51
|
Abdelsalam EA, Abd El-Hafeez AA, Eldehna WM, El Hassab MA, Marzouk HMM, Elaasser MM, Abou Taleb NA, Amin KM, Abdel-Aziz HA, Ghosh P, Hammad SF. Discovery of novel thiazolyl-pyrazolines as dual EGFR and VEGFR-2 inhibitors endowed with in vitro antitumor activity towards non-small lung cancer. J Enzyme Inhib Med Chem 2022; 37:2265-2282. [PMID: 36000167 PMCID: PMC9415638 DOI: 10.1080/14756366.2022.2104841] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
New series of thiazolyl-pyrazoline derivatives (7a–7d, 10a–10d and 13a–13f) have been synthesised and assessed for their potential EGFR and VEGFR-2 inhibitory activities. Compounds 10b and 10d exerted potent and selective inhibitory activity towards the two receptor tyrosine kinases; EGFR (IC50 = 40.7 ± 1.0 and 32.5 ± 2.2 nM, respectively) and VEGFR-2 (IC50 = 78.4 ± 1.5 and 43.0 ± 2.4 nM, respectively). The best anti-proliferative activity for the examined thiazolyl-pyrazolines was observed against the non-small lung cancer cells (NSCLC). Compounds 10b and 10d displayed pronounced efficacy against A549 (IC50 = 4.2 and 2.9 µM, respectively) and H441 cell lines (IC50 = 4.8 and 3.8 µM, respectively). Moreover, our results indicated that 10b and 10d were much more effective towards EGFR-mutated NSCLC cell lines (NCI-H1650 and NCI-H1975 cells) than gefitinib. Finally, compounds 10b and 10d induce G2/M cell cycle arrest and apoptosis and inhibit migration in A549 cancerous cells.
Collapse
Affiliation(s)
- Esraa A Abdelsalam
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Amer Ali Abd El-Hafeez
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA.,Pharmacology and Experimental Oncology Unit, Department of Cancer Biology, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt.,School of Biotechnology, Badr University in Cairo, Badr City, Cairo, Egypt
| | - Mahmoud A El Hassab
- Department of Medicinal Chemistry, Faculty of Pharmacy, King Salman International University (KSIU), South Sinai, Egypt
| | - Hala Mohamed M Marzouk
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA.,Department of Biochemistry, Faculty of Medicine, Minia University, El-Minia, Egypt
| | - Mahmoud M Elaasser
- The Regional Center for Mycology and Biotechnology, Al-Azhar University, Cairo, Egypt
| | - Nageh A Abou Taleb
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Kamilia M Amin
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Hatem A Abdel-Aziz
- Department of Applied Organic Chemistry, National Research Centre, Dokki, Giza, Egypt
| | - Pradipta Ghosh
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA.,Department of Medicine, University of California San Diego, La Jolla, CA, USA.,Moores Comprehensive Cancer Center, University of California San Diego, La Jolla, CA, USA.,Veterans Affairs Medical Center, La Jolla, CA, USA
| | - Sherif F Hammad
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Helwan University, Cairo, Egypt.,PharmD Program and Basic and Applied Sciences Institute, Egypt-Japan University of Science and Technology (E-JUST), Alexandria, Egypt
| |
Collapse
|
52
|
Al-Warhi T, Elbadawi MM, Bonardi A, Nocentini A, Al-Karmalawy AA, Aljaeed N, Alotaibi OJ, Abdel-Aziz HA, Supuran CT, Eldehna WM. Design and synthesis of benzothiazole-based SLC-0111 analogues as new inhibitors for the cancer-associated carbonic anhydrase isoforms IX and XII. J Enzyme Inhib Med Chem 2022; 37:2635-2643. [PMID: 36146927 PMCID: PMC9518259 DOI: 10.1080/14756366.2022.2124409] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
In this work, different series of benzothiazole-based sulphonamides 8a-c, 10, 12, 16a-b and carboxylic acids 14a-c were developed as novel SLC-0111 analogues with the goal of generating potent carbonic anhydrase (CA) inhibitors. The adopted strategy involved replacing the 4-fluorophenyl tail in SLC-0111 with a benzothiazole motif that attached to the ureido linker to produce compounds 8c and its regioisomers 8a-b. In addition, the ureido spacer was elongated by methylene or ethylene groups to afford the counterparts 10 and 12. In turn, the primary sulfamoyl zinc binding group (ZBG) was either substituted or replaced by carboxylic acid functionality in order to provide the secondary sulphonamide-based SLC-0111 analogues 16a-b, and the carboxylic acid derivatives 14a-c, respectively. All compounds (8a-c, 10, 12, 14a-c and 16a-b) were tested for their ability to inhibit CA isoforms CA I, II, IX and XII. Additionally, the in vitro anticancer properties of the developed CAIs were evaluated.
Collapse
Affiliation(s)
- Tarfah Al-Warhi
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Mostafa M Elbadawi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafr el-sheikh, Egypt
| | - Alessandro Bonardi
- Department of NE.UROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Firenze, Italy
| | - Alessio Nocentini
- Department of NE.UROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Firenze, Italy
| | - Ahmed A Al-Karmalawy
- Department of Pharmaceutical Medicinal Chemistry, Faculty of Pharmacy, Horus University-Egypt, Egypt
| | - Nada Aljaeed
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Ohoud J Alotaibi
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Hatem A Abdel-Aziz
- Department of Applied Organic Chemistry, National Research Center, Dokki, Egypt
| | - Claudiu T Supuran
- Department of NE.UROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Firenze, Italy
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafr el-sheikh, Egypt
| |
Collapse
|
53
|
Kotb AR, Bakhotmah DA, Abdallah AE, Elkady H, Taghour MS, Eissa IH, El-Zahabi MA. Design, synthesis, and biological evaluation of novel bioactive thalidomide analogs as anticancer immunomodulatory agents. RSC Adv 2022; 12:33525-33539. [PMID: 36505721 PMCID: PMC9680624 DOI: 10.1039/d2ra06188k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 11/14/2022] [Indexed: 11/23/2022] Open
Abstract
Cancer is still a dangerous disease with a high mortality rate all over the world. In our attempt to develop potential anticancer candidates, new quinazoline and phthalazine based compounds were designed and synthesized. The new derivatives were built in line with the pharmacophoric features of thalidomide. The new derivatives as well as thalidomide were examined against three cancer cell lines, namely: hepatocellular carcinoma (HepG-2), breast cancer (MCF-7) and prostate cancer (PC3). Then the effects on the expression levels of caspase-8, VEGF, NF-κB P65, and TNF-α in HepG-2 cells were evaluated. The biological data revealed the high importance of phthalazine based compounds (24a-c), which were far better than thalidomide with regard to the antiproliferative activity. 24b showed IC50 of 2.51, 5.80 and 4.11 μg mL-1 compared to 11.26, 14.58, and 16.87 μg mL-1 for thalidomide against the three cell lines respectively. 24b raised caspase-8 level by about 7 folds, compared to 8 folds reported for thalidomide. Also, VEGF level in HepG-2 cells treated with 24b was 185.3 pg mL-1, compared to 432.5 pg mL-1 in control cells. Furthermore, the immunomodulatory properties were proven to 24b, which reduced TNF-α level by approximately half. At the same time, NF-κB P65 level in HepG-2 cells treated with 24b was 76.5 pg mL-1 compared to 278.1 and 110.5 pg mL-1 measured for control cells and thalidomide treated HepG-2 cells respectively. Moreover, an in vitro viability study against Vero non-cancerous cell line was investigated and the results reflected a high safety profile of all tested compounds. This work suggests 24b as a promising lead compound for development of new immunomodulatory anticancer agents.
Collapse
Affiliation(s)
- Anas Ramadan Kotb
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar UniversityCairo11884Egypt
| | - Dina A. Bakhotmah
- Department of Chemistry, Faculty of Science, King Abdulaziz UniversityJeddahSaudi Arabia
| | - Abdallah E. Abdallah
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar UniversityCairo11884Egypt
| | - Hazem Elkady
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar UniversityCairo11884Egypt
| | - Mohammed S. Taghour
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar UniversityCairo11884Egypt
| | - Ibrahim. H. Eissa
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar UniversityCairo11884Egypt
| | - Mohamed Ayman El-Zahabi
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar UniversityCairo11884Egypt
| |
Collapse
|
54
|
Gaur A, Peerzada MN, Khan NS, Ali I, Azam A. Synthesis and Anticancer Evaluation of Novel Indole Based Arylsulfonylhydrazides against Human Breast Cancer Cells. ACS OMEGA 2022; 7:42036-42043. [PMID: 36440122 PMCID: PMC9685603 DOI: 10.1021/acsomega.2c03908] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
A series of novel indole based sulfonohydrazide derivatives (5a-k) containing morpholine heterocyclic ring were synthesized through multistep chemical reactions. The target compounds (5a-k) were prepared by the reaction of substituted phenyl sulfonylhydrazides (2a-k) with morpholine derivative of indole 3-carboxaldehyde. All the target compounds were screened for their anticancer activity in vitro against the estrogen receptor-positive breast cancer line MCF-7 and triple-negative breast cancer cell line, MDA-MB-468. It was found that among all the evaluated compounds, the chemotype 4-chloro-N'-((1-(2-morpholinoethyl)-1H-indol-3-yl)methylene)benzenesulfonohydrazide (5f) showed promising inhibition of both MCF-7 and MDA-MB-468 cancer cells with the respective IC50 values of 13.2 μM and 8.2 μM. Compound 5f was found to be nontoxic against HEK 293 noncancerous cells in the studied concentration range, therefore indicating that such chemotypes inhibit the proliferation of cancerous cells selectively and significantly.
Collapse
Affiliation(s)
- Aysha Gaur
- Department
of Chemistry, Jamia Millia Islamia, Jamia Nagar, New Delhi110025, India
| | | | - Nashrah Sharif Khan
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi110025, India
- Department
of Biotechnology, Jamia Millia Islamia, Jamia Nagar, New Delhi110025, India
| | - Imran Ali
- Department
of Chemistry, Jamia Millia Islamia, Jamia Nagar, New Delhi110025, India
| | - Amir Azam
- Department
of Chemistry, Jamia Millia Islamia, Jamia Nagar, New Delhi110025, India
| |
Collapse
|
55
|
( E)- N-(3-(1-(2-(4-(2,2,2-Trifluoroacetamido)benzoyl)hydrazono)ethyl)phenyl)nicotinamide: A Novel Pyridine Derivative for Inhibiting Vascular Endothelial Growth Factor Receptor-2: Synthesis, Computational, and Anticancer Studies. Molecules 2022; 27:molecules27227719. [PMID: 36431818 PMCID: PMC9697799 DOI: 10.3390/molecules27227719] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 11/12/2022] Open
Abstract
(E)-N-(3-(1-(2-(4-(2,2,2-Trifluoroacetamido)benzoyl)hydrazono)ethyl)phenyl)nicotinamide (compound 10) was designed as an antiangiogenic VEGFR-2 inhibitor with the essential pharmacophoric structural properties to interact with the catalytic pocket of VEGFR-2. The designed derivative was synthesized, and its structure was confirmed through Ms, elemental, 1H, and 13C spectral data. The potentiality of the designed pyridine derivative to bind with and inhibit the vascular endothelial growth factor receptor-2 (VEGFR-2) enzyme was indicated by molecular docking assessments. In addition, six molecular dynamic (MD) experiments proved its correct binding with VEGFR-2 over 100 ns. Additionally, the molecular mechanics energies, combined with the generalized born and surface area (MM-GBSA) analysis, identified the precise binding with optimum energy. To explore the stability and reactivity of the designed pyridine derivative, density functional theory (DFT) calculations, including electrostatic potential maps and total electron density, were carried out. Additionally, the absorption, distribution, metabolism, excretion, and toxicity (ADMET) analysis demonstrated its general likeness and its safety. The designed compound was synthesized to evaluate its effects against VEGFR-2 protein, cancer, and normal cells. The in vitro results were concordant with the in silico results, because the new pyridine derivative (compound 10) displayed VEGFR-2 inhibition with an IC50 value of 65 nM and displayed potent cytotoxic properties against hepatic (HepG2) and breast (MCF-7) cancer cell lines with IC50 values of 21.00 and 26.10 μM, respectively; additionally, it exhibited high selectivity indices against the normal cell lines (W-38) of 1.55 and 1.25, respectively. The obtained results present compound 10 as a new lead VEGFR-2 inhibitor for further biological investigation and chemical modifications.
Collapse
|
56
|
Doddagaddavalli MA, Kalalbandi VKA, Seetharamappa J. Synthesis, characterization, crystallographic, binding, in silico and antidiabetic studies of novel 2,4-thiazolidinedione-phenothiazine molecular hybrids. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
57
|
Kamel MS, Aboelez MO, Elnagar MR, Shokr EK, Selim HMRM, Abdel‐Ghany HE, Drar AM, Belal A, El Hamd MA, Abd El Aleem Ali Ali El‐Remaily M. Green Synthesis Design, Spectroscopic Characterizations, and Biological Activities of Novel Pyrrole Derivatives: An Application to Evaluate Their Toxic Effect on
Cotton Aphids. ChemistrySelect 2022. [DOI: 10.1002/slct.202203191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Moumen S. Kamel
- Department of Chemistry Faculty of Science Sohag University Sohag 82524 Egypt
| | - Moustafa O. Aboelez
- Department of Pharmaceutical Chemistry Faculty of Pharmacy Sohag University Sohag 82524 Egypt
| | - Mohamed R. Elnagar
- Department of Pharmacology and Toxicology Faculty of Pharmacy Al-Azhar University Cairo 11823 Egypt
- Department of Pharmacology College of Pharmacy The Islamic University Najaf 54001 Iraq
| | - Elders Kh. Shokr
- Department of Physics Faculty of Science Sohag University Sohag 82524 Egypt
| | - Heba Mohammed Refat M. Selim
- Department of Pharmaceutical Sciences Faculty of Pharmacy Al-Maarefa University Diriyah 13713 Riyadh Saudi Arabia
- Depaetment of Microbiology and Immunology Faculty of Pharmacy Al-Azhar University Egypt
| | | | - Ali M. Drar
- Dpartement of Insecticides Plant Protection Research Institute Agriculture Research Center Dokki Giza Egypt
| | - Amany Belal
- Department of Medicinal Chemistry Faculty of Pharmacy Beni-Suef University Beni-Suef 62514 Egypt
- Department of Pharmaceutical Chemistry College of Pharmacy Taif University Taif 21944 Saudi Arabia
| | - Mohamed A. El Hamd
- Department of Pharmaceutical Sciences College of Pharmacy Shaqra University Shaqra 11961 Saudi Arabia
- Department of Pharmaceutical Analytical Chemistry Faculty of Pharmacy South Valley University Qena 83523 Egypt
| | | |
Collapse
|
58
|
Kumar H, Aggarwal N, Marwaha MG, Deep A, Chopra H, Matin MM, Roy A, Emran TB, Mohanta YK, Ahmed R, Mohanta TK, Saravanan M, Marwaha RK, Al-Harrasi A. Thiazolidin-2,4-Dione Scaffold: An Insight into Recent Advances as Antimicrobial, Antioxidant, and Hypoglycemic Agents. Molecules 2022; 27:6763. [PMID: 36235304 PMCID: PMC9572748 DOI: 10.3390/molecules27196763] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/26/2022] [Accepted: 09/01/2022] [Indexed: 12/04/2022] Open
Abstract
Heterocyclic compounds containing nitrogen and sulfur, especially those in the thiazole family, have generated special interest in terms of their synthetic chemistry, which is attributable to their ubiquitous existence in pharmacologically dynamic natural products and also as overwhelmingly powerful agrochemicals and pharmaceuticals. The thiazolidin-2,4-dione (TZD) moiety plays a central role in the biological functioning of several essential molecules. The availability of substitutions at the third and fifth positions of the Thiazolidin-2,4-dione (TZD) scaffold makes it a highly utilized and versatile moiety that exhibits a wide range of biological activities. TZD analogues exhibit their hypoglycemic activity by improving insulin resistance through PPAR-γ receptor activation, their antimicrobial action by inhibiting cytoplasmic Mur ligases, and their antioxidant action by scavenging reactive oxygen species (ROS). In this manuscript, an effort has been made to review the research on TZD derivatives as potential antimicrobial, antioxidant, and antihyperglycemic agents from the period from 2010 to the present date, along with their molecular mechanisms and the information on patents granted to TZD analogues.
Collapse
Affiliation(s)
- Harsh Kumar
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, India
| | - Navidha Aggarwal
- MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana 133207, India
| | - Minakshi Gupta Marwaha
- Department of Pharmaceutical Sciences, Sat Priya College of Pharmacy, Rohtak 124001, India
| | - Aakash Deep
- Department of Pharmaceutical Sciences, Chaudhary Bansi Lal University, Bhiwani 127021, India
| | - Hitesh Chopra
- College of Pharmacy, Chitkara University, Punjab 140401, India
| | - Mohammed M. Matin
- Bioorganic and Medicinal Chemistry Laboratory, Department of Chemistry, Faculty of Science, University of Chittagong, Chittagong 4331, Bangladesh
| | - Arpita Roy
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida 201310, India
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Yugal Kishore Mohanta
- Department of Applied Biology, School of Biological Sciences, University of Science and Technology Meghalaya, Ri-Bhoi 793101, India
| | - Ramzan Ahmed
- Department of Applied Biology, School of Biological Sciences, University of Science and Technology Meghalaya, Ri-Bhoi 793101, India
| | - Tapan Kumar Mohanta
- Natural and Medical Sciences Research Centre, University of Nizwa, Nizwa 616, Oman
| | - Muthupandian Saravanan
- AMR and Nanotherapeutics Laboratory, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai 600077, India
| | - Rakesh Kumar Marwaha
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, India
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Centre, University of Nizwa, Nizwa 616, Oman
| |
Collapse
|
59
|
Elkaeed EB, Yousef RG, Elkady H, Alsfouk AA, Husein DZ, Ibrahim IM, Metwaly AM, Eissa IH. New Anticancer Theobromine Derivative Targeting EGFR WT and EGFR T790M: Design, Semi-Synthesis, In Silico, and In Vitro Anticancer Studies. Molecules 2022; 27:molecules27185859. [PMID: 36144596 PMCID: PMC9500845 DOI: 10.3390/molecules27185859] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/28/2022] [Accepted: 09/06/2022] [Indexed: 12/17/2022] Open
Abstract
Based on the pharmacophoric features of EGFR inhibitors, a new semisynthetic theobromine-derived compound was designed to interact with the catalytic pocket of EGFR. Molecular docking against wild (EGFRWT; PDB: 4HJO) and mutant (EGFRT790M; PDB: 3W2O) types of EGFR-TK indicated that the designed theobromine derivative had the potential to bind to that pocket as an antiangiogenic inhibitor. The MD and MM-GBSA experiments identified the exact binding with optimum energy and dynamics. Additionally, the DFT calculations studied electrostatic potential, stability, and total electron density of the designed theobromine derivative. Both in silico ADMET and toxicity analyses demonstrated its general likeness and safety. We synthesized the designed theobromine derivative (compound XI) which showed an IC50 value of 17.23 nM for EGFR inhibition besides IC50 values of 21.99 and 22.02 µM for its cytotoxicity against A549 and HCT-116 cell lines, respectively. Interestingly, compound XI expressed a weak cytotoxic potential against the healthy W138 cell line (IC50 = 49.44 µM, 1.6 times safer than erlotinib), exhibiting the high selectivity index of 2.2. Compound XI arrested the growth of A549 at the G2/M stage and increased the incidence of apoptosis.
Collapse
Affiliation(s)
- Eslam B. Elkaeed
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Riyadh 13713, Saudi Arabia
| | - Reda G. Yousef
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Hazem Elkady
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Aisha A. Alsfouk
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Dalal Z. Husein
- Chemistry Department, Faculty of Science, New Valley University, El-Kharja 72511, Egypt
| | - Ibrahim M. Ibrahim
- Biophysics Department, Faculty of Science, Cairo University, Cairo 12613, Egypt
| | - Ahmed M. Metwaly
- Pharmacognosy and Medicinal Plants Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
- Biopharmaceutical Products Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Alexandria 21934, Egypt
- Correspondence: (A.M.M.); (I.H.E.)
| | - Ibrahim H. Eissa
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
- Correspondence: (A.M.M.); (I.H.E.)
| |
Collapse
|
60
|
Elwan A, Abdallah AE, Mahdy HA, Dahab MA, Taghour MS, Elkaeed EB, Mehany ABM, Nabeeh A, Adel M, Alsfouk AA, Elkady H, Eissa IH. Modified Benzoxazole-Based VEGFR-2 Inhibitors and Apoptosis Inducers: Design, Synthesis, and Anti-Proliferative Evaluation. Molecules 2022; 27:5047. [PMID: 35956997 PMCID: PMC9370530 DOI: 10.3390/molecules27155047] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 01/07/2023] Open
Abstract
This work is one of our efforts to discover potent anticancer agents. We modified the most promising derivative of our previous work concerned with the development of VEGFR-2 inhibitor candidates. Thirteen new compounds based on benzoxazole moiety were synthesized and evaluated against three human cancer cell lines, namely, breast cancer (MCF-7), colorectal carcinoma (HCT116), and hepatocellular carcinoma (HepG2). The synthesized compounds were also evaluated against VEGFR-2 kinase activity. The biological testing fallouts showed that compound 8d was more potent than standard sorafenib. Such compound showed IC50 values of 3.43, 2.79, and 2.43 µM against the aforementioned cancer cell lines, respectively, compared to IC50 values of 4.21, 5.30, and 3.40 µM reported for sorafenib. Compound 8d also was found to exert exceptional VEGFR-2 inhibition activity with an IC50 value of 0.0554 μM compared to sorafenib (0.0782 μM). In addition, compound 8h revealed excellent cytotoxic effects with IC50 values of 3.53, 2.94, and 2.76 µM against experienced cell lines, respectively. Furthermore, compounds 8a and 8e were found to inhibit VEGFR-2 kinase activity with IC50 values of 0.0579 and 0.0741 μM, exceeding that of sorafenib. Compound 8d showed a significant apoptotic effect and arrested the HepG2 cells at the pre-G1 phase. In addition, it exerted a significant inhibition for TNF-α (90.54%) and of IL-6 (92.19%) compared to dexamethasone (93.15%). The molecular docking studies showed that the binding pattern of the new compounds to VEGFR-2 kinase was similar to that of sorafenib.
Collapse
Affiliation(s)
- Alaa Elwan
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Abdallah E. Abdallah
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Hazem A. Mahdy
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Mohammed A. Dahab
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Mohammed S. Taghour
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Eslam B. Elkaeed
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Riyadh 13713, Saudi Arabia
| | - Ahmed B. M. Mehany
- Zoology Department, Faculty of Science (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Ahmed Nabeeh
- Zoology Department, Faculty of Science (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Mohammed Adel
- Zoology Department, Faculty of Science (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Aisha A. Alsfouk
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Hazem Elkady
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Ibrahim H. Eissa
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| |
Collapse
|
61
|
The Assessment of Anticancer and VEGFR-2 Inhibitory Activities of a New 1H-Indole Derivative: In Silico and In Vitro Approaches. Processes (Basel) 2022. [DOI: 10.3390/pr10071391] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Corresponding to the reported features of anti-VEGFR-2-approved compounds, a new 1H-indole derivative (compound 7) was designed. The inhibitory potential of the designed compound was revealed via a molecular docking study that showed the appropriate binding. Then, MD simulation (six studies) over a period of 100 ns was performed to confirm the precise binding and optimum energy. Additionally, MM-GBSA reaffirmed the perfect binding, exhibiting a total precise energy of −40.38 Kcal/Mol. The MM-GBSA experiments named the essential amino acids in the protein–ligand interaction, employing the binding energy decomposition and revealing the diversity of interactions of compound 7 inside the VEGFR-2 enzyme. As compound 7 is new, DFT experiments were utilized for molecular structure optimization. Additionally, the DFT results validated the coherent interaction of compound 7 with the VEGFR-2 enzyme. A good value of drug-likeness of compound 7 was acknowledged via in silico ADMET studies. Interestingly, the experimental in vitro prohibitory potential of compound 7 was better than that of sorafenib, demonstrating an IC50 value of 25 nM. Notably, the strong inhibitory effects of compound 10 against two cancer cell lines (MCF-7 and HCT 116) were established with IC50 values of 12.93 and 11.52 μM, disclosing high selectivity indexes of 6.7 and 7.5, respectively.
Collapse
|