51
|
Patel KR, Brown VA, Jones DJL, Britton RG, Hemingway D, Miller AS, West KP, Booth TD, Perloff M, Crowell JA, Brenner DE, Steward WP, Gescher AJ, Brown K. Clinical pharmacology of resveratrol and its metabolites in colorectal cancer patients. Cancer Res 2010. [PMID: 20841478 DOI: 10.1158/0008-5472.can-10-20270008-5472.can-10-2027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Resveratrol is a phytochemical with chemopreventive activity in preclinical rodent models of colorectal carcinogenesis. Antiproliferation is one of the many chemopreventive modes of action it has been shown to engage in. Concentrations of resveratrol, which can be achieved in human tissues after p.o. administration, have not yet been defined. The purpose of this study was to measure concentrations of resveratrol and its metabolites in the colorectal tissue of humans who ingested resveratrol. Twenty patients with histologically confirmed colorectal cancer consumed eight daily doses of resveratrol at 0.5 or 1.0 g before surgical resection. Resveratrol was found to be well tolerated. Normal and malignant biopsy tissue samples were obtained before dosing. Parent compound plus its metabolites resveratrol-3-O-glucuronide, resveratrol-4'-O-glucuronide, resveratrol-3-O-sulfate, resveratrol-4'-O-sulfate, resveratrol sulfate glucuronide, and resveratrol disulfate were identified by high-performance liquid chromatography (HPLC) with UV or mass spectrometric detection in colorectal resection tissue. Quantitation was achieved by HPLC/UV. Cell proliferation, as reflected by Ki-67 staining, was compared in preintervention and postintervention tissue samples. Resveratrol and resveratrol-3-O-glucuronide were recovered from tissues at maximal mean concentrations of 674 and 86.0 nmol/g, respectively. Levels of resveratrol and its metabolites were consistently higher in tissues originating in the right side of the colon compared with the left. Consumption of resveratrol reduced tumor cell proliferation by 5% (P = 0.05). The results suggest that daily p.o. doses of resveratrol at 0.5 or 1.0 g produce levels in the human gastrointestinal tract of an order of magnitude sufficient to elicit anticarcinogenic effects. Resveratrol merits further clinical evaluation as a potential colorectal cancer chemopreventive agent.
Collapse
Affiliation(s)
- Ketan R Patel
- Cancer Biomarkers and Prevention Group, Department of Cancer Studies and Molecular Medicine, University of Leicester, Leicester, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Patel KR, Brown VA, Jones DJL, Britton RG, Hemingway D, Miller AS, West KP, Booth TD, Perloff M, Crowell JA, Brenner DE, Steward WP, Gescher AJ, Brown K. Clinical pharmacology of resveratrol and its metabolites in colorectal cancer patients. Cancer Res 2010; 70:7392-9. [PMID: 20841478 DOI: 10.1158/0008-5472.can-10-2027] [Citation(s) in RCA: 419] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Resveratrol is a phytochemical with chemopreventive activity in preclinical rodent models of colorectal carcinogenesis. Antiproliferation is one of the many chemopreventive modes of action it has been shown to engage in. Concentrations of resveratrol, which can be achieved in human tissues after p.o. administration, have not yet been defined. The purpose of this study was to measure concentrations of resveratrol and its metabolites in the colorectal tissue of humans who ingested resveratrol. Twenty patients with histologically confirmed colorectal cancer consumed eight daily doses of resveratrol at 0.5 or 1.0 g before surgical resection. Resveratrol was found to be well tolerated. Normal and malignant biopsy tissue samples were obtained before dosing. Parent compound plus its metabolites resveratrol-3-O-glucuronide, resveratrol-4'-O-glucuronide, resveratrol-3-O-sulfate, resveratrol-4'-O-sulfate, resveratrol sulfate glucuronide, and resveratrol disulfate were identified by high-performance liquid chromatography (HPLC) with UV or mass spectrometric detection in colorectal resection tissue. Quantitation was achieved by HPLC/UV. Cell proliferation, as reflected by Ki-67 staining, was compared in preintervention and postintervention tissue samples. Resveratrol and resveratrol-3-O-glucuronide were recovered from tissues at maximal mean concentrations of 674 and 86.0 nmol/g, respectively. Levels of resveratrol and its metabolites were consistently higher in tissues originating in the right side of the colon compared with the left. Consumption of resveratrol reduced tumor cell proliferation by 5% (P = 0.05). The results suggest that daily p.o. doses of resveratrol at 0.5 or 1.0 g produce levels in the human gastrointestinal tract of an order of magnitude sufficient to elicit anticarcinogenic effects. Resveratrol merits further clinical evaluation as a potential colorectal cancer chemopreventive agent.
Collapse
Affiliation(s)
- Ketan R Patel
- Cancer Biomarkers and Prevention Group, Department of Cancer Studies and Molecular Medicine, University of Leicester, Leicester, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Gullett NP, Ruhul Amin ARM, Bayraktar S, Pezzuto JM, Shin DM, Khuri FR, Aggarwal BB, Surh YJ, Kucuk O. Cancer prevention with natural compounds. Semin Oncol 2010; 37:258-81. [PMID: 20709209 DOI: 10.1053/j.seminoncol.2010.06.014] [Citation(s) in RCA: 314] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Botanical and nutritional compounds have been used for the treatment of cancer throughout history. These compounds also may be useful in the prevention of cancer. Population studies suggest that a reduced risk of cancer is associated with high consumption of vegetables and fruits. Thus, the cancer chemopreventive potential of naturally occurring phytochemicals is of great interest. There are numerous reports of cancer chemopreventive activity of dietary botanicals, including cruciferous vegetables such as cabbage and broccoli, Allium vegetables such as garlic and onion, green tea, Citrus fruits, soybeans, tomatoes, berries, and ginger, as well as medicinal plants. Several lead compounds, such as genistein (from soybeans), lycopene (from tomatoes), brassinin (from cruciferous vegetables), sulforaphane (from asparagus), indole-3-carbinol (from broccoli), and resveratrol (from grapes and peanuts) are in preclinical or clinical trials for cancer chemoprevention. Phytochemicals have great potential in cancer prevention because of their safety, low cost, and oral bioavailability. In this review, we discuss potential natural cancer preventive compounds and their mechanisms of action.
Collapse
Affiliation(s)
- Norleena P Gullett
- Department of Radiation Oncology, Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Alfaras I, Juan ME, Planas JM. trans-Resveratrol reduces precancerous colonic lesions in dimethylhydrazine-treated rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2010; 58:8104-8110. [PMID: 20521815 DOI: 10.1021/jf100702x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
trans-Resveratrol, a natural occurring polyphenol, has been described as an antiproliferative and proapoptotic agent in vitro. Here, we studied the effect of trans-resveratrol administered orally at a dose of 60 mg/kg for 49 days on early preneoplastic markers induced by the intraperitoneal injection of 1,2-dimethylhydrazine (20 mg/kg). We measured trans-resveratrol and its derivates by liquid-liquid extraction followed by high-performance liquid chromatography diode array detection analysis in colon contents. Dihydroresveratrol was the most abundant compound in the colon, followed by trans-resveratrol glucuronide and small amounts of trans-resveratrol and its sulfate. The administration of trans-resveratrol decreased aberrant crypt foci by 52%, and mucin depleted foci by 45% in colon. In conclusion, the correlation between the reduction of precancerous colonic lesions and the availability of trans-resveratrol in the colon provides a new insight into the therapeutical potential of this polyphenol and its metabolites.
Collapse
Affiliation(s)
- Irene Alfaras
- Departament de Fisiologia (Farmàcia) and Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), Universitat de Barcelona, Spain
| | | | | |
Collapse
|
55
|
Youn J, Lee JS, Na HK, Kundu JK, Surh YJ. Resveratrol and piceatannol inhibit iNOS expression and NF-kappaB activation in dextran sulfate sodium-induced mouse colitis. Nutr Cancer 2010; 61:847-54. [PMID: 20155626 DOI: 10.1080/01635580903285072] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Inflammatory tissue injury has been implicated in tumor promotion and progression. 3,5,4'-trihydroxy-trans-stilbene (resveratrol) and 3,4,3', 5'-tetrahydroxy-trans-stilbene (piceatannol), 2 structurally related plant polyphenols, have been reported to possess antioxidant, anti-inflammatory, and chemopreventive properties. This study was aimed at investigating the possible protective effects of resveratrol and piceatannol against dextran sulfate sodium (DSS)-induced inflammation in mouse colonic mucosa. Administration of DSS (2.5%) in drinking water for 7 days to male ICR mice resulted in colitis and elevated expression of inducible nitric oxide synthase (iNOS) and activation of nuclear factor-kappa B (NF-kappaB), a major transcription factor known to upregulate proinflammatory gene expression. Phosphorylation of extracellular signal-regulated kinase (ERK) and signal transducer and activator of transcription-3 (STAT3) was also enhanced after DSS treatment. Oral administration of resveratrol or piceatannol (10 mg/kg body weight each) for 7 constitutive days attenuated the DSS-induced inflammatory injury, upregulation of iNOS expression, and activation of NF-kappaB, STAT3, and ERK.
Collapse
Affiliation(s)
- Jin Youn
- Seoul National University, Seoul, South Korea
| | | | | | | | | |
Collapse
|
56
|
Kineman BD, Brummer EC, Paiva NL, Birt DF. Resveratrol From Transgenic Alfalfa for Prevention of Aberrant Crypt Foci in Mice. Nutr Cancer 2010; 62:351-61. [DOI: 10.1080/01635580903407213] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
57
|
Inhibitory effect of bread crust antioxidant pronyl-lysine on two different categories of colonic premalignant lesions induced by 1,2-dimethylhydrazine. Eur J Cancer Prev 2010; 18:291-302. [PMID: 19417676 DOI: 10.1097/cej.0b013e32832945a6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Colorectal malignancies continue to be one of the most frequent and life-threatening diseases throughout the world. Pronyl-lysine, a product obtained from bread crust, is a potent free radical scavenging antioxidant exerting chemopreventive activity by reducing oxidative stress. This study was conducted to investigate the effects of pronyl-lysine supplementation on the formation of colonic precancerous lesions, circulatory lipid peroxidation, and enzymic antioxidant status in 1,2-dimethylhydrazine-induced colon carcinogenesis. Male Wistar rats were randomized into seven groups; group 1 was control rats, group 2 received pronyl-lysine (2 mg/kg body weight orally) everyday, rats in groups 3-7 were administered subcutaneous 1,2-dimethylhydrazine (20 mg/kg body weight) once a week for 15 consecutive weeks. In addition, group 4 (pre-initiation), 5 (initiation), 6 (post-initiation), and 7 (entire period) received pronyl-lysine (2 mg/kg body weight orally) everyday. At the end of 34 weeks, indicative markers of lipid peroxidation and changes in antioxidant defense system were measured in circulation. The results showed that 1,2-dimethylhydrazine significantly increased total aberrant crypt foci formation, total number of dysplastic foci, beta-catenin accumulated crypts and proliferating cell nuclear antigen labeling index in the colon, and enhanced lipid peroxidation markers and decreased enzymic antioxidant activities in the plasma and erythrocyte lysate as compared with untreated controls. Pronyl-lysine supplementation significantly reversed the changes as compared with the rats treated with 1,2-dimethylhydrazine alone. The effect of pronyl-lysine was more pronounced when supplemented throughout the study period (group 7). These findings suggest that pronyl-lysine suppresses 1,2-dimethylhydrazine-induced colon carcinogenesis effectively.
Collapse
|
58
|
Paul S, DeCastro AJ, Lee HJ, Smolarek AK, So JY, Simi B, Wang CX, Zhou R, Rimando AM, Suh N. Dietary intake of pterostilbene, a constituent of blueberries, inhibits the beta-catenin/p65 downstream signaling pathway and colon carcinogenesis in rats. Carcinogenesis 2010; 31:1272-8. [PMID: 20061362 DOI: 10.1093/carcin/bgq004] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Stilbenes are phytochemicals present in grapes, berries, peanuts and red wine. A widely studied stilbene, resveratrol (trans-3,5,4'-trihydroxystilbene), has been shown to exert antioxidant, anti-inflammatory, chemopreventive and antiaging effects in a number of biological systems. We reported earlier that pterostilbene (trans-3,5-dimethoxy-4'-hydroxystilbene), a structurally related stilbene found in blueberries, was effective in reducing the incidence and multiplicity of aberrant crypt foci formation in the colon of rats injected with azoxymethane (AOM). Our present study was to identify the chemopreventive potential of pterostilbene with colonic tumor formation as an end point and further to evaluate the mechanistic action of pterostilbene during colon carcinogenesis. F344 rats were given two AOM injections subcutaneously when they were 7 and 8 weeks old and continuously fed the control or 40 p.p.m. pterostilbene diet for 45 weeks. Overall analyses indicated that pterostilbene reduced colon tumor multiplicity of non-invasive adenocarcinomas, lowered proliferating cell nuclear antigen and downregulated the expression of beta-catenin and cyclin D1. Pterostilbene decreased mucosal levels of the proinflammatory cytokines, tumor necrosis factor-alpha, interleukin (IL)-1beta and IL-4. Colon tumors from pterostilbene-fed animals showed reduced expression of inflammatory markers as well as nuclear staining for phospho-p65, a key molecule in the nuclear factor-kappaB pathway. In HT-29 cells, pterostilbene reduced the protein levels of beta-catenin, cyclin D1 and c-MYC, altered the cellular localization of beta-catenin and inhibited the phosphorylation of p65. Our data with pterostilbene in suppressing colon tumorigenesis, cell proliferation as well as key inflammatory markers in vivo and in vitro suggest the potential use of pterostilbene for colon cancer prevention.
Collapse
Affiliation(s)
- Shiby Paul
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 164 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Majumdar APN, Banerjee S, Nautiyal J, Patel BB, Patel V, Du J, Yu Y, Elliott AA, Levi E, Sarkar FH. Curcumin synergizes with resveratrol to inhibit colon cancer. Nutr Cancer 2009; 61:544-53. [PMID: 19838927 DOI: 10.1080/01635580902752262] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Development and progression of many malignancies, including colorectal cancer, are associated with activation of multiple signaling pathways. Therefore, inhibition of these signaling pathways with noncytotoxic natural products represents a logical preventive and/or therapeutic approach for colon cancer. Curcumin and resveratrol, both of which inhibit the growth of transformed cells and colon carcinogenesis, were selected to examine whether combining them would be an effective preventive and/or therapeutic strategy for colon cancer. Indeed, the combination of curcumin and resveratrol was found to be more effective in inhibiting growth of p53-positive (wt) and p53-negative colon cancer HCT-116 cells in vitro and in vivo in SCID xenografts of colon cancer HCT-116 (wt) cells than either agent alone. Analysis by Calcusyn software showed synergism between curcumin and resveratrol. The inhibition of tumors in response to curcumin and/or resveratrol was associated with the reduction in proliferation and stimulation of apoptosis accompanied by attenuation of NF-kappaB activity. In vitro studies have further demonstrated that the combinatorial treatment caused a greater inhibition of constitutive activation of EGFR and its family members as well as IGF-1R. Our current data suggest that the combination of curcumin and resveratrol could be an effective preventive/therapeutic strategy for colon cancer.
Collapse
Affiliation(s)
- Adhip P N Majumdar
- John D. Dingell VA Medical Center, 4646 John R, Room B-4238, Detroit, MI 48201, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Zeng H, Uthus EO, Ross SA, Davis CD. High dietary intake of sodium selenite does not affect gene mutation frequency in rat colon and liver. Biol Trace Elem Res 2009; 131:71-80. [PMID: 19263001 DOI: 10.1007/s12011-009-8348-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2008] [Accepted: 02/17/2009] [Indexed: 10/21/2022]
Abstract
Our previous studies have shown that selenium (Se) is protective against dimethylhydrazine (DMH)-induced preneoplastic colon cancer lesions, and protection against DNA damage has been hypothesized to be one mechanism for the anticancer effect of Se. The present study was designed to determine whether dietary selenite affects somatic mutation frequency in vivo. We used the Big Blue transgenic model to evaluate the in vivo mutation frequency of the cII gene in rats fed either a Se-deficient (0 microg Se/g diet) or Se-supplemented diet (0.2 or 2 microg Se/g diet; n = 3 rats/diet in experiment 1 and n = 5 rats/group in experiment 2) and injected with DMH (25 mg/kg body weight, i.p.). There were no significant differences in body weight between the Se-deficient and Se-supplemented (0.2 or 2 microg Se/g diet) rats, but the activities of liver glutathione peroxidase and thioredoxin reductase and concentration of liver Se were significantly lower (p < 0.0001) in Se-deficient rats compared to rats supplemented with Se. We found no effect of dietary Se on liver 8-hydroxy-2'-deoxyguanosine. Gene mutation frequency was significantly lower in liver (p < 0.001) than that of colon regardless of dietary Se. However, there were no differences in gene mutation frequency in DNA from colon mucosa or liver from rats fed the Se-deficient diet compared to those fed the Se-supplemented (0.2 or 2 microg Se/g diet) diet. Although gene mutations have been implicated in the etiology of cancer, our data suggest that decreasing gene mutation is not likely a key mechanism through which dietary selenite exerts its anticancer action against DMH-induced preneoplastic colon cancer lesions in a Big Blue transgenic rat model.
Collapse
Affiliation(s)
- Huawei Zeng
- United States Department of Agriculture, Agricultural Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, ND 58202-9034, USA
| | | | | | | |
Collapse
|
61
|
Silibinin modulates biotransforming microbial enzymes and prevents 1,2-dimethylhydrazine-induced preneoplastic changes in experimental colon cancer. Eur J Cancer Prev 2009; 18:385-94. [PMID: 19654488 DOI: 10.1097/cej.0b013e32832d1b4f] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Chemoprevention directed towards the control of colon carcinogenesis in its early stages should ultimately provide a higher quality of life for people than waiting to treat end-stage disease. Silibinin is a major bioactive compound that is present in the widely consumed dietary supplement Silymarin. The current investigation aimed to explore the effect of the phytochemical silibinin on the suppression of 1,2-dimethylhydrazine-induced colonic preneoplastic changes in a long-term preclinical model. Wistar male rats were divided into six groups: group 1 were control rats, group 2 were control rats that received silibinin alone (50 mg/kg body weight orally everyday), rats in group 3 were injected once weekly with 1,2-dimethylhydrazine (20 mg/kg body weight, subcutaneously 15 times), in addition, group 4 (initiation), group 5 (post initiation) and group 6 (entire period) received silibinin as in group 2. At the end of 32 weeks, the activities of the colonic and faecal biotransforming microbial enzymes were analysed. Modulatory effects were also evaluated using aberrant crypt foci (ACF), dysplastic ACF and tumour incidence as endpoint markers. Silibinin markedly reduced tumour incidence, as compared with the rats treated with unsupplemented 1,2-dimethylhydrazine. The most pronounced inhibition of ACF and dysplastic ACF development was observed in the rats fed with silibinin for the entire period and also during the post initiation period. Silibinin administration also significantly (P<0.05) modulated the biotransforming activity of microbial enzymes. The results of our study suggest that silibinin suppresses 1,2-dimethylhydrazine-induced colon carcinogenesis at various stages and exerts a potential chemopreventive action against colon cancer.
Collapse
|
62
|
Gastrointestinal microflora, food components and colon cancer prevention. J Nutr Biochem 2009; 20:743-52. [PMID: 19716282 DOI: 10.1016/j.jnutbio.2009.06.001] [Citation(s) in RCA: 233] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2009] [Revised: 05/27/2009] [Accepted: 06/04/2009] [Indexed: 12/17/2022]
Abstract
Evidence that the intestinal microbiota is intrinsically linked with overall health, including cancer risk, is emerging. Moreover, its composition is not fixed but can be influenced by several dietary components. Dietary modifiers, including the consumption of live bacteria (probiotics) and indigestible or limited digestible food constituents such as oligosaccharides (prebiotics) and polyphenols or both (synbiotics), are recognized modifiers of the numbers and types of microbes and have been reported to reduce colon cancer risk experimentally. Microorganisms also have the ability to generate bioactive compounds from food components. Examples include equol from isoflavones, enterodiol and enterolactone from lignans and urolithins from ellagic acid, which have also been demonstrated to retard experimentally induced cancers. The gastrointestinal microbiota can also influence both sides of the energy balance equation, namely, as a factor influencing energy utilization from the diet and as a factor that influences host genes that regulate energy expenditure and storage. Because of the link between obesity and cancer incidence and mortality, this complex complexion deserves greater attention. Overall, a dynamic interrelationship exists between the intestinal microbiota and colon cancer risk, which can be modified by dietary components and eating behaviors.
Collapse
|
63
|
Bishayee A. Cancer prevention and treatment with resveratrol: from rodent studies to clinical trials. Cancer Prev Res (Phila) 2009; 2:409-18. [PMID: 19401532 DOI: 10.1158/1940-6207.capr-08-0160] [Citation(s) in RCA: 345] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Resveratrol (3,4',5-trihydroxy-trans-stilbene) is a dietary polyphenol derived from grapes, berries, peanuts, and other plant sources. During the last decade, resveratrol has been shown to possess a fascinating spectrum of pharmacologic properties. Multiple biochemical and molecular actions seem to contribute to resveratrol effects against precancerous or cancer cells. Resveratrol affects all three discrete stages of carcinogenesis (initiation, promotion, and progression) by modulating signal transduction pathways that control cell division and growth, apoptosis, inflammation, angiogenesis, and metastasis. The anticancer property of resveratrol has been supported by its ability to inhibit proliferation of a wide variety of human tumor cells in vitro. These in vitro data have led to numerous preclinical animal studies to evaluate the potential of this drug for cancer chemoprevention and chemotherapy. This review provides concise, comprehensive data from preclinical in vivo studies in various rodent models of human cancers, highlighting the related mechanisms of action. Bioavailability, pharmacokinetic, and potential toxicity studies of resveratrol in humans and ongoing interventional clinical trials are also presented. The conclusion describes directions for future resveratrol research to establish its activity and utility as a human cancer preventive and therapeutic drug.
Collapse
Affiliation(s)
- Anupam Bishayee
- Department of Pharmaceutical Sciences, Northeastern Ohio Universities Colleges of Medicine and Pharmacy, 4209 State Route 44, Rootstown, OH 44272, USA.
| |
Collapse
|
64
|
Hope C, Planutis K, Planutiene M, Moyer MP, Johal KS, Woo J, Santoso C, Hanson JA, Holcombe RF. Low concentrations of resveratrol inhibit Wnt signal throughput in colon-derived cells: implications for colon cancer prevention. Mol Nutr Food Res 2008; 52 Suppl 1:S52-61. [PMID: 18504708 DOI: 10.1002/mnfr.200700448] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Resveratrol is a bioflavonoid which is known to inhibit cell proliferation and induce apoptosis in cancer cell lines at concentrations above 50 muM. It also has colon cancer prevention activity in mouse models and possibly in humans. We have examined the effects of low concentrations of resveratrol on a specific signaling pathway, the Wnt pathway, which is activated in over 85% of sporadic colon cancers. Two colon cancer (HT29 and RKO) and one normal mucosa-derived (NCM460) cell lines were utilized. Cell proliferation was not affected by resveratrol at < or =40 microM for HT29 and NCM460 and <20 microM for RKO though Wnt signal throughput, as measured by a reporter construct, was reduced in RKO and NCM460 at concentrations as low as 10 microM (p < 0.001). This effect was most easily appreciated following Wnt pathway stimulation with Wnt3a conditioned medium and LEF1 or LEF1/beta-catenin transfection. Resveratrol did not inhibit Wnt throughput in mutationally activated HT29. Low concentrations of resveratrol significantly decreased the amount and proportion of beta-catenin in the nucleus in RKO (p = 0.002) and reduced the expression of lgs and pygoI, regulators of beta-catenin localization, in all cells lines. Thus, at low concentrations, in the absence of effects on cell proliferation, resveratrol significantly inhibits Wnt signaling in colon-derived cells which do not have a basally activated Wnt pathway. This inhibitory effect may be due in part to regulation of intracellular beta-catenin localization.
Collapse
Affiliation(s)
- Christopher Hope
- Division of Hematology/Oncology and Chao Family Comprehensive Cancer Center, University of California, Irvine, CA 92868, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Chao J, Yu MS, Ho YS, Wang M, Chang RCC. Dietary oxyresveratrol prevents parkinsonian mimetic 6-hydroxydopamine neurotoxicity. Free Radic Biol Med 2008; 45:1019-26. [PMID: 18675900 DOI: 10.1016/j.freeradbiomed.2008.07.002] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2008] [Revised: 06/25/2008] [Accepted: 07/05/2008] [Indexed: 01/01/2023]
Abstract
Oxyresveratrol (OXY) is a polyhydroxylated stilbene existing in mulberry. Increasing lines of evidence have shown its neuroprotective effects against Alzheimer disease and stroke. However, little is known about its neuroprotective effect in Parkinson disease (PD). Owing to its antioxidant activity, blood-brain barrier permeativity, and water solubility, we hypothesized that OXY may exert neuroprotective effects against parkinsonian mimetic 6-hydroxydopamine (6-OHDA) neurotoxicity. Neuroblastoma SH-SY5Y cells have long been used as dopaminergic neurons in PD research. We found that both pretreatment and posttreatment with OXY on SH-SY5Y cells significantly reduced the release of lactate dehydrogenase, the activity of caspase-3, and the generation of intracellular reactive oxygen species triggered by 6-OHDA. Compared to resveratrol, OXY exhibited a wider effective dosage range. We proved that OXY could penetrate the cell membrane by HPLC analysis of cell extracts. These results suggest that OXY may act as an intracellular antioxidant to reduce oxidative stress induced by 6-OHDA. Western blot analysis demonstrated that OXY markedly attenuated 6-OHDA-induced phosphorylation of JNK and c-Jun. Furthermore, we proved that OXY increased the basal levels of SIRT1, which may disclose new pathways accounting for the neuroprotective effects of OXY. Taken together, our results suggest OXY, a dietary phenolic compound, as a potential nutritional candidate for protection against neurodegeneration in PD.
Collapse
Affiliation(s)
- Jianfei Chao
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | | | | | | | | |
Collapse
|
66
|
Cancer chemopreventive and therapeutic potential of resveratrol: mechanistic perspectives. Cancer Lett 2008; 269:243-61. [PMID: 18550275 DOI: 10.1016/j.canlet.2008.03.057] [Citation(s) in RCA: 315] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2008] [Revised: 02/11/2008] [Accepted: 03/28/2008] [Indexed: 12/11/2022]
Abstract
A plant kingdom is considered as a gold mine for the discovery of many biologically active substances with therapeutic values. Resveratrol (3,5,4'-trihydroxystilbene), a naturally occurring polyphenol, exhibits pleiotropic health beneficial effects including anti-oxidant, anti-inflammatory, cardioprotective and anti-tumor activities. Currently, numerous preclinical findings suggest resveratrol as a promising nature's arsenal for cancer prevention and treatment. A remarkable progress in dissecting the molecular mechanisms underlying anti-cancer properties of resveratrol has been achieved in the past decade. As a potential anti-cancer agent, resveratrol has been shown to inhibit or retard the growth of various cancer cells in culture and implanted tumors in vivo. The compound significantly inhibits experimental tumorigenesis in a wide range of animal models. Resveratrol targets many components of intracellular signaling pathways including pro-inflammatory mediators, regulators of cell survival and apoptosis, and tumor angiogenic and metastatic switches by modulating a distinct set of upstream kinases, transcription factors and their regulators. This review summarizes the diverse molecular targets of resveratrol with a special focus on those involved in fine-tuning of orchestrated intracellular signal transduction.
Collapse
|
67
|
Kineman BD, Au A, Paiva NL, Kaiser MS, Brummer EC, Birt DF. Transgenic alfalfa that accumulates piceid (trans-resveratrol-3-O-beta-D-glucopyranoside) requires the presence of beta-glucosidase to inhibit the formation of aberrant crypt foci in the colon of CF-1 mice. Nutr Cancer 2007; 58:66-74. [PMID: 17571969 DOI: 10.1080/01635580701308208] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Plants have been genetically enhanced to produce a number of products for agricultural, industrial and pharmaceutical purposes. This technology could potentially be applied to providing chemoprevention strategies to the general population. Resveratrol (3,5,4'-trihydroxystilbene) is a compound that has been shown to have protective activity against a number of cancers and could be an ideal candidate for such an application. Alfalfa that was genetically modified to express resveratrol-synthase was used as a model in applying biotechnological approaches to cancer prevention. The transgenic alfalfa, which accumulates resveratrol as a glucoside (piceid = trans-resveratrol-3-O-Beta-D-glucopyranoside) (152 +/- 17.5 microg piceid/g dry weight), was incorporated into a standard mouse diet at 20% of the diet by weight and fed for 5 wk to 6-wk-old, female CF-1 mice (N = 17-30) that were injected with a single dose of azoxymethane (5 mg/kg body weight). While the addition of resveratrol-aglycone (20 mg/kg diet) to the basal diet reduced the number of aberrant crypt foci/mouse, the transgenic alfalfa did not inhibit the number, size, or multiplicity of aberrant crypt foci in the colon of the CF-1 mice relative to control alfalfa which does not accumulate resveratrol-glucoside. However, diets containing transgenic alfalfa with an exogenous Beta-glucosidase (860 U/kg diet) did significantly inhibit the number of aberrant crypt foci in the distal 2 cm of the colon of the mice relative to mice fed diets containing the transgenic alfalfa without the enzyme (P < 0.05; Fisher's Combination of p-values). The Beta-glucosidase alone appeared to have no effect on the inhibition of aberrant crypt foci. These results suggest that piceid in transgenic piceid-accumulating alfalfa was not bioavailable.
Collapse
Affiliation(s)
- Brian D Kineman
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA 50011, USA
| | | | | | | | | | | |
Collapse
|