51
|
Jacomin AC, Gul L, Sudhakar P, Korcsmaros T, Nezis IP. What We Learned From Big Data for Autophagy Research. Front Cell Dev Biol 2018; 6:92. [PMID: 30175097 PMCID: PMC6107789 DOI: 10.3389/fcell.2018.00092] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 07/27/2018] [Indexed: 12/13/2022] Open
Abstract
Autophagy is the process by which cytoplasmic components are engulfed in double-membraned vesicles before being delivered to the lysosome to be degraded. Defective autophagy has been linked to a vast array of human pathologies. The molecular mechanism of the autophagic machinery is well-described and has been extensively investigated. However, understanding the global organization of the autophagy system and its integration with other cellular processes remains a challenge. To this end, various bioinformatics and network biology approaches have been developed by researchers in the last few years. Recently, large-scale multi-omics approaches (like genomics, transcriptomics, proteomics, lipidomics, and metabolomics) have been developed and carried out specifically focusing on autophagy, and generating multi-scale data on the related components. In this review, we outline recent applications of in silico investigations and big data analyses of the autophagy process in various biological systems.
Collapse
Affiliation(s)
| | - Lejla Gul
- Earlham Institute, Norwich Research Park, Norwich, United Kingdom
| | - Padhmanand Sudhakar
- Earlham Institute, Norwich Research Park, Norwich, United Kingdom
- Gut Microbes and Health Programme, Quadram Institute, Norwich Research Park, Norwich, United Kingdom
| | - Tamas Korcsmaros
- Earlham Institute, Norwich Research Park, Norwich, United Kingdom
- Gut Microbes and Health Programme, Quadram Institute, Norwich Research Park, Norwich, United Kingdom
| | - Ioannis P. Nezis
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| |
Collapse
|
52
|
Wang J, Qi Q, Zhou W, Feng Z, Huang B, Chen A, Zhang D, Li W, Zhang Q, Jiang Z, Bjerkvig R, Prestegarden L, Thorsen F, Wang X, Li X, Wang J. Inhibition of glioma growth by flavokawain B is mediated through endoplasmic reticulum stress induced autophagy. Autophagy 2018; 14:2007-2022. [PMID: 30025493 PMCID: PMC6152528 DOI: 10.1080/15548627.2018.1501133] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 06/18/2018] [Accepted: 07/10/2018] [Indexed: 12/12/2022] Open
Abstract
Flavokawain B (FKB), a natural kava chalcone, displays potent antitumor activity in various types of cancer. The mechanism of action, however, remains unclear. Here, we evaluated the efficacy of FKB in the treatment of human glioblastoma multiforme (GBM) as well as the molecular basis for its inhibitory effects in cancer. Approximately 60% of GBM cells became senescent after treatment with FKB as assessed in the senescence-associated (SA)-GLB1/SA-β-galactosidase assay. The cellular process of autophagy potentially contributed to the establishment of senescence. Transmission electron microscopy revealed the formation of autophagic vesicles under FKB treatment, and MAP1LC3B (microtubule associated protein 1 light chain 3 beta)-II was increased. Transfection of ATG5 or ATG7 small interfering RNAs (siRNAs) inhibited FKB-induced autophagy in U251 cells. Western blot revealed that molecular components of the endoplasmic reticulum stress pathway were activated, including ATF4 (activating transcription factor 4) and DDIT3 (DNA damage inducible transcript 3), while levels of TRIB3 (tribbles pseudokinase 3) increased. In addition, based on the phosphorylation status, the AKT-MTOR-RPS6KB1 pathway was inhibited, which induced autophagy in GBM cells. Inhibition of autophagy by autophagy inhibitors 3-methyladenine and chloroquine or knockdown of ATG5 or ATG7 caused FKB-treated U251 cells to switch from senescence to apoptosis. Finally, knockdown of ATG5 or treatment with chloroquine in combination with FKB, significantly inhibited tumor growth in vivo. Our results demonstrated that FKB induced protective autophagy through the ATF4-DDIT3-TRIB3-AKT-MTOR-RPS6KB1 signaling pathway in GBM cells, indicating that the combination treatment of FKB with autophagy inhibitors may potentially be an effective therapeutic strategy for GBM. ABBREVIATIONS 3-MA: 3-methyladenine; 4-PBA: 4-phenylbutyrate; AKT: AKT serine/threonine kinase; ATF4: activating transcription factor 4; ATG: autophagy related; CASP3: caspase 3; CCK-8: cell counting kit-8; CDKN1A: cyclin-dependent kinase inhibitor 1A; CQ: chloroquine; DDIT3: DNA damage inducible transcript 3; DMEM: Dulbecco's modified Eagle's medium; EIF2A: eukaryotic translation initiation factor 2A; EIF2AK3: eukaryotic translation initiation factor 2 alpha kinase 3; ER: endoplasmic reticulum; FKB: flavokawain B; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GBM: glioblastoma multiforme; GFP: green fluorescent protein; HSPA5: heat shock protein family A (Hsp70) member 5; MAP1LC3B: microtubule associated protein 1 light chain 3 beta; MTOR: mechanistic target of rapamycin kinase; PARP1: poly(ADP-ribose) polymerase; 1RPS6KB1: ribosomal protein S6 kinase B1; SA-GLB1: senescence-associated galactosidase beta 1; siRNA: short interfering RNA; SQSTM1: sequestosome 1; TEM: transmission electron microscopy; TRIB3: tribbles pseudokinase 3; TUNEL: deoxynucleotidyl transferase-mediated dUTP nick-end labeling.
Collapse
Affiliation(s)
- Jiwei Wang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Key Laboratory of Brain Functional Remodeling, Jinan, Shandong, P.R. China
| | - Qichao Qi
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Key Laboratory of Brain Functional Remodeling, Jinan, Shandong, P.R. China
| | - Wenjing Zhou
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Key Laboratory of Brain Functional Remodeling, Jinan, Shandong, P.R. China
| | - Zichao Feng
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Key Laboratory of Brain Functional Remodeling, Jinan, Shandong, P.R. China
| | - Bin Huang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Key Laboratory of Brain Functional Remodeling, Jinan, Shandong, P.R. China
| | - Anjing Chen
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Key Laboratory of Brain Functional Remodeling, Jinan, Shandong, P.R. China
| | - Di Zhang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Key Laboratory of Brain Functional Remodeling, Jinan, Shandong, P.R. China
| | - Wenjie Li
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Key Laboratory of Brain Functional Remodeling, Jinan, Shandong, P.R. China
| | - Qing Zhang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Key Laboratory of Brain Functional Remodeling, Jinan, Shandong, P.R. China
| | - Zheng Jiang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Key Laboratory of Brain Functional Remodeling, Jinan, Shandong, P.R. China
| | - Rolf Bjerkvig
- Kristian Gerhard Jebsen Brain Tumour Research Centre, Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Lars Prestegarden
- Kristian Gerhard Jebsen Brain Tumour Research Centre, Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Frits Thorsen
- Kristian Gerhard Jebsen Brain Tumour Research Centre, Department of Biomedicine, University of Bergen, Bergen, Norway
- The Molecular Imaging Center, Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Xinyu Wang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Key Laboratory of Brain Functional Remodeling, Jinan, Shandong, P.R. China
| | - Xingang Li
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Key Laboratory of Brain Functional Remodeling, Jinan, Shandong, P.R. China
| | - Jian Wang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Key Laboratory of Brain Functional Remodeling, Jinan, Shandong, P.R. China
- Kristian Gerhard Jebsen Brain Tumour Research Centre, Department of Biomedicine, University of Bergen, Bergen, Norway
| |
Collapse
|
53
|
Autophagy in glioma cells: An identity crisis with a clinical perspective. Cancer Lett 2018; 428:139-146. [PMID: 29709703 DOI: 10.1016/j.canlet.2018.04.034] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 04/14/2018] [Accepted: 04/20/2018] [Indexed: 01/06/2023]
Abstract
Over the last decade, autophagy has emerged as one of the critical cellular systems that control homeostasis. Besides management of normal homeostatic processes, autophagy can also be induced by tissue damage stress or by rapidly progressing tumors. During tumor progression, autophagy mediates a cellular reaction to the changes inside and outside of cells, which leads to tumor adaptation. Even though the regulation of autophagy seems universal and is a well-described process, its dysregulation and role in glioma progression remain an important topic of investigation. In this review, we summarize recent evidence of autophagy regulation in brain tumor tissues and possible interconnection between signaling pathways that govern cellular responses. This perspective may help to assess the qualitative differences and various outcomes in response to autophagy stimulation.
Collapse
|
54
|
Cheng X, Yao X, Xu S, Pan J, Yu H, Bao J, Guan H, Lu R, Zhang L. Punicalagin induces senescent growth arrest in human papillary thyroid carcinoma BCPAP cells via NF-κB signaling pathway. Biomed Pharmacother 2018; 103:490-498. [PMID: 29677534 DOI: 10.1016/j.biopha.2018.04.074] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 04/08/2018] [Accepted: 04/09/2018] [Indexed: 10/17/2022] Open
Abstract
Papillary thyroid carcinoma (PTC) is the most common endocrine carcinoma. Our previous study revealed that punicalagin (PUN), an active component from pomegranate, triggered autophagic cell death and DNA damage response (DDR) in papillary thyroid carcinoma BCPAP cells. But the detailed anti-cancer mechanisms of punicalagin against PTC still remained to be further explored. DDR activation is a proven cause of cellular senescence, which mediates anti-tumor processes under certain circumstances. In this study, we reported that punicalagin treatment generated a senescent phenotype of BCPAP cells characterized as altered morphology, increased cell granularity and senescence-associated β-galactosidase (SA-β-Gal) staining. Senescence induced by punicalagin treatment was further confirmed by cell cycle arrest and upregulation of cyclin-dependent kinase inhibitor p21. Meanwhile, the senescence-associated secretory phenotype (SASP) included high levels of inflammatory cytokines, principally IL-6 and IL-1β. Furthermore, punicalagin exposure caused the phosphorylation and subsequent degradation of IκBα as well as the nuclear translocation of p65, suggesting the activation of NF-κB signaling pathway. Inhibition of NF-κB by pyrrolidine dithiocarbamate (PDTC), a selective inhibitor of NF-κB, partially reversed the cellular senescent phenotype induced by punicalagin in BCPAP cells as evidenced by the decreased fraction of SA-β-Gal staining positive cells and blockage of SASP generation. These results collectively showed that punicalagin treatment induced senescent growth arrest and SASP via triggering NF-κB activation. These observations elucidated novel anti-cancer mechanisms of punicalagin and might provide new potential prospects for PTC therapy.
Collapse
Affiliation(s)
- Xian Cheng
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu, China
| | - Xin Yao
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Shichen Xu
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Jie Pan
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Huixin Yu
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu, China
| | - Jiandong Bao
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu, China; Department of Endocrinology, JiangYuan Hospital Affiliated to Jiangsu Institute of Nuclear Medicine. Wuxi, Jiangsu, China
| | - Haixia Guan
- Department of Endocrinology & Metabolism and Institute of Endocrinology, the First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Rongrong Lu
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Li Zhang
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu, China.
| |
Collapse
|
55
|
Hombach-Klonisch S, Mehrpour M, Shojaei S, Harlos C, Pitz M, Hamai A, Siemianowicz K, Likus W, Wiechec E, Toyota BD, Hoshyar R, Seyfoori A, Sepehri Z, Ande SR, Khadem F, Akbari M, Gorman AM, Samali A, Klonisch T, Ghavami S. Glioblastoma and chemoresistance to alkylating agents: Involvement of apoptosis, autophagy, and unfolded protein response. Pharmacol Ther 2018; 184:13-41. [DOI: 10.1016/j.pharmthera.2017.10.017] [Citation(s) in RCA: 204] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
56
|
Pawlowska E, Szczepanska J, Szatkowska M, Blasiak J. An Interplay between Senescence, Apoptosis and Autophagy in Glioblastoma Multiforme-Role in Pathogenesis and Therapeutic Perspective. Int J Mol Sci 2018; 19:ijms19030889. [PMID: 29562589 PMCID: PMC5877750 DOI: 10.3390/ijms19030889] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 03/14/2018] [Accepted: 03/15/2018] [Indexed: 12/12/2022] Open
Abstract
Autophagy, cellular senescence, programmed cell death and necrosis are key responses of a cell facing a stress. These effects are partly interconnected, but regulation of their mutual interactions is not completely clear. That regulation seems to be especially important in cancer cells, which have their own program of development and demand more nutrition and energy than normal cells. Glioblastoma multiforme (GBM) belongs to the most aggressive and most difficult to cure cancers, so studies on its pathogenesis and new therapeutic strategies are justified. Using an animal model, it was shown that autophagy is required for GBM development. Temozolomide (TMZ) is the key drug in GBM chemotherapy and it was reported to induce senescence, autophagy and apoptosis in GBM. In some GBM cells, TMZ induces small toxicity despite its significant concentration and GBM cells can be intrinsically resistant to apoptosis. Resveratrol, a natural compound, was shown to potentiate anticancer effect of TMZ in GBM cells through the abrogation G2-arrest and mitotic catastrophe resulting in senescence of GBM cells. Autophagy is the key player in TMZ resistance in GBM. TMZ can induce apoptosis due to selective inhibition of autophagy, in which autophagic vehicles accumulate as their fusion with lysosomes is blocked. Modulation of autophagic action of TMZ with autophagy inhibitors can result in opposite outcomes, depending on the step targeted in autophagic flux. Studies on relationships between senescence, autophagy and apoptosis can open new therapeutic perspectives in GBM.
Collapse
Affiliation(s)
- Elzbieta Pawlowska
- Department of Orthodontics, Medical University of Lodz, 92-216 Lodz, Poland.
| | - Joanna Szczepanska
- Department of Pediatric Dentistry, Medical University of Lodz, 92-216 Lodz, Poland.
| | - Magdalena Szatkowska
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland.
| | - Janusz Blasiak
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland.
| |
Collapse
|
57
|
Dietrich F, Figueiró F, Filippi-Chiela EC, Cappellari AR, Rockenbach L, Tremblay A, de Paula PB, Roesler R, Filho AB, Sévigny J, Morrone FB, Battastini AMO. Ecto-5'-nucleotidase/CD73 contributes to the radiosensitivity of T24 human bladder cancer cell line. J Cancer Res Clin Oncol 2018; 144:469-482. [PMID: 29305710 DOI: 10.1007/s00432-017-2567-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 12/27/2017] [Indexed: 02/03/2023]
Abstract
PURPOSE Trimodal therapy is a reasonable bladder-preserving option to radical cystectomy. However, many tumors are radioresistive. In this sense, the identification of new prognostic and predictive biomarkers that allow the selection of patients with better responses to radiation therapy would improve outcomes. With the aim of using ecto-5'-nucleotidase/CD73 as a predictive biomarker, the role of this enzyme in the context of radiotherapy in T24 human bladder cancer cell line was investigated. METHODS T24 cell line was exposure to a single dose of radiation (4 Gray) and trypan blue assay (pharmacological assays of viability/cumulative population doubling), flow cytometry (cell cycle/cell death/active caspase-3/ecto-5'-nucleotidase/CD73 protein staining), DAPI staining (nuclear morphometric assay), RT-PCR and real-time PCR, malachite green method (ectonucleotidase enzymatic assay), and HPLC (analysis of AMP metabolism) were carried out. T24 cell line in which ecto-5'-nucleotidase/CD73 has been completely silenced (5'KO) was also used. RESULTS The exposure of T24 cell line to a single dose (4 Gray) of radiation-induced cell death and triggered a transitory increase in ecto-5'-nucleotidase/CD73 expression, increased ectonucleotidase activity, and led to adenosine and inosine accumulation in the extracellular medium. Pharmacological inhibition or knocking out ecto-5'-nucleotidase/CD73 rescued cells' proliferative capacity, reducing their sensitivity to radiation. CONCLUSION Our findings show that the induction of ecto-5'-nucleotidase/CD73 by radiation contributes to the radiosensitivity of T24 cell line.
Collapse
Affiliation(s)
- Fabrícia Dietrich
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, CEP 90035-003, Brazil
| | - Fabrício Figueiró
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, CEP 90035-003, Brazil
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, CEP 90035-003, Brazil
| | - Eduardo Cremonese Filippi-Chiela
- Programa de Pós-Graduação Ciências em Gastroenterologia e Hepatologia, Faculdade de Medicina, UFRGS, Porto Alegre, RS, CEP 90035-003, Brazil
| | - Angélica Regina Cappellari
- Laboratório de Farmacologia Aplicada, Escola de Ciências da Saúde, PUCRS, Porto Alegre, RS, CEP 90619-900, Brazil
| | - Liliana Rockenbach
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, CEP 90035-003, Brazil
- Centre de Recherche du CHU de Québec, Université Laval, Quebec, QC, G1V 4G2, Canada
| | - Alain Tremblay
- Centre de Recherche du CHU de Québec, Université Laval, Quebec, QC, G1V 4G2, Canada
| | - Patrícia Boni de Paula
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, CEP 90035-003, Brazil
| | - Rafael Roesler
- Laboratório de Câncer e Neurobiologia, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, CEP 90035-003, Brazil
- Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, CEP 90050-170, Brazil
| | - Aroldo Braga Filho
- Serviço de Radioterapia, Hospital São Lucas da PUCRS, Porto Alegre, RS, CEP 90619-900, Brazil
| | - Jean Sévigny
- Centre de Recherche du CHU de Québec, Université Laval, Quebec, QC, G1V 4G2, Canada
- Département de Microbiologie-infectiologie et d'immunologie, Faculté de Médecine, Université Laval, Quebec, QC, G1V 0A6, Canada
| | - Fernanda Bueno Morrone
- Laboratório de Farmacologia Aplicada, Escola de Ciências da Saúde, PUCRS, Porto Alegre, RS, CEP 90619-900, Brazil
| | - Ana Maria Oliveira Battastini
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, CEP 90035-003, Brazil.
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, CEP 90035-003, Brazil.
| |
Collapse
|
58
|
Bustos SO, da Silva Pereira GJ, de Freitas Saito R, Gil CD, Zanatta DB, Smaili SS, Chammas R. Galectin-3 sensitized melanoma cell lines to vemurafenib (PLX4032) induced cell death through prevention of autophagy. Oncotarget 2018; 9:14567-14579. [PMID: 29581864 PMCID: PMC5865690 DOI: 10.18632/oncotarget.24516] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 02/10/2018] [Indexed: 12/12/2022] Open
Abstract
Melanoma is a current worldwide problem, as its incidence is increasing. In the last years, several studies have shown that melanoma cells display high levels of autophagy, a self-degradative process that can promote survival leading to drug resistance. Consequently, autophagy regulation represents a challenge for cancer therapy. Herein, we showed that galectin-3 (Gal-3), a β-galactoside binding lectin which is often lost along melanoma progression, is a negative regulator of autophagy in melanoma cells. Our data demonstrated that Gal-3low/negative cells were more resistant to the inhibition of the activity of the cancer driver gene BRAFV600E by vemurafenib (PLX4032). Interestingly, in these cells, starvation caused further LC3-II accumulation in cells exposed to chloroquine, which inhibits the degradative step in autophagy. In addition, Gal-3 low/negative tumor cells accumulated more LC3-II than Gal-3 high tumor cells in vivo. Resistance of Gal-3low/negative cells was associated with increased production of superoxide and activation of the Endoplasmic Reticulum (ER) stress response, as evaluated by accumulation of GRP78. Pharmacological inhibition of autophagy with bafilomycin A reversed the relative resistance of Gal-3low/negative cells to vemurafenib treatment. Taken together, these results show that the autophagic flux is dependent on Gal-3 levels, which attenuate the prosurvival role of autophagy.
Collapse
Affiliation(s)
- Silvina Odete Bustos
- Instituto do Câncer do Estado de São Paulo, Faculdade de Medicina de São Paulo, São Paulo, Brazil
| | | | - Renata de Freitas Saito
- Instituto do Câncer do Estado de São Paulo, Faculdade de Medicina de São Paulo, São Paulo, Brazil
| | - Cristiane Damas Gil
- Laboratory of Histology, Department of Morphology and Genetics, Federal University of São Paulo, São Paulo, Brazil
| | - Daniela Bertolli Zanatta
- Instituto do Câncer do Estado de São Paulo, Faculdade de Medicina de São Paulo, São Paulo, Brazil
| | | | - Roger Chammas
- Instituto do Câncer do Estado de São Paulo, Faculdade de Medicina de São Paulo, São Paulo, Brazil
| |
Collapse
|
59
|
Lv W, Sui L, Yan X, Xie H, Jiang L, Geng C, Li Q, Yao X, Kong Y, Cao J. ROS-dependent Atg4 upregulation mediated autophagy plays an important role in Cd-induced proliferation and invasion in A549 cells. Chem Biol Interact 2018; 279:136-144. [DOI: 10.1016/j.cbi.2017.11.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 10/30/2017] [Accepted: 11/21/2017] [Indexed: 12/24/2022]
|
60
|
Octyl gallate reduces ATP levels and Ki67 expression leading HepG2 cells to cell cycle arrest and mitochondria-mediated apoptosis. Toxicol In Vitro 2017; 48:11-25. [PMID: 29288082 DOI: 10.1016/j.tiv.2017.12.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 12/09/2017] [Accepted: 12/22/2017] [Indexed: 12/17/2022]
Abstract
Octyl gallate (OG) is an antioxidant that has shown anti-tumor, anti-diabetic and anti-amyloidogenic activities. Mitochondria play an important role in hepatocellular carcinoma, mainly by maintaining accelerated cellular proliferation through the production of ATP. Thus, the mitochondria may be a target for antitumor therapies. Here, we investigated the effects of OG in the hepatocarcinoma cell line (HepG2) and the mechanisms involved. We report, for the first time, that treatment with OG for 24h inhibited HepG2 cell growth by decreasing mitochondrial activity and mass, which led to the reduction of ATP levels. This reduction in the energy supply triggered a decrease in Ki67 protein expression, leading cells to cycle arrest. In addition, treatment with two doses of OG for 48h induced loss of mitochondrial functionality, mitochondrial swelling and apoptosis. Finally, we report that HepG2 cells had no resistance to treatment after multiple doses. Collectively, our findings indicate that metabolic dysregulation and Ki67 protein reduction are key events in the initial anti-proliferative action of OG, whereas mitochondrial swelling and apoptosis induction are involved in the action mechanism of OG after prolonged exposure. This suggests that OG targets mitochondria, thus representing a candidate for further research on therapies for hepatocarcinoma.
Collapse
|
61
|
Mechanisms underlying the antiproliferative effects of a series of quinoxaline-derived chalcones. Sci Rep 2017; 7:15850. [PMID: 29158524 PMCID: PMC5696528 DOI: 10.1038/s41598-017-16199-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 11/09/2017] [Indexed: 12/26/2022] Open
Abstract
The present study aimed to characterize the effects of quinoxaline-derived chalcones, designed on the basis of the selective PI3Kγ inhibitor AS605240, in oral cancer cells. Three lead compounds, namely N9, N17 and N23, were selected from a series of 20 quinoxaline-derived chalcones, based on an initial screening using human and rat squamous cell carcinoma lineages, representing compounds with at least one methoxy radical at the A-ring. The selected chalcones, mainly N9 and N17, displayed marked antiproliferative effects, via apoptosis and autophagy induction, with an increase of sub-G1 population and Akt inhibition. The three chalcones displayed marked in vitro antitumor effects in different protocols with standard chemotherapy drugs, with acceptable toxicity on normal cells. There was no growth retrieval, after exposure to chalcone N9 alone, in a long-term assay to determine the cumulative population doubling (CPD) of human oral cancer cells. A PCR array evaluating 168 genes related to cancer and inflammation, demonstrated striking actions for N9, which altered the expression of 74 genes. Altogether, our results point out quinoxalinic chalcones, mainly N9, as potential strategies for oral cancer treatment.
Collapse
|
62
|
Bergamin LS, Figueiró F, Dietrich F, Manica FDM, Filippi-Chiela EC, Mendes FB, Jandrey EHF, Lopes DV, Oliveira FH, Nascimento IC, Ulrich H, Battastini AMO. Interference of ursolic acid treatment with glioma growth: An in vitro and in vivo study. Eur J Pharmacol 2017; 811:268-275. [PMID: 28663034 DOI: 10.1016/j.ejphar.2017.06.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 06/21/2017] [Accepted: 06/26/2017] [Indexed: 01/01/2023]
Abstract
Glioblastoma multiforme is the most devastating tumor in the brain. Ursolic acid (UA) is found in a variety of plants, and exhibits several pharmacological activities. In this study, we investigated the effects of UA in vitro, clarifying the mechanisms that mediate its toxicity and the long-lasting actions of UA in C6 glioma cells. We also evaluated the antitumor activity of UA in an in vivo orthotopic glioma model. Cell numbers were assessed using the Trypan blue exclusion test, and the cell cycle was characterized by flow cytometry using propidium iodide staining. Apoptosis was analyzed using an Annexin V kit and by examining caspase-3. Akt immunocontent was verified by Western blot and the long-lasting actions of UA were measured by cumulative population doubling (CPD). In vivo experiments were performed in rats to measure the effects on tumor size, malignant features and toxicological parameters. In vitro results showed that UA decreased glioma cell numbers, increased the sub-G1 fraction and induced apoptotic death, accompanied by increased active caspase-3 protein levels. Akt phosphorylation/activation in cells was also diminished by UA. With regard to CPD, cell proliferation was almost completely restored upon single UA treatments, but when the UA was added again, the majority of cells died, demonstrating the importance of re-treatment cycles with chemotherapeutic agents for abolishing tumor growth. In vivo, ursolic acid slightly reduced glioma tumor size but did not decrease malignant features. Ursolic acid may be a potential candidate as an adjuvant for glioblastoma therapy.
Collapse
Affiliation(s)
- Letícia Scussel Bergamin
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, Brazil; Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Fabrício Figueiró
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, Brazil
| | - Fabrícia Dietrich
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, Brazil
| | - Fabiana de Mattos Manica
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, Brazil
| | - Eduardo C Filippi-Chiela
- Programa de Pós-Graduação em Gastroenterologia e Hepatologia, Faculdade de Medicina, UFRGS, Porto Alegre, RS, Brazil
| | - Franciane Brackman Mendes
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, Brazil
| | | | | | - Francine H Oliveira
- Serviço de Patologia, Hospital de Clínicas de Porto Alegre, UFRGS, Porto Alegre, RS, Brazil
| | - Isis C Nascimento
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Henning Ulrich
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Ana Maria Oliveira Battastini
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, Brazil; Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, Brazil.
| |
Collapse
|
63
|
Miranda A, Blanco-Prieto M, Sousa J, Pais A, Vitorino C. Breaching barriers in glioblastoma. Part I: Molecular pathways and novel treatment approaches. Int J Pharm 2017; 531:372-388. [PMID: 28755993 DOI: 10.1016/j.ijpharm.2017.07.056] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 07/18/2017] [Accepted: 07/19/2017] [Indexed: 12/12/2022]
Abstract
Glioblastoma multiforme (GBM) is the most common primary brain tumour, and the most aggressive in nature. The prognosis for patients with GBM remains poor, with a median survival time of only 1-2 years. The treatment failure relies on the development of resistance by tumour cells and the difficulty of ensuring that drugs effectively cross the dual blood brain barrier/blood brain tumour barrier. The advanced molecular and genetic knowledge has allowed to identify the mechanisms responsible for temozolomide resistance, which represents the standard of care in GBM, along with surgical resection and radiotherapy. Such resistance has motivated the researchers to investigate new avenues for GBM treatment intended to improve patient survival. In this review, we provide an overview of major obstacles to effective treatment of GBM, encompassing biological barriers, cancer stem cells, DNA repair mechanisms, deregulated signalling pathways and autophagy. New insights and potential therapy approaches for GBM are also discussed, emphasizing localized chemotherapy delivered directly to the brain, immunotherapy, gene therapy and nanoparticle-mediated brain drug delivery.
Collapse
Affiliation(s)
- Ana Miranda
- Faculty of Pharmacy, University of Coimbra, Portugal; Pharmacometrics Group of the Centre for Neurosciences and Cell Biology (CNC), University of Coimbra, Portugal
| | - María Blanco-Prieto
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Navarra, Spain
| | - João Sousa
- Faculty of Pharmacy, University of Coimbra, Portugal; Pharmacometrics Group of the Centre for Neurosciences and Cell Biology (CNC), University of Coimbra, Portugal
| | - Alberto Pais
- Coimbra Chemistry Center, Department of Chemistry, University of Coimbra, Portugal
| | - Carla Vitorino
- Faculty of Pharmacy, University of Coimbra, Portugal; Pharmacometrics Group of the Centre for Neurosciences and Cell Biology (CNC), University of Coimbra, Portugal.
| |
Collapse
|
64
|
Zhou W, Liu L, Xue Y, Zheng J, Liu X, Ma J, Li Z, Liu Y. Combination of Endothelial-Monocyte-Activating Polypeptide-II with Temozolomide Suppress Malignant Biological Behaviors of Human Glioblastoma Stem Cells via miR-590-3p/MACC1 Inhibiting PI3K/AKT/mTOR Signal Pathway. Front Mol Neurosci 2017; 10:68. [PMID: 28348518 PMCID: PMC5346543 DOI: 10.3389/fnmol.2017.00068] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 02/28/2017] [Indexed: 12/17/2022] Open
Abstract
This study aims to investigate the effect of Endothelial-Monocyte-Activating Polypeptide-II (EMAP-II) combined with temozolomide (TMZ) upon glioblastoma stem cells (GSCs) and its possible molecular mechanisms. In this study, combination of EMAP-II with TMZ inhibited cell viability, migration and invasion in GSCs, and autophagy inhibitor 3-methyl adenine (3-MA) and chloroquine (CQ) partly reverse the anti-proliferative effect of the combination treatment. Autophagic vacuoles were formed in GSCs after the combination therapy, accompanied with the up-regulation of LC3-II and Beclin-1 as well as the down-regulation of p62/SQSTM1. Further, miR-590-3p was up-regulated and Metastasis-associated in colon cancer 1 (MACC1) was down-regulated by the combination treatment in GSCs; MiR-590-3p overexpression and MACC1 knockdown up-regulated LC3-II and Beclin-1 as well as down-regulated p62/SQSTM1 in GSCs; MACC1 was identified as a direct target of miR-590-3p, mediating the effects of miR-590-3p in the combination treatment. Furthermore, the combination treatment and MACC1 knockdown decreased p-PI3K, p-Akt, p-mTOR, p-S6 and p-4EBP in GSCs; PI3K/Akt agonist insulin-like growth factor-1(IGF-1) partly blocked the effect of the combination treatment. Moreover, in vivo xenograft models, the mice given stable overexpressed miR-590-3p cells and treated with EMAP-II and TMZ had the smallest tumor sizes, besides, miR-590-3p + EMAP-II + TMZ up-regulated the expression level of miR-590-3p, LC3-II and Beclin-1 as well as down-regulated p62/SQSTM1. In conclusion, these results elucidated anovel molecular mechanism of EMAP-II in combination with TMZ suppressed malignant biological behaviors of GSCs via miR-590-3p/MACC1 inhibiting PI3K/AKT/mTOR signaling pathway, and might provide potential therapeutic approaches for human GSCs.
Collapse
Affiliation(s)
- Wei Zhou
- Department of Neurosurgery, Shengjing Hospital of China Medical UniversityShenyang, China; Liaoning Research Center for Translational Medicine in Nervous System DiseaseShenyang, China
| | - Libo Liu
- Department of Neurobiology, College of Basic Medicine, China Medical UniversityShenyang, China; Key Laboratory of Cell Biology, Ministry of Public Health of China, and Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical UniversityShenyang, China
| | - Yixue Xue
- Department of Neurobiology, College of Basic Medicine, China Medical UniversityShenyang, China; Key Laboratory of Cell Biology, Ministry of Public Health of China, and Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical UniversityShenyang, China
| | - Jian Zheng
- Department of Neurosurgery, Shengjing Hospital of China Medical UniversityShenyang, China; Liaoning Research Center for Translational Medicine in Nervous System DiseaseShenyang, China
| | - Xiaobai Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical UniversityShenyang, China; Liaoning Research Center for Translational Medicine in Nervous System DiseaseShenyang, China
| | - Jun Ma
- Department of Neurobiology, College of Basic Medicine, China Medical UniversityShenyang, China; Key Laboratory of Cell Biology, Ministry of Public Health of China, and Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical UniversityShenyang, China
| | - Zhen Li
- Department of Neurosurgery, Shengjing Hospital of China Medical UniversityShenyang, China; Liaoning Research Center for Translational Medicine in Nervous System DiseaseShenyang, China
| | - Yunhui Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical UniversityShenyang, China; Liaoning Research Center for Translational Medicine in Nervous System DiseaseShenyang, China
| |
Collapse
|
65
|
Lima KG, Krause GC, Schuster AD, Catarina AV, Basso BS, De Mesquita FC, Pedrazza L, Marczak ES, Martha BA, Nunes FB, Chiela ECF, Jaeger N, Thomé MP, Haute GV, Dias HB, Donadio MVF, De Oliveira JR. Gallic acid reduces cell growth by induction of apoptosis and reduction of IL-8 in HepG2 cells. Biomed Pharmacother 2016; 84:1282-1290. [DOI: 10.1016/j.biopha.2016.10.048] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Revised: 10/05/2016] [Accepted: 10/17/2016] [Indexed: 11/15/2022] Open
|
66
|
Eliopoulos AG, Havaki S, Gorgoulis VG. DNA Damage Response and Autophagy: A Meaningful Partnership. Front Genet 2016; 7:204. [PMID: 27917193 PMCID: PMC5116470 DOI: 10.3389/fgene.2016.00204] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 11/02/2016] [Indexed: 01/07/2023] Open
Abstract
Autophagy and the DNA damage response (DDR) are biological processes essential for cellular and organismal homeostasis. Herein, we summarize and discuss emerging evidence linking DDR to autophagy. We highlight published data suggesting that autophagy is activated by DNA damage and is required for several functional outcomes of DDR signaling, including repair of DNA lesions, senescence, cell death, and cytokine secretion. Uncovering the mechanisms by which autophagy and DDR are intertwined provides novel insight into the pathobiology of conditions associated with accumulation of DNA damage, including cancer and aging, and novel concepts for the development of improved therapeutic strategies against these pathologies.
Collapse
Affiliation(s)
- Aristides G Eliopoulos
- Molecular and Cellular Biology Laboratory, Division of Basic Sciences, Medical School, University of CreteHeraklion, Greece; Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology HellasHeraklion, Greece
| | - Sophia Havaki
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens Athens, Greece
| | - Vassilis G Gorgoulis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of AthensAthens, Greece; Faculty Institute of Cancer Sciences, Manchester Academic Health Sciences Centre, University of ManchesterManchester, UK; Biomedical Research Foundation of the Academy of AthensAthens, Greece
| |
Collapse
|
67
|
Thomé MP, Filippi-Chiela EC, Villodre ES, Migliavaca CB, Onzi GR, Felipe KB, Lenz G. Ratiometric analysis of Acridine Orange staining in the study of acidic organelles and autophagy. J Cell Sci 2016; 129:4622-4632. [PMID: 27875278 DOI: 10.1242/jcs.195057] [Citation(s) in RCA: 161] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 11/07/2016] [Indexed: 01/06/2023] Open
Abstract
Acridine Orange is a cell-permeable green fluorophore that can be protonated and trapped in acidic vesicular organelles (AVOs). Its metachromatic shift to red fluorescence is concentration-dependent and, therefore, Acridine Orange fluoresces red in AVOs, such as autolysosomes. This makes Acridine Orange staining a quick, accessible and reliable method to assess the volume of AVOs, which increases upon autophagy induction. Here, we describe a ratiometric analysis of autophagy using Acridine Orange, considering the red-to-green fluorescence intensity ratio (R/GFIR) to quantify flow cytometry and fluorescence microscopy data of Acridine-Orange-stained cells. This method measured with accuracy the increase in autophagy induced by starvation or rapamycin, and the reduction in autophagy produced by bafilomycin A1 or the knockdown of Beclin1 or ATG7. Results obtained with Acridine Orange, considering R/GFIR, correlated with the conversion of the unlipidated form of LC3 (LC3-I) into the lipidated form (LC3-II), SQSTM1 degradation and GFP-LC3 puncta formation, thus validating this assay to be used as an initial and quantitative method for evaluating the late step of autophagy in individual cells, complementing other methods.
Collapse
Affiliation(s)
- Marcos P Thomé
- Departamento de Biofísica, Universidade Federal do Rio Grande do Sul (UFRGS), 91501970, Porto Alegre, Brazil
| | - Eduardo C Filippi-Chiela
- Departamento de Biofísica, Universidade Federal do Rio Grande do Sul (UFRGS), 91501970, Porto Alegre, Brazil.,Faculdade de Medicina, UFRGS, 91501970, Porto Alegre, Brazil
| | - Emilly S Villodre
- Departamento de Biofísica, Universidade Federal do Rio Grande do Sul (UFRGS), 91501970, Porto Alegre, Brazil
| | - Celina B Migliavaca
- Departamento de Biofísica, Universidade Federal do Rio Grande do Sul (UFRGS), 91501970, Porto Alegre, Brazil
| | - Giovana R Onzi
- Departamento de Biofísica, Universidade Federal do Rio Grande do Sul (UFRGS), 91501970, Porto Alegre, Brazil
| | - Karina B Felipe
- Departamento de Biofísica, Universidade Federal do Rio Grande do Sul (UFRGS), 91501970, Porto Alegre, Brazil.,Departamento de Análises Clínicas, Universidade Federal do Paraná (UFPR), 80060000, Curitiba, Brazil
| | - Guido Lenz
- Departamento de Biofísica, Universidade Federal do Rio Grande do Sul (UFRGS), 91501970, Porto Alegre, Brazil .,Centro de Biotecnologia, UFRGS, 91501970, Porto Alegre, Brazil
| |
Collapse
|
68
|
Glioblastoma, hypoxia and autophagy: a survival-prone 'ménage-à-trois'. Cell Death Dis 2016; 7:e2434. [PMID: 27787518 PMCID: PMC5133985 DOI: 10.1038/cddis.2016.318] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 08/24/2016] [Accepted: 09/09/2016] [Indexed: 12/14/2022]
Abstract
Glioblastoma multiforme is the most common and the most aggressive primary brain tumor. It is characterized by a high degree of hypoxia and also by a remarkable resistance to therapy because of its adaptation capabilities that include autophagy. This degradation process allows the recycling of cellular components, leading to the formation of metabolic precursors and production of adenosine triphosphate. Hypoxia can induce autophagy through the activation of several autophagy-related proteins such as BNIP3, AMPK, REDD1, PML, and the unfolded protein response-related transcription factors ATF4 and CHOP. This review summarizes the most recent data about induction of autophagy under hypoxic condition and the role of autophagy in glioblastoma.
Collapse
|
69
|
Silva AO, Dalsin E, Onzi GR, Filippi-Chiela EC, Lenz G. The regrowth kinetic of the surviving population is independent of acute and chronic responses to temozolomide in glioblastoma cell lines. Exp Cell Res 2016; 348:177-183. [PMID: 27669643 DOI: 10.1016/j.yexcr.2016.09.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 08/31/2016] [Accepted: 09/22/2016] [Indexed: 10/21/2022]
Abstract
Chemotherapy acts on cancer cells by producing multiple effects on a cell population including cell cycle arrest, necrosis, apoptosis and senescence. However, often a subpopulation of cells survives and the behavior of this subpopulation, which is responsible for cancer recurrence, remains obscure. Here we investigated the in vitro short- and long-term responses of six glioblastoma cell lines to clinically relevant doses of temozolomide for 5 days followed by 23 days of recovery, mimicking the standard schedule used in glioblastoma patient for this drug. These cells presented different profiles of sensitivity to temozolomide with varying levels of cell cycle arrest, autophagy and senescence, followed by a regrowth of the surviving cells. The initial reduction in cell number and the subsequent regrowth was analyzed with four new parameters applied to Cumulative Population Doubling (CPD) curves that describe the overall sensitivity of the population and the characteristic of the regrowth: the relative end point CPD (RendCPD); the relative Area Under Curve (rAUC); the Relative Time to Cross a Threshold (RTCT); and the Relative Proliferation Rate (RPR). Surprisingly, the kinetics of regrowth were not predicted by the mechanisms activated after treatment nor by the acute or overall sensitivity. With this study we added new parameters that describe key responses of glioblastoma cell populations to temozolomide treatment. These parameters can also be applied to other cell types and treatments and will help to understand the behavior of the surviving cancer cells after treatment and shed light on studies of cancer resistance and recurrence.
Collapse
Affiliation(s)
- Andrew Oliveira Silva
- Department of Biophysics, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| | - Eloisa Dalsin
- Department of Biophysics, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| | - Giovana Ravizzoni Onzi
- Department of Biophysics, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Center of Biotechnology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| | | | - Guido Lenz
- Department of Biophysics, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Center of Biotechnology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| |
Collapse
|
70
|
Bridi H, Beckenkamp A, Ccana-Ccapatinta GV, de Loreto Bordignon SA, Buffon A, von Poser GL. Characterization of Phloroglucinol-enriched Fractions of BrazilianHypericumSpecies and Evaluation of Their Effect on Human Keratinocytes Proliferation. Phytother Res 2016; 31:62-68. [DOI: 10.1002/ptr.5727] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 08/02/2016] [Accepted: 08/21/2016] [Indexed: 11/12/2022]
Affiliation(s)
- Henrique Bridi
- Programa de Pós Graduação em Ciências Farmacêuticas, Faculdade de Farmácia; Universidade Federal do Rio Grande do Sul (UFRGS); Porto Alegre Rio Grande do Sul Brazil
| | - Aline Beckenkamp
- Programa de Pós Graduação em Ciências Farmacêuticas, Faculdade de Farmácia; Universidade Federal do Rio Grande do Sul (UFRGS); Porto Alegre Rio Grande do Sul Brazil
| | - Gari Vidal Ccana-Ccapatinta
- Programa de Pós Graduação em Ciências Farmacêuticas, Faculdade de Farmácia; Universidade Federal do Rio Grande do Sul (UFRGS); Porto Alegre Rio Grande do Sul Brazil
| | | | - Andréia Buffon
- Programa de Pós Graduação em Ciências Farmacêuticas, Faculdade de Farmácia; Universidade Federal do Rio Grande do Sul (UFRGS); Porto Alegre Rio Grande do Sul Brazil
| | - Gilsane Lino von Poser
- Programa de Pós Graduação em Ciências Farmacêuticas, Faculdade de Farmácia; Universidade Federal do Rio Grande do Sul (UFRGS); Porto Alegre Rio Grande do Sul Brazil
| |
Collapse
|
71
|
Chen X, Tian D, Kong X, Chen Q, E F AA, Hu X, Jia A. The role of nitric oxide signalling in response to salt stress in Chlamydomonas reinhardtii. PLANTA 2016; 244:651-69. [PMID: 27116428 DOI: 10.1007/s00425-016-2528-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 04/11/2016] [Indexed: 05/23/2023]
Abstract
Nitric oxide signal and GSNOR activity play an essential role for Chlamydomonas reinhardtii response to salt stress. The unicellular alga Chlamydomonas reinhardtii is one of the most important model organisms phylogenetically situated between higher plants and animals. In the present study, we used comparative proteomics and physiological approaches to study the mechanisms underlying the response to salt stress in C. reinhardtii. We identified 74 proteins that accumulated differentially after salt stress, including oxidative enzymes and enzymes associated with nitric oxide (NO) metabolism, cell damage, and cell autophagy processes. A set of antioxidant enzymes, as well as S-nitrosoglutathione reductase (GSNOR) activity, were induced to balance the cellular redox status during short-term salt stress. Enzymes involved in DNA repair and cell autophagy also contribute to adaptation to short-term salt stress. However, under long-term salt stress, antioxidant enzymes and GSNOR were gradually inactivated through protein S-nitrosylation, leading to oxidative damage and a reduction in cell viability. Modulating the protein S-nitrosylation levels by suppressing GSNOR activity or adding thioredoxin affected the plant's adaptation to salt stress, through altering the redox status and DNA damage and autophagy levels. Based on these data, we propose that unicellular algae use multiple strategies to adapt to salt stress, and that, during this process, GSNOR activity and protein S-nitrosylation levels play important roles.
Collapse
Affiliation(s)
- Xiaodong Chen
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Dagang Tian
- Biotechnology Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350003, Fujian, China
| | - Xiangxiang Kong
- The Germplasm Bank of Wild Species, Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201, China
| | - Qian Chen
- The Germplasm Bank of Wild Species, Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201, China
| | - Abd Allah E F
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box. 2460, Riyadh, 11451, Saudi Arabia
| | - Xiangyang Hu
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, China.
| | - Aiqun Jia
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| |
Collapse
|
72
|
Filippi-Chiela EC, Viegas MS, Thomé MP, Buffon A, Wink MR, Lenz G. Modulation of Autophagy by Calcium Signalosome in Human Disease. Mol Pharmacol 2016; 90:371-84. [PMID: 27436127 DOI: 10.1124/mol.116.105171] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 07/18/2016] [Indexed: 02/14/2025] Open
Abstract
Autophagy is a catabolic process that is largely regulated by extracellular and intracellular signaling pathways that are central to cellular metabolism and growth. Mounting evidence has shown that ion channels and transporters are important for basal autophagy functioning and influence autophagy to handle stressful situations. Besides its role in cell proliferation and apoptosis, intracellular Ca(2+) is widely recognized as a key regulator of autophagy, acting through the modulation of pathways such as the mechanistic target of rapamycin complex 1, calcium/calmodulin-dependent protein kinase kinase 2, and protein kinase C. Proper spatiotemporal Ca(2+) availability, coupled with a controlled ionic flow among the extracellular milieu, storage compartments, and the cytosol, is critical in determining the role played by Ca(2+) on autophagy and on cell fate. The crosstalk between Ca(2+) and autophagy has a central role in cellular homeostasis and survival during several physiologic and pathologic conditions. Here we review the main findings concerning the mechanisms and roles of Ca(2+)-modulated autophagy, focusing on human disorders ranging from cancer to neurologic diseases and immunity. By identifying mechanisms, players, and pathways that either induce or suppress autophagy, new promising approaches for preventing and treating human disorders emerge, including those based on the modulation of Ca(2+)-mediated autophagy.
Collapse
Affiliation(s)
- Eduardo Cremonese Filippi-Chiela
- Graduate Program in Hepatology and Gastroenterology, Faculty of Medicine (E.C.F.-C.), and Gene Therapy Center (M.S.V.), Hospital de Clínicas de Porto Alegre; Department of Biophysics and Center of Biotechnology (M.P.T., G.L.) and Laboratory of Biochemical and Cytological Analysis, Faculty of Pharmacy (M.R.W.), Federal University of Rio Grande do Sul (UFRGS); and Department of Health Sciences and Cell Biology Laboratory, Federal University of Health Sciences of Porto Alegre (A.B.), Porto Allegre, Brazil
| | - Michelle S Viegas
- Graduate Program in Hepatology and Gastroenterology, Faculty of Medicine (E.C.F.-C.), and Gene Therapy Center (M.S.V.), Hospital de Clínicas de Porto Alegre; Department of Biophysics and Center of Biotechnology (M.P.T., G.L.) and Laboratory of Biochemical and Cytological Analysis, Faculty of Pharmacy (M.R.W.), Federal University of Rio Grande do Sul (UFRGS); and Department of Health Sciences and Cell Biology Laboratory, Federal University of Health Sciences of Porto Alegre (A.B.), Porto Allegre, Brazil
| | - Marcos Paulo Thomé
- Graduate Program in Hepatology and Gastroenterology, Faculty of Medicine (E.C.F.-C.), and Gene Therapy Center (M.S.V.), Hospital de Clínicas de Porto Alegre; Department of Biophysics and Center of Biotechnology (M.P.T., G.L.) and Laboratory of Biochemical and Cytological Analysis, Faculty of Pharmacy (M.R.W.), Federal University of Rio Grande do Sul (UFRGS); and Department of Health Sciences and Cell Biology Laboratory, Federal University of Health Sciences of Porto Alegre (A.B.), Porto Allegre, Brazil
| | - Andreia Buffon
- Graduate Program in Hepatology and Gastroenterology, Faculty of Medicine (E.C.F.-C.), and Gene Therapy Center (M.S.V.), Hospital de Clínicas de Porto Alegre; Department of Biophysics and Center of Biotechnology (M.P.T., G.L.) and Laboratory of Biochemical and Cytological Analysis, Faculty of Pharmacy (M.R.W.), Federal University of Rio Grande do Sul (UFRGS); and Department of Health Sciences and Cell Biology Laboratory, Federal University of Health Sciences of Porto Alegre (A.B.), Porto Allegre, Brazil
| | - Marcia R Wink
- Graduate Program in Hepatology and Gastroenterology, Faculty of Medicine (E.C.F.-C.), and Gene Therapy Center (M.S.V.), Hospital de Clínicas de Porto Alegre; Department of Biophysics and Center of Biotechnology (M.P.T., G.L.) and Laboratory of Biochemical and Cytological Analysis, Faculty of Pharmacy (M.R.W.), Federal University of Rio Grande do Sul (UFRGS); and Department of Health Sciences and Cell Biology Laboratory, Federal University of Health Sciences of Porto Alegre (A.B.), Porto Allegre, Brazil
| | - Guido Lenz
- Graduate Program in Hepatology and Gastroenterology, Faculty of Medicine (E.C.F.-C.), and Gene Therapy Center (M.S.V.), Hospital de Clínicas de Porto Alegre; Department of Biophysics and Center of Biotechnology (M.P.T., G.L.) and Laboratory of Biochemical and Cytological Analysis, Faculty of Pharmacy (M.R.W.), Federal University of Rio Grande do Sul (UFRGS); and Department of Health Sciences and Cell Biology Laboratory, Federal University of Health Sciences of Porto Alegre (A.B.), Porto Allegre, Brazil
| |
Collapse
|
73
|
Alotaibi M, Sharma K, Saleh T, Povirk LF, Hendrickson EA, Gewirtz DA. Radiosensitization by PARP Inhibition in DNA Repair Proficient and Deficient Tumor Cells: Proliferative Recovery in Senescent Cells. Radiat Res 2016; 185:229-45. [PMID: 26934368 PMCID: PMC4821451 DOI: 10.1667/rr14202.1] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Radiotherapy continues to be a primary modality in the treatment of cancer. In addition to promoting apoptosis, radiation-induced DNA damage can promote autophagy and senescence, both of which can theoretically function to prolong tumor survival. In this work, we tested the hypothesis that autophagy and/or senescence could be permissive for DNA repair, thereby facilitating tumor cell recovery from radiation-induced growth arrest and/or cell death. In addition, studies were designed to elucidate the involvement of autophagy and senescence in radiosensitization by PARP inhibitors and the re-emergence of a proliferating tumor cell population. In the context of this work, the relationship between radiation-induced autophagy and senescence was also determined. Studies were performed using DNA repair-proficient HCT116 colon carcinoma cells and a repair-deficient ligase IV(-/-) isogenic cell line. Exposure to radiation promoted a parallel induction of autophagy and senescence that was strongly correlated with the extent of persistent H2AX phosphorylation in both cell lines, however, inhibition of autophagy failed to suppress senescence, indicating that the two responses were dissociable. Exposure to radiation resulted in a transient arrest in the HCT116 cells while arrest was prolonged in the ligase IV(-/-) cells, however, both cell lines ultimately recovered proliferative function, which may reflect maintenance of DNA repair capacity. The PARP inhibitors, olaparib and niraparib, increased the extent of persistent DNA damage induced by radiation exposure as well as the extent of both autophagy and senescence. Neither cell line underwent significant apoptosis by radiation exposure alone or in the presence of the PARP inhibitors. Inhibition of autophagy failed to attenuate radiosensitization, indicating that autophagy was not involved in the action of the PARP inhibitors. As with radiation alone, despite sensitization by PARP inhibition, proliferative recovery was evident within a period of 10-20 days. While inhibition of DNA repair via PARP inhibition may initially sensitize tumor cells to radiation via the promotion of senescence, this strategy does not appear to interfere with proliferative recovery, which could ultimately contribute to disease recurrence.
Collapse
Affiliation(s)
- Moureq Alotaibi
- Department of Pharmacology and Toxicology, Virginia Commonwealth University
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University,
P.O. Box 2457, Riyadh, 11451, Kingdom of Saudi Arabia
| | - Khushboo Sharma
- Department of Pharmacology and Toxicology, Virginia Commonwealth University
| | - Tareq Saleh
- Department of Pharmacology and Toxicology, Virginia Commonwealth University
| | - Lawrence F. Povirk
- Department of Pharmacology and Toxicology, Virginia Commonwealth University
| | - Eric A. Hendrickson
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis MN 55455
| | - David A. Gewirtz
- Department of Pharmacology and Toxicology, Virginia Commonwealth University
- Department of Medicine, Massey Cancer Center
| |
Collapse
|
74
|
Yan Y, Xu Z, Dai S, Qian L, Sun L, Gong Z. Targeting autophagy to sensitive glioma to temozolomide treatment. J Exp Clin Cancer Res 2016; 35:23. [PMID: 26830677 PMCID: PMC4736617 DOI: 10.1186/s13046-016-0303-5] [Citation(s) in RCA: 232] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 01/28/2016] [Indexed: 02/08/2023] Open
Abstract
Temozolomide (TMZ), an alkylating agent, is widely used for treating primary and recurrent high-grade gliomas. However, the efficacy of TMZ is often limited by the development of resistance. Recently, studies have found that TMZ treatment could induce autophagy, which contributes to therapy resistance in glioma. To enhance the benefit of TMZ in the treatment of glioblastomas, effective combination strategies are needed to sensitize glioblastoma cells to TMZ. In this regard, as autophagy could promote cell survival or autophagic cell death, modulating autophagy using a pharmacological inhibitor, such as chloroquine, or an inducer, such as rapamycin, has received considerably more attention. To understand the effectiveness of regulating autophagy in glioblastoma treatment, this review summarizes reports on glioblastoma treatments with TMZ and autophagic modulators from in vitro and in vivo studies, as well as clinical trials. Additionally, we discuss the possibility of using autophagy regulatory compounds that can sensitive TMZ treatment as a chemotherapy for glioma treatment.
Collapse
Affiliation(s)
- Yuanliang Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Institute of Hospital Pharmacy, Central South University, Changsha, 410008, China.
| | - Zhijie Xu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Shuang Dai
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Institute of Hospital Pharmacy, Central South University, Changsha, 410008, China.
| | - Long Qian
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Institute of Hospital Pharmacy, Central South University, Changsha, 410008, China.
| | - Lunquan Sun
- Center for Molecular Medicine, Xiangya Hospital, Key Laboratory of Molecular Radiation Oncology of Hunan Province, Central South University, Changsha, 410008, China.
| | - Zhicheng Gong
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Institute of Hospital Pharmacy, Central South University, Changsha, 410008, China.
| |
Collapse
|