51
|
Zinc Deficiency Disturbs Mucin Expression, O-Glycosylation and Secretion by Intestinal Goblet Cells. Int J Mol Sci 2020; 21:ijms21176149. [PMID: 32858966 PMCID: PMC7504335 DOI: 10.3390/ijms21176149] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/22/2020] [Accepted: 08/24/2020] [Indexed: 12/14/2022] Open
Abstract
Approximately 1 billion people worldwide suffer from zinc deficiency, with severe consequences for their well-being, such as critically impaired intestinal health. In addition to an extreme degeneration of the intestinal epithelium, the intestinal mucus is seriously disturbed in zinc-deficient (ZD) animals. The underlying cellular processes as well as the relevance of zinc for the mucin-producing goblet cells, however, remain unknown. To this end, this study examines the impact of zinc deficiency on the synthesis, production, and secretion of intestinal mucins as well as on the zinc homeostasis of goblet cells using the in vitro goblet cell model HT-29-MTX. Zinc deprivation reduced their cellular zinc content, changed expression of the intestinal zinc transporters ZIP-4, ZIP-5, and ZnT1 and increased their zinc absorption ability, outlining the regulatory mechanisms of zinc homeostasis in goblet cells. Synthesis and secretion of mucins were severely disturbed during zinc deficiency, affecting both MUC2 and MUC5AC mRNA expression with ongoing cell differentiation. A lack of zinc perturbed mucin synthesis predominantly on the post-translational level, as ZD cells produced shorter O-glycans and the main O-glycan pattern was shifted in favor of core-3-based mucins. The expression of glycosyltransferases that determine the formation of core 1-4 O-glycans was altered in zinc deficiency. In particular, B3GNT6 mRNA catalyzing core 3 formation was elevated and C2GNT1 and C2GNT3 elongating core 1 were downregulated in ZD cells. These novel insights into the molecular mechanisms impairing intestinal mucus stability during zinc deficiency demonstrate the essentiality of zinc for the formation and maintenance of this physical barrier.
Collapse
|
52
|
Cerullo AR, Lai TY, Allam B, Baer A, Barnes WJP, Barrientos Z, Deheyn DD, Fudge DS, Gould J, Harrington MJ, Holford M, Hung CS, Jain G, Mayer G, Medina M, Monge-Nájera J, Napolitano T, Espinosa EP, Schmidt S, Thompson EM, Braunschweig AB. Comparative Animal Mucomics: Inspiration for Functional Materials from Ubiquitous and Understudied Biopolymers. ACS Biomater Sci Eng 2020; 6:5377-5398. [DOI: 10.1021/acsbiomaterials.0c00713] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Antonio R. Cerullo
- The PhD Program in Biochemistry, Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
- The Advanced Science Research Center, Graduate Center of the City University of New York, 85 St. Nicholas Terrace, New York, New York 10031, United States
- Department of Chemistry and Biochemistry, Hunter College, 695 Park Avenue, New York, New York 10065, United States
| | - Tsoi Ying Lai
- The Advanced Science Research Center, Graduate Center of the City University of New York, 85 St. Nicholas Terrace, New York, New York 10031, United States
| | - Bassem Allam
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York 11794-5000, United States
| | - Alexander Baer
- Department of Zoology, Institute of Biology, University of Kassel, Heinrich-Plett-Strasse 40, 34132 Kassel, Germany
| | - W. Jon P. Barnes
- Centre for Cell Engineering, Joseph Black Building, University of Glasgow, Glasgow G12 8QQ, Scotland, U.K
| | - Zaidett Barrientos
- Laboratorio de Ecología Urbana, Universidad Estatal a Distancia, Mercedes de Montes de Oca, San José 474-2050, Costa Rica
| | - Dimitri D. Deheyn
- Marine Biology Research Division-0202, Scripps Institute of Oceanography, UCSD, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Douglas S. Fudge
- Schmid College of Science and Technology, Chapman University, 1 University Drive, Orange, California 92866, United States
| | - John Gould
- School of Environmental and Life Sciences, University of Newcastle, University Drive, Callaghan, New South Wales 2308, Australia
| | - Matthew J. Harrington
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Mandë Holford
- The PhD Program in Biochemistry, Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
- Department of Chemistry and Biochemistry, Hunter College, 695 Park Avenue, New York, New York 10065, United States
- Department of Invertebrate Zoology, The American Museum of Natural History, New York, New York 10024, United States
- The PhD Program in Chemistry, Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
- The PhD Program in Biology, Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
| | - Chia-Suei Hung
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, Ohio 45433, United States
| | - Gaurav Jain
- Schmid College of Science and Technology, Chapman University, 1 University Drive, Orange, California 92866, United States
| | - Georg Mayer
- Department of Zoology, Institute of Biology, University of Kassel, Heinrich-Plett-Strasse 40, 34132 Kassel, Germany
| | - Mónica Medina
- Department of Biology, Pennsylvania State University, 208 Mueller Lab, University Park, Pennsylvania 16802, United States
| | - Julian Monge-Nájera
- Laboratorio de Ecología Urbana, Universidad Estatal a Distancia, Mercedes de Montes de Oca, San José 474-2050, Costa Rica
| | - Tanya Napolitano
- The PhD Program in Biochemistry, Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
- Department of Chemistry and Biochemistry, Hunter College, 695 Park Avenue, New York, New York 10065, United States
| | - Emmanuelle Pales Espinosa
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York 11794-5000, United States
| | - Stephan Schmidt
- Institute of Organic and Macromolecular Chemistry, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Eric M. Thompson
- Sars Centre for Marine Molecular Biology, Thormøhlensgt. 55, 5020 Bergen, Norway
- Department of Biological Sciences, University of Bergen, N-5006 Bergen, Norway
| | - Adam B. Braunschweig
- The PhD Program in Biochemistry, Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
- The Advanced Science Research Center, Graduate Center of the City University of New York, 85 St. Nicholas Terrace, New York, New York 10031, United States
- Department of Chemistry and Biochemistry, Hunter College, 695 Park Avenue, New York, New York 10065, United States
- The PhD Program in Chemistry, Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
| |
Collapse
|
53
|
N-Glycoproteins Have a Major Role in MGL Binding to Colorectal Cancer Cell Lines: Associations with Overall Proteome Diversity. Int J Mol Sci 2020; 21:ijms21155522. [PMID: 32752259 PMCID: PMC7432225 DOI: 10.3390/ijms21155522] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/24/2020] [Accepted: 07/29/2020] [Indexed: 12/25/2022] Open
Abstract
Colorectal cancer (CRC) is the second-leading cause of cancer death worldwide due in part to a high proportion of patients diagnosed at advanced stages of the disease. For this reason, many efforts have been made towards new approaches for early detection and prognosis. Cancer-associated aberrant glycosylation, especially the Tn and STn antigens, can be detected using the macrophage galactose-type C-type lectin (MGL/CLEC10A/CD301), which has been shown to be a promising tool for CRC prognosis. We had recently identified the major MGL-binding glycoproteins in two high-MGL-binding CRC cells lines, HCT116 and HT29. However, we failed to detect the presence of O-linked Tn and STn glycans on most CRC glycoproteins recognized by MGL. We therefore investigated here the impact of N-linked and O-linked glycans carried by these proteins for the binding to MGL. In addition, we performed quantitative proteomics to study the major differences in proteins involved in glycosylation in these cells. Our results showed that N-glycans have a significant, previously underestimated, importance in MGL binding to CRC cell lines. Finally, we highlighted both common and cell-specific processes associated with a high-MGL-binding phenotype, such as differential levels of enzymes involved in protein glycosylation, and a transcriptional factor (CDX-2) involved in their regulation.
Collapse
|
54
|
Abstract
Mucus is thought to serve as a protective coating on wet epithelial surfaces. Recent research has shown that glycans, which are branched sugar molecules found in mucin, a part of mucus, can prevent bacteria from communicating with each other and forming biofilms. This could hinder microbes from causing infections. The present editorial, focusing on a paper by Wheeler et al. [1], published in October 2019 in Nature Microbiology, describes how mucus can attenuate the virulence of Pseudomonas aeruginosa. In addition, streptococci and Candida albicans can be ‘tamed’ by mucin.
Collapse
Affiliation(s)
- Ingar Olsen
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| |
Collapse
|
55
|
Abstract
Generating the barriers that protect our inner surfaces from bacteria and other challenges requires large glycoproteins called mucins. These come in two types, gel-forming and transmembrane, all characterized by large, highly O-glycosylated mucin domains that are diversely decorated by Golgi glycosyltransferases to become extended rodlike structures. The general functions of mucins on internal epithelial surfaces are to wash away microorganisms and, even more importantly, to build protective barriers. The latter function is most evident in the large intestine, where the inner mucus layer separates the numerous commensal bacteria from the epithelial cells. The host's conversion of MUC2 to the outer mucus layer allows bacteria to degrade the mucin glycans and recover the energy content that is then shared with the host. The molecular nature of the mucins is complex, and how they construct the extracellular complex glycocalyx and mucus is poorly understood and a future biochemical challenge.
Collapse
Affiliation(s)
- Gunnar C Hansson
- Department of Medical Biochemistry, University of Gothenburg, SE 405 30 Gothenburg, Sweden;
| |
Collapse
|
56
|
van Vliet DM, Lin Y, Bale NJ, Koenen M, Villanueva L, Stams AJM, Sánchez-Andrea I. Pontiella desulfatans gen. nov., sp. nov., and Pontiella sulfatireligans sp. nov., Two Marine Anaerobes of the Pontiellaceae fam. nov. Producing Sulfated Glycosaminoglycan-like Exopolymers. Microorganisms 2020; 8:microorganisms8060920. [PMID: 32570748 PMCID: PMC7356697 DOI: 10.3390/microorganisms8060920] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/11/2020] [Accepted: 06/16/2020] [Indexed: 12/16/2022] Open
Abstract
Recently, we isolated two marine strains, F1T and F21T, which together with Kiritimatiella glycovorans L21-Fru-ABT are the only pure cultures of the class Kiritimatiellae within the phylum Verrucomicrobiota. Here, we present an in-depth genome-guided characterization of both isolates with emphasis on their exopolysaccharide synthesis. The strains only grew fermentatively on simple carbohydrates and sulfated polysaccharides. Strains F1T, F21T and K. glycovorans reduced elemental sulfur, ferric citrate and anthraquinone-2,6-disulfonate during anaerobic growth on sugars. Both strains produced exopolysaccharides during stationary phase, probably with intracellularly stored glycogen as energy and carbon source. Exopolysaccharides included N-sulfated polysaccharides probably containing hexosamines and thus resembling glycosaminoglycans. This implies that the isolates can both degrade and produce sulfated polysaccharides. Both strains encoded an unprecedently high number of glycoside hydrolase genes (422 and 388, respectively), including prevalent alpha-L-fucosidase genes, which may be necessary for degrading complex sulfated polysaccharides such as fucoidan. Strain F21T encoded three putative glycosaminoglycan sulfotransferases and a putative sulfate glycosaminoglycan biosynthesis gene cluster. Based on phylogenetic and chemotaxonomic analyses, we propose the taxa Pontiella desulfatans F1T gen. nov., sp. nov. and Pontiella sulfatireligans F21T sp. nov. as representatives of the Pontiellaceae fam. nov. within the class Kiritimatiellae.
Collapse
Affiliation(s)
- Daan M. van Vliet
- Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands; (D.M.v.V.); (A.J.M.S.)
| | - Yuemei Lin
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands;
| | - Nicole J. Bale
- Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research (NIOZ) and Utrecht University, Landsdiep 4, 1797 SZ ’t Horntje (Texel), The Netherlands; (N.J.B.); (M.K.); (L.V.)
| | - Michel Koenen
- Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research (NIOZ) and Utrecht University, Landsdiep 4, 1797 SZ ’t Horntje (Texel), The Netherlands; (N.J.B.); (M.K.); (L.V.)
| | - Laura Villanueva
- Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research (NIOZ) and Utrecht University, Landsdiep 4, 1797 SZ ’t Horntje (Texel), The Netherlands; (N.J.B.); (M.K.); (L.V.)
| | - Alfons J. M. Stams
- Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands; (D.M.v.V.); (A.J.M.S.)
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Irene Sánchez-Andrea
- Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands; (D.M.v.V.); (A.J.M.S.)
- Correspondence: ; Tel.: +31-317-483486
| |
Collapse
|
57
|
Sasaki T, Saito R, Oyama M, Takeuchi T, Tanaka T, Natsume H, Tamura M, Arata Y, Hatanaka T. Galectin-2 Has Bactericidal Effects against Helicobacter pylori in a β-galactoside-Dependent Manner. Int J Mol Sci 2020; 21:ijms21082697. [PMID: 32295066 PMCID: PMC7215486 DOI: 10.3390/ijms21082697] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/03/2020] [Accepted: 04/11/2020] [Indexed: 12/12/2022] Open
Abstract
Helicobacter pylori is associated with the onset of gastritis, peptic ulcers, and gastric cancer. Galectins are a family of β-galactoside-binding proteins involved in diverse biological phenomena. Galectin-2 (Gal-2), a member of the galectin family, is predominantly expressed in the gastrointestinal tract. Although some galectin family proteins are involved in immunoreaction, the role of Gal-2 against H. pylori infection remains unclear. In this study, the effects of Gal-2 on H. pylori morphology and survival were examined. Gal-2 induced H. pylori aggregation depending on β-galactoside and demonstrated a bactericidal effect. Immunohistochemical staining of the gastric tissue indicated that Gal-2 existed in the gastric mucus, as well as mucosa. These results suggested that Gal-2 plays a role in innate immunity against H. pylori infection in gastric mucus.
Collapse
Affiliation(s)
- Takaharu Sasaki
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Saitama 350-0295, Japan; (T.S.); (R.S.); (M.O.); (T.T.); (T.T.); (H.N.)
| | - Rei Saito
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Saitama 350-0295, Japan; (T.S.); (R.S.); (M.O.); (T.T.); (T.T.); (H.N.)
| | - Midori Oyama
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Saitama 350-0295, Japan; (T.S.); (R.S.); (M.O.); (T.T.); (T.T.); (H.N.)
| | - Tomoharu Takeuchi
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Saitama 350-0295, Japan; (T.S.); (R.S.); (M.O.); (T.T.); (T.T.); (H.N.)
| | - Toru Tanaka
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Saitama 350-0295, Japan; (T.S.); (R.S.); (M.O.); (T.T.); (T.T.); (H.N.)
| | - Hideshi Natsume
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Saitama 350-0295, Japan; (T.S.); (R.S.); (M.O.); (T.T.); (T.T.); (H.N.)
| | - Mayumi Tamura
- Faculty of Pharma-Science, Teikyo University, 2–11–1 Kaga, Itabashi-ku, Tokyo 173–8605, Japan; (M.T.); (Y.A.)
| | - Yoichiro Arata
- Faculty of Pharma-Science, Teikyo University, 2–11–1 Kaga, Itabashi-ku, Tokyo 173–8605, Japan; (M.T.); (Y.A.)
| | - Tomomi Hatanaka
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Saitama 350-0295, Japan; (T.S.); (R.S.); (M.O.); (T.T.); (T.T.); (H.N.)
- Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259–1193, Japan
- Correspondence: ; Tel.: +81-49-271-7675
| |
Collapse
|
58
|
Mthembu YH, Jin C, Padra M, Liu J, Edlund JO, Ma H, Padra J, Oscarson S, Borén T, Karlsson NG, Lindén SK, Holgersson J. Recombinant mucin-type proteins carrying LacdiNAc on different O-glycan core chains fail to support H. pylori binding. Mol Omics 2020; 16:243-257. [PMID: 32267274 DOI: 10.1039/c9mo00175a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The β4-N-acetylgalactosaminyltransferase 3 (B4GALNT3) transfers GalNAc in a β1,4-linkage to GlcNAc forming the LacdiNAc (LDN) determinant on oligosaccharides. The LacdiNAc-binding adhesin (LabA) has been suggested to mediate attachment of Helicobacter pylori to the gastric mucosa via binding to the LDN determinant. The O-glycan core chain specificity of B4GALNT3 is poorly defined. We investigated the specificity of B4GALNT3 on GlcNAc residues carried by O-glycan core 2, core 3 and extended core 1 precursors using transient transfection of CHO-K1 cells and a mucin-type immunoglobulin fusion protein as reporter protein. Binding of the LabA-positive H. pylori J99 and 26695 strains to mucin fusion proteins carrying the LDN determinant on different O-glycan core chains and human gastric mucins with and without LDN was assessed in a microtiter well-based binding assay, while the binding of 125I-LDN-BSA to various clinical H. pylori isolates was assessed in solution. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) and western blotting confirmed the requirement of a terminal GlcNAc for B4GALNT3 activity. B4GALNT3 added a β1,4-linked GalNAc to GlcNAc irrespective of whether the latter was carried by a core 2, core 3 or extended core 1 chain. No LDN-mediated adhesion of H. pylori strains 26 695 and J99 to LDN determinants on gastric mucins or a mucin-type fusion protein carrying core 2, 3 and extended core 1 O-glycans were detected in a microtiter well-based adhesion assay and no binding of a 125I-labelled LDN-BSA neoglycoconjugate to clinical H. pylori isolates was identified.
Collapse
Affiliation(s)
- Yolanda H Mthembu
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-41345 Gothenburg, Sweden
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Impaired O-Glycosylation at Consecutive Threonine TTX Motifs in Mucins Generates Conformationally Restricted Cancer Neoepitopes. Biochemistry 2020; 59:1221-1241. [PMID: 32155332 DOI: 10.1021/acs.biochem.0c00007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Autoantibody signatures of circulating mucin fragments stem from cancer tissues, and microenvironments are promising biomarkers for cancer diagnosis and therapy. This study highlights dynamic epitopes generated by aberrantly truncated immature O-glycosylation at consecutive threonine motifs (TTX) found in mucins and intrinsically disordered proteins (IDPs). NMR analysis of synthetic mucin models having glycosylated TTX motifs and colonic MUC2 tandem repeats (TRs) containing TTP and TTL moieties unveils a general principle that O-glycosylation at TTX motifs generates a highly extended and rigid conformation in IDPs. We demonstrate that the specific conformation of glycosylated TTX motifs in MUC2 TRs is rationally rearranged by concerted motions of multiple dihedral angles and noncovalent interactions between the carbohydrate and peptide region. Importantly, this canonical conformation of glycosylated TTX motifs minimizes steric crowding of glycans attached to threonine residues, in which O-glycans possess restricted orientations permitting further sugar extension. An antiadhesive microarray displaying synthetic MUC2 derivatives elicited the presence of natural autoantibodies to MUC2 with impaired O-glycosylation at TTX motifs in sera of healthy volunteers and patients diagnosed with early stage colorectal cancer (CRC). Interestingly, autoantibody levels in sera of the late stage CRC patients were distinctly lower than those of early stage CRC and normal individuals, indicating that the anti-MUC2 humoral response to MUC2 neoepitopes correlates inversely with the CRC stage of patients. Our results uncovered the structural basis of the creation of dynamic epitopes by immature O-glycosylation at TTX motifs in mucins that facilitates the identification of high-potential targets for cancer diagnosis and therapy.
Collapse
|
60
|
Lo Bello F, Ieni A, Hansbro PM, Ruggeri P, Di Stefano A, Nucera F, Coppolino I, Monaco F, Tuccari G, Adcock IM, Caramori G. Role of the mucins in pathogenesis of COPD: implications for therapy. Expert Rev Respir Med 2020; 14:465-483. [PMID: 32133884 DOI: 10.1080/17476348.2020.1739525] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Introduction: Evidence accumulated in the last decade has started to reveal the enormous complexity in the expression, interactions and functions of the large number of different mucins present in the different compartments of the human lower airways. This occurs both in normal subjects and in COPD patients in different clinical phases and stages of severity.Areas covered: We review the known physiological mechanisms that regulate mucin production in human lower airways of normal subjects, the changes in mucin synthesis/secretion in COPD patients and the clinical efficacy of drugs that modulate mucin synthesis/secretion.Expert opinion: It is evident that the old simplistic concept that mucus hypersecretion in COPD patients is associated with negative clinical outcomes is not valid and that the therapeutic potential of 'mucolytic drugs' is under-appreciated due to the complexity of the associated molecular network(s). Likewise, our current knowledge of the effects of the drugs already available on the market that target mucin synthesis/secretion/structure in the lower airways is extremely limited and often indirect and more well-controlled clinical trials are needed in this area.
Collapse
Affiliation(s)
- Federica Lo Bello
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università di Messina, Messina, Italy
| | - Antonio Ieni
- Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", Section of Anatomic Pathology, University of Messina, Messina, Italy
| | - Philip M Hansbro
- Centre for Inflammation, Centenary Institute, Sydney, University of Technology Sydney, Ultimo, Australia
| | - Paolo Ruggeri
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università di Messina, Messina, Italy
| | - Antonino Di Stefano
- Divisione di Pneumologia e Laboratorio di Citoimmunopatologia dell'Apparato Cardio Respiratorio, Istituti Clinici Scientifici Maugeri, IRCCS, Veruno, Italy
| | - Francesco Nucera
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università di Messina, Messina, Italy
| | - Irene Coppolino
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università di Messina, Messina, Italy
| | - Francesco Monaco
- Unità Operativa Semplice Dipartimentale di Chirurgia Toracica, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), AOU Policlinico "G.martino", Messina, Italy
| | - Giovanni Tuccari
- Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", Section of Anatomic Pathology, University of Messina, Messina, Italy
| | - Ian M Adcock
- Airway Disease Section, National Heart and Lung Institute, Imperial College, London, UK
| | - Gaetano Caramori
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università di Messina, Messina, Italy
| |
Collapse
|
61
|
Pap A, Tasnadi E, Medzihradszky KF, Darula Z. Novel O-linked sialoglycan structures in human urinary glycoproteins. Mol Omics 2020; 16:156-164. [PMID: 32022078 DOI: 10.1039/c9mo00160c] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Glycopeptides represent cross-linked structures between chemically and physically different biomolecules. Mass spectrometric analysis of O-glycopeptides may reveal the identity of the peptide, the composition of the glycan and even the connection between certain sugar units, but usually only the combination of different MS/MS techniques provides sufficient information for reliable assignment. Currently, HCD analysis followed by diagnostic sugar fragment-triggered ETD or EThcD experiments is the most promising data acquisition protocol. However, the information content of the different MS/MS data is handled separately by search engines. We are convinced that these data should be used in concert, as we demonstrate in the present study. First, glycopeptides bearing the most common glycans can be identified from EThcD and/or HCD data. Then, searching for Y0 (the gas-phase deglycosylated peptide) in HCD spectra, the potential glycoforms of these glycopeptides could be lined up. Finally, these spectra and the corresponding EThcD data can be used to verify or discard the tentative assignments and to obtain further structural information about the glycans. We present 18 novel human urinary sialoglycan structures deciphered using this approach. To accomplish this in an automated fashion further software development is necessary.
Collapse
Affiliation(s)
- Adam Pap
- Laboratory of Proteomics Research, Biological Research Centre, Temesvari krt. 62, H-6726 Szeged, Hungary.
| | | | | | | |
Collapse
|
62
|
Josenhans C, Müthing J, Elling L, Bartfeld S, Schmidt H. How bacterial pathogens of the gastrointestinal tract use the mucosal glyco-code to harness mucus and microbiota: New ways to study an ancient bag of tricks. Int J Med Microbiol 2020; 310:151392. [DOI: 10.1016/j.ijmm.2020.151392] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/28/2019] [Accepted: 12/06/2019] [Indexed: 12/13/2022] Open
|
63
|
Mucin glycans attenuate the virulence of Pseudomonas aeruginosa in infection. Nat Microbiol 2019; 4:2146-2154. [PMID: 31611643 PMCID: PMC7157942 DOI: 10.1038/s41564-019-0581-8] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 09/09/2019] [Indexed: 12/17/2022]
Abstract
A slimy, hydrated mucus gel lines all wet epithelia in the human body, including the eyes, lungs, and gastrointestinal and urogenital tracts. Mucus forms the first line of defence while housing trillions of microorganisms that constitute the microbiota1. Rarely do these microorganisms cause infections in healthy mucus1, suggesting that mechanisms exist in the mucus layer that regulate virulence. Using the bacterium Pseudomonas aeruginosa and a three-dimensional (3D) laboratory model of native mucus, we determined that exposure to mucus triggers downregulation of virulence genes that are involved in quorum sensing, siderophore biosynthesis and toxin secretion, and rapidly disintegrates biofilms-a hallmark of mucosal infections. This phenotypic switch is triggered by mucins, which are polymers that are densely grafted with O-linked glycans that form the 3D scaffold inside mucus. Here, we show that isolated mucins act at various scales, suppressing distinct virulence pathways, promoting a planktonic lifestyle, reducing cytotoxicity to human epithelia in vitro and attenuating infection in a porcine burn model. Other viscous polymer solutions lack the same effect, indicating that the regulatory function of mucin does not result from its polymeric structure alone. We identify that interactions with P. aeruginosa are mediated by mucin-associated glycans (mucin glycans). By isolating glycans from the mucin backbone, we assessed the collective activity of hundreds of complex structures in solution. Similar to their grafted counterparts, free mucin glycans potently regulate bacterial phenotypes even at relatively low concentrations. This regulatory function is likely dependent on glycan complexity, as monosaccharides do not attenuate virulence. Thus, mucin glycans are potent host signals that 'tame' microorganisms, rendering them less harmful to the host.
Collapse
|
64
|
Rojas-Macias MA, Mariethoz J, Andersson P, Jin C, Venkatakrishnan V, Aoki NP, Shinmachi D, Ashwood C, Madunic K, Zhang T, Miller RL, Horlacher O, Struwe WB, Watanabe Y, Okuda S, Levander F, Kolarich D, Rudd PM, Wuhrer M, Kettner C, Packer NH, Aoki-Kinoshita KF, Lisacek F, Karlsson NG. Towards a standardized bioinformatics infrastructure for N- and O-glycomics. Nat Commun 2019; 10:3275. [PMID: 31332201 PMCID: PMC6796180 DOI: 10.1038/s41467-019-11131-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 06/24/2019] [Indexed: 12/21/2022] Open
Abstract
The mass spectrometry (MS)-based analysis of free polysaccharides and glycans released from proteins, lipids and proteoglycans increasingly relies on databases and software. Here, we review progress in the bioinformatics analysis of protein-released N- and O-linked glycans (N- and O-glycomics) and propose an e-infrastructure to overcome current deficits in data and experimental transparency. This workflow enables the standardized submission of MS-based glycomics information into the public repository UniCarb-DR. It implements the MIRAGE (Minimum Requirement for A Glycomics Experiment) reporting guidelines, storage of unprocessed MS data in the GlycoPOST repository and glycan structure registration using the GlyTouCan registry, thereby supporting the development and extension of a glycan structure knowledgebase.
Collapse
Affiliation(s)
- Miguel A Rojas-Macias
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, 40530, Sweden
| | - Julien Mariethoz
- Proteome Informatics Group, SIB Swiss Institute of Bioinformatics, Geneva, 1211, Switzerland
- Computer Science Department, University of Geneva, Geneva, 1227, Switzerland
| | - Peter Andersson
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, 40530, Sweden
| | - Chunsheng Jin
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, 40530, Sweden
| | - Vignesh Venkatakrishnan
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, 40530, Sweden
| | - Nobuyuki P Aoki
- Soka University, Hachioji, 192-8577, Tokyo, Japan
- SparqLite LLC., Hachioji, 192-0032, Tokyo, Japan
| | - Daisuke Shinmachi
- Soka University, Hachioji, 192-8577, Tokyo, Japan
- SparqLite LLC., Hachioji, 192-0032, Tokyo, Japan
| | - Christopher Ashwood
- Department of Molecular Sciences, Macquarie University, Sydney, 2109, Australia
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | | | - Tao Zhang
- Leiden University Medical Center, Leiden, 2333ZA, Netherlands
| | - Rebecca L Miller
- Copenhagen Centre for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, København, DK-2200, Denmark
| | - Oliver Horlacher
- Proteome Informatics Group, SIB Swiss Institute of Bioinformatics, Geneva, 1211, Switzerland
| | - Weston B Struwe
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, OX1 3TA, UK
| | - Yu Watanabe
- Graduate School of Medical and Dental Sciences, Niigata University, 950-2181, Niigata, Japan
| | - Shujiro Okuda
- Graduate School of Medical and Dental Sciences, Niigata University, 950-2181, Niigata, Japan
| | - Fredrik Levander
- National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Department of Immunotechnology, Lund University, Lund, 22387, Sweden
| | - Daniel Kolarich
- Institute for Glycomics, Gold Coast Campus, Griffith University, Gold Coast, QLD, QLD 4222, Australia
- ARC Centre for Nanoscale BioPhotonics, Macquarie University and Griffith University, North Ryde and Gold Coast, NSW and QLD, NSW 2109 and QLD 4222, Australia
| | - Pauline M Rudd
- Bioprocessing Technology Institute, AStar, Singapore, 138668, Singapore
| | - Manfred Wuhrer
- Leiden University Medical Center, Leiden, 2333ZA, Netherlands
| | | | - Nicolle H Packer
- Department of Molecular Sciences, Macquarie University, Sydney, 2109, Australia
- Institute for Glycomics, Gold Coast Campus, Griffith University, Gold Coast, QLD, QLD 4222, Australia
- ARC Centre for Nanoscale BioPhotonics, Macquarie University and Griffith University, North Ryde and Gold Coast, NSW and QLD, NSW 2109 and QLD 4222, Australia
| | | | - Frédérique Lisacek
- Proteome Informatics Group, SIB Swiss Institute of Bioinformatics, Geneva, 1211, Switzerland
- Computer Science Department, University of Geneva, Geneva, 1227, Switzerland
- Section of Biology, University of Geneva, Geneva, 1211, Switzerland
| | - Niclas G Karlsson
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, 40530, Sweden.
| |
Collapse
|
65
|
Jin C, Harvey DJ, Struwe WB, Karlsson NG. Separation of Isomeric O-Glycans by Ion Mobility and Liquid Chromatography–Mass Spectrometry. Anal Chem 2019; 91:10604-10613. [DOI: 10.1021/acs.analchem.9b01772] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Chunsheng Jin
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - David J. Harvey
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Weston B. Struwe
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
- Chemistry Research laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Niclas G. Karlsson
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
66
|
Advances toward mapping the full extent of protein site-specific O-GalNAc glycosylation that better reflects underlying glycomic complexity. Curr Opin Struct Biol 2019; 56:146-154. [DOI: 10.1016/j.sbi.2019.02.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 02/04/2019] [Accepted: 02/13/2019] [Indexed: 01/01/2023]
|
67
|
Benktander J, Venkatakrishnan V, Padra JT, Sundh H, Sundell K, Murugan AVM, Maynard B, Lindén SK. Effects of Size and Geographical Origin on Atlantic salmon, Salmo salar, Mucin O-Glycan Repertoire. Mol Cell Proteomics 2019; 18:1183-1196. [PMID: 30923042 PMCID: PMC6553937 DOI: 10.1074/mcp.ra119.001319] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 03/27/2019] [Indexed: 11/29/2022] Open
Abstract
Diseases cause ethical concerns and economic losses in the Salmonid industry. The mucus layer comprised of highly O-glycosylated mucins is the first contact between pathogens and fish. Mucin glycans govern pathogen adhesion, growth and virulence. The Atlantic salmon O-glycome from a single location has been characterized and the interindividual variation was low. Because interindividual variation is considered a population-based defense, hindering the entire population from being wiped out by a single infection, low interindividual variation among Atlantic salmon may be a concern. Here, we analyzed the O-glycome of 25 Atlantic salmon from six cohorts grown under various conditions from Sweden, Norway and Australia (Tasmania) using mass spectrometry. This expanded the known Atlantic salmon O-glycome by 60% to 169 identified structures. The mucin O-glycosylation was relatively stable over time within a geographical region, but the size of the fish affected skin mucin glycosylation. The skin mucin glycan repertoires from Swedish and Norwegian Atlantic salmon populations were closely related compared with Tasmanian ones, regardless of size and salinity, with differences in glycan size and composition. The internal mucin glycan repertoire also clustered based on geographical origin and into pyloric cecal and distal intestinal groups, regardless of cohort and fish size. Fucosylated structures were more abundant in Tasmanian pyloric caeca and distal intestine mucins compared with Swedish ones. Overall, Tasmanian Atlantic salmon mucins have more O-glycan structures in skin but less in the gastrointestinal tract compared with Swedish fish. Low interindividual variation was confirmed within each cohort. The results can serve as a library for identifying structures of importance for host-pathogen interactions, understanding population differences of salmon mucin glycosylation in resistance to diseases and during breeding and selection of strains. The results could make it possible to predict potential vulnerabilities to diseases and suggest that inter-region breeding may increase the glycan diversity.
Collapse
Affiliation(s)
- John Benktander
- From the ‡Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Box 440, Medicinaregatan 9A, 405 30 Gothenburg, Sweden
| | - Vignesh Venkatakrishnan
- From the ‡Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Box 440, Medicinaregatan 9A, 405 30 Gothenburg, Sweden
| | - János T Padra
- From the ‡Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Box 440, Medicinaregatan 9A, 405 30 Gothenburg, Sweden
| | - Henrik Sundh
- §Department of Biological and Environmental Sciences, University of Gothenburg, Sweden
| | - Kristina Sundell
- §Department of Biological and Environmental Sciences, University of Gothenburg, Sweden
| | - Abarna V M Murugan
- From the ‡Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Box 440, Medicinaregatan 9A, 405 30 Gothenburg, Sweden
| | - Ben Maynard
- ¶The Commonwealth Scientific and Industrial Research Organisation, Hobart, Australia
| | - Sara K Lindén
- From the ‡Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Box 440, Medicinaregatan 9A, 405 30 Gothenburg, Sweden;
| |
Collapse
|
68
|
Mereiter S, Martins ÁM, Gomes C, Balmaña M, Macedo JA, Polom K, Roviello F, Magalhães A, Reis CA. O‐glycan truncation enhances cancer‐related functions of
CD
44 in gastric cancer. FEBS Lett 2019; 593:1675-1689. [DOI: 10.1002/1873-3468.13432] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 05/04/2019] [Accepted: 05/06/2019] [Indexed: 01/16/2023]
Affiliation(s)
- Stefan Mereiter
- I3S – Instituto de Investigação e Inovação em Saúde Universidade do Porto Portugal
- IPATIMUP – Institute of Molecular Pathology and Immunology University of Porto Portugal
| | - Álvaro M. Martins
- I3S – Instituto de Investigação e Inovação em Saúde Universidade do Porto Portugal
- IPATIMUP – Institute of Molecular Pathology and Immunology University of Porto Portugal
| | - Catarina Gomes
- I3S – Instituto de Investigação e Inovação em Saúde Universidade do Porto Portugal
- IPATIMUP – Institute of Molecular Pathology and Immunology University of Porto Portugal
| | - Meritxell Balmaña
- I3S – Instituto de Investigação e Inovação em Saúde Universidade do Porto Portugal
- IPATIMUP – Institute of Molecular Pathology and Immunology University of Porto Portugal
| | - Joana A. Macedo
- I3S – Instituto de Investigação e Inovação em Saúde Universidade do Porto Portugal
- IPATIMUP – Institute of Molecular Pathology and Immunology University of Porto Portugal
| | - Karol Polom
- Department of Surgical Oncology Medical University of Gdansk Poland
- General Surgery and Surgical Oncology Department University of Siena Italy
| | - Franco Roviello
- General Surgery and Surgical Oncology Department University of Siena Italy
| | - Ana Magalhães
- I3S – Instituto de Investigação e Inovação em Saúde Universidade do Porto Portugal
- IPATIMUP – Institute of Molecular Pathology and Immunology University of Porto Portugal
| | - Celso A. Reis
- I3S – Instituto de Investigação e Inovação em Saúde Universidade do Porto Portugal
- IPATIMUP – Institute of Molecular Pathology and Immunology University of Porto Portugal
- Faculty of Medicine University of Porto Portugal
- Instituto de Ciências Biomédicas Abel Salazar University of Porto Portugal
| |
Collapse
|
69
|
Ashwood C, Pratt B, MacLean BX, Gundry RL, Packer NH. Standardization of PGC-LC-MS-based glycomics for sample specific glycotyping. Analyst 2019; 144:3601-3612. [PMID: 31065629 DOI: 10.1039/c9an00486f] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Porous graphitized carbon (PGC) based chromatography achieves high-resolution separation of glycan structures released from glycoproteins. This approach is especially valuable when resolving structurally similar isomers and for discovery of novel and/or sample-specific glycan structures. However, the implementation of PGC-based separations in glycomics studies has been limited because system-independent retention values have not been established to normalize technical variation. To address this limitation, this study combined the use of hydrolyzed dextran as an internal standard and Skyline software for post-acquisition normalization to reduce retention time and peak area technical variation in PGC-based glycan analyses. This approach allowed assignment of system-independent retention values that are applicable to typical PGC-based glycan separations and supported the construction of a library containing >300 PGC-separated glycan structures with normalized glucose unit (GU) retention values. To enable the automation of this normalization method, a spectral MS/MS library was developed of the dextran ladder, achieving confident discrimination against isomeric glycans. The utility of this approach is demonstrated in two ways. First, to inform the search space for bioinformatically predicted but unobserved glycan structures, predictive models for two structural modifications, core-fucosylation and bisecting GlcNAc, were developed based on the GU library. Second, the applicability of this method for the analysis of complex biological samples is evidenced by the ability to discriminate between cell culture and tissue sample types by the normalized intensity of N-glycan structures alone. Overall, the methods and data described here are expected to support the future development of more automated approaches to glycan identification and quantitation.
Collapse
Affiliation(s)
- Christopher Ashwood
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia. and ARC Centre of Excellence for Nanoscale Biophotonics, Macquarie University, Sydney, NSW, Australia and Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Brian Pratt
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Brendan X MacLean
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Rebekah L Gundry
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA and Center for Biomedical Mass Spectrometry Research, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Nicolle H Packer
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia. and ARC Centre of Excellence for Nanoscale Biophotonics, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
70
|
Quintana-Hayashi MP, Rocha R, Padra M, Thorell A, Jin C, Karlsson NG, Roxo-Rosa M, Oleastro M, Lindén SK. BabA-mediated adherence of pediatric ulcerogenic H. pylori strains to gastric mucins at neutral and acidic pH. Virulence 2019; 9:1699-1717. [PMID: 30298790 PMCID: PMC7000205 DOI: 10.1080/21505594.2018.1532243] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Helicobacter pylori infection can result in non-ulcer dyspepsia (NUD), peptic ulcer disease (PUD), adenocarcinoma, and gastric lymphoma. H. pylori reside within the gastric mucus layer, mainly composed of mucins carrying an array of glycan structures that can serve as bacterial adhesion epitopes. The aim of the present study was to characterize the binding ability, adhesion modes, and growth of H. pylori strains from pediatric patients with NUD and PUD to gastric mucins. Our results showed an increased adhesion capacity of pediatric PUD H. pylori strains to human and rhesus monkey gastric mucins compared to the NUD strains both at neutral and acidic pH, regardless if the mucins were positive for Lewis b (Leb), Sialyl-Lewis x (SLex) or LacdiNAc. In addition to babA positive strains being more common among PUD associated strains, H. pylori babA positive strains bound more avidly to gastric mucins than NUD babA positive strains at acidic pH. Binding to Leb was higher among babA positive PUD H. pylori strains compared to NUD strains at neutral, but not acidic, pH. PUD derived babA-knockout mutants had attenuated binding to mucins and Leb at acidic and neutral pH, and to SLex and DNA at acidic pH. The results highlight the role of BabA-mediated adherence of pediatric ulcerogenic H. pylori strains, and points to a role for BabA in adhesion to charged structures at acidic pH, separate from its specific blood group binding activity.
Collapse
Affiliation(s)
- Macarena P Quintana-Hayashi
- a Department of Biomedical Chemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy , University of Gothenburg , Gothenburg , Sweden
| | - Raquel Rocha
- b Department of Infectious Diseases , National Institute of Health Dr. Ricardo Jorge , Lisbon , Portugal
| | - Médea Padra
- a Department of Biomedical Chemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy , University of Gothenburg , Gothenburg , Sweden
| | - Anders Thorell
- c Department for Clinical Science and Department of Surgery, Ersta Hospital , Karolinska Institutet , Stockholm , Sweden
| | - Chunsheng Jin
- a Department of Biomedical Chemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy , University of Gothenburg , Gothenburg , Sweden
| | - Niclas G Karlsson
- a Department of Biomedical Chemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy , University of Gothenburg , Gothenburg , Sweden
| | - Mónica Roxo-Rosa
- b Department of Infectious Diseases , National Institute of Health Dr. Ricardo Jorge , Lisbon , Portugal
| | - Mónica Oleastro
- d Centro de Estudo de Doenças Crónicas, Nova Medical School/Faculdade de Ciências Médicas , Universidade Nova de Lisboa , Lisbon , Portugal
| | - Sara K Lindén
- a Department of Biomedical Chemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy , University of Gothenburg , Gothenburg , Sweden
| |
Collapse
|
71
|
Mnatsakanyan R, Shema G, Basik M, Batist G, Borchers CH, Sickmann A, Zahedi RP. Detecting post-translational modification signatures as potential biomarkers in clinical mass spectrometry. Expert Rev Proteomics 2019; 15:515-535. [PMID: 29893147 DOI: 10.1080/14789450.2018.1483340] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Numerous diseases are caused by changes in post-translational modifications (PTMs). Therefore, the number of clinical proteomics studies that include the analysis of PTMs is increasing. Combining complementary information-for example changes in protein abundance, PTM levels, with the genome and transcriptome (proteogenomics)-holds great promise for discovering important drivers and markers of disease, as variations in copy number, expression levels, or mutations without spatial/functional/isoform information is often insufficient or even misleading. Areas covered: We discuss general considerations, requirements, pitfalls, and future perspectives in applying PTM-centric proteomics to clinical samples. This includes samples obtained from a human subject, for instance (i) bodily fluids such as plasma, urine, or cerebrospinal fluid, (ii) primary cells such as reproductive cells, blood cells, and (iii) tissue samples/biopsies. Expert commentary: PTM-centric discovery proteomics can substantially contribute to the understanding of disease mechanisms by identifying signatures with potential diagnostic or even therapeutic relevance but may require coordinated efforts of interdisciplinary and eventually multi-national consortia, such as initiated in the cancer moonshot program. Additionally, robust and standardized mass spectrometry (MS) assays-particularly targeted MS, MALDI imaging, and immuno-MALDI-may be transferred to the clinic to improve patient stratification for precision medicine, and guide therapies.
Collapse
Affiliation(s)
- Ruzanna Mnatsakanyan
- a Protein Dynamics , Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V , Dortmund , 44227 , Germany
| | - Gerta Shema
- a Protein Dynamics , Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V , Dortmund , 44227 , Germany
| | - Mark Basik
- b Gerald Bronfman Department of Oncology , Jewish General Hospital, McGill University , Montreal , Quebec H4A 3T2 , Canada
| | - Gerald Batist
- b Gerald Bronfman Department of Oncology , Jewish General Hospital, McGill University , Montreal , Quebec H4A 3T2 , Canada
| | - Christoph H Borchers
- b Gerald Bronfman Department of Oncology , Jewish General Hospital, McGill University , Montreal , Quebec H4A 3T2 , Canada.,c University of Victoria-Genome British Columbia Proteomics Centre, University of Victoria , Victoria , British Columbia V8Z 7X8 , Canada.,d Department of Biochemistry and Microbiology , University of Victoria , Victoria , British Columbia , V8P 5C2 , Canada.,e Segal Cancer Proteomics Centre, Lady Davis Institute, Jewish General Hospital, McGill University , Montreal , Quebec H3T 1E2 , Canada
| | - Albert Sickmann
- a Protein Dynamics , Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V , Dortmund , 44227 , Germany.,f Medizinische Fakultät, Medizinische Proteom-Center (MPC), Ruhr-Universität Bochum , 44801 Bochum , Germany.,g Department of Chemistry , College of Physical Sciences, University of Aberdeen , Aberdeen AB24 3FX , Scotland , United Kingdom
| | - René P Zahedi
- a Protein Dynamics , Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V , Dortmund , 44227 , Germany.,b Gerald Bronfman Department of Oncology , Jewish General Hospital, McGill University , Montreal , Quebec H4A 3T2 , Canada.,e Segal Cancer Proteomics Centre, Lady Davis Institute, Jewish General Hospital, McGill University , Montreal , Quebec H3T 1E2 , Canada
| |
Collapse
|
72
|
Hinneburg H, Chatterjee S, Schirmeister F, Nguyen-Khuong T, Packer NH, Rapp E, Thaysen-Andersen M. Post-Column Make-Up Flow (PCMF) Enhances the Performance of Capillary-Flow PGC-LC-MS/MS-Based Glycomics. Anal Chem 2019; 91:4559-4567. [DOI: 10.1021/acs.analchem.8b05720] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
| | | | | | - Terry Nguyen-Khuong
- Analytics Group, Bioprocessing Technology Institute, A*STAR, Singapore 138668, Singapore
| | | | - Erdmann Rapp
- Max Planck Institute for Dynamics of Complex Technical Systems, 39106 Magdeburg, Germany
- glyXera GmbH, 39106 Magdeburg, Germany
| | | |
Collapse
|
73
|
Bojarová P, Kulik N, Hovorková M, Slámová K, Pelantová H, Křen V. The β- N-Acetylhexosaminidase in the Synthesis of Bioactive Glycans: Protein and Reaction Engineering. Molecules 2019; 24:molecules24030599. [PMID: 30743988 PMCID: PMC6384963 DOI: 10.3390/molecules24030599] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 02/04/2019] [Accepted: 02/06/2019] [Indexed: 01/05/2023] Open
Abstract
N-Acetylhexosamine oligosaccharides terminated with GalNAc act as selective ligands of galectin-3, a biomedically important human lectin. Their synthesis can be accomplished by β-N-acetylhexosaminidases (EC 3.2.1.52). Advantageously, these enzymes tolerate the presence of functional groups in the substrate molecule, such as the thiourea linker useful for covalent conjugation of glycans to a multivalent carrier, affording glyconjugates. β-N-Acetylhexosaminidases exhibit activity towards both N-acetylglucosamine (GlcNAc) and N-acetylgalactosamine (GalNAc) moieties. A point mutation of active-site amino acid Tyr into other amino acid residues, especially Phe, His, and Asn, has previously been shown to strongly suppress the hydrolytic activity of β-N-acetylhexosaminidases, creating enzymatic synthetic engines. In the present work, we demonstrate that Tyr470 is an important mutation hotspot for altering the ratio of GlcNAcase/GalNAcase activity, resulting in mutant enzymes with varying affinity to GlcNAc/GalNAc substrates. The enzyme selectivity may additionally be manipulated by altering the reaction medium upon changing pH or adding selected organic co-solvents. As a result, we are able to fine-tune the β-N-acetylhexosaminidase affinity and selectivity, resulting in a high-yield production of the functionalized GalNAcβ4GlcNAc disaccharide, a selective ligand of galectin-3.
Collapse
Affiliation(s)
- Pavla Bojarová
- Laboratory of Biotransformation, Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Praha 4, Czech Republic.
| | - Natalia Kulik
- Center for Nanobiology and Structural Biology, Institute of Microbiology, Czech Academy of Sciences, Zámek 136, CZ-37333 Nové Hrady, Czech Republic.
| | - Michaela Hovorková
- Laboratory of Biotransformation, Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Praha 4, Czech Republic.
| | - Kristýna Slámová
- Laboratory of Biotransformation, Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Praha 4, Czech Republic.
| | - Helena Pelantová
- Laboratory of Molecular Structure Characterization, Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Praha 4, Czech Republic.
| | - Vladimír Křen
- Laboratory of Biotransformation, Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Praha 4, Czech Republic.
| |
Collapse
|
74
|
Carbohydrate-Dependent and Antimicrobial Peptide Defence Mechanisms Against Helicobacter pylori Infections. Curr Top Microbiol Immunol 2019; 421:179-207. [PMID: 31123890 DOI: 10.1007/978-3-030-15138-6_8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The human stomach is a harsh and fluctuating environment for bacteria with hazards such as gastric acid and flow through of gastric contents into the intestine. H. pylori gains admission to a stable niche with nutrient access from exudates when attached to the epithelial cells under the mucus layer, whereof adherence to glycolipids and other factors provides stable and intimate attachment. To reach this niche, H. pylori must overcome mucosal defence mechanisms including the continuously secreted mucus layer, which provides several layers of defence: (1) mucins in the mucus layer can bind H. pylori and transport it away from the gastric niche with the gastric emptying, (2) mucins can inhibit H. pylori growth, both via glycans that can have antibiotic like function and via an aggregation-dependent mechanism, (3) antimicrobial peptides (AMPs) have antimicrobial activity and are retained in a strategic position in the mucus layer and (4) underneath the mucus layer, the membrane-bound mucins provide a second barrier, and can function as releasable decoys. Many of these functions are dependent on H. pylori interactions with host glycan structures, and both the host glycosylation and concentration of antimicrobial peptides change with infection and inflammation, making these interactions dynamic. Here, we review our current understanding of mucin glycan and antimicrobial peptide-dependent host defence mechanisms against H. pylori infection.
Collapse
|
75
|
Ndeh D, Gilbert HJ. Biochemistry of complex glycan depolymerisation by the human gut microbiota. FEMS Microbiol Rev 2018; 42:146-164. [PMID: 29325042 DOI: 10.1093/femsre/fuy002] [Citation(s) in RCA: 183] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 01/06/2018] [Indexed: 12/21/2022] Open
Abstract
The human gut microbiota (HGM) makes an important contribution to health and disease. It is a complex microbial community of trillions of microbes with a majority of its members represented within two phyla, the Bacteroidetes and Firmicutes, although it also contains species of Actinobacteria and Proteobacteria. Reflecting its importance, the HGM is sometimes referred to as an 'organ' as it performs functions analogous to systemic tissues within the human host. The major nutrients available to the HGM are host and dietary complex carbohydrates. To utilise these nutrient sources, the HGM has developed elaborate, variable and sophisticated systems for the sensing, capture and utilisation of these glycans. Understanding nutrient acquisition by the HGM can thus provide mechanistic insights into the dynamics of this ecosystem, and how it impacts human health. Dietary nutrient sources include a wide variety of simple and complex plant and animal-derived glycans most of which are not degraded by enzymes in the digestive tract of the host. Here we review how various adaptive mechanisms that operate across the major phyla of the HGM contribute to glycan utilisation, focusing on the most complex carbohydrates presented to this ecosystem.
Collapse
Affiliation(s)
- Didier Ndeh
- Institute for Cell and Molecular Biosciences, The Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Harry J Gilbert
- Institute for Cell and Molecular Biosciences, The Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| |
Collapse
|
76
|
Kudelka MR, Nairn AV, Sardar MY, Sun X, Chaikof EL, Ju T, Moremen KW, Cummings RD. Isotopic labeling with cellular O-glycome reporter/amplification (ICORA) for comparative O-glycomics of cultured cells. Glycobiology 2018; 28:214-222. [PMID: 29390058 DOI: 10.1093/glycob/cwy005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 01/24/2018] [Indexed: 12/22/2022] Open
Abstract
Mucin-type O-glycans decorate >80% of secretory and cell surface proteins and contribute to health and disease. However, dynamic alterations in the O-glycome are poorly understood because current O-glycomic methodologies are not sufficiently sensitive nor quantitative. Here we describe a novel isotope labeling approach termed Isotope-Cellular O-glycome Reporter Amplification (ICORA) to amplify and analyze the O-glycome from cells. In this approach, cells are incubated with Ac3GalNAc-Bn (Ac3GalNAc-[1H7]Bn) or a heavy labeled Ac3GalNAc-BnD7 (Ac3GalNAc-[2D7]Bn) O-glycan precursor (7 Da mass difference), which enters cells and upon de-esterification is modified by Golgi enzymes to generate Bn-O-glycans secreted into the culture media. After recovery, heavy and light Bn-O-glycans from two separate conditions are mixed, analyzed by MS, and statistically interrogated for changes in O-glycan abundance using a semi-automated approach. ICORA enables ~100-1000-fold enhanced sensitivity and increased throughput compared to traditional O-glycomics. We validated ICORA with model cell lines and used it to define alterations in the O-glycome in colorectal cancer. ICORA is a useful tool to explore the dynamic regulation of the O-glycome in health and disease.
Collapse
Affiliation(s)
- Matthew R Kudelka
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.,Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Alison V Nairn
- Office of Biotechnology Products, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Mohammed Y Sardar
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Xiaodong Sun
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Elliot L Chaikof
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Tongzhong Ju
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA.,Office of Biotechnology Products, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Kelley W Moremen
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Richard D Cummings
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
77
|
Darula Z, Pap Á, Medzihradszky KF. Extended Sialylated O-Glycan Repertoire of Human Urinary Glycoproteins Discovered and Characterized Using Electron-Transfer/Higher-Energy Collision Dissociation. J Proteome Res 2018; 18:280-291. [PMID: 30407017 DOI: 10.1021/acs.jproteome.8b00587] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A relatively novel activation technique, electron-transfer/higher-energy collision dissociation (EThcD) was used in the LC-MS/MS analysis of tryptic glycopeptides enriched with wheat germ agglutinin from human urine samples. We focused on the characterization of mucin-type O-glycopeptides. EThcD in a single spectrum provided information on both the peptide modified and the glycan carried. Unexpectedly, glycan oxonium ions indicated the presence of O-acetyl, and even O-diacetyl-sialic acids. B and Y fragment ions revealed that (i) in core 1 structures the Gal residue featured the O-acetyl-sialic acid, when there was only one in the glycan; (ii) several glycopeptides featured core 1 glycans with disialic acids, in certain instances O-acetylated; (iii) the disialic acid was linked to the GalNAc residue whatever the degree of O-acetylation; (iv) core 2 isomers with a single O-acetyl-sialic acid were chromatographically resolved. Glycan fragmentation also helped to decipher additional core 2 oligosaccharides: a LacdiNAc-like structure, glycans carrying sialyl LewisX/A at different stages of O-acetylation, and blood antigens. A sialo core 3 structure was also identified. We believe this is the first study when such structures were characterized from a very complex mixture and were linked not only to a specific protein, but also the sites of modifications have been determined.
Collapse
Affiliation(s)
- Zsuzsanna Darula
- Biological Research Centre of the Hungarian Academy of Sciences , Temesvari krt. 62. , H-6726 Szeged , Hungary
| | - Ádám Pap
- Biological Research Centre of the Hungarian Academy of Sciences , Temesvari krt. 62. , H-6726 Szeged , Hungary.,Doctoral School in Biology, Faculty of Science and Informatics , University of Szeged , Kozep fasor 52. , H-6726 Szeged , Hungary
| | - Katalin F Medzihradszky
- Biological Research Centre of the Hungarian Academy of Sciences , Temesvari krt. 62. , H-6726 Szeged , Hungary
| |
Collapse
|
78
|
Alocci D, Ghraichy M, Barletta E, Gastaldello A, Mariethoz J, Lisacek F. Understanding the glycome: an interactive view of glycosylation from glycocompositions to glycoepitopes. Glycobiology 2018. [PMID: 29518231 DOI: 10.1093/glycob/cwy019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Nowadays, due to the advance of experimental techniques in glycomics, large collections of glycan profiles are regularly published. The rapid growth of available glycan data accentuates the lack of innovative tools for visualizing and exploring large amount of information. Scientists resort to using general-purpose spreadsheet applications to create ad hoc data visualization. Thus, results end up being encoded in publication images and text, while valuable curated data is stored in files as supplementary information. To tackle this problem, we have built an interactive pipeline composed with three tools: Glynsight, EpitopeXtractor and Glydin'. Glycan profile data can be imported in Glynsight, which generates a custom interactive glycan profile. Several profiles can be compared and glycan composition is integrated with structural data stored in databases. Glycan structures of interest can then be sent to EpitopeXtractor to perform a glycoepitope extraction. EpitopeXtractor results can be superimposed on the Glydin' glycoepitope network. The network visualization allows fast detection of clusters of glycoepitopes and discovery of potential new targets. Each of these tools is standalone or can be used in conjunction with the others, depending on the data and the specific interest of the user. All the tools composing this pipeline are part of the Glycomics@ExPASy initiative and are available at https://www.expasy.org/glycomics.
Collapse
Affiliation(s)
- Davide Alocci
- Proteome Informatics Group, SIB Swiss Institute of Bioinformatics, 7 Route de Drize, 1227 Geneva, Switzerland.,Computer Science Department CUI, University of Geneva, 7 Route de Drize, 1227 Geneva, Switzerland
| | - Marie Ghraichy
- Proteome Informatics Group, SIB Swiss Institute of Bioinformatics, 7 Route de Drize, 1227 Geneva, Switzerland.,Division of Immunology, University Children's Hospital Zurich, Zurich, Switzerland
| | - Elena Barletta
- Proteome Informatics Group, SIB Swiss Institute of Bioinformatics, 7 Route de Drize, 1227 Geneva, Switzerland.,Computer Science Department CUI, University of Geneva, 7 Route de Drize, 1227 Geneva, Switzerland
| | - Alessandra Gastaldello
- Proteome Informatics Group, SIB Swiss Institute of Bioinformatics, 7 Route de Drize, 1227 Geneva, Switzerland.,Computer Science Department CUI, University of Geneva, 7 Route de Drize, 1227 Geneva, Switzerland
| | - Julien Mariethoz
- Proteome Informatics Group, SIB Swiss Institute of Bioinformatics, 7 Route de Drize, 1227 Geneva, Switzerland.,Computer Science Department CUI, University of Geneva, 7 Route de Drize, 1227 Geneva, Switzerland
| | - Frederique Lisacek
- Proteome Informatics Group, SIB Swiss Institute of Bioinformatics, 7 Route de Drize, 1227 Geneva, Switzerland.,Computer Science Department CUI, University of Geneva, 7 Route de Drize, 1227 Geneva, Switzerland.,Section of Biology, University of Geneva, Geneva, Switzerland
| |
Collapse
|
79
|
Abstract
We review what is currently understood about how the structure of the primary solid component of mucus, the glycoprotein mucin, gives rise to the mechanical and biochemical properties of mucus that are required for it to perform its diverse physiological roles. Macroscale processes such as lubrication require mucus of a certain stiffness and spinnability, which are set by structural features of the mucin network, including the identity and density of cross-links and the degree of glycosylation. At the microscale, these same features affect the mechanical environment experienced by small particles and play a crucial role in establishing an interaction-based filter. Finally, mucin glycans are critical for regulating microbial interactions, serving as receptor binding sites for adhesion, as nutrient sources, and as environmental signals. We conclude by discussing how these structural principles can be used in the design of synthetic mucin-mimetic materials and provide suggestions for directions of future work in this field.
Collapse
Affiliation(s)
- C E Wagner
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - K M Wheeler
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA;
- Microbiology Graduate Program, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - K Ribbeck
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA;
| |
Collapse
|
80
|
Padra M, Adamczyk B, Benktander J, Flahou B, Skoog EC, Padra JT, Smet A, Jin C, Ducatelle R, Samuelsson T, Haesebrouck F, Karlsson NG, Teneberg S, Lindén SK. Helicobacter suis binding to carbohydrates on human and porcine gastric mucins and glycolipids occurs via two modes. Virulence 2018; 9:898-918. [PMID: 29638186 PMCID: PMC5955484 DOI: 10.1080/21505594.2018.1460979] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Helicobacter suis colonizes the stomach of most pigs and is the most prevalent non-Helicobacter pylori Helicobacter species found in the human stomach. In the human host, H. suis contributes to the development of chronic gastritis, peptic ulcer disease and MALT lymphoma, whereas in pigs it is associated with gastritis, decreased growth and ulcers. Here, we demonstrate that the level of H. pylori and H. suis binding to human and pig gastric mucins varies between individuals with species dependent specificity. The binding optimum of H. pylori is at neutral pH whereas that of H. suis has an acidic pH optimum, and the mucins that H. pylori bind to are different than those that H. suis bind to. Mass spectrometric analysis of mucin O-glycans from the porcine mucin showed that individual variation in binding is reflected by a difference in glycosylation; of 109 oligosaccharide structures identified, only 14 were present in all examined samples. H. suis binding to mucins correlated with glycans containing sulfate, sialic acid and terminal galactose. Among the glycolipids present in pig stomach, binding to lactotetraosylceramide (Galβ3GlcNAcβ3Galβ4Glcβ1Cer) was identified, and adhesion to Galβ3GlcNAcβ3Galβ4Glc at both acidic and neutral pH was confirmed using other glycoconjugates. Together with that H. suis bound to DNA (used as a proxy for acidic charge), we conclude that H. suis has two binding modes: one to glycans terminating with Galβ3GlcNAc, and one to negatively charged structures. Identification of the glycan structures H. suis interacts with can contribute to development of therapeutic strategies alternative to antibiotics.
Collapse
Affiliation(s)
- Médea Padra
- a Department of Medical Biochemistry and Cell Biology , Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg , Gothenburg , Sweden
| | - Barbara Adamczyk
- a Department of Medical Biochemistry and Cell Biology , Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg , Gothenburg , Sweden
| | - John Benktander
- a Department of Medical Biochemistry and Cell Biology , Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg , Gothenburg , Sweden
| | - Bram Flahou
- b Department of Pathology , Bacteriology and Avian Diseases, Ghent University , Belgium
| | - Emma C Skoog
- a Department of Medical Biochemistry and Cell Biology , Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg , Gothenburg , Sweden
| | - János Tamás Padra
- a Department of Medical Biochemistry and Cell Biology , Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg , Gothenburg , Sweden
| | - Annemieke Smet
- b Department of Pathology , Bacteriology and Avian Diseases, Ghent University , Belgium.,c Laboratorium of Experimental Medicine and Pediatrics , Faculty of Medicine and Health Sciences, University of Antwerp , Antwerp
| | - Chunsheng Jin
- a Department of Medical Biochemistry and Cell Biology , Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg , Gothenburg , Sweden
| | - Richard Ducatelle
- b Department of Pathology , Bacteriology and Avian Diseases, Ghent University , Belgium
| | - Tore Samuelsson
- a Department of Medical Biochemistry and Cell Biology , Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg , Gothenburg , Sweden
| | - Freddy Haesebrouck
- b Department of Pathology , Bacteriology and Avian Diseases, Ghent University , Belgium
| | - Niclas G Karlsson
- a Department of Medical Biochemistry and Cell Biology , Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg , Gothenburg , Sweden
| | - Susann Teneberg
- a Department of Medical Biochemistry and Cell Biology , Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg , Gothenburg , Sweden
| | - Sara K Lindén
- a Department of Medical Biochemistry and Cell Biology , Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg , Gothenburg , Sweden
| |
Collapse
|
81
|
Bojarová P, Tavares MR, Laaf D, Bumba L, Petrásková L, Konefał R, Bláhová M, Pelantová H, Elling L, Etrych T, Chytil P, Křen V. Biocompatible glyconanomaterials based on HPMA-copolymer for specific targeting of galectin-3. J Nanobiotechnology 2018; 16:73. [PMID: 30236114 PMCID: PMC6146777 DOI: 10.1186/s12951-018-0399-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 09/11/2018] [Indexed: 01/01/2023] Open
Abstract
Background Galectin-3 (Gal-3) is a promising target in cancer therapy with a high therapeutic potential due to its abundant localization within the tumor tissue and its involvement in tumor development and proliferation. Potential clinical application of Gal-3-targeted inhibitors is often complicated by their insufficient selectivity or low biocompatibility. Nanomaterials based on N-(2-hydroxypropyl)methacrylamide (HPMA) nanocarrier are attractive for in vivo application due to their good water solubility and lack of toxicity and immunogenicity. Their conjugation with tailored carbohydrate ligands can yield specific glyconanomaterials applicable for targeting biomedicinally relevant lectins like Gal-3. Results In the present study we describe the synthesis and the structure-affinity relationship study of novel Gal-3-targeted glyconanomaterials, based on hydrophilic HPMA nanocarriers. HPMA nanocarriers decorated with varying amounts of Gal-3 specific epitope GalNAcβ1,4GlcNAc (LacdiNAc) were analyzed in a competitive ELISA-type assay and their binding kinetics was described by surface plasmon resonance. We showed the impact of various linker types and epitope distribution on the binding affinity to Gal-3. The synthesis of specific functionalized LacdiNAc epitopes was accomplished under the catalysis by mutant β-N-acetylhexosaminidases. The glycans were conjugated to statistic HPMA copolymer precursors through diverse linkers in a defined pattern and density using Cu(I)-catalyzed azide–alkyne cycloaddition. The resulting water-soluble and structurally flexible synthetic glyconanomaterials exhibited affinity to Gal-3 in low μM range. Conclusions The results of this study reveal the relation between the linker structure, glycan distribution and the affinity of the glycopolymer nanomaterial to Gal-3. They pave the way to specific biomedicinal glyconanomaterials that target Gal-3 as a therapeutic goal in cancerogenesis and other disorders. Electronic supplementary material The online version of this article (10.1186/s12951-018-0399-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- P Bojarová
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 14220, Prague 4, Czech Republic.
| | - M R Tavares
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovský Sq. 2, 16206, Prague 6, Czech Republic
| | - D Laaf
- Laboratory for Biomaterials, Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstraße 20, 52074, Aachen, Germany
| | - L Bumba
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 14220, Prague 4, Czech Republic
| | - L Petrásková
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 14220, Prague 4, Czech Republic
| | - R Konefał
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovský Sq. 2, 16206, Prague 6, Czech Republic
| | - M Bláhová
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovský Sq. 2, 16206, Prague 6, Czech Republic
| | - H Pelantová
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 14220, Prague 4, Czech Republic
| | - L Elling
- Laboratory for Biomaterials, Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstraße 20, 52074, Aachen, Germany
| | - T Etrych
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovský Sq. 2, 16206, Prague 6, Czech Republic
| | - P Chytil
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovský Sq. 2, 16206, Prague 6, Czech Republic.
| | - V Křen
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 14220, Prague 4, Czech Republic
| |
Collapse
|
82
|
Su C, Padra M, Constantino MA, Sharba S, Thorell A, Lindén SK, Bansil R. Influence of the viscosity of healthy and diseased human mucins on the motility of Helicobacter pylori. Sci Rep 2018; 8:9710. [PMID: 29946149 PMCID: PMC6018794 DOI: 10.1038/s41598-018-27732-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 06/07/2018] [Indexed: 12/14/2022] Open
Abstract
We present particle tracking microrheology results on human mucins, isolated from normal surface and gland mucosa and one tumor sample, and examine the motility of Helicobacter pylori in these mucins. At 1.5% concentration human mucin solutions are purely viscous, with viscosity η (gland mucin) > η (surface mucin) > η (tumor mucin). In the presence of motile H. pylori bacteria, particle diffusion is enhanced, with diffusivity D+bac(tumor mucin) > D+bac(gland mucin) > D+bac(surface mucin). The surface and tumor mucin solutions exhibit an elastic response in the presence of bacteria. Taken together these results imply that particle diffusion and active swimming are coupled and impact the rheology of mucin solutions. Both J99 wild type (WT) and its isogenic ΔbabA/ΔsabA mutant swam well in broth or PGM solutions. However, the human mucins affected their motility differently, rendering them immotile in certain instances. The distribution of swimming speeds in human mucin solutions was broader with a large fraction of fast swimmers compared to PGM and broth. The bacteria swam fastest in the tumor mucin solution correlating with it having the lowest viscosity of all mucin solutions. Overall, these results suggest that mucins from different tissue locations and disease status differ in their microrheological properties and their effect on H. pylori motility.
Collapse
Affiliation(s)
- Clover Su
- Boston University, Materials Science and Engineering Division, Boston, 02446, USA
| | - Médea Padra
- University of Gothenburg, Department of Medical Biochemistry and Cell Biology, Göteborg, 41390, Sweden
| | | | - Sinan Sharba
- University of Gothenburg, Department of Medical Biochemistry and Cell Biology, Göteborg, 41390, Sweden
| | - Anders Thorell
- Karolinska Institutet, Department for Clinical Science and Department of Surgery, Ersta Hospital, Stockholm, Sweden
| | - Sara K Lindén
- University of Gothenburg, Department of Medical Biochemistry and Cell Biology, Göteborg, 41390, Sweden
| | - Rama Bansil
- Boston University, Materials Science and Engineering Division, Boston, 02446, USA.
- Boston University, Physics Department, Boston, 02215, USA.
| |
Collapse
|
83
|
Quintana-Hayashi MP, Padra M, Padra JT, Benktander J, Lindén SK. Mucus-Pathogen Interactions in the Gastrointestinal Tract of Farmed Animals. Microorganisms 2018; 6:E55. [PMID: 29912166 PMCID: PMC6027344 DOI: 10.3390/microorganisms6020055] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 06/09/2018] [Accepted: 06/15/2018] [Indexed: 12/29/2022] Open
Abstract
Gastrointestinal infections cause significant challenges and economic losses in animal husbandry. As pathogens becoming resistant to antibiotics are a growing concern worldwide, alternative strategies to treat infections in farmed animals are necessary in order to decrease the risk to human health and increase animal health and productivity. Mucosal surfaces are the most common route used by pathogens to enter the body. The mucosal surface that lines the gastrointestinal tract is covered by a continuously secreted mucus layer that protects the epithelial surface. The mucus layer is the first barrier the pathogen must overcome for successful colonization, and is mainly composed of densely glycosylated proteins called mucins. The vast array of carbohydrate structures present on the mucins provide an important setting for host-pathogen interactions. This review summarizes the current knowledge on gastrointestinal mucins and their role during infections in farmed animals. We examine the interactions between mucins and animal pathogens, with a focus on how pathogenic bacteria can modify the mucin environment in the gut, and how this in turn affects pathogen adhesion and growth. Finally, we discuss analytical challenges and complexities of the mucus-based defense, as well as its potential to control infections in farmed animals.
Collapse
Affiliation(s)
- Macarena P Quintana-Hayashi
- Department of Medical Biochemistry and Cell biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Box 440, 405 30 Gothenburg, Sweden.
| | - Médea Padra
- Department of Medical Biochemistry and Cell biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Box 440, 405 30 Gothenburg, Sweden.
| | - János Tamás Padra
- Department of Medical Biochemistry and Cell biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Box 440, 405 30 Gothenburg, Sweden.
| | - John Benktander
- Department of Medical Biochemistry and Cell biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Box 440, 405 30 Gothenburg, Sweden.
| | - Sara K Lindén
- Department of Medical Biochemistry and Cell biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Box 440, 405 30 Gothenburg, Sweden.
| |
Collapse
|
84
|
Role of mucins in lung homeostasis: regulated expression and biosynthesis in health and disease. Biochem Soc Trans 2018; 46:707-719. [PMID: 29802217 DOI: 10.1042/bst20170455] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 04/24/2018] [Accepted: 04/26/2018] [Indexed: 01/02/2023]
Abstract
In humans and mice, the first line of innate defense against inhaled pathogens and particles in the respiratory tract is airway mucus. The primary solid components of the mucus layer are the mucins MUC5AC and MUC5B, polymeric glycoproteins whose changes in abundance and structure can dramatically affect airway defense. Accordingly, MUC5AC/Muc5ac and MUC5B/Muc5b are tightly regulated at a transcriptional level by tissue-specific transcription factors in homeostasis and in response to injurious and inflammatory triggers. In addition to modulated levels of mucin gene transcription, translational and post-translational biosynthetic processes also exert significant influence upon mucin function. Mucins are massive macromolecules with numerous functional domains that contribute to their structural composition and biophysical properties. Single MUC5AC and MUC5B apoproteins have molecular masses of >400 kDa, and von Willebrand factor D-like as well as other cysteine-rich domain segments contribute to mucin polymerization and flexibility, thus increasing apoprotein length and complexity. Additional domains serve as sites for O-glycosylation, which increase further mucin mass several-fold. Glycosylation is a defining process for mucins that is specific with respect to additions of glycans to mucin apoprotein backbones, and glycan additions influence the physical properties of the mucins via structural modifications as well as charge interactions. Ultimately, through their tight regulation and complex assembly, airway mucins follow the biological rule of 'form fits function' in that their structural organization influences their role in lung homeostatic mechanisms.
Collapse
|
85
|
|
86
|
Balmaña M, Duran A, Gomes C, Llop E, López-Martos R, Ortiz MR, Barrabés S, Reis CA, Peracaula R. Analysis of sialyl-Lewis x on MUC5AC and MUC1 mucins in pancreatic cancer tissues. Int J Biol Macromol 2018; 112:33-45. [PMID: 29408556 DOI: 10.1016/j.ijbiomac.2018.01.148] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 01/18/2018] [Accepted: 01/21/2018] [Indexed: 12/15/2022]
Abstract
Pancreatic adenocarcinoma (PDAC) lacks efficient biomarkers. Mucins are glycoproteins that can carry aberrant glycosylation in cancer. Our objective was to identify cancer-related glycan epitopes on MUC1 and MUC5AC mucins in PDAC as potential biomarkers. We have analysed the tumour-associated carbohydrate antigens sialyl-Lewis x (SLex) and sialyl-Tn (STn) on MUC1 and MUC5AC in PDAC tissues. The selected cohort for this study consisted of twenty-one PDAC tissues positive for SLex antigen and three normal pancreas specimens as controls. STn expression was shown in 76% of the PDAC tissues. MUC1 and MUC5AC were detected in 90% of PDAC tissues. We performed in situ proximity ligation assay combining antibodies against mucins and glycan epitopes to identify specific mucin glycoforms. MUC1-SLex and MUC5AC-SLex were found in 68% and 84% respectively, of the mucin expressing PDAC tissues, while STn hardly colocalized with any of the evaluated mucins. Further analysis by Western blot of MUC5AC and SLex in eight PDAC tissue lysates showed that six out of eight cases were positive for both markers. Moreover, immunoprecipitation of MUC5AC from positive PDAC tissues and subsequent SLex immunodetection confirmed the presence of SLex on MUC5AC. Altogether, MUC5AC-SLex glycoform is present in PDAC and can be regarded as potential biomarker.
Collapse
Affiliation(s)
- Meritxell Balmaña
- Biochemistry and Molecular Biology Unit, Department of Biology, University of Girona, Girona, Spain; Instituto de Investigação e Inovação em Saúde, I3S, Institute of Molecular Pathology and Immunology of University of Porto, Ipatimup, Porto, Portugal
| | - Adrià Duran
- Biochemistry and Molecular Biology Unit, Department of Biology, University of Girona, Girona, Spain
| | - Catarina Gomes
- Instituto de Investigação e Inovação em Saúde, I3S, Institute of Molecular Pathology and Immunology of University of Porto, Ipatimup, Porto, Portugal
| | - Esther Llop
- Biochemistry and Molecular Biology Unit, Department of Biology, University of Girona, Girona, Spain
| | - Raquel López-Martos
- Department of Anatomic Pathology, Dr. Trueta University Hospital, Girona, Spain
| | - M Rosa Ortiz
- Department of Anatomic Pathology, Dr. Trueta University Hospital, Girona, Spain
| | - Sílvia Barrabés
- Biochemistry and Molecular Biology Unit, Department of Biology, University of Girona, Girona, Spain
| | - Celso A Reis
- Instituto de Investigação e Inovação em Saúde, I3S, Institute of Molecular Pathology and Immunology of University of Porto, Ipatimup, Porto, Portugal; Medical Faculty, University of Porto, Al. Prof. Hernâni Monteiro, 4200-319 Porto, Portugal; Instituto de Ciências Biomédicas de Abel Salazar - ICBAS, University of Porto, Porto, Portugal.
| | - Rosa Peracaula
- Biochemistry and Molecular Biology Unit, Department of Biology, University of Girona, Girona, Spain.
| |
Collapse
|
87
|
Bumba L, Laaf D, Spiwok V, Elling L, Křen V, Bojarová P. Poly-N-Acetyllactosamine Neo-Glycoproteins as Nanomolar Ligands of Human Galectin-3: Binding Kinetics and Modeling. Int J Mol Sci 2018; 19:ijms19020372. [PMID: 29373511 PMCID: PMC5855594 DOI: 10.3390/ijms19020372] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 01/22/2018] [Accepted: 01/23/2018] [Indexed: 01/22/2023] Open
Abstract
Galectin-3 (Gal-3) is recognized as a prognostic marker in several cancer types. Its involvement in tumor development and proliferation makes this lectin a promising target for early cancer diagnosis and anti-cancer therapies. Gal-3 recognizes poly-N-acetyllactosamine (LacNAc)-based carbohydrate motifs of glycoproteins and glycolipids with a high specificity for internal LacNAc epitopes. This study analyzes the mode and kinetics of binding of Gal-3 to a series of multivalent neo-glycoproteins presenting complex poly-LacNAc-based oligosaccharide ligands on a scaffold of bovine serum albumin. These neo-glycoproteins rank among the strongest Gal-3 ligands reported, with Kd reaching sub-nanomolar values as determined by surface plasmon resonance. Significant differences in the binding kinetics were observed within the ligand series, showing the tetrasaccharide capped with N,N'-diacetyllactosamine (LacdiNAc) as the strongest ligand of Gal-3 in this study. A molecular model of the Gal-3 carbohydrate recognition domain with docked oligosaccharide ligands is presented that shows the relations in the binding site at the molecular level. The neo-glycoproteins presented herein may be applied for selective recognition of Gal-3 both on the cell surface and in blood serum.
Collapse
Affiliation(s)
- Ladislav Bumba
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220 Prague, Czech Republic.
| | - Dominic Laaf
- Laboratory for Biomaterials, Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstrasse 20, 52074 Aachen, Germany.
| | - Vojtěch Spiwok
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 3, 16628 Prague 6, Czech Republic.
| | - Lothar Elling
- Laboratory for Biomaterials, Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstrasse 20, 52074 Aachen, Germany.
| | - Vladimír Křen
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220 Prague, Czech Republic.
| | - Pavla Bojarová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220 Prague, Czech Republic.
| |
Collapse
|
88
|
Bansil R, Turner BS. The biology of mucus: Composition, synthesis and organization. Adv Drug Deliv Rev 2018; 124:3-15. [PMID: 28970050 DOI: 10.1016/j.addr.2017.09.023] [Citation(s) in RCA: 362] [Impact Index Per Article: 51.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 09/24/2017] [Accepted: 09/27/2017] [Indexed: 02/06/2023]
Abstract
In this review we discuss mucus, the viscoelastic secretion from goblet or mucous producing cells that lines the epithelial surfaces of all organs exposed to the external world. Mucus is a complex aqueous fluid that owes its viscoelastic, lubricating and hydration properties to the glycoprotein mucin combined with electrolytes, lipids and other smaller proteins. Electron microscopy of mucosal surfaces reveals a highly convoluted surface with a network of fibers and pores of varying sizes. The major structural and functional component, mucin is a complex glycoprotein coded by about 20 mucin genes which produce a protein backbone having multiple tandem repeats of Serine, Threonine (ST repeats) where oligosaccharides are covalently O-linked. The N- and C-terminals of this apoprotein contain other domains with little or no glycosylation but rich in cysteines leading to dimerization and further multimerization via SS bonds. The synthesis of this complex protein starts in the endoplasmic reticulum with the formation of the apoprotein and is further modified via glycosylation in the cis and medial Golgi and packaged into mucin granules via Ca2+ bridging of the negative charges on the oligosaccharide brush in the trans Golgi. The mucin granules fuse with the plasma membrane of the secretory cells and following activation by signaling molecules release Ca2+ and undergo a dramatic change in volume due to hydration of the highly negatively charged polymer brush leading to exocytosis from the cells and forming the mucus layer. The rheological properties of mucus and its active component mucin and its mucoadhesivity are briefly discussed in light of their importance to mucosal drug delivery.
Collapse
|
89
|
Adamczyk B, Jin C, Polom K, Muñoz P, Rojas-Macias MA, Zeeberg D, Borén M, Roviello F, Karlsson NG. Sample handling of gastric tissue and O-glycan alterations in paired gastric cancer and non-tumorigenic tissues. Sci Rep 2018; 8:242. [PMID: 29321476 PMCID: PMC5762837 DOI: 10.1038/s41598-017-18299-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 12/07/2017] [Indexed: 12/13/2022] Open
Abstract
Sample collection, handling and storage are the most critical steps for ensuring the highest preservation of specimens. Pre-analytical variability can influence the results as protein signatures alter rapidly after tissue excision or during long-term storage. Hence, we evaluated current state-of-the-art biobank preservation methods from a glycomics perspective and analyzed O-glycan alterations occurring in the gastric cancer tissues. Paired tumor and adjacent normal tissue samples were obtained from six patients undergoing gastric cancer surgery. Collected samples (n = 24) were either snap-frozen or heat stabilized and then homogenized. Glycans were released from extracted glycoproteins and analyzed by LC-MS/MS. In total, the relative abundance of 83 O-glycans and 17 derived structural features were used for comparison. There was no statistically significant difference found in variables between snap frozen and heat-stabilized samples, which indicated the two preservation methods were comparable. The data also showed significant changes between normal and cancerous tissue. In addition to a shift from high sialylation in the cancer area towards blood group ABO in the normal area, we also detected that the LacdiNAc epitope (N,N'-diacetyllactosamine) was significantly decreased in cancer samples. The O-glycan alterations that are presented here may provide predictive power for the detection and prognosis of gastric cancer.
Collapse
Affiliation(s)
- Barbara Adamczyk
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Chunsheng Jin
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Karol Polom
- Department General Surgery and Surgical Oncology, University of Siena, Siena, Italy
- Department of Surgical Oncology, Medical University of Gdansk, Gdansk, Poland
| | - Pedro Muñoz
- Department of Biochemistry and Molecular Biology III, School of Medicine, Complutense University of Madrid, Madrid, Spain
| | - Miguel A Rojas-Macias
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | | | - Mats Borén
- Denator AB, Uppsala Science Park, Uppsala, Sweden
| | - Franco Roviello
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Niclas G Karlsson
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
90
|
Darula Z, Medzihradszky KF. Analysis of Mammalian O-Glycopeptides-We Have Made a Good Start, but There is a Long Way to Go. Mol Cell Proteomics 2018; 17:2-17. [PMID: 29162637 PMCID: PMC5750848 DOI: 10.1074/mcp.mr117.000126] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Indexed: 12/18/2022] Open
Abstract
Glycosylation is perhaps the most common post-translational modification. Recently there has been growing interest in cataloging the glycan structures, glycoproteins, and specific sites modified and deciphering the biological functions of glycosylation. Although the results are piling up for N-glycosylation, O-glycosylation is seriously trailing behind. In our review we reiterate the difficulties researchers have to overcome in order to characterize O-glycosylation. We describe how an ingenious cell engineering method delivered exciting results, and what could we gain from "wild-type" samples. Although we refer to the biological role(s) of O-glycosylation, we do not provide a complete inventory on this topic.
Collapse
Affiliation(s)
- Zsuzsanna Darula
- From the ‡Laboratory of Proteomics Research, Biological Research Centre, Hungarian Academy of Sciences, H-6726, 62 Temesvari krt, Szeged, Hungary
| | - Katalin F Medzihradszky
- From the ‡Laboratory of Proteomics Research, Biological Research Centre, Hungarian Academy of Sciences, H-6726, 62 Temesvari krt, Szeged, Hungary;
- §Department of Pharmaceutical Chemistry, School of Pharmacy, University of California San Francisco, Genentech Hall, N472A, MC 2240, 600 16th Street, San Francisco, California 94158-2517
| |
Collapse
|
91
|
Dunne C, McDermot A, Anjan K, Ryan A, Reid C, Clyne M. Use of Recombinant Mucin Glycoprotein to Assess the Interaction of the Gastric Pathogen Helicobacter pylori with the Secreted Human Mucin MUC5AC. Bioengineering (Basel) 2017; 4:E34. [PMID: 28952513 PMCID: PMC5590460 DOI: 10.3390/bioengineering4020034] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 04/11/2017] [Accepted: 04/12/2017] [Indexed: 12/17/2022] Open
Abstract
There is intense interest in how bacteria interact with mucin glycoproteins in order to colonise mucosal surfaces. In this study, we have assessed the feasibility of using recombinant mucin glycoproteins to study the interaction of the gastric pathogen Helicobacter pylori with MUC5AC, a mucin which the organism exhibits a distinct tropism for. Stable clonal populations of cells expressing a construct encoding for a truncated version of MUC5AC containing N- and C-termini interspersed with two native tandem repeat sequences (N + 2TR + C) were generated. Binding of H. pylori to protein immunoprecipitated from cell lysates and supernatants was assessed. High molecular weight mucin could be detected in both cell lysates and supernatants of transfected cells. Recombinant protein formed high molecular weight oligomers, was both N and O glycosylated, underwent cleavage similar to native MUC5AC and was secreted from the cell. H. pylori bound better to secreted mucin than intracellular mucin suggesting that modifications on extracellular MUC5AC promoted binding. Lectin analysis demonstrated that secreted mucin was differentially glycosylated compared to intracellular mucin. H. pylori also bound to a recombinant C-terminus MUC5AC protein, but binding to this protein did not inhibit binding to the N + 2TR + C protein. This study demonstrates the feasibility of using recombinant mucins containing tandem repeat sequences to assess microbial mucin interactions.
Collapse
Affiliation(s)
- Ciara Dunne
- School of Medicine and Conway Institute of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4 4, Ireland.
| | - Anthony McDermot
- School of Veterinary Medicine, University College Dublin; Dublin 4, Ireland.
| | - Kumar Anjan
- School of Medicine and Conway Institute of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4 4, Ireland.
| | - Aindrias Ryan
- School of Medicine and Conway Institute of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4 4, Ireland.
| | - Colm Reid
- School of Veterinary Medicine, University College Dublin; Dublin 4, Ireland.
| | - Marguerite Clyne
- School of Medicine and Conway Institute of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4 4, Ireland.
| |
Collapse
|