51
|
Wang M, Liu J, Xia M, Yin L, Zhang L, Liu X, Cheng Y. Peptide-drug conjugates: A new paradigm for targeted cancer therapy. Eur J Med Chem 2024; 265:116119. [PMID: 38194773 DOI: 10.1016/j.ejmech.2023.116119] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/14/2023] [Accepted: 12/31/2023] [Indexed: 01/11/2024]
Abstract
Peptide-drug conjugates (PDCs) are the new hope for targeted therapy after antibody-drug conjugates (ADCs). Compared with ADCs, the core advantages of PDCs are enhanced tissue penetration, easier chemical synthesis, and lower production costs. Two PDCs have been approved by the US Food and Drug Administration (FDA) for the treatment of cancer. The therapeutic effects of PDCs are remarkable, but PDCs also encounter problems when used as targeted therapeutics, such as poor stability, a short blood circulation time, a long research and development time frame, and a slow clinical development process. Therefore, it is very urgent and important to understand the latest research progress of cancer cells targeting PDC, the solution to its stability problem, the scheme of computer technology to assist its research and development, and the direction of its future development. In this manuscript, based on the structure and function of PDCs, the latest research progress on PDCs from the aspects of cancer cell-targeting peptide (CTP) selection, pharmacokinetic characteristics, stability regulation and so on were systematically reviewed, hoping to highlight the current problems and future development directions of PDCs.
Collapse
Affiliation(s)
- Mo Wang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Anti-Tumor Molecular Target Technology Innovation Center; Hebei Research Center of the Basic Discipline of Cell Biology; College of Life Science, Hebei Normal University, Shijiazhuang, 050024, PR China
| | - Jiawei Liu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Anti-Tumor Molecular Target Technology Innovation Center; Hebei Research Center of the Basic Discipline of Cell Biology; College of Life Science, Hebei Normal University, Shijiazhuang, 050024, PR China
| | - Mingjing Xia
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Anti-Tumor Molecular Target Technology Innovation Center; Hebei Research Center of the Basic Discipline of Cell Biology; College of Life Science, Hebei Normal University, Shijiazhuang, 050024, PR China
| | - Libinghan Yin
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Anti-Tumor Molecular Target Technology Innovation Center; Hebei Research Center of the Basic Discipline of Cell Biology; College of Life Science, Hebei Normal University, Shijiazhuang, 050024, PR China
| | - Ling Zhang
- School of Chemical Technology, Shijiazhuang University, Shijiazhuang, 050035, PR China.
| | - Xifu Liu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Anti-Tumor Molecular Target Technology Innovation Center; Hebei Research Center of the Basic Discipline of Cell Biology; College of Life Science, Hebei Normal University, Shijiazhuang, 050024, PR China.
| | - Yu Cheng
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Anti-Tumor Molecular Target Technology Innovation Center; Hebei Research Center of the Basic Discipline of Cell Biology; College of Life Science, Hebei Normal University, Shijiazhuang, 050024, PR China.
| |
Collapse
|
52
|
Wu J, Roesger S, Jones N, Hu CMJ, Li SD. Cell-penetrating peptides for transmucosal delivery of proteins. J Control Release 2024; 366:864-878. [PMID: 38272399 DOI: 10.1016/j.jconrel.2024.01.038] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/11/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024]
Abstract
Enabling non-invasive delivery of proteins across the mucosal barriers promises improved patient compliance and therapeutic efficacies. Cell-penetrating peptides (CPPs) are emerging as a promising and versatile tool to enhance protein and peptide permeation across various mucosal barriers. This review examines the structural and physicochemical attributes of the nasal, buccal, sublingual, and oral mucosa that hamper macromolecular delivery. Recent development of CPPs for overcoming those mucosal barriers for protein delivery is summarized and analyzed. Perspectives regarding current challenges and future research directions towards improving non-invasive transmucosal delivery of macromolecules for ultimate clinical translation are discussed.
Collapse
Affiliation(s)
- Jiamin Wu
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Sophie Roesger
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Natalie Jones
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Che-Ming J Hu
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Shyh-Dar Li
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada.
| |
Collapse
|
53
|
Cecchi D, Jackson N, Beckham W, Chithrani DB. Improving the Efficacy of Common Cancer Treatments via Targeted Therapeutics towards the Tumour and Its Microenvironment. Pharmaceutics 2024; 16:175. [PMID: 38399237 PMCID: PMC10891984 DOI: 10.3390/pharmaceutics16020175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/19/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
Cancer is defined as the uncontrolled proliferation of heterogeneous cell cultures in the body that develop abnormalities and mutations, leading to their resistance to many forms of treatment. Left untreated, these abnormal cell growths can lead to detrimental and even fatal complications for patients. Radiation therapy is involved in around 50% of cancer treatment workflows; however, it presents significant recurrence rates and normal tissue toxicity, given the inevitable deposition of the dose to the surrounding healthy tissue. Chemotherapy is another treatment modality with excessive normal tissue toxicity that significantly affects patients' quality of life. To improve the therapeutic efficacy of radiotherapy and chemotherapy, multiple conjunctive modalities have been proposed, which include the targeting of components of the tumour microenvironment inhibiting tumour spread and anti-therapeutic pathways, increasing the oxygen content within the tumour to revert the hypoxic nature of the malignancy, improving the local dose deposition with metal nanoparticles, and the restriction of the cell cycle within radiosensitive phases. The tumour microenvironment is largely responsible for inhibiting nanoparticle capture within the tumour itself and improving resistance to various forms of cancer therapy. In this review, we discuss the current literature surrounding the administration of molecular and nanoparticle therapeutics, their pharmacokinetics, and contrasting mechanisms of action. The review aims to demonstrate the advancements in the field of conjugated nanomaterials and radiotherapeutics targeting, inhibiting, or bypassing the tumour microenvironment to promote further research that can improve treatment outcomes and toxicity rates.
Collapse
Affiliation(s)
- Daniel Cecchi
- Department of Physics and Astronomy, University of Victoria, Victoria, BC V8P 5C2, Canada; (D.C.)
| | - Nolan Jackson
- Department of Physics and Astronomy, University of Victoria, Victoria, BC V8P 5C2, Canada; (D.C.)
| | - Wayne Beckham
- Department of Physics and Astronomy, University of Victoria, Victoria, BC V8P 5C2, Canada; (D.C.)
- British Columbia Cancer-Victoria, Victoria, BC V8R 6V5, Canada
| | - Devika B. Chithrani
- Department of Physics and Astronomy, University of Victoria, Victoria, BC V8P 5C2, Canada; (D.C.)
- Centre for Advanced Materials and Related Technologies, Department of Chemistry, University of Victoria, Victoria, BC V8P 5C2, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC V8P 5C2, Canada
- Department of Computer Science, Mathematics, Physics and Statistics, Okanagan Campus, University of British Columbia, Kelowna, BC V1V 1V7, Canada
| |
Collapse
|
54
|
Kuperkar K, Atanase LI, Bahadur A, Crivei IC, Bahadur P. Degradable Polymeric Bio(nano)materials and Their Biomedical Applications: A Comprehensive Overview and Recent Updates. Polymers (Basel) 2024; 16:206. [PMID: 38257005 PMCID: PMC10818796 DOI: 10.3390/polym16020206] [Citation(s) in RCA: 56] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Degradable polymers (both biomacromolecules and several synthetic polymers) for biomedical applications have been promising very much in the recent past due to their low cost, biocompatibility, flexibility, and minimal side effects. Here, we present an overview with updated information on natural and synthetic degradable polymers where a brief account on different polysaccharides, proteins, and synthetic polymers viz. polyesters/polyamino acids/polyanhydrides/polyphosphazenes/polyurethanes relevant to biomedical applications has been provided. The various approaches for the transformation of these polymers by physical/chemical means viz. cross-linking, as polyblends, nanocomposites/hybrid composites, interpenetrating complexes, interpolymer/polyion complexes, functionalization, polymer conjugates, and block and graft copolymers, are described. The degradation mechanism, drug loading profiles, and toxicological aspects of polymeric nanoparticles formed are also defined. Biomedical applications of these degradable polymer-based biomaterials in and as wound dressing/healing, biosensors, drug delivery systems, tissue engineering, and regenerative medicine, etc., are highlighted. In addition, the use of such nano systems to solve current drug delivery problems is briefly reviewed.
Collapse
Affiliation(s)
- Ketan Kuperkar
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology (SVNIT), Ichchhanath, Piplod, Surat 395007, Gujarat, India;
| | - Leonard Ionut Atanase
- Faculty of Medical Dentistry, “Apollonia” University of Iasi, 700511 Iasi, Romania
- Academy of Romanian Scientists, 050045 Bucharest, Romania
| | - Anita Bahadur
- Department of Zoology, Sir PT Sarvajanik College of Science, Surat 395001, Gujarat, India;
| | - Ioana Cristina Crivei
- Department of Public Health, Faculty of Veterinary Medicine, “Ion Ionescu de la Brad” University of Life Sciences, 700449 Iasi, Romania;
| | - Pratap Bahadur
- Department of Chemistry, Veer Narmad South Gujarat University (VNSGU), Udhana-Magdalla Road, Surat 395007, Gujarat, India;
| |
Collapse
|
55
|
Sallam NG, Boraie NA, Sheta E, El-Habashy SE. Targeted delivery of genistein for pancreatic cancer treatment using hyaluronic-coated cubosomes bioactivated with frankincense oil. Int J Pharm 2024; 649:123637. [PMID: 38008234 DOI: 10.1016/j.ijpharm.2023.123637] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/01/2023] [Accepted: 11/22/2023] [Indexed: 11/28/2023]
Abstract
Pancreatic cancer is an aggressive malignancy that remains a major cause of cancer-related deaths. Research for innovative anticancer therapeutic options is thus imperative. In this regard, phytotherapeutics offer great promise as efficient treatment modalities, especially leveraging nanodrug delivery. Herein, we innovatively coloaded the flavonoid genistein (Gen) and frankincense essential oil (FO) within cubosomes, which were then coated with the bioactive ligand hyaluronic acid (HA/Gen-FO-Cub) for active-targeting of pancreatic cancer. The novel HA/Gen-FO-Cub displayed optimum nanosize (198.2 ± 4.5 nm), PDI (0.27 ± 0.01), zeta-potential (-34.7 ± 1.2 mV), Gen entrapment (99.3 ± 0.01 %), and controlled Gen release (43.7 ± 1.2 % after 120 h). HA/Gen-FO-Cub exerted selective anticancer activity on pancreatic cancer cells (PANC-1; 8-fold drop in IC50), cellular uptake and anti-migratory effect compared to Gen solution. HA/Gen-FO-Cub revealed prominent cytocompatibility (100 ± 5.9 % viability of human dermal fibroblast). Moreover, HA/Gen-FO-Cub boosted the in vivo anticancer activity of Gen in an orthotopic cancer model, affording tumor growth suppression (2.5-fold drop) and downregulation of NFκB and VEGF (2.9- and 1.8-fold decrease, respectively), compared to Gen suspension. Antimetastatic efficacy and Bcl-2-downexpression was histologically confirmed. Our findings demonstrate the promising anticancer aptitude of HA/Gen-FO-Cub as an effective phytotherapeutic nanodelivery system for pancreatic cancer therapy.
Collapse
Affiliation(s)
- Nourhan G Sallam
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Nabila A Boraie
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Eman Sheta
- Pathology Department, Faculty of Medicine, Alexandria University, Alexandria 21131, Egypt
| | - Salma E El-Habashy
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt.
| |
Collapse
|
56
|
Liu X, Liu G, Mao Y, Luo J, Cao Y, Tan W, Li W, Yu H, Jia X, Li H. Engineering extracellular vesicles mimetics for targeted chemotherapy of drug-resistant ovary cancer. Nanomedicine (Lond) 2024; 19:25-41. [PMID: 38059464 DOI: 10.2217/nnm-2023-0289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023] Open
Abstract
Aim: To develop nanocarriers for targeting the delivery of chemotherapeutics to overcome multidrug-resistant ovarian cancer. Materials & methods: Doxorubicin-loaded nanovesicles were obtained through serial extrusion, followed by loading of P-glycoprotein siRNA and folic acid. The targeting ability and anticancer efficacy of the nanovesicles were evaluated. Results: The doxorubicin-loaded nanovesicles showed a high production yield. The presence of P-glycoprotein siRNA and folic acid resulted in reversed drug resistance and tumor targeting. This nanoplatform tremendously inhibited the viability of multidrug-resistant ovarian cancer cells, which was able to target tumor tissue and suppress tumor growth without adverse effects. Conclusion: These bioengineered nanovesicles could serve as novel extracellular vesicles mimetics for chemotherapeutics delivery to overcome multidrug resistance.
Collapse
Affiliation(s)
- Xiaoguang Liu
- Department of Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity & Child Health Care Hospital, Nanjing, 210001, China
| | - Guangquan Liu
- Department of Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity & Child Health Care Hospital, Nanjing, 210001, China
| | - Yinghua Mao
- Centre for Diseases Prevention & Control of Eastern Theater, Nanjing, 210002, China
| | - Jie Luo
- Department of Healthcare, General Hospital of Eastern Theater Command, Nanjing, 210002, China
| | - Yongping Cao
- Centre for Diseases Prevention & Control of Eastern Theater, Nanjing, 210002, China
| | - Weilong Tan
- Centre for Diseases Prevention & Control of Eastern Theater, Nanjing, 210002, China
| | - Wenhao Li
- Centre for Diseases Prevention & Control of Eastern Theater, Nanjing, 210002, China
| | - Huanhuan Yu
- Department of Clinical Pharmacy, General Hospital of Eastern Theater Command, Nanjing, 210002, China
| | - Xuemei Jia
- Department of Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity & Child Health Care Hospital, Nanjing, 210001, China
| | - Hong Li
- Centre for Diseases Prevention & Control of Eastern Theater, Nanjing, 210002, China
| |
Collapse
|
57
|
Aryal S, Park S, Park H, Park C, Kim WC, Thakur D, Won YJ, Key J. Clinical Trials for Oral, Inhaled and Intravenous Drug Delivery System for Lung Cancer and Emerging Nanomedicine-Based Approaches. Int J Nanomedicine 2023; 18:7865-7888. [PMID: 38146467 PMCID: PMC10749572 DOI: 10.2147/ijn.s432839] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/19/2023] [Indexed: 12/27/2023] Open
Abstract
Lung cancer is one of the most common malignant tumors worldwide and is characterized by high morbidity and mortality rates and a poor prognosis. It is the leading cause of cancer-related death in the United States and worldwide. Most patients with lung cancer are treated with chemotherapy, radiotherapy, or surgery; however, effective treatment options remain limited. In this review, we aim to provide an overview of clinical trials, ranging from Phase I to III, conducted on drug delivery systems for lung cancer treatment. The trials included oral, inhaled, and intravenous administration of therapeutics. Furthermore, the study also talks about the evolving paradigm of targeted therapy and immunotherapy providing promising directions for personalized treatment. In addition, we summarize the best results and limitations of these drug delivery systems and discuss the potential capacity of nanomedicine.
Collapse
Affiliation(s)
- Susmita Aryal
- Department of Biomedical Engineering, Yonsei University, Wonju, Gangwon Province, 26493, Korea
| | - Sanghyo Park
- Department of Biomedical Engineering, Yonsei University, Wonju, Gangwon Province, 26493, Korea
| | - Hyungkyu Park
- Department of Biomedical Engineering, Yonsei University, Wonju, Gangwon Province, 26493, Korea
| | - Chaewon Park
- Department of Biomedical Engineering, Yonsei University, Wonju, Gangwon Province, 26493, Korea
| | - Woo Cheol Kim
- Department of Biomedical Engineering, Yonsei University, Wonju, Gangwon Province, 26493, Korea
| | - Deepika Thakur
- Department of Biomedical Engineering, Yonsei University, Wonju, Gangwon Province, 26493, Korea
| | - Young-Joo Won
- Division of Health Administration, College of Software Digital Healthcare Convergence, Yonsei University, Wonju, Gangwon State, 26493, Korea
| | - Jaehong Key
- Department of Biomedical Engineering, Yonsei University, Wonju, Gangwon Province, 26493, Korea
| |
Collapse
|
58
|
Thomas BJ, Guldenpfennig C, Guan Y, Winkler C, Beecher M, Beedy M, Berendzen AF, Ma L, Daniels MA, Burke DH, Porciani D. Targeting lung cancer with clinically relevant EGFR mutations using anti-EGFR RNA aptamer. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 34:102046. [PMID: 37869258 PMCID: PMC10589377 DOI: 10.1016/j.omtn.2023.102046] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 09/29/2023] [Indexed: 10/24/2023]
Abstract
A significant fraction of non-small cell lung cancer (NSCLC) cases are due to oncogenic mutations in the tyrosine kinase domain of the epidermal growth factor receptor (EGFR). Anti-EGFR antibodies have shown limited clinical benefit for NSCLC, whereas tyrosine kinase inhibitors (TKIs) are effective, but resistance ultimately occurs. The current landscape suggests that alternative ligands that target wild-type and mutant EGFRs are desirable for targeted therapy or drug delivery development. Here we evaluate NSCLC targeting using an anti-EGFR aptamer (MinE07). We demonstrate that interaction sites of MinE07 overlap with clinically relevant antibodies targeting extracellular domain III and that MinE07 retains binding to EGFR harboring the most common oncogenic and resistance mutations. When MinE07 was linked to an anti-c-Met aptamer, the EGFR/c-Met bispecific aptamer (bsApt) showed superior labeling of NSCLC cells in vitro relative to monospecific aptamers. However, dual targeting in vivo did not improve the recognition of NSCLC xenografts compared to MinE07. Interestingly, biodistribution of Cy7-labeled bsApt differed significantly from Alexa Fluor 750-labeled bsApt. Overall, our findings demonstrate that aptamer formulations containing MinE07 can target ectopic lung cancer without additional stabilization or PEGylation and highlights the potential of MinE07 as a targeting reagent for the recognition of NSCLC harboring clinically relevant EGFRs.
Collapse
Affiliation(s)
- Brian J. Thomas
- Department of Molecular Microbiology and Immunology, Bond Life Sciences Center, University of Missouri School of Medicine, Columbia, MO 65211, USA
| | - Caitlyn Guldenpfennig
- Department of Molecular Microbiology and Immunology, Bond Life Sciences Center, University of Missouri School of Medicine, Columbia, MO 65211, USA
| | - Yue Guan
- Department of Molecular Microbiology and Immunology, Bond Life Sciences Center, University of Missouri School of Medicine, Columbia, MO 65211, USA
| | - Calvin Winkler
- Department of Biological Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Margaret Beecher
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA
| | - Michaela Beedy
- Department of Biochemistry, Westminster College, Fulton, MO 65251, USA
| | - Ashley F. Berendzen
- Research Division/Biomolecular Imaging Center, Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO 65201, USA
| | - Lixin Ma
- Research Division/Biomolecular Imaging Center, Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO 65201, USA
- Department of Radiology, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Mark A. Daniels
- Department of Molecular Microbiology and Immunology, Bond Life Sciences Center, University of Missouri School of Medicine, Columbia, MO 65211, USA
| | - Donald H. Burke
- Department of Molecular Microbiology and Immunology, Bond Life Sciences Center, University of Missouri School of Medicine, Columbia, MO 65211, USA
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA
| | - David Porciani
- Department of Molecular Microbiology and Immunology, Bond Life Sciences Center, University of Missouri School of Medicine, Columbia, MO 65211, USA
| |
Collapse
|
59
|
Zughaibi TA, Jabir NR, Khan AU, Khan MS, Tabrez S. Screening of Cu 4 O 3 NPs efficacy and its anticancer potential against cervical cancer. Cell Biochem Funct 2023; 41:1174-1187. [PMID: 37691077 DOI: 10.1002/cbf.3850] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/31/2023] [Accepted: 08/26/2023] [Indexed: 09/12/2023]
Abstract
Cu4 O3 is the least explored copper oxide, and its nanoformulation is anticipated to have important therapeutic potential especially against cancer. The current study aimed to biosynthesize Cu4 O3 nanoparticles (NPs) using an aqueous extract of pumpkin seeds and evaluate its antiproliferative efficacy against cervical cells after screening on different cancer cell lines. The obtained NPs were characterized by different spectroscopic analyses, such as UV-vis, thermogravimetric, energy dispersive X-ray, and Fourier-transform infrared spectroscopy (FTIR). In addition, high-resolution transmission electron microscopes (HR-TEM) were used to observe the morphology of the biosynthesized NPs. The UV-vis spectra showed a peak at around 332 nm, confirming the formation of Cu4 O3 NPs. Moreover, FTIR and TAG analyses identified the presence of various bioactive phytoconstituents that might have worked as capping and stabilization agents and comparative stable NPs at very high temperatures, respectively. The HR-TEM data showed the spherical shape of Cu4 O3 NPs in the range of 100 nm. The Cu4 O3 NPs was screened on three different cancer cell lines viz., Hela, MDA-MB-231, and HCT-116 using cytotoxicity (MTT) reduction assay. In addition, Vero was taken as a normal epithelial (control) cell. The high responsive cell line in terms of least IC50 was further assessed for its anticancer potential using a battery of biological tests, including morphological alterations, induction of apoptosis/ROS generation, regulation of mitochondrial membrane potential (MMP), and suppression of cell adhesion/migration. Vero cells (control) showed a slight decline in % cell viability even at the highest tested Cu4 O3 NPs concentration. However, all the studied cancer cells viz., MDA-MB-231, HCT 116, and HeLa cells showed a dose-dependent decline in cell viability after the treatment with Cu4 O3 NPs with a calculated IC50 value of 10, 11, and 7.2 µg/mL, respectively. Based on the above data, Hela cells were chosen for further studies, that showed induction of apoptosis from 3.5 to 9-folds by three different staining techniques acridine orange/ethidium bromide (AO/EB), 4',6-diamidino-2-phenylindole (DAPI), and propidium iodide (PI). The enhanced production of reactive oxygen species (>3.5-fold), modulation in MMP, and suppression of cell adhesion/migration were observed in the cells treated with Cu4 O3 NPs. The current study obtained the significant antiproliferative potential of Cu4 O3 NPs against the cervical cancer cell line, which needs to be confirmed further in a suitable in vivo model. Based on our results, we also recommend the green-based, eco-friendly, and cost-effective alternative method for synthesizing novel nanoformulation.
Collapse
Affiliation(s)
- Torki A Zughaibi
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nasimudeen R Jabir
- Department of Biochemistry, Centre for Research and Development, PRIST University, Vallam Thanjavur, Tamil Nadu, India
| | - Azhar U Khan
- Department of Chemistry, School of Life and Basic Sciences, Siilas Campus, Jaipur National University, Jaipur, Rajasthan, India
| | - Mohd Shahnawaz Khan
- Protein Research Chair, Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Shams Tabrez
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
60
|
Moammeri A, Chegeni MM, Sahrayi H, Ghafelehbashi R, Memarzadeh F, Mansouri A, Akbarzadeh I, Abtahi MS, Hejabi F, Ren Q. Current advances in niosomes applications for drug delivery and cancer treatment. Mater Today Bio 2023; 23:100837. [PMID: 37953758 PMCID: PMC10632535 DOI: 10.1016/j.mtbio.2023.100837] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/21/2023] [Accepted: 10/16/2023] [Indexed: 11/14/2023] Open
Abstract
The advent of nanotechnology has led to an increased interest in nanocarriers as a drug delivery system that is efficient and safe. There have been many studies addressing nano-scale vesicular systems such as liposomes and niosome is a newer generation of vesicular nanocarriers. The niosomes provide a multilamellar carrier for lipophilic and hydrophilic bioactive substances in the self-assembled vesicle, which are composed of non-ionic surfactants in conjunction with cholesterol or other amphiphilic molecules. These non-ionic surfactant vesicles, simply known as niosomes, can be utilized in a wide variety of technological applications. As an alternative to liposomes, niosomes are considered more chemically and physically stable. The methods for preparing niosomes are more economic. Many reports have discussed niosomes in terms of their physicochemical properties and applications as drug delivery systems. As drug carriers, nano-sized niosomes expand the horizons of pharmacokinetics, decreasing toxicity, enhancing drug solvability and bioavailability. In this review, we review the components and fabrication methods of niosomes, as well as their functionalization, characterization, administration routes, and applications in cancer gene delivery, and natural product delivery. We also discuss the limitations and challenges in the development of niosomes, and provide the future perspective of niosomes.
Collapse
Affiliation(s)
- Ali Moammeri
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | | | - Hamidreza Sahrayi
- Department of Chemical and Petrochemical Engineering, Sharif University of Technology, Tehran, Iran
| | | | - Farkhondeh Memarzadeh
- Department of Chemical and Petrochemical Engineering, Sharif University of Technology, Tehran, Iran
| | - Afsoun Mansouri
- School of Pharmacy and Pharmaceutical Sciences, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Iman Akbarzadeh
- Department of Chemical and Petrochemical Engineering, Sharif University of Technology, Tehran, Iran
| | - Maryam Sadat Abtahi
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Faranak Hejabi
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Qun Ren
- Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials Science and Technology, 9014, St. Gallen, Switzerland
| |
Collapse
|
61
|
Jarak I, Isabel Santos A, Helena Pinto A, Domingues C, Silva I, Melo R, Veiga F, Figueiras A. Colorectal cancer cell exosome and cytoplasmic membrane for homotypic delivery of therapeutic molecules. Int J Pharm 2023; 646:123456. [PMID: 37778515 DOI: 10.1016/j.ijpharm.2023.123456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/03/2023]
Abstract
Colorectal cancer (CRC) is one of the most common causes of death in the world. The multi-drug resistance, especially in metastatic colorectal cancer, drives the development of new strategies that secure a positive outcome and reduce undesirable side effects. Nanotechnology has made an impact in addressing some pharmacokinetic and safety issues related to administration of free therapeutic agents. However, demands of managing complex biointerfacing require equally complex methods for introducing stimuli-responsive or targeting elements. In order to procure a more efficient solution to the overcoming of biological barriers, the physiological functions of cancer cell plasma and exosomal membranes provided the source of highly functionalized coatings. Biomimetic nanovehicles based on colorectal cancer (CRC) membranes imparted enhanced biological compatibility, immune escape and protection to diverse classes of therapeutic molecules. When loaded with therapeutic load or used as a coating for other therapeutic nanovehicles, they provide highly efficient and selective cell targeting and uptake. This review presents a detailed overview of the recent application of homotypic biomimetic nanovehicles in the management of CRC. We also address some of the current possibilities and challenges associated with the CRC membrane biomimetics.
Collapse
Affiliation(s)
- Ivana Jarak
- Univ Coimbra, Laboratory of Drug Development and Technologies, Faculty of Pharmacy, Coimbra, Portugal; Univ Porto, Instituto de Investigação e Inovação em Saúde, Porto, Portugal
| | - Ana Isabel Santos
- Univ Coimbra, Laboratory of Drug Development and Technologies, Faculty of Pharmacy, Coimbra, Portugal
| | - Ana Helena Pinto
- Univ Coimbra, Laboratory of Drug Development and Technologies, Faculty of Pharmacy, Coimbra, Portugal
| | - Cátia Domingues
- Univ Coimbra, Laboratory of Drug Development and Technologies, Faculty of Pharmacy, Coimbra, Portugal; Univ Coimbra, REQUIMTE/LAQV, Group of Pharmaceutical Technology, Coimbra, Portugal; Univ Coimbra, Institute for Clinical and Biomedical Research (iCBR) Area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, Coimbra, Portugal
| | - Inês Silva
- Univ Coimbra, Laboratory of Drug Development and Technologies, Faculty of Pharmacy, Coimbra, Portugal
| | - Raquel Melo
- Univ Coimbra, Laboratory of Drug Development and Technologies, Faculty of Pharmacy, Coimbra, Portugal
| | - Francisco Veiga
- Univ Coimbra, Laboratory of Drug Development and Technologies, Faculty of Pharmacy, Coimbra, Portugal; Univ Coimbra, REQUIMTE/LAQV, Group of Pharmaceutical Technology, Coimbra, Portugal
| | - Ana Figueiras
- Univ Coimbra, Laboratory of Drug Development and Technologies, Faculty of Pharmacy, Coimbra, Portugal; Univ Coimbra, REQUIMTE/LAQV, Group of Pharmaceutical Technology, Coimbra, Portugal.
| |
Collapse
|
62
|
Tiwari P, Yadav K, Shukla RP, Gautam S, Marwaha D, Sharma M, Mishra PR. Surface modification strategies in translocating nano-vesicles across different barriers and the role of bio-vesicles in improving anticancer therapy. J Control Release 2023; 363:290-348. [PMID: 37714434 DOI: 10.1016/j.jconrel.2023.09.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 09/03/2023] [Accepted: 09/06/2023] [Indexed: 09/17/2023]
Abstract
Nanovesicles and bio-vesicles (BVs) have emerged as promising tools to achieve targeted cancer therapy due to their ability to overcome many of the key challenges currently being faced with conventional chemotherapy. These challenges include the diverse and often complex pathophysiology involving the progression of cancer, as well as the various biological barriers that circumvent therapeutic molecules reaching their target site in optimum concentration. The scientific evidence suggests that surface-functionalized nanovesicles and BVs camouflaged nano-carriers (NCs) both can bypass the established biological barriers and facilitate fourth-generation targeting for the improved regimen of treatment. In this review, we intend to emphasize the role of surface-functionalized nanovesicles and BVs camouflaged NCs through various approaches that lead to an improved internalization to achieve improved and targeted oncotherapy. We have explored various strategies that have been employed to surface-functionalize and biologically modify these vesicles, including the use of biomolecule functionalized target ligands such as peptides, antibodies, and aptamers, as well as the targeting of specific receptors on cancer cells. Further, the utility of BVs, which are made from the membranes of cells such as mesenchymal stem cells (MSCs), white blood cells (WBCs), red blood cells (RBCs), platelets (PLTs) as well as cancer cells also been investigated. Lastly, we have discussed the translational challenges and limitations that these NCs can encounter and still need to be overcome in order to fully realize the potential of nanovesicles and BVs for targeted cancer therapy. The fundamental challenges that currently prevent successful cancer therapy and the necessity of novel delivery systems are in the offing.
Collapse
Affiliation(s)
- Pratiksha Tiwari
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, India
| | - Krishna Yadav
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, India
| | - Ravi Prakash Shukla
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, India
| | - Shalini Gautam
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, India
| | - Disha Marwaha
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, India
| | - Madhu Sharma
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, India
| | - Prabhat Ranjan Mishra
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, India; Academy of Scientific and Innovation Research (AcSIR), Ghaziabad 201002, U.P., India.
| |
Collapse
|
63
|
Isazadeh H, Oruji F, Shabani S, Behroozi J, Nasiri H, Isazadeh A, Akbari M. Advances in siRNA delivery approaches in cancer therapy: challenges and opportunities. Mol Biol Rep 2023; 50:9529-9543. [PMID: 37741808 DOI: 10.1007/s11033-023-08749-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/08/2023] [Indexed: 09/25/2023]
Abstract
Advancements in the clinical applications of small interfering RNA (siRNA) in cancer therapy have opened up new possibilities for precision medicine. siRNAs, as powerful genetic tools, have shown potential in targeting and suppressing the expression of specific genes associated with cancer progression. Their effectiveness has been further enhanced by incorporating them into nanoparticles, which protect siRNAs from degradation and enable targeted delivery. However, despite these promising developments, several challenges persist in the clinical translation of siRNA-based cancer therapy. This comprehensive review explores the progress and challenges associated with the clinical applications of siRNA in cancer therapy. This review highlights the use of siRNA-loaded nanoparticles as an effective delivery system for optimizing siRNA efficacy in various types of carcinomas and the potential of siRNA-based therapy as a genetic approach to overcome limitations associated with conventional chemotherapeutic agents, including severe drug toxicities and organ damage. Moreover, it emphasizes on the key challenges, including off-target effects, enzymatic degradation of siRNAs in serum, low tumor localization, stability issues, and rapid clearance from circulation that need to be addressed for successful clinical development of siRNA-based cancer therapy. Despite these challenges, the review identifies significant avenues for advancing siRNA technology from the laboratory to clinical settings. The ongoing progress in siRNA-loaded nanoparticles for cancer treatment demonstrates potential antitumor activities and safety profiles. By understanding the current state of siRNA-based therapy and addressing the existing challenges, we aim to pave the way for translating siRNA technology into effective oncologic clinics as an improved treatment options for cancer patients.
Collapse
Affiliation(s)
- Houman Isazadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Daneshghah Ave, Tabriz, Iran
| | - Farshid Oruji
- College of Medicine, Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Shima Shabani
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Javad Behroozi
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hadi Nasiri
- Immunology Research Center, Tabriz University of Medical Sciences, Daneshghah Ave, Tabriz, Iran
| | - Alireza Isazadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Daneshghah Ave, Tabriz, Iran
| | - Morteza Akbari
- Immunology Research Center, Tabriz University of Medical Sciences, Daneshghah Ave, Tabriz, Iran.
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
64
|
Tian H, Zhao F, Qi QR, Yue BS, Zhai BT. Targeted drug delivery systems for elemene in cancer therapy: The story thus far. Biomed Pharmacother 2023; 166:115331. [PMID: 37598477 DOI: 10.1016/j.biopha.2023.115331] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/26/2023] [Accepted: 08/12/2023] [Indexed: 08/22/2023] Open
Abstract
Elemene (ELE) is a group of broad-spectrum anticancer active ingredients with low toxicity extracted from traditional Chinese medicines (TCMs), such as Curcumae Rhizoma and Curcuma Radix, which can exert antitumour activities by regulating various signal pathways and targets. However, the strong hydrophobicity, short half-life, low bioavailability and weak in vivo targeting ability of ELE restrict its use. Targeted drug delivery systems based on nanomaterials are among the most viable methods to overcome these shortcomings. In this review, we first summarize recent studies on the clinical uses of ELE as an adjunct antitumour drug. ELE-based combination strategies have great promise for enhancing efficacy, reducing adverse reactions, and improving patients' quality of life and immune function. Second, we summarize recent studies on the antitumour mechanisms of ELE and ELE-based combination strategies. The potential mechanisms include inducing pyroptosis and ferroptosis, promoting senescence, regulating METTL3-mediated m6A modification, suppressing the Warburg effect, and inducing apoptosis and cell cycle arrest. Most importantly, we comprehensively summarize studies on the combination of targeted drug delivery systems with ELE, including passively and actively targeted drug delivery systems, stimuli-responsive drug delivery systems, and codelivery systems for ELE combined with other therapies, which have great promise in improving drug bioavailability, increasing drug targeting ability, controlling drug release, enhancing drug efficacy, reducing drug adverse effects and reversing MDR. Our summary will provide a reference for the combination of TCMs such as ELE with advanced targeted drug delivery systems in the future.
Collapse
Affiliation(s)
- Huan Tian
- Xi'an Hospital of Traditional Chinese Medicine, Xi'an 710021, PR China
| | - Feng Zhao
- Xi'an Hospital of Traditional Chinese Medicine, Xi'an 710021, PR China
| | - Qing-Rui Qi
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an 712046, PR China
| | - Bao-Sen Yue
- Xi'an Hospital of Traditional Chinese Medicine, Xi'an 710021, PR China.
| | - Bing-Tao Zhai
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an 712046, PR China.
| |
Collapse
|
65
|
Zaiki Y, Iskandar A, Wong TW. Functionalized chitosan for cancer nano drug delivery. Biotechnol Adv 2023; 67:108200. [PMID: 37331671 DOI: 10.1016/j.biotechadv.2023.108200] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 05/18/2023] [Accepted: 06/11/2023] [Indexed: 06/20/2023]
Abstract
Chitosan is a biotechnological derivative of chitin receiving a widespread pharmaceutical and biomedical applications. It can be used to encapsulate and deliver cancer therapeutics with inherent pH-dependent solubility to confer drug targeting at tumour microenvironment and anti-cancer activity synergizing cancer cytotoxic drug actions. To further reduce the off-target and by-stander adverse effects of drugs, a high targeted drug delivery efficiency at the lowest possible drug doses is clinically required. The chitosan has been functionalized with covalent conjugates or complexes and processed into nanoparticles to encapsulate and control drug release, to avoid premature drug clearance, to deliver drugs passively and actively to cancer site at tissue, cell or subcellular levels, and to promote cancer cell uptake of nanoparticles through membrane permeabilization at higher specificity and scale. Nanomedicine developed using functionalized chitosan translates to significant preclinical improvements. Future challenges related to nanotoxicity, manufacturability, selection precision of conjugates and complexes as a function of cancer omics and their biological responses from administration site to cancer target need critical assessments.
Collapse
Affiliation(s)
- Yazid Zaiki
- Non-Destructive Biomedical and Pharmaceutical Research Centre, Smart Manufacturing Research Institute, Universiti Teknologi MARA Selangor, 42300 Puncak Alam, Selangor, Malaysia; Particle Design Research Group, Faculty of Pharmacy, Universiti Teknologi MARA Selangor, 42300 Puncak Alam, Selangor, Malaysia
| | - Athirah Iskandar
- Non-Destructive Biomedical and Pharmaceutical Research Centre, Smart Manufacturing Research Institute, Universiti Teknologi MARA Selangor, 42300 Puncak Alam, Selangor, Malaysia; Particle Design Research Group, Faculty of Pharmacy, Universiti Teknologi MARA Selangor, 42300 Puncak Alam, Selangor, Malaysia
| | - Tin Wui Wong
- Non-Destructive Biomedical and Pharmaceutical Research Centre, Smart Manufacturing Research Institute, Universiti Teknologi MARA Selangor, 42300 Puncak Alam, Selangor, Malaysia; Particle Design Research Group, Faculty of Pharmacy, Universiti Teknologi MARA Selangor, 42300 Puncak Alam, Selangor, Malaysia; Sino-Malaysia Molecular Oncology and Traditional Chinese Medicine Delivery Joint Research Centre, Medical College, Yangzhou University, 136, Jiangyang Middle Road, Yangzhou, Jiangsu Province, China; Faculty of Pharmacy, Universiti Malaya, 50603 Kuala Lumpur, Malaysia.
| |
Collapse
|
66
|
Song YH, De R, Lee KT. Emerging strategies to fabricate polymeric nanocarriers for enhanced drug delivery across blood-brain barrier: An overview. Adv Colloid Interface Sci 2023; 320:103008. [PMID: 37776736 DOI: 10.1016/j.cis.2023.103008] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/04/2023] [Accepted: 09/24/2023] [Indexed: 10/02/2023]
Abstract
Blood-brain barrier (BBB) serves as an essential interface between central nervous system (CNS) and its periphery, allowing selective permeation of ions, gaseous molecules, and other nutrients to maintain metabolic functions of brain. Concurrently, it restricts passage of unsolicited materials from bloodstream to CNS which could otherwise lead to neurotoxicity. Nevertheless, in the treatment of neurodegenerative diseases such as Parkinson's, Alzheimer's, diffuse intrinsic pontine glioma, and other brain cancers, drugs must reach CNS. Among various materials developed for this purpose, a few judiciously selected polymeric nanocarriers are reported to be highly prospective to facilitate BBB permeation. However, the challenge of transporting drug-loaded nanomaterials across this barrier remains formidable. Herein a concise analysis of recently employed strategies for designing polymeric nanocarriers to deliver therapeutics across BBB is presented. Impacts of 3Ss, namely, size, shape, and surface charge of polymeric nanocarriers on BBB permeation along with different ligands used for nanoparticle surface modification to achieve targeted delivery have been scrutinized. Finally, we elucidated future research directions in the context of designing smart polymeric nanocarriers for BBB permeation. This work aims to guide researchers engaged in polymeric nanocarrier design, helping them navigate where to begin, what challenges to address, and how to proceed effectively.
Collapse
Affiliation(s)
- Yo Han Song
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, South Korea
| | - Ranjit De
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, South Korea; Department of Material Science and Engineering, Pohang University of Science and Technology, Pohang 37673, South Korea.
| | - Kang Taek Lee
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, South Korea.
| |
Collapse
|
67
|
Hong L, Li W, Li Y, Yin S. Nanoparticle-based drug delivery systems targeting cancer cell surfaces. RSC Adv 2023; 13:21365-21382. [PMID: 37465582 PMCID: PMC10350659 DOI: 10.1039/d3ra02969g] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/11/2023] [Indexed: 07/20/2023] Open
Abstract
Traditional cancer chemotherapy easily produces serious toxic and side effects due to the lack of specific selection of tumor cells, which restricts its curative effect. Targeted delivery can increase the concentration of drugs in the target site and reduce their toxic and side effects on normal tissues and cells. Biocompatible and surface-modifiable nanocarriers are novel drug delivery systems, which are used to specifically target tumor sites in a controllable way. One of the effective ways to design effective targeting nanocarriers is to decorate with functional ligands, which can bind to specific receptors overexpressed on the surfaces of cancer cells. Various functional ligands, including transferrin, folic acid, polypeptide and hyaluronic acid, have been widely explored to develop tumor-selective drug delivery systems. This review focuses on the research progress of various receptors overexpressed on the surfaces of cancer cells and different nano-delivery systems of anticancer drugs targeted on the surfaces of cancer cells. We believe that through continuous research and development, actively targeted cancer nano-drugs will make a breakthrough and become an indispensable platform for accurate cancer treatment.
Collapse
Affiliation(s)
- Liquan Hong
- Deqing Hospital of Hangzhou Normal University, The Third People's Hospital of Deqing Deqing 313200 China
| | - Wen Li
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology Zhejiang Province Hangzhou 311121 China
| | - Yang Li
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology Zhejiang Province Hangzhou 311121 China
| | - Shouchun Yin
- Deqing Hospital of Hangzhou Normal University, The Third People's Hospital of Deqing Deqing 313200 China
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology Zhejiang Province Hangzhou 311121 China
| |
Collapse
|
68
|
Askar MA, El-Sayyad GS, Guida MS, Khalifa E, Shabana ES, Abdelrahman IY. Amygdalin-folic acid-nanoparticles inhibit the proliferation of breast cancer and enhance the effect of radiotherapy through the modulation of tumor-promoting factors/ immunosuppressive modulators in vitro. BMC Complement Med Ther 2023; 23:162. [PMID: 37210478 DOI: 10.1186/s12906-023-03986-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 04/29/2023] [Indexed: 05/22/2023] Open
Abstract
INTRODUCTION Breast cancer (BC) cells often develop multiple mechanisms of chemo- and radio-resistance during tumor progression, which is the major reason for the failure of breast cancer therapy. Targeted nanomedicines have tremendous therapeutic potential in BC treatment over their free drug counterparts. Searching for chemo- and radio-sensitizers to overcome such resistance is therefore urgently required. The goal of this study is to evaluate and compare the radio-sensitizer efficacy of amygdalin-folic acid nanoparticles (Amy-F) on MCF-7 and MDA-MB-231 cells. MATERIALS AND METHODS The effects of Amy-F on MCF-7 and MDA-MB-231 cell proliferation and IC50 were assessed using MTT assay. The expression of proteins involved in several mechanisms induced by Amy-F in MCF-7 and MDA-MB-231 cells, including growth inhibition, apoptosis, tumor growth regulators, immuno-modulators, and radio-sensitizing activities were evaluated via flow cytometry and ELISA assay. RESULTS Nanoparticles demonstrated sustained Amy-F release properties and apparent selectivity towards BC cells. Cell-based assays revealed that Amy-F markedly suppresses cancer cell growth and improves radiotherapy (RT) through inducing cell cycle arrest (G1 and sub-G1), and increases apoptosis as well as reduces the proliferation of BC by down-regulating mitogen-activated protein kinases (MAPK/P38), iron level (Fe), nitric oxide (NO), and up-regulating the reactive oxygen species level (ROS). Amy-F has also been shown to suppress the expression of the cluster of differentiation (CD4 and CD80), and interfere with the Transforming growth factor beta (TGF- β)/Interferon-gamma (INF-g)/Interleukin-2 (IL-2)/Interleukin-6 (IL-6)/Vascular endothelial growth factor (VEGF) induced suppression in its signaling hub, while up-regulating natural killer group 2D receptor (NKG2D) and CD8 expression. CONCLUSIONS Collectively, the novel Amy-F either alone or in combination with RT abrogated BC proliferation.
Collapse
Affiliation(s)
- Mostafa A Askar
- Radiation Biology Department, National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, 11787, Egypt.
| | - Gharieb S El-Sayyad
- Drug Microbiology Lab, Drug Radiation Research Department, National Center for Radiation Research and Technology, (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, 11787, Egypt
| | - Mona S Guida
- Unit of Genetics, University Pediatrics Hospital, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Eman Khalifa
- Oral Biology Department, Faculty of Oral & Dental Medicine, Delta University for Science and Technology, Mansoura, 11152, Egypt
| | - El Shaimaa Shabana
- Unit of Genetics, University Pediatrics Hospital, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Ibrahim Y Abdelrahman
- Radiation Biology Department, National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, 11787, Egypt.
| |
Collapse
|
69
|
Chang L, Wu X, Ran K, Tian Y, Ouyang X, Liu H, Gou S, Zhang Y, Ni J. One New Acid-Activated Hybrid Anticancer Peptide by Coupling with a Desirable pH-Sensitive Anionic Partner Peptide. ACS OMEGA 2023; 8:7536-7545. [PMID: 36873017 PMCID: PMC9979329 DOI: 10.1021/acsomega.2c06766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Anticancer peptides (ACPs) are promising antitumor resources, and developing acid-activated ACPs as more effective and selective antitumor drugs would represent new progress in cancer therapy. In this study, we designed a new class of acid-activated hybrid peptides LK-LE by altering the charge shielding position of the anionic binding partner LE based on the cationic ACP LK and investigated their pH response, cytotoxic activity, and serum stability, in hoping to achieve a desirable acid-activatable ACP. As expected, the obtained hybrid peptides could be activated and exhibit a remarkable antitumor activity by rapid membrane disruption at acidic pH, whereas its killing activity could be alleviated at normal pH, showing a significant pH response compared with LK. Importantly, this study found that the peptide LK-LE3 with the charge shielding in the N-terminal of LK displayed notably low cytotoxicity and more stability, demonstrating that the position of charge masking is extremely important for the improvement of peptide toxicity and stability. In short, our work opens a new avenue to design promising acid-activated ACPs as potential targeting agents for cancer treatment.
Collapse
Affiliation(s)
- Linlin Chang
- Research
Unit of Peptide Science, Chinese Academy
of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
- Institute
of Pharmaceutics, School of Pharmacy and Key Laboratory of Preclinical
Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Xiaoyan Wu
- Research
Unit of Peptide Science, Chinese Academy
of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
- Institute
of Pharmaceutics, School of Pharmacy and Key Laboratory of Preclinical
Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Kaixin Ran
- Research
Unit of Peptide Science, Chinese Academy
of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
- Institute
of Pharmaceutics, School of Pharmacy and Key Laboratory of Preclinical
Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Yali Tian
- Research
Unit of Peptide Science, Chinese Academy
of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
- Institute
of Pharmaceutics, School of Pharmacy and Key Laboratory of Preclinical
Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Xu Ouyang
- Research
Unit of Peptide Science, Chinese Academy
of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
- Institute
of Pharmaceutics, School of Pharmacy and Key Laboratory of Preclinical
Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Hui Liu
- Research
Unit of Peptide Science, Chinese Academy
of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
- Institute
of Pharmaceutics, School of Pharmacy and Key Laboratory of Preclinical
Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Sanhu Gou
- Research
Unit of Peptide Science, Chinese Academy
of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
- Institute
of Pharmaceutics, School of Pharmacy and Key Laboratory of Preclinical
Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Yun Zhang
- Research
Unit of Peptide Science, Chinese Academy
of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
- Institute
of Pharmaceutics, School of Pharmacy and Key Laboratory of Preclinical
Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Jingman Ni
- Research
Unit of Peptide Science, Chinese Academy
of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
- Institute
of Pharmaceutics, School of Pharmacy and Key Laboratory of Preclinical
Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
70
|
Gorachinov F, Mraiche F, Moustafa DA, Hishari O, Ismail Y, Joseph J, Crcarevska MS, Dodov MG, Geskovski N, Goracinova K. Nanotechnology - a robust tool for fighting the challenges of drug resistance in non-small cell lung cancer. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2023; 14:240-261. [PMID: 36865093 PMCID: PMC9972888 DOI: 10.3762/bjnano.14.23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
Genomic and proteomic mutation analysis is the standard of care for selecting candidates for therapies with tyrosine kinase inhibitors against the human epidermal growth factor receptor (EGFR TKI therapies) and further monitoring cancer treatment efficacy and cancer development. Acquired resistance due to various genetic aberrations is an unavoidable problem during EGFR TKI therapy, leading to the rapid exhaustion of standard molecularly targeted therapeutic options against mutant variants. Attacking multiple molecular targets within one or several signaling pathways by co-delivery of multiple agents is a viable strategy for overcoming and preventing resistance to EGFR TKIs. However, because of the difference in pharmacokinetics among agents, combined therapies may not effectively reach their targets. The obstacles regarding the simultaneous co-delivery of therapeutic agents at the site of action can be overcome using nanomedicine as a platform and nanotools as delivery agents. Precision oncology research to identify targetable biomarkers and optimize tumor homing agents, hand in hand with designing multifunctional and multistage nanocarriers that respond to the inherent heterogeneity of the tumors, may resolve the challenges of inadequate tumor localization, improve intracellular internalization, and bring advantages over conventional nanocarriers.
Collapse
Affiliation(s)
- Filip Gorachinov
- Institute of Pharmaceutical Technology, Faculty of Pharmacy, University of Ss. Cyril and Methodius in Skopje, 1000 Skopje, North Macedonia
| | - Fatima Mraiche
- College of Pharmacy, QU Health, Qatar University, PO Box 2713, Doha, Qatar
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, T6G 2R3 Edmonton, Canada
| | | | - Ola Hishari
- College of Pharmacy, QU Health, Qatar University, PO Box 2713, Doha, Qatar
| | - Yomna Ismail
- College of Pharmacy, QU Health, Qatar University, PO Box 2713, Doha, Qatar
| | - Jensa Joseph
- College of Pharmacy, QU Health, Qatar University, PO Box 2713, Doha, Qatar
| | - Maja Simonoska Crcarevska
- Institute of Pharmaceutical Technology, Faculty of Pharmacy, University of Ss. Cyril and Methodius in Skopje, 1000 Skopje, North Macedonia
| | - Marija Glavas Dodov
- Institute of Pharmaceutical Technology, Faculty of Pharmacy, University of Ss. Cyril and Methodius in Skopje, 1000 Skopje, North Macedonia
| | - Nikola Geskovski
- Institute of Pharmaceutical Technology, Faculty of Pharmacy, University of Ss. Cyril and Methodius in Skopje, 1000 Skopje, North Macedonia
| | - Katerina Goracinova
- Institute of Pharmaceutical Technology, Faculty of Pharmacy, University of Ss. Cyril and Methodius in Skopje, 1000 Skopje, North Macedonia
| |
Collapse
|
71
|
Strzelecka K, Piotrowska U, Sobczak M, Oledzka E. The Advancement of Biodegradable Polyesters as Delivery Systems for Camptothecin and Its Analogues-A Status Report. Int J Mol Sci 2023; 24:ijms24021053. [PMID: 36674567 PMCID: PMC9866533 DOI: 10.3390/ijms24021053] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 12/29/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
Camptothecin (CPT) has demonstrated antitumor activity in lung, ovarian, breast, pancreas, and stomach cancers. However, this drug, like many other potent anticancer agents, is extremely water-insoluble. Furthermore, pharmacology studies have revealed that prolonged schedules must be administered continuously. For these reasons, several of its water-soluble analogues, prodrugs, and macromolecular conjugates have been synthesized, and various formulation approaches have been investigated. Biodegradable polyesters have gained popularity in cancer treatment in recent years. A number of biodegradable polymeric drug delivery systems (DDSs), designed for localized and systemic administration of therapeutic agents, as well as tumor-targeting macromolecules, have entered clinical trials, demonstrating the importance of biodegradable polyesters in cancer therapy. Biodegradable polyester-based DDSs have the potential to deliver the payload to the target while also increasing drug availability at intended site. The systemic toxicity and serious side-effects associated with conventional cancer therapies can be significantly reduced with targeted polymeric systems. This review elaborates on the use of biodegradable polyesters in the delivery of CPT and its analogues. The design of various DDSs based on biodegradable polyesters has been described, with the drug either adsorbed on the polymer's surface or encapsulated within its macrostructure, as well as those in which a hydrolyzed chemical bond is formed between the active substance and the polymer chain. The data related to the type of DDSs, the kind of linkage, and the details of in vitro and in vivo studies are included.
Collapse
Affiliation(s)
- Katarzyna Strzelecka
- Department of Analytical Chemistry and Biomaterials, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Str., 02-097 Warsaw, Poland
| | - Urszula Piotrowska
- Department of Analytical Chemistry and Biomaterials, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Str., 02-097 Warsaw, Poland
| | - Marcin Sobczak
- Department of Analytical Chemistry and Biomaterials, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Str., 02-097 Warsaw, Poland
- Military Institute of Hygiene and Epidemiology, 4 Kozielska Str., 01-163 Warsaw, Poland
| | - Ewa Oledzka
- Department of Analytical Chemistry and Biomaterials, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Str., 02-097 Warsaw, Poland
- Correspondence: ; Tel.: +48-22-572-07-55
| |
Collapse
|
72
|
Zhai BT, Sun J, Shi YJ, Zhang XF, Zou JB, Cheng JX, Fan Y, Guo DY, Tian H. Review targeted drug delivery systems for norcantharidin in cancer therapy. J Nanobiotechnology 2022; 20:509. [DOI: 10.1186/s12951-022-01703-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/11/2022] [Indexed: 12/04/2022] Open
Abstract
AbstractNorcantharidin (NCTD) is a demethylated derivative of cantharidin (CTD), the main anticancer active ingredient isolated from traditional Chinese medicine Mylabris. NCTD has been approved by the State Food and Drug Administration for the treatment of various solid tumors, especially liver cancer. Although NCTD greatly reduces the toxicity of CTD, there is still a certain degree of urinary toxicity and organ toxicity, and the poor solubility, short half-life, fast metabolism, as well as high venous irritation and weak tumor targeting ability limit its widespread application in the clinic. To reduce its toxicity and improve its efficacy, design of targeted drug delivery systems based on biomaterials and nanomaterials is one of the most feasible strategies. Therefore, this review focused on the studies of targeted drug delivery systems combined with NCTD in recent years, including passive and active targeted drug delivery systems, and physicochemical targeted drug delivery systems for improving drug bioavailability and enhancing its efficacy, as well as increasing drug targeting ability and reducing its adverse effects.
Graphical Abstract
Collapse
|
73
|
New Iron Metabolic Pathways and Chelation Targeting Strategies Affecting the Treatment of All Types and Stages of Cancer. Int J Mol Sci 2022; 23:ijms232213990. [PMID: 36430469 PMCID: PMC9696688 DOI: 10.3390/ijms232213990] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/02/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
There is new and increasing evidence from in vitro, in vivo and clinical studies implicating the pivotal role of iron and associated metabolic pathways in the initiation, progression and development of cancer and in cancer metastasis. New metabolic and toxicity mechanisms and pathways, as well as genomic, transcription and other factors, have been linked to cancer and many are related to iron. Accordingly, a number of new targets for iron chelators have been identified and characterized in new anticancer strategies, in addition to the classical restriction of/reduction in iron supply, the inhibition of transferrin iron delivery, the inhibition of ribonucleotide reductase in DNA synthesis and high antioxidant potential. The new targets include the removal of excess iron from iron-laden macrophages, which affects anticancer activity; the modulation of ferroptosis; ferritin iron removal and the control of hyperferritinemia; the inhibition of hypoxia related to the role of hypoxia-inducible factor (HIF); modulation of the function of new molecular species such as STEAP4 metalloreductase and the metastasis suppressor N-MYC downstream-regulated gene-1 (NDRG1); modulation of the metabolic pathways of oxidative stress damage affecting mitochondrial function, etc. Many of these new, but also previously known associated iron metabolic pathways appear to affect all stages of cancer, as well as metastasis and drug resistance. Iron-chelating drugs and especially deferiprone (L1), has been shown in many recent studies to fulfill the role of multi-target anticancer drug linked to the above and also other iron targets, and has been proposed for phase II trials in cancer patients. In contrast, lipophilic chelators and their iron complexes are proposed for the induction of ferroptosis in some refractory or recurring tumors in drug resistance and metastasis where effective treatments are absent. There is a need to readdress cancer therapy and include therapeutic strategies targeting multifactorial processes, including the application of multi-targeting drugs involving iron chelators and iron-chelator complexes. New therapeutic protocols including drug combinations with L1 and other chelating drugs could increase anticancer activity, decrease drug resistance and metastasis, improve treatments, reduce toxicity and increase overall survival in cancer patients.
Collapse
|