51
|
Dhopatkar N, Keeler JL, Mutwalli H, Whelan K, Treasure J, Himmerich H. Gastrointestinal symptoms, gut microbiome, probiotics and prebiotics in anorexia nervosa: A review of mechanistic rationale and clinical evidence. Psychoneuroendocrinology 2023; 147:105959. [PMID: 36327759 DOI: 10.1016/j.psyneuen.2022.105959] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/22/2022] [Accepted: 10/20/2022] [Indexed: 11/27/2022]
Abstract
Recent research has revealed the pivotal role that the gut microbiota might play in psychiatric disorders. In anorexia nervosa (AN), the gut microbiota may be involved in pathophysiology as well as in the gastrointestinal (GI) symptoms commonly experienced. This review collates evidence for the potential role of gut microbiota in AN, including modulation of the immune system, the gut-brain axis and GI function. We examined studies comparing gut microbiota in AN with healthy controls as well as those looking at modifications in gut microbiota with nutritional treatment. Changes in energy intake and nutritional composition influence gut microbiota and may play a role in the evolution of the gut microbial picture in AN. Additionally, some evidence indicates that pre-morbid gut microbiota may influence risk of developing AN. There appear to be similarities in gut microbial composition, mechanisms of interaction and GI symptoms experienced in AN and other GI disorders such as inflammatory bowel disease and functional GI disorders. Probiotics and prebiotics have been studied in these disorders showing therapeutic effects of probiotics in some cases. Additionally, some evidence exists for the therapeutic benefits of probiotics in depression and anxiety, commonly seen as co-morbidities in AN. Moreover, preliminary evidence for the use of probiotics in AN has shown positive effects on immune modulation. Based on these findings, we discuss the potential therapeutic role for probiotics in ameliorating symptoms in AN.
Collapse
Affiliation(s)
- Namrata Dhopatkar
- South London and Maudsley NHS Foundation Trust, Bethlem Royal Hospital, Monks Orchard Road, Beckenham BR3 3BX, UK.
| | - Johanna Louise Keeler
- Section of Eating Disorders, Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London SE5 8AF, UK.
| | - Hiba Mutwalli
- Section of Eating Disorders, Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London SE5 8AF, UK.
| | - Kevin Whelan
- Department of Nutritional Sciences, King's College London, London SE1 9NH, UK.
| | - Janet Treasure
- South London and Maudsley NHS Foundation Trust, Bethlem Royal Hospital, Monks Orchard Road, Beckenham BR3 3BX, UK; Section of Eating Disorders, Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London SE5 8AF, UK.
| | - Hubertus Himmerich
- South London and Maudsley NHS Foundation Trust, Bethlem Royal Hospital, Monks Orchard Road, Beckenham BR3 3BX, UK; Section of Eating Disorders, Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London SE5 8AF, UK.
| |
Collapse
|
52
|
Garcia-Gil M, Ceccarini MR, Stoppini F, Cataldi S, Mazzeschi C, Delvecchio E, Albi E, Gizzi G. Brain and gut microbiota disorders in the psychopathology of anorexia nervosa. Transl Neurosci 2022; 13:516-526. [PMID: 36660007 PMCID: PMC9824428 DOI: 10.1515/tnsci-2022-0267] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/05/2022] [Accepted: 12/05/2022] [Indexed: 01/08/2023] Open
Abstract
Studies of pathophysiological mechanisms involved in eating disorders (EDs) have intensified over the past several years, revealing their unprecedented and unanticipated complexity. Results from many articles highlight critical aspects in each member of ED family. Notably, anorexia nervosa (AN) is a disorder due to undefined etiology, frequently associated with symptoms of depression, anxiety, obsessive-compulsiveness, accompanied by endocrine alterations, altered immune response, increased inflammation, and dysbiosis of the gut microbiota. Hence, an advanced knowledge of how and why a multisystem involvement exists is of paramount importance to understand the pathogenetic mechanisms of AN. In this review, we describe the change in the brain structure/function focusing on hypothalamic endocrine disorders and the disequilibrium of gut microbiota in AN that might be responsible for the psychopathological complication.
Collapse
Affiliation(s)
- Mercedes Garcia-Gil
- Department of Biology, University of Pisa, 56127, Pisa, Italy,Department of Biology, Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, University of Pisa, 56127 Pisa, Italy,Department of Biology, CISUP, Center for Instrument Sharing of the University of Pisa, 56127 Pisa, Italy
| | | | - Fabrizio Stoppini
- Department of Pharmaceutical Science, University of Perugia, 06126 Perugia, Italy
| | - Samuela Cataldi
- Department of Pharmaceutical Science, University of Perugia, 06126 Perugia, Italy
| | - Claudia Mazzeschi
- Department of Philosophy, Social Sciences and Education, University of Perugia, 06126 Perugia, Italy
| | - Elisa Delvecchio
- Department of Philosophy, Social Sciences and Education, University of Perugia, 06126 Perugia, Italy
| | - Elisabetta Albi
- Department of Pharmaceutical Science, University of Perugia, 06126 Perugia, Italy
| | - Giulia Gizzi
- Department of Philosophy, Social Sciences and Education, University of Perugia, 06126 Perugia, Italy
| |
Collapse
|
53
|
Li Y, Han M, Song J, Liu S, Wang Y, Su X, Wei K, Xu Z, Li H, Wang Z. The prebiotic effects of soluble dietary fiber mixture on renal anemia and the gut microbiota in end-stage renal disease patients on maintenance hemodialysis: a prospective, randomized, placebo-controlled study. J Transl Med 2022; 20:599. [PMID: 36517799 PMCID: PMC9753397 DOI: 10.1186/s12967-022-03812-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Renal anemia is caused by end-stage renal disease (ESRD) but has a complex etiology. The application of dietary fiber (DF) to regulate the gut microbiota has shown effective therapeutic effects in some diseases, but its role in renal anemia is not clear. The aim of this study was to explore the effect of DF on renal anemia by regulating the gut microbiota and its metabolite, short-chain fatty acids (SCFAs). METHODS A total of 162 ESRD patients were enrolled and randomly distributed into a DF or a control group (received oral DF or potato starch, 10 g/day for 8 weeks). Hemoglobin (Hb), serum iron (Fe2+), serum ferritin (SF), soluble transferrin receptor (sTfR), hepcidin and the dosage of recombinant human erythropoietin (rhEPO) before and after intervention in patients were analyzed. The gut microbiota and SCFAs in both groups were analyzed by 16S rDNA sequencing and gas chromatography-mass spectrometry, respectively. Spearman's correlation test was used to analyze the correlation between the gut microbiota, SCFAs and the hematological indicators. RESULTS Compared with the control group, (1) the patients in the DF group had higher Hb [117.0 (12.5) g/L vs. 94.0 (14.5) g/L, p < 0.001], Fe2+ [13.23 (4.83) μmol/L vs. 10.26 (5.55) μmol/L, p < 0.001], and SF levels [54.15 (86.66) ng/ml vs. 41.48 (36.60) ng/ml, p = 0.003]. (2) The rhEPO dosage in the DF group was not significantly decreased (p = 0.12). (3) Bifidobacterium adolescentis, Lactobacillus and Lactobacillaceae were increased in the DF group, and Lactobacillus and Lactobacillaceae were positively correlated with Hb (r = 0.44, p < 0.001; r = 0.44, p < 0.001) and Fe2+ levels (r = 0.26, p = 0.016; r = 0.26, p = 0.016) and negatively correlated with rhEPO dosage (r = - 0.45, p < 0.001; r = - 0.45, p < 0.001). (4) Patients in the DF group had elevated serum butyric acid (BA) levels [0.80 (1.65) vs. 0.05 (0.04), p < 0.001] and BA levels were positively correlated with Hb (r = 0.26, p = 0.019) and Fe2+ (r = 0.31, p = 0.005) and negatively correlated with rhEPO dosage (r = - 0.36, p = 0.001). Lactobacillus and Lactobacillaceae were positively correlated with BA levels (r = 0.78, p < 0.001; r = 0.78, p < 0.001). CONCLUSION DF may improve renal anemia in ESRD patients by regulating the gut microbiota and SCFAs. Trial registration This study was registered in the China Clinical Trial Registry ( www.chictr.org.cn ) on December 20, 2018 ( ChiCTR1800020232 ).
Collapse
Affiliation(s)
- Yang Li
- grid.410638.80000 0000 8910 6733Department of Nephrology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Institute of Nephrology, No. 16766 Jingshi Road, Jinan, 250014 Shandong China
| | - Min Han
- grid.410638.80000 0000 8910 6733Department of Nephrology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Institute of Nephrology, No. 16766 Jingshi Road, Jinan, 250014 Shandong China
| | - Jia Song
- grid.410638.80000 0000 8910 6733Department of Nephrology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Institute of Nephrology, No. 16766 Jingshi Road, Jinan, 250014 Shandong China ,grid.410638.80000 0000 8910 6733Shandong First Medical University, No. 6699 Qingdao Street, Jinan, 250117 Shandong China
| | - Shijin Liu
- grid.410638.80000 0000 8910 6733Department of Nephrology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Institute of Nephrology, No. 16766 Jingshi Road, Jinan, 250014 Shandong China ,grid.268079.20000 0004 1790 6079Weifang Medical University, No. 7166 Baotong West Street, Weifang, 261053 Shandong China
| | - Yongjun Wang
- grid.452422.70000 0004 0604 7301Department of Clinical Nutrition, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, No. 16766 Jingshi Road, Jinan, 250014 Shandong China
| | - Xinhuan Su
- grid.460018.b0000 0004 1769 9639Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021 Shandong China
| | - Kai Wei
- grid.410638.80000 0000 8910 6733Department of Nephrology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Institute of Nephrology, No. 16766 Jingshi Road, Jinan, 250014 Shandong China
| | - Zhen Xu
- Department of Nephrology, Yuncheng Chengxin Hospital, West of Jiangmiaodeng Tower, Yunzhou Street, Heze, 274700 Shandong China
| | - Hui Li
- Department of Nephrology, People’s Hospital of Lingcheng, No. 245 Zhongxing Road, Dezhou, 253599 Shandong China
| | - Zunsong Wang
- grid.410638.80000 0000 8910 6733Department of Nephrology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Institute of Nephrology, No. 16766 Jingshi Road, Jinan, 250014 Shandong China
| |
Collapse
|
54
|
Plasma Concentrations of Short-Chain Fatty Acids in Active and Recovered Anorexia Nervosa. Nutrients 2022; 14:nu14245247. [PMID: 36558405 PMCID: PMC9781195 DOI: 10.3390/nu14245247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/01/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022] Open
Abstract
Anorexia nervosa (AN) is one of the most lethal psychiatric disorders. To date, we lack adequate knowledge about the (neuro)biological mechanisms of this disorder to inform evidence-based pharmacological treatment. Gut dysbiosis is a trending topic in mental health, including AN. Communication between the gut microbiota and the brain is partly mediated by metabolites produced by the gut microbiota such as short-chain fatty acids (SCFA). Previous research has suggested a role of SCFA in weight regulation (e.g., correlations between specific SCFA-producing bacteria and BMI have been demonstrated). Moreover, fecal SCFA concentrations are reported to be altered in active AN. However, data concerning SCFA concentrations in individuals who have recovered from AN are limited. In the present study, we analyzed and compared the plasma concentrations of seven SCFA (acetic-, butyric-, formic-, isobutyric-, isovaleric-, propionic-, and succinic acid) in females with active AN (n = 109), recovered from AN (AN-REC, n = 108), and healthy-weight age-matched controls (CTRL, n = 110), and explored correlations between SCFA concentrations and BMI. Significantly lower plasma concentrations of butyric, isobutyric-, and isovaleric acid were detected in AN as well as AN-REC compared with CTRL. We also show significant correlations between plasma concentrations of SCFA and BMI. These results encourage studies evaluating whether interventions directed toward altering gut microbiota and SCFA could support weight restoration in AN.
Collapse
|
55
|
Quaas P, Quaas AM, Fischer M, De Geyter C. Use of pulsatile gonadotropin-releasing hormone (GnRH) in patients with functional hypothalamic amenorrhea (FHA) results in monofollicular ovulation and high cumulative live birth rates: a 25-year cohort. J Assist Reprod Genet 2022; 39:2729-2736. [PMID: 36378460 PMCID: PMC9790838 DOI: 10.1007/s10815-022-02656-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 11/04/2022] [Indexed: 11/16/2022] Open
Abstract
PURPOSE To analyze outcomes of pulsatile administration of gonadotropin-releasing hormone (GnRH) in infertile women diagnosed with functional hypothalamic amenorrhea (FHA). METHODS A single-center retrospective cohort study was conducted from 1996 to 2020. Sixty-six patients with the diagnosis FHA that underwent therapy using the pulsatile GnRH pump for conception were included and analyzed. The primary outcome was the live birth rate (LBR). Secondary outcomes were the number of dominant follicles, ovulation rate, biochemical pregnancy rate (BPR), clinical pregnancy rate (CPR), miscarriage rate, and multiple pregnancy rate. A matched control group was selected to compare the birth weight of newborn children. RESULTS During the study period, 66 patients with FHA underwent 82 treatments (14 of 66 patients had more than one treatment) and a total of 212 cycles (ovulation induction attempts) using pulsatile GnRH. The LBR per treatment was 65.9%. The ovulation rate per cycle was 96%, and monofollicular ovulation was observed in 75% of cycles. The BPR per treatment was 80.5%, and the cumulative CPR per treatment was 74.4%. The miscarriage rate was 11.5%. One dizygotic twin pregnancy was observed (1.6%). Average newborn birth weight (NBW) from patients with FHA was comparable to the control group. CONCLUSION(S) In patients with FHA, excellent pregnancy rates were achieved using the subcutaneous GnRH pump. The high cumulative LBR with normal NBW as well as low rates of multiple gestation indicate that the pulsatile GnRH pump represents a safer and more physiologic alternative to ovulation induction with injectable gonadotropins. TRIAL REGISTRATION Ethics Committee Northwest and Central Switzerland (Ethikkommission Nordwest- und Zentralschweiz - EKNZ) - Project-ID 2020-01612.
Collapse
Affiliation(s)
- Philipp Quaas
- Department of Obstetrics and Gynecology, University Hospital, University of Basel, Spitalstrasse 21, CH-4056 Basel, Switzerland
| | - Alexander M. Quaas
- Reproductive Medicine and Gynecological Endocrinology (RME), University Hospital, University of Basel, Vogesenstrasse 134, CH-4031 Basel, Switzerland
| | - Manuel Fischer
- Reproductive Medicine and Gynecological Endocrinology (RME), University Hospital, University of Basel, Vogesenstrasse 134, CH-4031 Basel, Switzerland
| | | |
Collapse
|
56
|
Lower plasma concentrations of short-chain fatty acids (SCFAs) in patients with ADHD. J Psychiatr Res 2022; 156:36-43. [PMID: 36228390 DOI: 10.1016/j.jpsychires.2022.09.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/21/2022] [Accepted: 09/23/2022] [Indexed: 01/20/2023]
Abstract
Short-chain fatty acids (SCFAs), produced during bacterial fermentation, have been shown to be mediators in the microbiota-gut-brain axis. This axis has been proposed to influence psychiatric symptoms seen in attention deficit hyperactivity disorder (ADHD). However, there is no report of plasma SCFA concentrations in ADHD. The aim of this study was to explore the plasma concentrations of SCFAs in children and adults with ADHD and the possible factors that could influence those levels. We collected data on age group, sex, serum vitamin D levels, delivery mode, body mass index, diet, medication and blood samples from 233 ADHD patients and 36 family-related healthy controls. The concentrations of SCFAs and the intermediary metabolite succinic acid, were measured using liquid chromatography-mass spectrometry. Adults with ADHD had lower plasma concentrations of formic, acetic, propionic and succinic acid than their healthy family members. When adjusting for SCFA-influential factors among those with ADHD, children had lower concentrations of formic, propionic and isovaleric acid than adults, and those who had more antibiotic medications during the last 2 years had lower concentrations of formic, propionic and succinic acid. When adjusting for antibiotic medication, we found that among children, those currently on stimulant medication had lower acetic and propionic acid levels, and adults with ADHD had lower formic and propionic acid concentrations than adult healthy family members. In all, our findings show lower-than-normal plasma concentrations of SCFAs in ADHD explained in-part by antibiotic medication, age and stimulant medication. Whether or not this is of clinical significance is yet to be explored.
Collapse
|
57
|
Syromyatnikov M, Nesterova E, Gladkikh M, Smirnova Y, Gryaznova M, Popov V. Characteristics of the Gut Bacterial Composition in People of Different Nationalities and Religions. Microorganisms 2022; 10:microorganisms10091866. [PMID: 36144468 PMCID: PMC9501501 DOI: 10.3390/microorganisms10091866] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 11/25/2022] Open
Abstract
High-throughput sequencing has made it possible to extensively study the human gut microbiota. The links between the human gut microbiome and ethnicity, religion, and race remain rather poorly understood. In this review, data on the relationship between gut microbiota composition and the nationality of people and their religion were generalized. The unique gut microbiome of a healthy European (including Slavic nationality) is characterized by the dominance of the phyla Firmicutes, Bacteroidota, Actinobacteria, Proteobacteria, Fusobacteria, and Verrucomicrobia. Among the African population, the typical members of the microbiota are Bacteroides and Prevotella. The gut microbiome of Asians is very diverse and rich in members of the genera Prevotella, Bacteroides Lactobacillus, Faecalibacterium, Ruminococcus, Subdoligranulum, Coprococcus, Collinsella, Megasphaera, Bifidobacterium, and Phascolarctobacterium. Among Buddhists and Muslims, the Prevotella enterotype is characteristic of the gut microbiome, while other representatives of religions, including Christians, have the Bacteroides enterotype. Most likely, the gut microbiota of people of different nationalities and religions are influenced by food preferences. The review also considers the influences of pathologies such as obesity, Crohn’s disease, cancer, diabetes, etc., on the bacterial composition of the guts of people of different nationalities.
Collapse
Affiliation(s)
- Mikhail Syromyatnikov
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036 Voronezh, Russia
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia
- Correspondence:
| | - Ekaterina Nesterova
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036 Voronezh, Russia
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia
| | - Maria Gladkikh
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036 Voronezh, Russia
| | - Yuliya Smirnova
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036 Voronezh, Russia
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia
| | - Mariya Gryaznova
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036 Voronezh, Russia
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia
| | - Vasily Popov
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036 Voronezh, Russia
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia
| |
Collapse
|
58
|
Chen J, Wang Y, Shi Y, Liu Y, Wu C, Luo Y. Association of Gut Microbiota With Intestinal Ischemia/Reperfusion Injury. Front Cell Infect Microbiol 2022; 12:962782. [PMID: 35903197 PMCID: PMC9314564 DOI: 10.3389/fcimb.2022.962782] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
Intestinal ischemia/reperfusion (II/R) is a common acute and critical condition in clinical practice with a high mortality rate. However, there is still a lack of effective prevention and treatment measures for II/R injury. The role of the gut microbiota in II/R has attracted widespread attention. Recent evidence has demonstrated that the gut microbiota plays a pivotal role in the occurrence, development, and prognosis of II/R. Therefore, maintaining the homeostasis of gut microbiota and its metabolites may be a potential strategy for the treatment of II/R. This review focuses on the importance of crosstalk between the gastrointestinal ecosystem and II/R to highlight II/R-induced gut microbiota signatures and potential applications of microbial-based therapies in II/R. This will also provide potentially effective biomarkers for the prediction, diagnosis and treatment of II/R.
Collapse
Affiliation(s)
- Jingyi Chen
- Department of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
- *Correspondence: Jingyi Chen, ; Yanrong Luo, ; Chengyi Wu,
| | - Yu Wang
- Department of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Yongxia Shi
- Department of Surgical Nursing, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Yongpan Liu
- Department of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Chengyi Wu
- Department of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
- *Correspondence: Jingyi Chen, ; Yanrong Luo, ; Chengyi Wu,
| | - Yanrong Luo
- Physical Examination Center, Shiyan Hospital of Integrated Traditional and Western Medicine, Shiyan, China
- *Correspondence: Jingyi Chen, ; Yanrong Luo, ; Chengyi Wu,
| |
Collapse
|
59
|
Grant-Beurmann S, Jumare J, Ndembi N, Matthew O, Shutt A, Omoigberale A, Martin OA, Fraser CM, Charurat M. Dynamics of the infant gut microbiota in the first 18 months of life: the impact of maternal HIV infection and breastfeeding. MICROBIOME 2022; 10:61. [PMID: 35414043 PMCID: PMC9004197 DOI: 10.1186/s40168-022-01230-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Access to antiretroviral therapy (ART) during pregnancy and breastfeeding for mothers with HIV has resulted in fewer children acquiring HIV peri- and postnatally, resulting in an increase in the number of children who are exposed to the virus but are not infected (HEU). HEU infants have an increased likelihood of childhood infections and adverse growth outcomes, as well as increased mortality compared to their HIV-unexposed (HUU) peers. We explored potential differences in the gut microbiota in a cohort of 272 Nigerian infants born to HIV-positive and negative mothers in this study during the first 18 months of life. RESULTS The taxonomic composition of the maternal vaginal and gut microbiota showed no significant differences based on HIV status, and the composition of the infant gut microbiota at birth was similar between HUU and HEU. Longitudinal taxonomic composition of the infant gut microbiota and weight-for-age z-scores (WAZ) differed depending on access to breast milk. HEU infants displayed overall lower WAZ than HUU infants at all time points. We observed a significantly lower relative abundance of Bifidobacterium in HEU infants at 6 months postpartum. Breast milk composition also differed by time point and HIV infection status. The antiretroviral therapy drugs, lamivudine and nevirapine, as well as kynurenine, were significantly more abundant in the breast milk of mothers with HIV. Levels of tiglyl carnitine (C5) were significantly lower in the breast milk of mothers without HIV. ART drugs in the breast milk of mothers with HIV were associated with a lower relative abundance of Bifidobacterium longum. CONCLUSIONS Maternal HIV infection was associated with adverse growth outcomes of HEU infants in this study, and these differences persist from birth through at least 18 months, which is a critical window for the development of the immune and central nervous systems. We observed that the relative abundance of Bifidobacterium spp. was significantly lower in the gut microbiota of all HEU infants over the first 6 months postpartum, even if HEU infants were receiving breast milk. Breastfeeding was of benefit in our HEU infant cohort in the first weeks postpartum; however, ART drug metabolites in breast milk were associated with a lower abundance of Bifidobacterium. Video abstract.
Collapse
Affiliation(s)
- Silvia Grant-Beurmann
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jibreel Jumare
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | | | - Ashley Shutt
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | - Olivia A Martin
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Claire M Fraser
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA.
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Man Charurat
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
60
|
Musleh-Vega S, Ojeda J, Vidal PM. Gut Microbiota–Brain Axis as a Potential Modulator of Psychological Stress after Spinal Cord Injury. Biomedicines 2022; 10:biomedicines10040847. [PMID: 35453597 PMCID: PMC9024710 DOI: 10.3390/biomedicines10040847] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/01/2022] [Accepted: 04/02/2022] [Indexed: 12/12/2022] Open
Abstract
A growing body of evidence from preclinical and clinical studies has associated alterations of the gut microbiota–brain axis with the progression and development of a number of pathological conditions that also affect cognitive functions. Spinal cord injuries (SCIs) can be produced from traumatic and non-traumatic causes. It has been reported that SCIs are commonly associated with anxiety and depression-like symptoms, showing an incidence range between 11 and 30% after the injury. These psychological stress-related symptoms are associated with worse prognoses in SCIs and have been attributed to psychosocial stressors and losses of independence. Nevertheless, emotional and mental modifications after SCI could be related to changes in the volume of specific brain areas associated with information processing and emotions. Additionally, physiological modifications have been recognized as a predisposing factor for mental health depletion, including the development of gut dysbiosis. This condition of imbalance in microbiota composition has been shown to be associated with depression in clinical and pre-clinical models. Therefore, the understanding of the mechanisms underlying the relationship between SCIs, gut dysbiosis and psychological stress could contribute to the development of novel therapeutic strategies to improve SCI patients’ quality of life.
Collapse
|
61
|
Wei Y, Peng S, Lian C, Kang Q, Chen J. Anorexia nervosa and gut microbiome: implications for weight change and novel treatments. Expert Rev Gastroenterol Hepatol 2022; 16:321-332. [PMID: 35303781 DOI: 10.1080/17474124.2022.2056017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Host-microbiota interactions may be involved in many physical and psychological functions ranging from the digestion of food, maintenance of immune homeostasis, to the regulation of mood and cognition. Microbiome dysbiosis has been consistently described in many diseases. The pathogenesis and weight regulation mechanism in anorexia nervosa (AN) also seem to be implicated in the dynamic bidirectional adjustment of the microbiota-gut-brain axis. This review aims at elucidating this relationship. AREA COVERED This review starts with a description of pathogenic gut-brain pathways. Next, we focus on the latest research on the associations between gut microbiota and weight change in the condition of AN. The strategies to alter the intestinal microbiome for the treatment of this disorder are discussed, including dietary, probiotics, prebiotics, synbiotics, and fecal microbiota transplantation. EXPERT OPINION Gut microbiome is inextricably linked to AN. It may regulate weight gain in the process of refeeding via the microbiota-gut-brain axis, while the specific mechanism has yet to be clearly established. In the future, a better understanding of gut microbiome could have implications for developing microbiome-based prevention, diagnostics and therapies.
Collapse
Affiliation(s)
- Yaohui Wei
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sufang Peng
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cheng Lian
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qing Kang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jue Chen
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
62
|
Gut microbiota involved in leptospiral infections. THE ISME JOURNAL 2022; 16:764-773. [PMID: 34588617 PMCID: PMC8857230 DOI: 10.1038/s41396-021-01122-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 09/16/2021] [Accepted: 09/20/2021] [Indexed: 11/08/2022]
Abstract
Leptospirosis is a re-emerging zoonotic disease worldwide. Intestinal bleeding is a common but neglected symptom in severe leptospirosis. The regulatory mechanism of the gut microbiota on leptospirosis is still unclear. In this study, we found that Leptospira interrogans infection changed the composition of the gut microbiota in mice. Weight loss and an increased leptospiral load in organs were observed in the gut microbiota-depleted mice compared with those in the control mice. Moreover, fecal microbiota transplantation (FMT) to the microbiota-depleted mice reversed these effects. The phagocytosis response and inflammatory response in bone marrow-derived macrophages and thioglycolate-induced peritoneal macrophages were diminished in the microbiota-depleted mice after infection. However, the phagocytosis response and inflammatory response in resident peritoneal macrophage were not affected in the microbiota-depleted mice after infection. The diminished macrophage disappearance reaction (bacterial entry into the peritoneum acutely induced macrophage adherence to form local clots and out of the fluid phase) led to an increased leptospiral load in the peritoneal cavity in the microbiota-depleted mice. In addition, the impaired capacity of macrophages to clear leptospires increased leptospiral dissemination in Leptospira-infected microbiota-depleted mice. Our study identified the microbiota as an endogenous defense against L. interrogans infection. Modulating the structure and function of the gut microbiota may provide new individualized preventative strategies for the control of leptospirosis and related spirochetal infections.
Collapse
|
63
|
Peng H, Ouyang L, Li D, Li Z, Yuan L, Fan L, Liao A, Li J, Wei Y, Yang Z, Ma X, Chen X, He Y. Short-chain fatty acids in patients with schizophrenia and ultra-high risk population. Front Psychiatry 2022; 13:977538. [PMID: 36578297 PMCID: PMC9790925 DOI: 10.3389/fpsyt.2022.977538] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/21/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Individuals who experience the prodromal phase of schizophrenia (SCZ), a common and complex psychiatric disorder, are referred to as ultra-high-risk (UHR) individuals. Short-chain fatty acid (SCFA) is imperative in the microbiota-gut-brain axis and brain function. Accumulating amount of evidence shows the connections between psychiatric disorders and SCFAs. This study aims to explore the underlying roles SCFAs play in SCZ by investigating the association of alterations in SCFAs concentrations with common cognitive functions in both the SCZ and UHR populations. METHODS The study recruited 59 SCZ patients (including 15 participants converted from the UHR group), 51 UHR participants, and 40 healthy controls (HC) within a complete follow-up of 2 years. Results of cognitive functions, which were assessed by utilizing HVLT-R and TMT, and serum concentrations of SCFAs were obtained for all participants and for UHR individuals at the time of their conversion to SCZ. RESULTS Fifteen UHR participants converted to SCZ within a 2-year follow-up. Valeric acid concentration levels were lower in both the baseline of UHR individuals whom later converted to SCZ (p = 0.046) and SCZ patients (p = 0.036) than the HC group. Additionally, there were lower concentrations of caproic acid in the baseline of UHR individuals whom later transitioned to SCZ (p = 0.019) and the UHR group (p = 0.016) than the HC group. Furthermore, the caproic acid levels in the UHR group are significantly positively correlated with immediate memory (r = 0.355, p = 0.011) and negatively correlated with TMT-B (r = -0.366, p = 0.009). Significant differences in levels of acetic acid, butyric acid and isovaleric acid were absent among the three groups and in UHR individuals before and after transition to SCZ. CONCLUSION Our study suggests that alterations in concentrations of SCFAs may be associated with the pathogenesis and the cognitive impairment of schizophrenia. Further researches are warranted to explore this association. The clinical implications of our findings were discussed.
Collapse
Affiliation(s)
- Huiqing Peng
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Psychiatry and Mental Health, China National Technology Institute on Mental Disorders, Institute of Mental Health, Hunan Medical Center for Mental Health, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Lijun Ouyang
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Psychiatry and Mental Health, China National Technology Institute on Mental Disorders, Institute of Mental Health, Hunan Medical Center for Mental Health, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - David Li
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Psychiatry and Mental Health, China National Technology Institute on Mental Disorders, Institute of Mental Health, Hunan Medical Center for Mental Health, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Zongchang Li
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Psychiatry and Mental Health, China National Technology Institute on Mental Disorders, Institute of Mental Health, Hunan Medical Center for Mental Health, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Liu Yuan
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Psychiatry and Mental Health, China National Technology Institute on Mental Disorders, Institute of Mental Health, Hunan Medical Center for Mental Health, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Lejia Fan
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Psychiatry and Mental Health, China National Technology Institute on Mental Disorders, Institute of Mental Health, Hunan Medical Center for Mental Health, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Aijun Liao
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Psychiatry and Mental Health, China National Technology Institute on Mental Disorders, Institute of Mental Health, Hunan Medical Center for Mental Health, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Jinguang Li
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Psychiatry and Mental Health, China National Technology Institute on Mental Disorders, Institute of Mental Health, Hunan Medical Center for Mental Health, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yisen Wei
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Psychiatry and Mental Health, China National Technology Institute on Mental Disorders, Institute of Mental Health, Hunan Medical Center for Mental Health, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Zihao Yang
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Psychiatry and Mental Health, China National Technology Institute on Mental Disorders, Institute of Mental Health, Hunan Medical Center for Mental Health, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xiaoqian Ma
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Psychiatry and Mental Health, China National Technology Institute on Mental Disorders, Institute of Mental Health, Hunan Medical Center for Mental Health, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xiaogang Chen
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Psychiatry and Mental Health, China National Technology Institute on Mental Disorders, Institute of Mental Health, Hunan Medical Center for Mental Health, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Ying He
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Psychiatry and Mental Health, China National Technology Institute on Mental Disorders, Institute of Mental Health, Hunan Medical Center for Mental Health, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
64
|
Fouladi F, Bulik-Sullivan EC, Glenny EM, Thornton LM, Reed KK, Thomas S, Kleiman S, Watters A, Oakes J, Huh EY, Tang Q, Liu J, Djukic Z, Harper L, Trillo-Ordoñez Y, Sun S, Blakely I, Mehler PS, Fodor AA, Tarantino LM, Bulik CM, Carroll IM. Reproducible changes in the anorexia nervosa gut microbiota following inpatient therapy remain distinct from non-eating disorder controls. Gut Microbes 2022; 14:2143217. [PMID: 36398862 PMCID: PMC9678007 DOI: 10.1080/19490976.2022.2143217] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The composition of the gut microbiota in patients with anorexia nervosa (AN), and the ability of this microbial community to influence the host, remains uncertain. To achieve a broader understanding of the role of the intestinal microbiota in patients with AN, we collected fecal samples before and following clinical treatment at two geographically distinct eating disorder units (Center of Excellence for Eating Disorders [UNC-CH] and ACUTE Center for Eating Disorders [Denver Health]). Gut microbiotas were characterized in patients with AN, before and after inpatient treatment, and in non-eating disorder (non-ED) controls using shotgun metagenomic sequencing. The impact of inpatient treatment on the AN gut microbiota was remarkably consistent between eating disorder units. Although weight in patients with AN showed improvements, AN microbiotas post-treatment remained distinct from non-ED controls. Additionally, AN gut microbiotas prior to treatment exhibited more fermentation pathways and a lower ability to degrade carbohydrates than non-ED controls. As the intestinal microbiota can influence nutrient metabolism, our data highlight the complex microbial communities in patients with AN as an element needing further attention post inpatient treatment. Additionally, this study defines the effects of renourishment on the AN gut microbiota and serves as a platform to develop precision nutrition approaches to potentially mitigate impediments to recovery.
Collapse
Affiliation(s)
- Farnaz Fouladi
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC28223, USA
| | - Emily C. Bulik-Sullivan
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC27599, USA
| | - Elaine M. Glenny
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC27599, USA
| | - Laura M. Thornton
- Department of Psychiatry, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC27599, USA
| | - Kylie K. Reed
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC27599, USA
| | - Stephanie Thomas
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC27599, USA
| | - Susan Kleiman
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC27599, USA
| | - Ashlie Watters
- ACUTE Center for Eating Disorders and Severe Malnutrition at Denver Health, University of Colorado School of Medicine, Denver, CO80204, USA
| | - Judy Oakes
- ACUTE Center for Eating Disorders and Severe Malnutrition at Denver Health, Department of Medicine, Medical Intensive Care Unit, Denver Health Hospital Authority, Denver, CO80204, USA
| | - Eun-Young Huh
- Center for Gastrointestinal Biology and Disease, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC27599, USA
| | - Quyen Tang
- Graduate School of Professional Psychology, Morrison Family College of Health, University of St. Thomas, Minneapolis, MN, USA
| | - Jintong Liu
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC27599, USA
| | - Zorka Djukic
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC27599, USA
| | - Lauren Harper
- Department of Psychiatry, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC27599, USA
| | - Yesel Trillo-Ordoñez
- Center for Gastrointestinal Biology and Disease, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC27599, USA
| | - Shan Sun
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC28223, USA
| | - Ivory Blakely
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC28223, USA
| | - Philip S. Mehler
- ACUTE Center for Eating Disorders and Severe Malnutrition at Denver Health, University of Colorado School of Medicine, Denver, CO80204, USA
| | - Anthony A. Fodor
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC28223, USA
| | - Lisa M. Tarantino
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC27599, USA,Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC27599, USA
| | - Cynthia M. Bulik
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC27599, USA,Department of Psychiatry, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC27599, USA,Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Ian M. Carroll
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC27599, USA,Center for Gastrointestinal Biology and Disease, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC27599, USA,CONTACT Ian M. Carroll Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC27599, USA
| |
Collapse
|
65
|
Unveiling Metabolic Phenotype Alterations in Anorexia Nervosa through Metabolomics. Nutrients 2021; 13:nu13124249. [PMID: 34959800 PMCID: PMC8706417 DOI: 10.3390/nu13124249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 11/17/2022] Open
Abstract
Anorexia nervosa (AN) is a mental disorder characterized by an intense fear of weight gain that affects mainly young women. It courses with a negative body image leading to altered eating behaviors that have devastating physical, metabolic, and psychological consequences for the patients. Although its origin is postulated to be multifactorial, the etiology of AN remains unknown, and this increases the likelihood of chronification and relapsing. Thus, expanding the available knowledge on the pathophysiology of AN is of enormous interest. Metabolomics is proposed as a powerful tool for the elucidation of disease mechanisms and to provide new insights into the diagnosis, treatment, and prognosis of AN. A review of the literature related to studies of AN patients by employing metabolomic strategies to characterize the main alterations associated with the metabolic phenotype of AN during the last 10 years is described. The most common metabolic alterations are derived from chronic starvation, including amino acid, lipid, and carbohydrate disturbances. Nonetheless, recent findings have shifted the attention to gut-microbiota metabolites as possible factors contributing to AN development, progression, and maintenance. We have identified the areas of ongoing research in AN and propose further perspectives to improve our knowledge and understanding of this disease.
Collapse
|
66
|
Roubalova R, Prochazkova P, Dvorak J, Hill M, Papezova H, Kreisinger J, Bulant J, Lambertova A, Holanova P, Bilej M, Tlaskalova-Hogenova H. Altered Serum Immunological and Biochemical Parameters and Microbiota Composition in Patients With AN During Realimentation. Front Nutr 2021; 8:680870. [PMID: 34409061 PMCID: PMC8365021 DOI: 10.3389/fnut.2021.680870] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/30/2021] [Indexed: 12/11/2022] Open
Abstract
Anorexia nervosa (AN) is a life-threatening psychiatric disorder with not well-described pathogenesis. Besides the genetic and sociological factors, autoimmunity is also considered to take part in AN pathogenesis. We evaluated general serological factors showing the physiological state of 59 patients with AN at hospital admission and their discharge. We detected the altered levels of some general biochemical and immunological parameters. We also detected decreased levels of appetite-regulating alpha-melanocyte stimulating hormone (α-MSH) in patients at hospital admission. Moreover, elevated anti-α-MSH IgM levels and decreased anti-α-MSH IgA levels were observed in patients with AN. Therefore, we analyzed the gut microbiota composition with special focus on α-MSH antigen-mimetic containing microbes from the Enterobacteriaceae family. We correlated gut bacterial composition with anti-α-MSH Ig levels and detected decreasing IgG levels with increasing alpha diversity. The upregulation of pro-inflammatory cytokines IL-6, IL-17, and TNF-α were detected in patients with AN both prior and after hospitalization. We also evaluated the treatment outcome and improvement was observed in the majority of patients with AN. We provide new data about various serum biochemical parameters and their changes during the patients' hospitalization, with emphasis on the immune system, and its possible participation in AN pathogenesis.
Collapse
Affiliation(s)
- Radka Roubalova
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Petra Prochazkova
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Jiri Dvorak
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Martin Hill
- Department of Steroids and Proteohormones, Institute of Endocrinology, Prague, Czechia
| | - Hana Papezova
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czechia
| | - Jakub Kreisinger
- Department of Zoology, Faculty of Science, Charles University, Prague, Czechia
| | - Josef Bulant
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czechia.,Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czechia
| | - Alena Lambertova
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czechia
| | - Petra Holanova
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czechia
| | - Martin Bilej
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Helena Tlaskalova-Hogenova
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
67
|
Smitka K, Prochazkova P, Roubalova R, Dvorak J, Papezova H, Hill M, Pokorny J, Kittnar O, Bilej M, Tlaskalova-Hogenova H. Current Aspects of the Role of Autoantibodies Directed Against Appetite-Regulating Hormones and the Gut Microbiome in Eating Disorders. Front Endocrinol (Lausanne) 2021; 12:613983. [PMID: 33953692 PMCID: PMC8092392 DOI: 10.3389/fendo.2021.613983] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 03/09/2021] [Indexed: 12/12/2022] Open
Abstract
The equilibrium and reciprocal actions among appetite-stimulating (orexigenic) and appetite-suppressing (anorexigenic) signals synthesized in the gut, brain, microbiome and adipose tissue (AT), seems to play a pivotal role in the regulation of food intake and feeding behavior, anxiety, and depression. A dysregulation of mechanisms controlling the energy balance may result in eating disorders such as anorexia nervosa (AN) and bulimia nervosa (BN). AN is a psychiatric disease defined by chronic self-induced extreme dietary restriction leading to an extremely low body weight and adiposity. BN is defined as out-of-control binge eating, which is compensated by self-induced vomiting, fasting, or excessive exercise. Certain gut microbiota-related compounds, like bacterial chaperone protein Escherichia coli caseinolytic protease B (ClpB) and food-derived antigens were recently described to trigger the production of autoantibodies cross-reacting with appetite-regulating hormones and neurotransmitters. Gut microbiome may be a potential manipulator for AT and energy homeostasis. Thus, the regulation of appetite, emotion, mood, and nutritional status is also under the control of neuroimmunoendocrine mechanisms by secretion of autoantibodies directed against neuropeptides, neuroactive metabolites, and peptides. In AN and BN, altered cholinergic, dopaminergic, adrenergic, and serotonergic relays may lead to abnormal AT, gut, and brain hormone secretion. The present review summarizes updated knowledge regarding the gut dysbiosis, gut-barrier permeability, short-chain fatty acids (SCFA), fecal microbial transplantation (FMT), blood-brain barrier permeability, and autoantibodies within the ghrelin and melanocortin systems in eating disorders. We expect that the new knowledge may be used for the development of a novel preventive and therapeutic approach for treatment of AN and BN.
Collapse
Affiliation(s)
- Kvido Smitka
- First Faculty of Medicine, Institute of Physiology, Charles University, Prague, Czechia
- First Faculty of Medicine, Institute of Pathological Physiology, Charles University, Prague, Czechia
- *Correspondence: Kvido Smitka,
| | - Petra Prochazkova
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Radka Roubalova
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Jiri Dvorak
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Hana Papezova
- Psychiatric Clinic, Eating Disorder Center, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czechia
| | - Martin Hill
- Steroid Hormone and Proteofactors Department, Institute of Endocrinology, Prague, Czechia
| | - Jaroslav Pokorny
- First Faculty of Medicine, Institute of Physiology, Charles University, Prague, Czechia
| | - Otomar Kittnar
- First Faculty of Medicine, Institute of Physiology, Charles University, Prague, Czechia
| | - Martin Bilej
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Helena Tlaskalova-Hogenova
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|