinc neurotoxicity and the pathogenesis of vascular type senile dementia. Int J Mol Sci 2013; 14:22067-81. [PMID: 24213606 PMCID: PMC3856052 DOI: 10.3390/ijms141122067] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 10/18/2013] [Accepted: 10/22/2013] [Indexed: 12/28/2022] Open
Abstract
Zinc (Zn) is an essential trace element that is abundantly present in the brain. Despite its importance in normal brain functions, excess Zn is neurotoxic and causes neurodegeneration following transient global ischemia and plays a crucial role in the pathogenesis of vascular-type dementia (VD). We have investigated the molecular mechanisms of Zn-induced neurotoxicity using immortalized hypothalamic neurons (GT1–7 cells) and found that carnosine (β-alanyl histidine) and histidine (His) inhibited Zn2+-induced neuronal death. A DNA microarray analysis revealed that the expression of several genes, including metal-related genes (metallothionein and Zn transporter 1), endoplasmic reticulum (ER)-stress related genes (GADD34, GADD45, and p8), and the calcium (Ca)-related gene Arc (activity-related cytoskeleton protein), were affected after Zn exposure. The co-existence of carnosine or His inhibited the expression of GADD34, p8, and Arc, although they did not influence the expression of the metal-related genes. Therefore, ER-stress and the disruption of Ca homeostasis may underlie the mechanisms of Zn-induced neurotoxicity, and carnosine might be a possible drug candidate for the treatment of VD.
Collapse
|
68
|
Aguado-Llera D, Hamidi T, Doménech R, Pantoja-Uceda D, Gironella M, Santoro J, Velázquez-Campoy A, Neira JL, Iovanna JL. Deciphering the binding between Nupr1 and MSL1 and their DNA-repairing activity. PLoS One 2013; 8:e78101. [PMID: 24205110 PMCID: PMC3813506 DOI: 10.1371/journal.pone.0078101] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 09/06/2013] [Indexed: 01/21/2023] Open
Abstract
The stress protein Nupr1 is a highly basic, multifunctional, intrinsically disordered protein (IDP). MSL1 is a histone acetyl transferase-associated protein, known to intervene in the dosage compensation complex (DCC). In this work, we show that both Nupr1 and MSL1 proteins were recruited and formed a complex into the nucleus in response to DNA-damage, which was essential for cell survival in reply to cisplatin damage. We studied the interaction of Nupr1 and MSL1, and their binding affinities to DNA by spectroscopic and biophysical methods. The MSL1 bound to Nupr1, with a moderate affinity (2.8 µM) in an entropically-driven process. MSL1 did not bind to non-damaged DNA, but it bound to chemically-damaged-DNA with a moderate affinity (1.2 µM) also in an entropically-driven process. The Nupr1 protein bound to chemically-damaged-DNA with a slightly larger affinity (0.4 µM), but in an enthalpically-driven process. Nupr1 showed different interacting regions in the formed complexes with Nupr1 or DNA; however, they were always disordered (“fuzzy”), as shown by NMR. These results underline a stochastic description of the functionality of the Nupr1 and its other interacting partners.
Collapse
Affiliation(s)
- David Aguado-Llera
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Elche (Alicante), Spain
| | - Tewfik Hamidi
- Centre de Recherche en Cancérologie de Marseille (CRCM), Institut National De La Santé Et De La Recherche Médicale (INSERM) Unit 1068, Centre National De La Recherche Scientifique (CNRS) Unit 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Marseille, France
| | - Rosa Doménech
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Elche (Alicante), Spain
| | - David Pantoja-Uceda
- Instituto de Química Física Rocasolano (IQFR), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Meritxell Gironella
- Centre de Recherche en Cancérologie de Marseille (CRCM), Institut National De La Santé Et De La Recherche Médicale (INSERM) Unit 1068, Centre National De La Recherche Scientifique (CNRS) Unit 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Marseille, France
- Centro de Investigación Biomédica en Red de enfermedades hepáticas y digestivas (Ciberehd), Barcelona, Spain
| | - Jorge Santoro
- Instituto de Química Física Rocasolano (IQFR), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Adrián Velázquez-Campoy
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Unidad Asociada IQFR-CSIC-BIFI, Universidad de Zaragoza, Zaragoza, Spain
- Fundación Agencia Aragonesa para la Investigación y Desarrollo (ARAID), Diputación General de Aragón, Zaragoza, Spain
- Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza, Spain
| | - José L. Neira
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Elche (Alicante), Spain
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Unidad Asociada IQFR-CSIC-BIFI, Universidad de Zaragoza, Zaragoza, Spain
- * E-mail: (JLN); (JLI)
| | - Juan L. Iovanna
- Centre de Recherche en Cancérologie de Marseille (CRCM), Institut National De La Santé Et De La Recherche Médicale (INSERM) Unit 1068, Centre National De La Recherche Scientifique (CNRS) Unit 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Marseille, France
- * E-mail: (JLN); (JLI)
| |
Collapse
|
69
|
Baryakin D, Semenov D, Savelyeva A, Koval O, Rabinov I, Kuligina E, Richter V. Alu- and 7SL RNA Analogues Suppress MCF-7 Cell Viability through Modulating the Transcription of Endoplasmic Reticulum Stress Response Genes. Acta Naturae 2013; 5:83-93. [PMID: 24455187 PMCID: PMC3890993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2022] Open
Abstract
11% of the human genome is composed of Alu-retrotransposons, whose transcription by RNA polymerase III (Pol III) leads to the accumulation of several hundreds to thousands of Alu-RNA copies in the cytoplasm. Expression of Alu-RNA Pol III is significantly increased at various levels of stress, and the increase in the Alu-RNA level is accompanied by a suppression of proliferation, a decrease in viability, and induction of apoptotic processes in human cells. However, the question about the biological functions of Pol III Alu-transcripts, as well as their mechanism of action, remains open. In this work, analogues of Alu-RNA and its evolutionary ancestor, 7SL RNA, were synthesized. Transfection of human breast adenocarcinoma MCF-7 cells with the Alu-RNA and 7SL RNA analogues is accompanied by a decrease in viability and by induction of proapoptotic changes in these cells. The analysis of the combined action of these analogues and actinomycin D or tamoxifen revealed that the decreased viability of MCF-7 cells transfected with Alu-RNA and 7SL RNA was due to the modulation of transcription. A whole transcriptome analysis of gene expression revealed that increased gene expression of the transcription regulator NUPR1 (p8), as well as the transcription factor DDIT3 (CHOP), occurs under the action of both the Alu- and 7SL RNA analogues on MCF-7 cells. It has been concluded that induction of proapoptotic changes in human cells under the influence of the Alu-RNA and 7SL RNA analogues is related to the transcriptional activation of the genes of cellular stress factors, including the endoplasmic reticulum stress response factors.
Collapse
Affiliation(s)
- D.N. Baryakin
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Lavrentiev Ave., 8, Novosibirsk, Russia, 630090
| | - D.V. Semenov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Lavrentiev Ave., 8, Novosibirsk, Russia, 630090
| | - A.V. Savelyeva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Lavrentiev Ave., 8, Novosibirsk, Russia, 630090
- Novosibirsk State University, Pirogova Str., 2, Novosibirsk, Russia, 630090
| | - O.A. Koval
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Lavrentiev Ave., 8, Novosibirsk, Russia, 630090
| | - I.V. Rabinov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Lavrentiev Ave., 8, Novosibirsk, Russia, 630090
| | - E.V. Kuligina
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Lavrentiev Ave., 8, Novosibirsk, Russia, 630090
| | - V.A. Richter
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Lavrentiev Ave., 8, Novosibirsk, Russia, 630090
| |
Collapse
|
70
|
Coppe A, Agostini C, Marino IAM, Zane L, Bargelloni L, Bortoluzzi S, Patarnello T. Genome evolution in the cold: Antarctic icefish muscle transcriptome reveals selective duplications increasing mitochondrial function. Genome Biol Evol 2013. [PMID: 23196969 PMCID: PMC3595028 DOI: 10.1093/gbe/evs108] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Antarctic notothenioids radiated over millions of years in subzero waters, evolving peculiar features, such as antifreeze glycoproteins and absence of heat shock response. Icefish, family Channichthyidae, also lack oxygen-binding proteins and display extreme modifications, including high mitochondrial densities in aerobic tissues. A genomic expansion accompanying the evolution of these fish was reported, but paucity of genomic information limits the understanding of notothenioid cold adaptation. We reconstructed and annotated the first skeletal muscle transcriptome of the icefish Chionodraco hamatus providing a new resource for icefish genomics (http://compgen.bio.unipd.it/chamatusbase/, last accessed December 12, 2012). We exploited deep sequencing of this energy-dependent tissue to test the hypothesis of selective duplication of genes involved in mitochondrial function. We developed a bioinformatic approach to univocally assign C. hamatus transcripts to orthology groups extracted from phylogenetic trees of five model species. Chionodraco hamatus duplicates were recorded for each orthology group allowing the identification of duplicated genes specific to the icefish lineage. Significantly more duplicates were found in the icefish when transcriptome data were compared with whole-genome data of model species. Indeed, duplicated genes were significantly enriched in proteins with mitochondrial localization, involved in mitochondrial function and biogenesis. In cold conditions and without oxygen-carrying proteins, energy production is challenging. The combination of high mitochondrial densities and the maintenance of duplicated genes involved in mitochondrial biogenesis and aerobic respiration might confer a selective advantage by improving oxygen diffusion and energy supply to aerobic tissues. Our results provide new insights into the genomic basis of icefish cold adaptation.
Collapse
Affiliation(s)
- Alessandro Coppe
- Department of Comparative Biomedicine and Food Science, University of Padova, Agripolis, Legnaro (Padova), Italy
| | | | | | | | | | | | | |
Collapse
|
71
|
Kawahara M, Sadakane Y, Koyama H, Konoha K, Ohkawara S. D-histidine and L-histidine attenuate zinc-induced neuronal death in GT1-7 cells. Metallomics 2013; 5:453-60. [PMID: 23503404 DOI: 10.1039/c3mt20264j] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Although zinc (Zn) is an essential trace element, excess Zn causes neuronal death following transient global ischemia and plays a central role in the pathogenesis of vascular-type dementia. In this study, we developed a rapid and convenient screening system for substances that prevent Zn-induced neurotoxicity by using GT1-7 cells (immortalized hypothalamic neurons), with the aim of identifying a treatment for vascular-type dementia. Among tested, we found a protective substance in the extract of round herring (Etrumeus teres), and determined its structure as l-histidine. Analysis of the structure-activity relationship by using histidine analogues revealed that both l-histidine and d-histidine exhibit the same neuroprotective activity. Furthermore, we investigated the molecular mechanisms underlying the protective effect of histidine on Zn-induced neurotoxicity using Zn imaging and gene expression analysis, and found that histidine protects against Zn-induced neurotoxicity not by inhibiting Zn chelation, thereby preventing increases in intracellular Zn(2+). Moreover, it is also suggested that endoplasmic reticulum (ER) stress and activity-regulated cytoskeleton associated protein (Arc) are implicated in Zn-induced degeneration of neurons.
Collapse
Affiliation(s)
- Masahiro Kawahara
- Laboratory of Bio-Analytical Chemistry, Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo 202-8585, Japan.
| | | | | | | | | |
Collapse
|
72
|
Du P, Ye L, Yang Y, Jiang WG. Candidate of metastasis 1 regulates in vitro growth and invasion of bladder cancer cells. Int J Oncol 2013; 42:1249-56. [PMID: 23443904 DOI: 10.3892/ijo.2013.1802] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 08/29/2012] [Indexed: 11/05/2022] Open
Abstract
COM1 (candidate of metastasis 1) has been recently shown to influence the metastatic ability of cancer cells and disease progression of certain solid tumours. The role of COM1 in bladder cancer remains unknown. In the present study, we examined the expression of the COM1 protein in human bladder tissues, and also its effect on growth, adhesion, migration and invasion of human bladder cancer cells, in vitro. The expression of COM1 in human bladder tissues and bladder cancer cell lines was assessed at both the mRNA and protein levels using RT-PCR and immunohistochemistry, respectively. COM1 staining was compared with tumour staging. Mammalian COM1 expression construct and anti-COM1 ribozyme transgenes were used to generate sublines of human bladder cancer cells with differential expression of COM1. The effect of COM1 on cellular functions was examined in bladder cancer cells with which COM1 was overexpressed or knocked down using a variety of in vitro assays. In normal bladder tissues, stronger staining of COM1 was seen in the cytoplasm of normal urothelial cells. In contrast, the staining was notably weak or absent in cancer cells of tumour tissues and invasive tumours had significantly low levels of staining compared with non-invasive tumours (p=0.012). Knockdown of COM1 in bladder cancer cell lines resulted in an increase in cellular growth and invasion, while overexpression of COM1 suppressed invasiveness and growth of these cells. Further investigation revealed an increased apoptosis and upregulated p21 in bladder cancer cells when COM1 was overexpressed. COM1 is expressed at low levels in human bladder cancer and in particular in invasive bladder tumours. COM1 levels are inversely correlated with the invasiveness and growth of bladder cancer cells in vitro. Induced apoptosis and upregulation of p21 are indicated in the mechanism of COM1 inhibiting bladder cancer cell growth. It suggests that COM1 is a potential tumour suppressor in human bladder cancer.
Collapse
Affiliation(s)
- Peng Du
- Cardiff University-Peking University School of Oncology Joint Institute, Cardiff CF14 4XN, UK
| | | | | | | |
Collapse
|
73
|
Hamidi T, Cano CE, Grasso D, Garcia MN, Sandi MJ, Calvo EL, Dagorn JC, Lomberk G, Urrutia R, Goruppi S, Carracedo A, Velasco G, Iovanna JL. Nupr1-aurora kinase A pathway provides protection against metabolic stress-mediated autophagic-associated cell death. Clin Cancer Res 2012; 18:5234-46. [PMID: 22899799 DOI: 10.1158/1078-0432.ccr-12-0026] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The limited supply of oxygen and nutrients is thought to result in rigorous selection of cells that will eventually form the tumor. EXPERIMENTAL DESIGN Nupr1 expression pattern was analyzed in human tissue microarray (TMA) and correlated with survival time of the patient. Microarray analysis was conducted on MiaPaCa2 cells subjected to metabolic stress in Nupr1-silenced conditions. DNA repair and cell cycle-associated gene expression was confirmed by real-time quantitative PCR (qRT-PCR). Nupr1 and AURKA protective role were analyzed using RNA interference (RNAi) silencing or overexpression. DNA damage and autophagy were analyzed by Western blot analysis and immunofluorescence. RESULTS We showed that both Nupr1 and HIF1α are coexpressed in human pancreatic ductal adenocarcinoma (PDAC) samples and negatively correlate with survival time. PDAC-derived cells submitted to hypoxia and/or glucose starvation induce DNA damage-dependent cell death concomitantly to the overexpression of stress protein Nupr1. Affymetrix-based transcriptoma analysis reveals that Nupr1 knockdown enhances DNA damage and alters the expression of several genes involved in DNA repair and cell-cycle progression. Expression of some of these genes is common to hypoxia and glucose starvation, such as Aurka gene, suggesting that Nupr1 overexpression counteracts the transcriptional changes occurring under metabolic stress. The molecular mechanism by which hypoxia and glucose starvation induce cell death involves autophagy-associated, but not caspase-dependent, cell death. Finally, we have found that AURKA expression is partially regulated by Nupr1 and plays a major role in this response. CONCLUSIONS Our data reveal that Nupr1 is involved in a defense mechanism that promotes pancreatic cancer cell survival when exposed to metabolic stress.
Collapse
Affiliation(s)
- Tewfik Hamidi
- Stress Cellulaire, Parc Scientifique et Technologique de Luminy, Marseille, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Localization, developmental regulation and stress induction of p8-L1 and p8-L2 in zebrafish. Open Life Sci 2012. [DOI: 10.2478/s11535-012-0045-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AbstractThe transcription cofactor, p8, has a basic helix-loop-helix motif and is involved in several metabolic processes. It has previously been reported that p8 plays an important role in stress response in zebrafish. We expanded on these studies to further investigate the roles of two p8-like cDNAs found in zerbrafish, p8-L1 and p8-L2. Zebrafish p8-L1 and p8-L2 cDNAs consist of 742 bp and 813 bp, respectively. Both have the same open reading frame despite different genomic structures and encode a 76 amino acid polypeptide with conserved a Phospho_p8 domain. These two cDNA’s were abundant in different tissues in the zebrafish: p8-L1 was high in intestine and muscle tissue and in low abundance in the backbone, whereas the highest amount of p8-L2 was found in the backbone, similar to p8. During embryogenesis, both p8-L1 and p8-L2 were abundant at the cleavage stage and decreased gradually in abundance from blastula to pharyngula stage. However, p8-L1 abundance increased during hatching as observed in p8. Quantitative real-time PCR assay suggested that p8-L1 and p8-L2 were both up-regulated significantly under osmotic pressure and pH value challenges, suggesting an important role of p8-L1 and p8-L2 genes in stress response.
Collapse
|
75
|
Hamidi T, Algül H, Cano CE, Sandi MJ, Molejon MI, Riemann M, Calvo EL, Lomberk G, Dagorn JC, Weih F, Urrutia R, Schmid RM, Iovanna JL. Nuclear protein 1 promotes pancreatic cancer development and protects cells from stress by inhibiting apoptosis. J Clin Invest 2012; 122:2092-103. [PMID: 22565310 DOI: 10.1172/jci60144] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Accepted: 03/14/2012] [Indexed: 12/13/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has the lowest survival rate of all cancers and shows remarkable resistance to cell stress. Nuclear protein 1 (Nupr1), which mediates stress response in the pancreas, is frequently upregulated in pancreatic cancer. Here, we report that Nupr1 plays an essential role in pancreatic tumorigenesis. In a mouse model of pancreatic cancer with constitutively expressed oncogenic Kras(G12D), we found that loss of Nupr1 protected from the development of pancreatic intraepithelial neoplasias (PanINs). Further, in cultured pancreatic cells, nutrient deprivation activated Nupr1 expression, which we found to be required for cell survival. We found that Nupr1 protected cells from stress-induced death by inhibiting apoptosis through a pathway dependent on transcription factor RelB and immediate early response 3 (IER3). NUPR1, RELB, and IER3 proteins were coexpressed in mouse PanINs from Kras(G12D)-expressing pancreas. Moreover, pancreas-specific deletion of Relb in a Kras(G12D) background resulted in delayed in PanIN development associated with a lack of IER3 expression. Thus, efficient PanIN formation was dependent on the expression of Nupr1 and Relb, with likely involvement of IER3. Finally, in patients with PDAC, expression of NUPR1, RELB, and IER3 was significantly correlated with a poor prognosis. Cumulatively, these results reveal a NUPR1/RELB/IER3 stress-related pathway that is required for oncogenic Kras(G12D)-dependent transformation of the pancreas.
Collapse
Affiliation(s)
- Tewfik Hamidi
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM UMR 1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Marseille, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Kim KS, Jin DI, Yoon S, Baek SY, Kim BS, Oh SO. Expression and roles of NUPR1 in cholangiocarcinoma cells. Anat Cell Biol 2012; 45:17-25. [PMID: 22536548 PMCID: PMC3328737 DOI: 10.5115/acb.2012.45.1.17] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Revised: 01/25/2012] [Accepted: 02/01/2012] [Indexed: 01/25/2023] Open
Abstract
Nuclear protein-1 (NUPR1) is a small nuclear protein that is responsive to various stress stimuli. Although NUPR1 has been associated with cancer development, its expression and roles in cholangiocarcinoma have not yet been described. In the present study, we found that NUPR1 was over-expressed in human cholangiocarcinoma tissues, using immunohistochemistry. The role of NUPR1 in cholangiocarcinoma was examined by its specific siRNA. NUPR1 siRNA decreased proliferation, migration and invasion of human cholangiocarcinoma cell lines (HuCCT1 and SNU1196 cells). From these results, we conclude that NUPR1 is over-expressed in cholangiocarcinoma and regulates the proliferation and motility of cancer cells.
Collapse
Affiliation(s)
- Ki-Sun Kim
- Department of Anatomy, Pusan National University School of Medicine, Yangsan, Korea
| | | | | | | | | | | |
Collapse
|
77
|
Meng N, Zhao J, Su L, Zhao B, Zhang Y, Zhang S, Miao J. A butyrolactone derivative suppressed lipopolysaccharide-induced autophagic injury through inhibiting the autoregulatory loop of p8 and p53 in vascular endothelial cells. Int J Biochem Cell Biol 2011; 44:311-9. [PMID: 22085531 DOI: 10.1016/j.biocel.2011.11.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 10/30/2011] [Accepted: 11/02/2011] [Indexed: 10/15/2022]
Abstract
Lipopolysaccharide (LPS)-induced vascular endothelial cell (VEC) dysfunction is an important contributing factor in vascular diseases. Recently, we found that LPS impaired VEC by inducing autophagy. Our previous researches showed that a butyrolactone derivative, 3-benzyl-5-((2-nitrophenoxy) methyl)-dihydrofuran-2(3H)-one (3BDO) selectively protected VEC function. The objective of the present study is to investigate whether and how 3BDO inhibits LPS-induced VEC autophagic injury. Our results showed that LPS induced autophagy and led to increase of reactive oxygen species (ROS) and decrease of mitochondrial membrane potential (MMP) in Human umbilical vein vascular endothelial cells (HUVECs). Furthermore, LPS significantly increased p8 and p53 protein levels and the nuclear translocation of p53. All of these effects of LPS on HUVECs were strongly inhibited by 3BDO. Importantly, the ROS scavenger N-acetylcysteine (NAC) could inhibited LPS-induced autophagy and knockdown of p8 by RNA interference inhibited the autophagy, p53 protein level increase, the translocation of p53 into nuclei and the ROS level increase induced by LPS in HUVECs. The data suggested that 3BDO inhibited LPS-induced autophagy in HUVECs through inhibiting the ROS overproduction, the increase of p8 and p53 expression and the nuclear translocation of p53. Our findings provide a potential tool for understanding the mechanism underlying LPS-induced autophagy in HUVECs and open the door to a novel therapeutic drug for LPS-induced vascular diseases.
Collapse
Affiliation(s)
- Ning Meng
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Jinan 250100, China
| | | | | | | | | | | | | |
Collapse
|
78
|
Huang J, Jia Y, Fu T, Viswakarma N, Bai L, Rao MS, Zhu Y, Borensztajn J, Reddy JK. Sustained activation of PPARα by endogenous ligands increases hepatic fatty acid oxidation and prevents obesity in ob/ob mice. FASEB J 2011; 26:628-38. [PMID: 22009939 DOI: 10.1096/fj.11-194019] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Obesity, a major health concern, results from an imbalance between energy intake and expenditure. Leptin-deficient ob/ob mice are paradigmatic of obesity, resulting from excess energy intake and storage. Mice lacking acyl-CoA oxidase 1 (Acox1), the first enzyme of the peroxisomal fatty acid β-oxidation system, are characterized by increased energy expenditure and a lean body phenotype caused by sustained activation of peroxisome proliferator-activated receptor α (PPARα) by endogenous ligands in liver that remain unmetabolized in the absence of Acox1. We generated ob/ob mice deficient in Acox1 (Acox1(-/-)) to determine how the activation of PPARα by endogenous ligands might affect the obesity of ob/ob mice. In contrast to Acox1(-/-) (14.3±1.2 g at 6 mo) and the Acox1-deficient (ob/ob) double-mutant mice (23.8±4.6 g at 6 mo), the ob/ob mice are severely obese (54.3±3.2 g at 6 mo) and had significantly more (P<0.01) epididymal fat content. The resistance of Acox1(-/-)/ob/ob mice to obesity is due to increased PPARα-mediated up-regulation of genes involved in fatty acid oxidation in liver. Activation of PPARα in Acox1-deficient ob/ob mice also reduces serum glucose and insulin (P<0.05) and improves glucose tolerance and insulin sensitivity. Further, PPARα activation reduces hepatic steatosis and increases hepatocellular regenerative response in Acox1(-/-)/ob/ob mice at a more accelerated pace than in mice lacking only Acox1. However, Acox1(-/-)/ob/ob mice manifest hepatic endoplasmic reticulum (ER) stress and also develop hepatocellular carcinomas (8 of 8 mice) similar to those observed in Acox1(-/-) mice (10 of 10 mice), but unlike in ob/ob (0 of 14 mice) and OB/OB (0 of 6 mice) mice, suggesting that superimposed ER stress and PPARα activation contribute to carcinogenesis in a fatty liver. Finally, absence of Acox1 in ob/ob mice can impart resistance to high-fat diet (60% fat)-induced obesity, and their liver had significantly (P<0.01) more cell proliferation. These studies with Acox1(-/-)/ob/ob mice indicate that sustained activation of lipid-sensing nuclear receptor PPARα attenuates obesity and restores glucose homeostasis by ameliorating insulin resistance but increases the risk for liver cancer development, in part related to excess energy combustion.
Collapse
Affiliation(s)
- Jiansheng Huang
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Averous J, Lambert-Langlais S, Cherasse Y, Carraro V, Parry L, B'chir W, Jousse C, Maurin AC, Bruhat A, Fafournoux P. Amino acid deprivation regulates the stress-inducible gene p8 via the GCN2/ATF4 pathway. Biochem Biophys Res Commun 2011; 413:24-9. [PMID: 21867687 DOI: 10.1016/j.bbrc.2011.08.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Accepted: 08/07/2011] [Indexed: 11/25/2022]
Abstract
In mammals, the GCN2/ATF4 pathway has been described as the main pathway involved in the regulation of gene expression upon amino acid limitation. This regulation is notably conferred by the presence of a cis-element called Amino Acid Response Element (AARE) in the promoter of specific genes. In vivo, the notion of amino acid limitation is not limited to nutritional context, indeed several pathological situations are associated with alteration of endogenous amino acid availability. This is notably true in the context of tumour in which the alteration of the microenvironment can lead to a perturbation in nutrient availability. P8 is a small weakly folded multifunctional protein that is overexpressed in several kinds of cancers and whose expression is induced by different stresses. In this study we have demonstrated that amino acid starvation was also able to induce p8 expression. Moreover, we brought the evidence, in vitro and in vivo, that the GCN2/ATF4 pathway is involved in this regulation through the presence of an AARE in p8 promoter.
Collapse
Affiliation(s)
- J Averous
- Unité de Nutrition Humaine, UMR1019, INRA de Theix, 63122 Saint-Genès Champanelle, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Ji C, Kaplowitz N, Lau MY, Kao E, Petrovic LM, Lee AS. Liver-specific loss of glucose-regulated protein 78 perturbs the unfolded protein response and exacerbates a spectrum of liver diseases in mice. Hepatology 2011; 54:229-39. [PMID: 21503947 PMCID: PMC3125405 DOI: 10.1002/hep.24368] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
UNLABELLED The endoplasmic reticulum (ER) chaperone protein glucose-regulated protein 78 (GRP78)/binding immunoglobulin protein is a master regulator of ER homeostasis and stress responses, which have been implicated in the pathogenesis of metabolic disorders. By applying the locus of X-over P1-cyclization recombination strategy, we generated mice with liver-specific GRP78 loss. Our studies using this novel mouse model revealed that liver GRP78 was required for neonatal survival, and a loss of GRP78 in the adult liver greater than 50% caused an ER stress response and dilation of the ER compartment, which was accompanied by the onset of apoptosis. This suggested the critical involvement of GRP78 in maintaining hepatocyte ER homeostasis and viability. Furthermore, these mice exhibited elevations of serum alanine aminotransferase and fat accumulation in the liver, and they were sensitized to a variety of acute and chronic hepatic disorders by alcohol, a high-fat diet, drugs, and toxins. These disorders were alleviated by the simultaneous administration of the molecular chaperone 4-phenylbutyrate. A microarray analysis and a two-dimensional protein profile revealed major perturbations of unfolded protein response targets, common enzymes/factors in lipogenesis, and new factors possibly contributing to liver steatosis or fibrosis under ER stress (e.g., major urinary proteins in the liver, fatty acid binding proteins, adipose differentiation-related protein, cysteine-rich with epidermal growth factor-like domains 2, nuclear protein 1, and growth differentiation factor 15). CONCLUSION Our findings underscore the importance of GRP78 in managing the physiological client protein load and suppressing apoptosis in hepatocytes, and they support the pathological role of ER stress in the evolution of fatty liver disease under adverse conditions (i.e., drugs, diet, toxins, and alcohol).
Collapse
Affiliation(s)
- Cheng Ji
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| | - Neil Kaplowitz
- Department of Medicine Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Mo Yin Lau
- Department of Medicine Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Eddy Kao
- Department of Medicine Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Lydia M. Petrovic
- Department of Pathology Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Amy S. Lee
- Department of Biochemistry and Molecular Biology Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
81
|
Huang J, Viswakarma N, Yu S, Jia Y, Bai L, Vluggens A, Cherkaoui-Malki M, Khan M, Singh I, Yang G, Rao MS, Borensztajn J, Reddy JK. Progressive endoplasmic reticulum stress contributes to hepatocarcinogenesis in fatty acyl-CoA oxidase 1-deficient mice. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:703-13. [PMID: 21801867 DOI: 10.1016/j.ajpath.2011.04.030] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2010] [Revised: 04/20/2011] [Accepted: 04/25/2011] [Indexed: 02/08/2023]
Abstract
Fatty acyl-coenzyme A oxidase 1 (ACOX1) knockout (ACOX1(-/-)) mice manifest hepatic metabolic derangements that lead to the development of steatohepatitis, hepatocellular regeneration, spontaneous peroxisome proliferation, and hepatocellular carcinomas. Deficiency of ACOX1 results in unmetabolized substrates of this enzyme that function as biological ligands for peroxisome proliferator-activated receptor-α (PPARα) in liver. Here we demonstrate that sustained activation of PPARα in ACOX1(-/-) mouse liver by these ACOX1 substrates results in endoplasmic reticulum (ER) stress. Overexpression of transcriptional regulator p8 and its ER stress-related effectors such as the pseudokinase tribbles homolog 3, activating transcription factor 4, and transcription factor CCAAT/-enhancer-binding protein homologous protein as well as phosphorylation of eukaryotic translation initiation factor 2α, indicate the induction of unfolded protein response signaling in the ACOX1(-/-) mouse liver. We also show here that, in the liver, p8 is a target for all three PPAR isoforms (-α, -β, and -γ), which interact with peroxisome proliferator response elements in p8 promoter. Sustained activation of p8 and unfolded protein response-associated ER stress in ACOX1(-/-) mouse liver contributes to hepatocyte apoptosis and liver cell proliferation culminating in the development of hepatocarcinogenesis. We also demonstrate that human ACOX1 transgene is functional in ACOX1(-/-) mice and effectively prevents metabolic dysfunctions that lead to ER stress and carcinogenic effects. Taken together, our data indicate that progressive PPARα- and p8-mediated ER stress contribute to the hepatocarcinogenesis in ACOX1(-/-) mice.
Collapse
Affiliation(s)
- Jiansheng Huang
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Kong DK, Georgescu SP, Cano C, Aronovitz MJ, Iovanna JL, Patten RD, Kyriakis JM, Goruppi S. Deficiency of the transcriptional regulator p8 results in increased autophagy and apoptosis, and causes impaired heart function. Mol Biol Cell 2010; 21:1335-49. [PMID: 20181828 PMCID: PMC2854092 DOI: 10.1091/mbc.e09-09-0818] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
In this study, we investigate a role for p8 in autophagy in vitro and in vivo, by using p8 −/− mice. In both settings, silencing of p8 is associated with basal up-regulation of autophagy and apoptosis. In vivo, the hearts of p8 knockout mice develop features that provoke a decreased left ventricular functionality. Autophagy is a cytoprotective pathway used to degrade and recycle cytoplasmic content. Dysfunctional autophagy has been linked to both cancer and cardiomyopathies. Here, we show a role for the transcriptional regulator p8 in autophagy. p8 RNA interference (RNAi) increases basal autophagy markers in primary cardiomyocytes, in H9C2 and U2OS cells, and decreases cellular viability after autophagy induction. This autophagy is associated with caspase activation and is blocked by atg5 silencing and by pharmacological inhibitors. FoxO3 transcription factor was reported to activate autophagy by enhancing the expression of autophagy-related genes. P8 expression represses FoxO3 transcriptional activity, and p8 knockdown affects FoxO3 nuclear localization. Thus, p8 RNAi increases FoxO3 association with bnip3 promoter, a known proautophagic FoxO3 target, resulting in higher bnip3 RNA and protein levels. Accordingly, bnip3 knockdown restores cell viability and blocks apoptosis of p8-deficient cells. In vivo, p8 −/− mice have higher autophagy and express higher cardiac bnip3 levels. These mice develop left ventricular wall thinning and chamber dilation, with consequent impaired cardiac function. Our studies provide evidence of a p8-dependent mechanism regulating autophagy by acting as FoxO3 corepressor, which may be relevant for diseases associated with dysregulated autophagy, as cardiovascular pathologies and cancer.
Collapse
Affiliation(s)
- Derek K Kong
- Molecular Cardiology Research Institute, Tufts Medical Center and Department of Medicine, Tufts University School of Medicine, Boston, MA 02111, USA
| | | | | | | | | | | | | | | |
Collapse
|