51
|
Huang R, Zong C, Venot A, Chiu Y, Zhou D, Boons GJ, Sharp JS. De Novo Sequencing of Complex Mixtures of Heparan Sulfate Oligosaccharides. Anal Chem 2016; 88:5299-307. [PMID: 27087275 PMCID: PMC5068567 DOI: 10.1021/acs.analchem.6b00519] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Here, we describe the first sequencing method of a complex mixture of heparan sulfate tetrasaccharides by LC-MS/MS. Heparin and heparan sulfate (HS) are linear polysaccharides that are modified in a complex manner by N- and O-sulfation, N-acetylation, and epimerization of the uronic acid. Heparin and HS are involved in various essential cellular communication processes. The structural analysis of these glycosaminoglycans is challenging due to the lability of their sulfate groups, the high heterogeneity of modifications, and the epimerization of the uronic acids. While advances in liquid chromatography (LC) and mass spectrometry (MS) have enabled compositional profiling of HS oligosaccharide mixtures, online separation and detailed structural analysis of isomeric and epimeric HS mixtures has not been achieved. Here, we report the development and evaluation of a chemical derivatization and tandem mass spectrometry method that can separate and identify isomeric and epimeric structures from complex mixtures. A series of well-defined synthetic HS tetrasaccharides varying in sulfation patterns and uronic acid epimerization were analyzed by chemical derivatization and LC-MS/MS. These synthetic compounds made it possible to establish relationships between HS structure, chromatographic behavior and MS/MS fragmentation characteristics. Using the analytical characteristics determined through the analysis of the synthetic HS tetrasaccharide standards, an HS tetrasacharide mixture derived from natural sources was successfully sequenced. This method represents the first sequencing of complex mixtures of HS oligosaccharides, an essential milestone in the analysis of structure-function relationships of these carbohydrates.
Collapse
Affiliation(s)
- Rongrong Huang
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, United States
| | - Chengli Zong
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, United States
| | - Andre Venot
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, United States
| | - Yulun Chiu
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, United States
| | - Dandan Zhou
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, United States
| | - Geert-Jan Boons
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, United States
| | - Joshua S. Sharp
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
52
|
Zamfir AD. Applications of capillary electrophoresis electrospray ionization mass spectrometry in glycosaminoglycan analysis. Electrophoresis 2016; 37:973-86. [PMID: 26701317 DOI: 10.1002/elps.201500461] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 12/06/2015] [Accepted: 12/06/2015] [Indexed: 12/30/2022]
Abstract
Proteoglycans (PGs) represent a class of heavily glycosylated proteins distributed in the extracellular matrix, connective tissues, and on the surface of many cell types where, as functional molecules, regulate important biological processes. Structurally, PGs consist of a core protein linked to glycosaminoglycan (GAG) chains, which basically determine the properties and activities of PGs. In view of the structural complexity of GAGs and the existing correlation between this structure and PG functions, systematic efforts are invested into development of analytical methods for GAG characterization. Although less popular and of higher technical difficulty than liquid-based chromatographic methods, CE coupled with ESI MS contributed lately an important progress to glycosaminoglycomics field. In this review article, the most significant CE ESI MS and MS/MS applications in GAG research are highlighted and critically assessed. The advantages and the limitations of each concept as well as the possible further methodological refinements are also concisely discussed. Finally, the review presents the perspectives of CE ESI MS in GAG analysis along with the objectives, which still need to be reached in the near future.
Collapse
Affiliation(s)
- Alina D Zamfir
- Aurel Vlaicu University of Arad, Arad, Romania.,National Institute for Research and Development in Electrochemistry and Condensed Matter, Timisoara, Romania
| |
Collapse
|
53
|
Gomez Toledo A, Nilsson J, Noborn F, Sihlbom C, Larson G. Positive Mode LC-MS/MS Analysis of Chondroitin Sulfate Modified Glycopeptides Derived from Light and Heavy Chains of The Human Inter-α-Trypsin Inhibitor Complex. Mol Cell Proteomics 2015; 14:3118-31. [PMID: 26407992 DOI: 10.1074/mcp.m115.051136] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Indexed: 01/06/2023] Open
Abstract
The inter-α-trypsin inhibitor complex is a macromolecular arrangement of structurally related heavy chain proteins covalently cross-linked to the chondroitin sulfate (CS) chain of the proteoglycan bikunin. The inter-α-trypsin inhibitor complex is abundant in plasma and associated with inflammation, kidney diseases, cancer and diabetes. Bikunin is modified at Ser-10 by a single low-sulfated CS chain of 23-55 monosaccharides with 4-9 sulfate groups. The innermost four monosaccharides (GlcAβ3Galβ3Galβ4Xylβ-O-) compose the linkage region, believed to be uniform with a 4-O-sulfation to the outer Gal. The cross-linkage region of the bikunin CS chain is located in the nonsulfated nonreducing end, (GalNAcβ4GlcAβ3)(n), to which heavy chains (H1-H3) may be bound in GalNAc to Asp ester linkages. In this study we employed a glycoproteomics protocol to enrich and analyze light and heavy chain linkage and cross-linkage region CS glycopeptides derived from the IαI complex of human plasma, urine and cerebrospinal fluid samples. The samples were trypsinized, enriched by strong anion exchange chromatography, partially depolymerized with chondroitinase ABC and analyzed by LC-MS/MS using higher-energy collisional dissociation. The analyses demonstrated that the CS linkage region of bikunin is highly heterogeneous. In addition to sulfation of the Gal residue, Xyl phosphorylation was observed although exclusively in urinary samples. We also identified novel Neu5Ac and Fuc modifications of the linkage region as well as the presence of mono- and disialylated core 1 O-linked glycans on Thr-17. Heavy chains H1 and H2 were identified cross-linked to GalNAc residues one or two GlcA residues apart and H1 was found linked to either the terminal or subterminal GalNAc residues. The fragmentation behavior of CS glycopeptides under variable higher-energy collisional dissociation conditions displays an energy dependence that may be used to obtain complementary structural details. Finally, we show that the analysis of sodium adducts provides confirmatory information about the positions of glycan substituents.
Collapse
Affiliation(s)
- Alejandro Gomez Toledo
- From the ‡Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, Sweden
| | - Jonas Nilsson
- From the ‡Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, Sweden
| | - Fredrik Noborn
- From the ‡Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, Sweden
| | - Carina Sihlbom
- §The Proteomics Core Facility, Core Facilities, Sahlgrenska Academy at the University of Gothenburg, Sweden
| | - Göran Larson
- From the ‡Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, Sweden;
| |
Collapse
|
54
|
Ouyang Y, Zeng Y, Rong Y, Song Y, Shi L, Chen B, Yang X, Xu N, Linhardt RJ, Zhang Z. Profiling Analysis of Low Molecular Weight Heparins by Multiple Heart-Cutting Two Dimensional Chromatography with Quadruple Time-of-Flight Mass Spectrometry. Anal Chem 2015. [DOI: 10.1021/acs.analchem.5b02218] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yilan Ouyang
- Jiangsu
Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases
and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215021, China
| | - Yangyang Zeng
- Shanghai Green-Valley Pharmaceutical Co. Ltd., Shanghai, 201200, China
| | - Yinxiu Rong
- Jiangsu
Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases
and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215021, China
| | - Yue Song
- Agilent Technology (China) Co. Ltd., Shanghai, 201008, China
| | - Lv Shi
- Shanghai Green-Valley Pharmaceutical Co. Ltd., Shanghai, 201200, China
| | - Bo Chen
- Agilent Technology (China) Co. Ltd., Shanghai, 201008, China
| | - Xinlei Yang
- Agilent Technology (China) Co. Ltd., Shanghai, 201008, China
| | - Naiyu Xu
- Jiangsu
Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases
and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215021, China
| | - Robert J. Linhardt
- Center
for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New
York 12180, United States
| | - Zhenqing Zhang
- Jiangsu
Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases
and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215021, China
| |
Collapse
|
55
|
Robu AC, Popescu L, Munteanu CVA, Seidler DG, Zamfir AD. Orbitrap mass spectrometry characterization of hybrid chondroitin/dermatan sulfate hexasaccharide domains expressed in brain. Anal Biochem 2015; 485:122-31. [PMID: 26123275 DOI: 10.1016/j.ab.2015.06.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 06/16/2015] [Accepted: 06/22/2015] [Indexed: 01/03/2023]
Abstract
In the central nervous system, chondroitin/dermatan sulfate (CS/DS) glycosaminoglycans (GAGs) modulate neurotrophic effects and glial cell maturation during brain development. Previous reports revealed that GAG composition could be responsible for CS/DS activities in brain. In this work, for the structural characterization of DS- and CS-rich domains in hybrid GAG chains extracted from neural tissue, we have developed an advanced approach based on high-resolution mass spectrometry (MS) using nanoelectrospray ionization Orbitrap in the negative ion mode. Our high-resolution MS and multistage MS approach was developed and applied to hexasaccharides obtained from 4- and 14-week-old mouse brains by GAG digestion with chondroitin B and in parallel with AC I lyase. The expression of DS- and CS-rich domains in the two tissues was assessed comparatively. The analyses indicated an age-related structural variability of the CS/DS motifs. The older brain was found to contain more structures and a higher sulfation of DS-rich regions, whereas the younger brain was found to be characterized by a higher sulfation of CS-rich regions. By multistage MS using collision-induced dissociation, we also demonstrated the incidence in mouse brain of an atypical [4,5-Δ-GlcAGalNAc(IdoAGalNAc)2], presenting a bisulfated CS disaccharide formed by 3-O-sulfate-4,5-Δ-GlcA and 6-O-sulfate-GalNAc moieties.
Collapse
Affiliation(s)
- Adrian C Robu
- Mass Spectrometry Laboratory, National Institute for Research and Development in Electrochemistry and Condensed Matter, RO-300224 Timisoara, Romania; Faculty of Physics, West University of Timisoara, RO-300223 Timisoara, Romania
| | - Laurentiu Popescu
- Mass Spectrometry Laboratory, National Institute for Research and Development in Electrochemistry and Condensed Matter, RO-300224 Timisoara, Romania; Faculty of Physics, West University of Timisoara, RO-300223 Timisoara, Romania
| | - Cristian V A Munteanu
- Department of Molecular Cell Biology, Institute of Biochemistry of the Romanian Academy, RO-060031 Bucharest, Romania
| | - Daniela G Seidler
- Institute for Physiological Chemistry and Pathobiochemistry, University of Münster, D-49149 Münster, Germany
| | - Alina D Zamfir
- Mass Spectrometry Laboratory, National Institute for Research and Development in Electrochemistry and Condensed Matter, RO-300224 Timisoara, Romania; Department of Chemical and Biological Sciences, "Aurel Vlaicu" University of Arad, RO-310130 Arad, Romania.
| |
Collapse
|
56
|
Mass Spectrometry in Pharmacokinetic Studies of a Synthetic Compound for Spinal Cord Injury Treatment. BIOMED RESEARCH INTERNATIONAL 2015; 2015:169234. [PMID: 26090386 PMCID: PMC4452236 DOI: 10.1155/2015/169234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 09/16/2014] [Accepted: 09/16/2014] [Indexed: 11/19/2022]
Abstract
The studies of drugs that could constitute a palliative to spinal cord injury (SCI) are a continuous and increasing demand in biomedicine field from developed societies. Recently we described the chemical synthesis and antiglioma activity of synthetic glycosides. A synthetic sulfated glycolipid (here IG20) has shown chemical stability, solubility in polar solvents, and high inhibitory capacity over glioma growth. We have used mass spectrometry (MS) to monitor IG20 (m/z = 550.3) in cells and tissues of the central nervous system (CNS) that are involved in SCI recovery. IG20 was detected by MS in serum and homogenates from CNS tissue of rats, though in the latter a previous deproteinization step was required. The pharmacokinetic parameters of serum clearance at 24 h and half-life at 4 h were determined for synthetic glycoside in the adult rat using MS. A local administration of the drug near of spinal lesion site is proposed.
Collapse
|
57
|
Stavenhagen K, Kolarich D, Wuhrer M. Clinical Glycomics Employing Graphitized Carbon Liquid Chromatography-Mass Spectrometry. Chromatographia 2014; 78:307-320. [PMID: 25750456 PMCID: PMC4346670 DOI: 10.1007/s10337-014-2813-7] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 10/25/2014] [Accepted: 11/13/2014] [Indexed: 12/25/2022]
Abstract
Glycoconjugates and free glycan are involved in a variety of biological processes such as cell-cell interaction and cell trafficking. Alterations in the complex glycosylation machinery have been correlated with various pathological processes including cancer progression and metastasis. Mass Spectrometry (MS) has evolved as one of the most powerful tools in glycomics and glycoproteomics and in combination with porous graphitized carbon-liquid chromatography (PGC-LC) it is a versatile and sensitive technique for the analysis of glycans and to some extent also glycopeptides. PGC-LC-ESI-MS analysis is characterized by a high isomer separation power enabling a specific glycan compound analysis on the level of individual structures. This allows the investigation of the biological relevance of particular glycan structures and glycan features. Consequently, this strategy is a very powerful technique suitable for clinical research, such as cancer biomarker discovery, as well as in-depth analysis of recombinant glycoproteins. In this review, we will focus on how PGC in conjunction with MS detection can deliver specific structural information for clinical research on protein-bound N-glycans and mucin-type O-glycans. In addition, we will briefly review PGC analysis approaches for glycopeptides, glycosaminoglycans (GAGs) and human milk oligosaccharides (HMOs). The presented applications cover systems that vary vastly with regard to complexity such as purified glycoproteins, cells, tissue or body fluids revealing specific glycosylation changes associated with various biological processes including cancer and inflammation.
Collapse
Affiliation(s)
- Kathrin Stavenhagen
- Division of BioAnalytical Chemistry, VU University Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | - Daniel Kolarich
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Wissenschaftspark Potsdam-Golm, Am Mühlenberg 1 OT Golm, 14242 Potsdam, Germany
| | - Manfred Wuhrer
- Division of BioAnalytical Chemistry, VU University Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands ; Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands ; Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
58
|
Pegeot M, Sadir R, Eriksson I, Kjellen L, Simorre JP, Gans P, Lortat-Jacob H. Profiling sulfation/epimerization pattern of full-length heparan sulfate by NMR following cell culture 13C-glucose metabolic labeling. Glycobiology 2014; 25:151-6. [DOI: 10.1093/glycob/cwu114] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
59
|
Sabol JK, Wei W, López-Hoyos M, Seo Y, Andaya A, Leary JA. Heparan sulfate differences in rheumatoid arthritis versus healthy sera. Matrix Biol 2014; 40:54-61. [PMID: 25217862 DOI: 10.1016/j.matbio.2014.08.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 08/28/2014] [Accepted: 08/29/2014] [Indexed: 12/12/2022]
Abstract
Heparan sulfate (HS) is a complex and highly variable polysaccharide, expressed ubiquitously on the cell surface as HS proteoglycans (HSPGs), and found in the extracellular matrix as free HS fragments. Its heterogeneity due to various acetylation and sulfation patterns endows a multitude of functions. In animal tissues, HS interacts with a wide range of proteins to mediate numerous biological activities; given its multiple roles in inflammation processes, characterization of HS in human serum has significant potential for elucidating disease mechanisms. Historically, investigation of HS was limited by its low concentration in human serum, together with the complexity of the serum matrix. In this study, we used a modified mass spectrometry method to examine HS disaccharide profiles in the serum of 50 women with rheumatoid arthritis (RA), and compared our results to 51 sera from healthy women. Using various purification methods and online LC-MS/MS, we discovered statistically significant differences in the sulfation and acetylation patterns between populations. Since early diagnosis of RA is considered important in decelerating the disease's progression, identification of specific biomolecule characterizations may provide crucial information towards developing new therapies for suppressing the disease in its early stages. This is the first report of potential glycosaminoglycan biomarkers for RA found in human sera, while acknowledging the obvious fact that a larger population set, and more stringent collection parameters, will need to be investigated in the future.
Collapse
Affiliation(s)
- Jenny K Sabol
- Department of Molecular & Cellular Biology, University of California, Davis, California 95616, USA
| | - Wei Wei
- Department of Chemistry, University of California, Davis, California 95616, USA
| | - Marcos López-Hoyos
- Immunology Section. Hospital Universitario Marques de Valdecilla-IDIVAL, Santander 39008, SPAIN
| | - Youjin Seo
- Department of Chemistry, University of California, Davis, California 95616, USA
| | - Armann Andaya
- Department of Molecular & Cellular Biology, University of California, Davis, California 95616, USA
| | - Julie A Leary
- Department of Molecular & Cellular Biology, University of California, Davis, California 95616, USA.,Department of Chemistry, University of California, Davis, California 95616, USA
| |
Collapse
|
60
|
Lang Y, Zhao X, Liu L, Yu G. Applications of mass spectrometry to structural analysis of marine oligosaccharides. Mar Drugs 2014; 12:4005-30. [PMID: 24983643 PMCID: PMC4113812 DOI: 10.3390/md12074005] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 04/28/2014] [Accepted: 05/06/2014] [Indexed: 11/23/2022] Open
Abstract
Marine oligosaccharides have attracted increasing attention recently in developing potential drugs and biomaterials for their particular physical and chemical properties. However, the composition and sequence analysis of marine oligosaccharides are very challenging for their structural complexity and heterogeneity. Mass spectrometry (MS) has become an important technique for carbohydrate analysis by providing more detailed structural information, including molecular mass, sugar constituent, sequence, inter-residue linkage position and substitution pattern. This paper provides an overview of the structural analysis based on MS approaches in marine oligosaccharides, which are derived from some biologically important marine polysaccharides, including agaran, carrageenan, alginate, sulfated fucan, chitosan, glycosaminoglycan (GAG) and GAG-like polysaccharides. Applications of electrospray ionization mass spectrometry (ESI-MS) are mainly presented and the general applications of matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) are also outlined. Some technical challenges in the structural analysis of marine oligosaccharides by MS have also been pointed out.
Collapse
Affiliation(s)
- Yinzhi Lang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
| | - Xia Zhao
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
| | - Lili Liu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
| | - Guangli Yu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
61
|
Hu H, Huang Y, Mao Y, Yu X, Xu Y, Liu J, Zong C, Boons GJ, Lin C, Xia Y, Zaia J. A computational framework for heparan sulfate sequencing using high-resolution tandem mass spectra. Mol Cell Proteomics 2014; 13:2490-502. [PMID: 24925905 DOI: 10.1074/mcp.m114.039560] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Heparan sulfate (HS) is a linear polysaccharide expressed on cell surfaces, in extracellular matrices and cellular granules in metazoan cells. Through non-covalent binding to growth factors, morphogens, chemokines, and other protein families, HS is involved in all multicellular physiological activities. Its biological activities depend on the fine structures of its protein-binding domains, the determination of which remains a daunting task. Methods have advanced to the point that mass spectra with information-rich product ions may be produced on purified HS saccharides. However, the interpretation of these complex product ion patterns has emerged as the bottleneck to the dissemination of these HS sequencing methods. To solve this problem, we designed HS-SEQ, the first comprehensive algorithm for HS de novo sequencing using high-resolution tandem mass spectra. We tested HS-SEQ using negative electron transfer dissociation (NETD) tandem mass spectra generated from a set of pure synthetic saccharide standards with diverse sulfation patterns. The results showed that HS-SEQ rapidly and accurately determined the correct HS structures from large candidate pools.
Collapse
Affiliation(s)
- Han Hu
- From the ‡Bioinformatics Program, Boston University, Boston, Massachusetts 02215, USA; §Center for Biomedical Mass Spectrometry, Department of Biochemistry, Boston University School of Medicine, Boston University, Boston, Massachusetts 02118, USA
| | - Yu Huang
- §Center for Biomedical Mass Spectrometry, Department of Biochemistry, Boston University School of Medicine, Boston University, Boston, Massachusetts 02118, USA
| | - Yang Mao
- §Center for Biomedical Mass Spectrometry, Department of Biochemistry, Boston University School of Medicine, Boston University, Boston, Massachusetts 02118, USA
| | - Xiang Yu
- §Center for Biomedical Mass Spectrometry, Department of Biochemistry, Boston University School of Medicine, Boston University, Boston, Massachusetts 02118, USA
| | - Yongmei Xu
- ¶ Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Jian Liu
- ¶ Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Chengli Zong
- **Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
| | - Geert-Jan Boons
- **Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
| | - Cheng Lin
- §Center for Biomedical Mass Spectrometry, Department of Biochemistry, Boston University School of Medicine, Boston University, Boston, Massachusetts 02118, USA
| | - Yu Xia
- ‖Department of Bioengineering, Faculty of Engineering, McGill University, Montreal, Quebec H3A 0C3, Canada; From the ‡Bioinformatics Program, Boston University, Boston, Massachusetts 02215, USA
| | - Joseph Zaia
- §Center for Biomedical Mass Spectrometry, Department of Biochemistry, Boston University School of Medicine, Boston University, Boston, Massachusetts 02118, USA;
| |
Collapse
|
62
|
An automated mass spectrometry-based screening method for analysis of sulfated glycosaminoglycans. Biochem Biophys Res Commun 2014; 450:598-603. [PMID: 24928386 DOI: 10.1016/j.bbrc.2014.06.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 06/03/2014] [Indexed: 02/05/2023]
Abstract
Glycosaminoglycans (GAGs) are linear polysaccharides, consisting of repeated disaccharide units, attached to core proteins in all multicellular organisms. Chondroitin sulfate (CS) and dermatan sulfate (DS) constitute a subgroup of sulfated GAGs for which the degree of sulfation varies between species and tissues. One major goal in GAG characterization is to correlate structure to function. A common approach is to exhaustively degrade the GAG chains and thereafter determine the amount of component disaccharide units. In large-scale studies, there is a need for high-throughput screening methods since existing methods are either very time- or samples consuming. Here, we present a new strategy applying MALDI-TOF MS in positive ion mode for semi-qualitative and quantitative analysis of CS/DS derived disaccharide units. Only a few picomoles of sample are required per analysis and 10 samples can be analyzed in 25 min, which makes this approach an attractive alternative to many established assay methods. The total CS/DS concentration in 19 samples derived from Caenorhabditis elegans and mammalian tissues and cells was determined. The obtained results were well in accordance with concentrations determined by a standard liquid chromatography-based method, demonstrating the applicability of the method for samples from various biological matrices containing CS/DS of different sulfation degrees.
Collapse
|
63
|
Improvement of the digestibility of sulfated hyaluronans by bovine testicular hyaluronidase: a UV spectroscopic and mass spectrometric study. BIOMED RESEARCH INTERNATIONAL 2014; 2014:986594. [PMID: 24971366 PMCID: PMC4058284 DOI: 10.1155/2014/986594] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 04/24/2014] [Indexed: 01/23/2023]
Abstract
Glycosaminoglycans (GAGs) such as hyaluronan (HA) and chondroitin sulfate (CS) are important, natural polysaccharides which occur in biological (connective) tissues and have various biotechnological and medical applications. Additionally, there is increasing evidence that chemically (over)sulfated GAGs possess promising properties and are useful as implant coatings. Unfortunately, a detailed characterization of these GAGs is challenging: although mass spectrometry (MS) is one of the most powerful tools to elucidate the structures of (poly)saccharides, MS is not applicable to high mass polysaccharides, but characteristic oligosaccharides are needed. These oligosaccharides are normally generated by enzymatic digestion. However, chemically modified (particularly sulfated) GAGs are extremely refractive to enzymatic digestion.
This study focuses on the investigation of the digestibility of GAGs with different degrees of sulfation by bovine testicular hyaluronidase (BTH). It will be shown by using an adapted spectrophotometric assay that all investigated GAGs can be basically digested if the reaction conditions are carefully adjusted. However, the oligosaccharide yield correlates reciprocally with the number of sulfate residues per polymer repeating unit. Finally, matrix-laser desorption and ionization (MALDI) MS will be used to study the released oligosaccharides and their sulfation patterns.
Collapse
|
64
|
A personal voyage through the proteoglycan field. Matrix Biol 2014; 35:3-7. [DOI: 10.1016/j.matbio.2014.01.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 01/01/2014] [Accepted: 01/01/2014] [Indexed: 12/11/2022]
|
65
|
Liu L, Linhardt RJ, Zhang Z. Quantitative analysis of anions in glycosaminoglycans and application in heparin stability studies. Carbohydr Polym 2014; 106:343-50. [PMID: 24721088 DOI: 10.1016/j.carbpol.2014.02.076] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 02/22/2014] [Accepted: 02/22/2014] [Indexed: 10/25/2022]
Abstract
The sulfo groups of glycosaminoglycans contribute to their high charge densities, and are critical for the role they play in various physiological and pathophysiological processes. Unfortunately, the sulfo groups can be hydrolyzed to inorganic sulfate. Thus, it is important to monitor the presence of these sulfo groups. In addition, free anions, including chloride, sulfate and acetate, are often present in glycosaminoglycans as a result of multiple purification steps, and their presence also needs to be monitored. In this report, ion chromatography with conductivity detection is used to analyze the anions present in glycosaminoglycans, including heparin, heparan sulfate, chondroitin sulfate and dermatan sulfate. This method allows quantitation over a wide range of concentrations, affording a limit of quantitation of 0.1 ppm and a limit of detection of 0.05 ppm for most anions of interest. The stability of heparin was also studied, providing data on the formation of both sulfate and acetate anions.
Collapse
Affiliation(s)
- Li Liu
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215021, China
| | - Robert J Linhardt
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA; Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA; Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA; Department of Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA
| | - Zhenqing Zhang
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215021, China.
| |
Collapse
|
66
|
Cummings RD, Pierce JM. The challenge and promise of glycomics. CHEMISTRY & BIOLOGY 2014; 21:1-15. [PMID: 24439204 PMCID: PMC3955176 DOI: 10.1016/j.chembiol.2013.12.010] [Citation(s) in RCA: 288] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 12/27/2013] [Accepted: 12/30/2013] [Indexed: 01/22/2023]
Abstract
Glycomics is a broad and emerging scientific discipline focused on defining the structures and functional roles of glycans in biological systems. The staggering complexity of the glycome, minimally defined as the repertoire of glycans expressed in a cell or organism, has resulted in many challenges that must be overcome; these are being addressed by new advances in mass spectrometry as well as by the expansion of genetic and cell biology studies. Conversely, identifying the specific glycan recognition determinants of glycan-binding proteins by employing the new technology of glycan microarrays is providing insights into how glycans function in recognition and signaling within an organism and with microbes and pathogens. The promises of a more complete knowledge of glycomes are immense in that glycan modifications of intracellular and extracellular proteins have critical functions in almost all biological pathways.
Collapse
Affiliation(s)
- Richard D Cummings
- Department of Biochemistry, Emory Glycomics Center, Emory University School of Medicine, 1510 Clifton Road NE, Atlanta, GA 30322, USA.
| | - J Michael Pierce
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA.
| |
Collapse
|
67
|
Huang Y, Yu X, Mao Y, Costello CE, Zaia J, Lin C. De novo sequencing of heparan sulfate oligosaccharides by electron-activated dissociation. Anal Chem 2013; 85:11979-86. [PMID: 24224699 PMCID: PMC3912864 DOI: 10.1021/ac402931j] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Structural characterization of highly sulfated glycosaminoglycans (GAGs) by collisionally activated dissociation (CAD) is challenging because of the extensive sulfate losses mediated by free protons. While removal of the free protons may be achieved through the use of derivatization, metal cation adducts, and/or electrospray supercharging reagents, these steps add complexity to the experimental workflow. It is therefore desirable to develop an analytical approach for GAG sequencing that does not require derivatization or addition of reagents to the electrospray solution. Electron detachment dissociation (EDD) can produce extensive and informative fragmentation for GAGs without the need to remove free protons from the precursor ions. However, EDD is an inefficient process, often requiring consumption of large sample quantities (typically several micrograms), particularly for highly sulfated GAG ions. Here, we report that with improved instrumentation, optimization of the ionization and ion transfer parameters, and enhanced EDD efficiency, it is possible to generate highly informative EDD spectra of highly sulfated GAGs on the liquid chromatography (LC) timescale, with consumption of only a few nanograms of sample. We further show that negative electron transfer dissociation (NETD) is an even more effective fragmentation technique for GAG sequencing, producing fewer sulfate losses while consuming smaller amount of samples. Finally, a simple algorithm was developed for de novo HS sequencing based on their high-resolution tandem mass spectra. These results demonstrate the potential of EDD and NETD as sensitive analytical tools for detailed, high-throughput, de novo structural analyses of highly sulfated GAGs.
Collapse
Affiliation(s)
| | | | - Yang Mao
- Mass Spectrometry Resource, Department of Biochemistry, Boston University School of Medicine 670 Albany Street, Suite 504, Boston, Massachusetts 02118, United States
| | - Catherine E. Costello
- Mass Spectrometry Resource, Department of Biochemistry, Boston University School of Medicine 670 Albany Street, Suite 504, Boston, Massachusetts 02118, United States
| | - Joseph Zaia
- Mass Spectrometry Resource, Department of Biochemistry, Boston University School of Medicine 670 Albany Street, Suite 504, Boston, Massachusetts 02118, United States
| | - Cheng Lin
- Mass Spectrometry Resource, Department of Biochemistry, Boston University School of Medicine 670 Albany Street, Suite 504, Boston, Massachusetts 02118, United States
| |
Collapse
|