51
|
Liao G, Zhao Z, Qian Y, Ling X, Chen S, Li X, Kong FMS. Prognostic Role of Soluble Programmed Death Ligand 1 in Non-Small Cell Lung Cancer: A Systematic Review and Meta-Analysis. Front Oncol 2022; 11:774131. [PMID: 35004295 PMCID: PMC8732757 DOI: 10.3389/fonc.2021.774131] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 11/17/2021] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE The objective of this study was to explore whether soluble programmed death ligand 1 (sPD-L1) is a potential prognostic biomarker in patients with non-small cell lung cancer (NSCLC). METHODS A comprehensive search of electronic databases was carried out. Original studies with inclusion of sPD-L1, progression-free survival, and overall survival in NSCLC were eligible. The primary endpoints were overall survival and progression-free survival. Hazard ratios (HRs) and 95% confidence intervals (CIs) were applied for data analysis. RESULTS Eight studies involving 710 patients with NSCLC were included in the analysis. A pooled data analysis revealed that high levels of sPD-L1 were correlated with poorer overall survival (HR = 2.34; 95% CI = 1.82-3.00; P < 0.001) and progression-free survival (HR = 2.35; 95% CI = 1.62-3.40, P < 0.001). A subgroup analysis revealed that high levels of sPD-L1 were correlated with poor overall survival in patients treated with immunotherapy (HR = 2.40; 95% CI = 1.79-3.22; P < 0.001). CONCLUSION This pooled analysis of published data suggests that sPD-L1 may serve as a readily available biomarker for survival in NSCLC patients treated with ICI based treatment. Prospective studies with well-designed standard assessment methods should be conducted to validate the prognostic role of sPD-L1 in NSCLC. SYSTEMATIC REVIEW REGISTRATION https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42021283177.
Collapse
Affiliation(s)
- Guixiang Liao
- Department of Radiation Oncology, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, Shenzhen, China
| | - Zhihong Zhao
- Department of Nephrology, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, Shenzhen, China
| | - Yuting Qian
- Department of Radiation Oncology, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, Shenzhen, China
| | - Xiean Ling
- Department of Thoracic Surgery, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, Shenzhen, China
| | - Shanyi Chen
- Department of Radiation Oncology, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, Shenzhen, China
| | - Xianming Li
- Department of Radiation Oncology, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, Shenzhen, China
| | - Feng-Ming Spring Kong
- Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China.,Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
52
|
Rajkumar T, Amritha S, Sridevi V, Gopal G, Sabitha K, Shirley S, Swaminathan R. Identification and validation of plasma biomarkers for diagnosis of breast cancer in South Asian women. Sci Rep 2022; 12:100. [PMID: 34997107 PMCID: PMC8742108 DOI: 10.1038/s41598-021-04176-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 12/16/2021] [Indexed: 01/26/2023] Open
Abstract
Breast cancer is the most common malignancy among women globally. Development of a reliable plasma biomarker panel might serve as a non-invasive and cost-effective means for population-based screening of the disease. Transcriptomic profiling of breast tumour, paired normal and apparently normal tissues, followed by validation of the shortlisted genes using TaqMan® Low density arrays and Quantitative real-time PCR was performed in South Asian women. Fifteen candidate protein markers and 3 candidate epigenetic markers were validated first in primary breast tumours and then in plasma samples of cases [N = 202 invasive, 16 DCIS] and controls [N = 203 healthy, 37 benign] using antibody array and methylation specific PCR. Diagnostic efficiency of single and combined markers was assessed. Combination of 6 protein markers (Adipsin, Leptin, Syndecan-1, Basic fibroblast growth factor, Interleukin 17B and Dickopff-3) resulted in 65% sensitivity and 80% specificity in detecting breast cancer. Multivariate diagnostic analysis of methylation status of SOSTDC1, DACT2, WIF1 showed 100% sensitivity and up to 91% specificity in discriminating BC from benign and controls. Hence, combination of SOSTDC1, DACT2 and WIF1 was effective in differentiating breast cancer [non-invasive and invasive] from benign diseases of the breast and healthy individuals and could help as a complementary diagnostic tool for breast cancer.
Collapse
Affiliation(s)
- Thangarajan Rajkumar
- Department of Molecular Oncology, Cancer Institute (WIA), 38, Sardar Patel Road, Chennai, 600036, India.
| | - Sathyanarayanan Amritha
- Department of Molecular Oncology, Cancer Institute (WIA), 38, Sardar Patel Road, Chennai, 600036, India
| | - Veluswami Sridevi
- Department of Surgical Oncology, Cancer Institute (WIA), 38, Sardar Patel Road, Chennai, 600036, India
| | - Gopisetty Gopal
- Department of Molecular Oncology, Cancer Institute (WIA), 38, Sardar Patel Road, Chennai, 600036, India
| | - Kesavan Sabitha
- Department of Molecular Oncology, Cancer Institute (WIA), 38, Sardar Patel Road, Chennai, 600036, India
| | - Sundersingh Shirley
- Department of Pathology, Cancer Institute (WIA), 38, Sardar Patel Road, Chennai, 600036, India
| | - Rajaraman Swaminathan
- Department of Epidemiology and Biostatistics, Cancer Institute (WIA), 38, Sardar Patel Road, Chennai, 600036, India
| |
Collapse
|
53
|
Healey Bird B, Nally K, Ronan K, Clarke G, Amu S, Almeida AS, Flavin R, Finn S. Cancer Immunotherapy with Immune Checkpoint Inhibitors-Biomarkers of Response and Toxicity; Current Limitations and Future Promise. Diagnostics (Basel) 2022; 12:124. [PMID: 35054292 PMCID: PMC8775044 DOI: 10.3390/diagnostics12010124] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 12/31/2021] [Accepted: 01/04/2022] [Indexed: 12/19/2022] Open
Abstract
Immune checkpoint inhibitors are monoclonal antibodies that are used to treat over one in three cancer patients. While they have changed the natural history of disease, prolonging life and preserving quality of life, they are highly active in less than 40% of patients, even in the most responsive malignancies such as melanoma, and cause significant autoimmune side effects. Licenced biomarkers include tumour Programmed Death Ligand 1 expression by immunohistochemistry, microsatellite instability, and tumour mutational burden, none of which are particularly sensitive or specific. Emerging tumour and immune tissue biomarkers such as novel immunohistochemistry scores, tumour, stromal and immune cell gene expression profiling, and liquid biomarkers such as systemic inflammatory markers, kynurenine/tryptophan ratio, circulating immune cells, cytokines and DNA are discussed in this review. We also examine the influence of the faecal microbiome on treatment outcome and its use as a biomarker of response and toxicity.
Collapse
Affiliation(s)
- Brian Healey Bird
- School of Medicine, University College Cork, T12 K8AF Cork, Ireland
- Bon Secours Hospital, T12 K8AF Cork, Ireland
| | - Ken Nally
- School of Biochemistry and Cell Biology, University College Cork, T12 K8AF Cork, Ireland;
- APC Microbiome Ireland, University College Cork, T12 K8AF Cork, Ireland; (G.C.); (A.S.A.)
| | - Karine Ronan
- Department of Oncology, St. Vincent’s University Hospital, D04 T6F4 Dublin, Ireland;
| | - Gerard Clarke
- APC Microbiome Ireland, University College Cork, T12 K8AF Cork, Ireland; (G.C.); (A.S.A.)
- Department of Psychiatry, University College Cork, T12 K8AF Cork, Ireland
| | - Sylvie Amu
- Cancer Research at UCC, University College Cork, T12 K8AF Cork, Ireland;
| | - Ana S. Almeida
- APC Microbiome Ireland, University College Cork, T12 K8AF Cork, Ireland; (G.C.); (A.S.A.)
| | - Richard Flavin
- Department of Histopathology, Trinity College Dublin, D08 NHY1 Dublin, Ireland; (R.F.); (S.F.)
- St. James’s Hospital Dublin, D08 NHY1 Dublin, Ireland
| | - Stephen Finn
- Department of Histopathology, Trinity College Dublin, D08 NHY1 Dublin, Ireland; (R.F.); (S.F.)
- St. James’s Hospital Dublin, D08 NHY1 Dublin, Ireland
| |
Collapse
|
54
|
Takam Kamga P, Swalduz A, Costantini A, Julié C, Emile JF, Pérol M, Avrillon V, Ortiz-Cuaran S, de Saintigny P, Leprieur EG. High Circulating Sonic Hedgehog Protein Is Associated With Poor Outcome in EGFR-Mutated Advanced NSCLC Treated With Tyrosine Kinase Inhibitors. Front Oncol 2022; 11:747692. [PMID: 34970481 PMCID: PMC8712335 DOI: 10.3389/fonc.2021.747692] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 11/22/2021] [Indexed: 12/24/2022] Open
Abstract
Introduction Growing preclinical evidence has suggested that the Sonic hedgehog (Shh) pathway is involved in resistance to tyrosine kinase inhibitor (TKI) therapy for EGFR-mutated (EGFRm) non-small cell lung cancer (NSCLC). However, little is known concerning the prognostic value of this pathway in this context. Materials and Methods We investigated the relationship between plasma levels of Shh and EGFRm NSCLC patients’ outcome with EGFR TKIs. We included 74 consecutive patients from two institutions with EGFRm advanced NSCLC treated by EGFR TKI as first-line therapy. Plasma samples were collected longitudinally for each patient and were analyzed for the expression of Shh using an ELISA assay. The activation of the Shh–Gli1 pathway was assessed through immunohistochemistry (IHC) of Gli1 and RT-qPCR analysis of the transcripts of Gli1 target genes in 14 available tumor biopsies collected at diagnosis (baseline). Results Among the 74 patients, only 61 had baseline (diagnosis) plasma samples, while only 49 patients had plasma samples at the first evaluation. Shh protein was detectable in all samples at diagnosis (n = 61, mean = 1,041.2 ± 252.5 pg/ml). Among the 14 available tumor biopsies, nuclear expression of Gli1 was observed in 57.1% (8/14) of patients’ biopsies. Shh was significantly (p < 0.05) enriched in youth (age < 68), male, nonsmokers, patients with a PS > 1, and patients presenting more than 2 metastatic sites and L858R mutation. Higher levels of Shh correlated with poor objective response to TKI, shorter progression-free survival (PFS), and T790M-independent mechanism of resistance. In addition, the rise of plasma Shh levels along the treatment was associated with the emergence of drug resistance in patients presenting an initial good therapy response. Conclusion These data support that higher levels of plasma Shh at diagnosis and increased levels of Shh along the course of the disease are related to the emergence of TKI resistance and poor outcome for EGFR-TKI therapy, suggesting that Shh levels could stand both as a prognostic and as a resistance biomarker for the management of EGFR-mutated NSCLC patients treated with EGFR-TKI.
Collapse
Affiliation(s)
- Paul Takam Kamga
- Université Paris-Saclay, UVSQ, EA 4340 BECCOH, Boulogne-Billancourt, France
| | - Aurélie Swalduz
- Department of Medical Oncology, Centre Léon Bérard, Lyon, France.,Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, France
| | - Adrien Costantini
- Université Paris-Saclay, UVSQ, EA 4340 BECCOH, Boulogne-Billancourt, France.,Department of Respiratory Diseases and Thoracic Oncology, APHP-Hopital Ambroise Pare, Boulogne-Billancourt, France
| | - Catherine Julié
- Université Paris-Saclay, UVSQ, EA 4340 BECCOH, Boulogne-Billancourt, France.,Department of Pathology, APHP-Hopital Ambroise Pare, Boulogne-Billancourt, France
| | - Jean-François Emile
- Université Paris-Saclay, UVSQ, EA 4340 BECCOH, Boulogne-Billancourt, France.,Department of Pathology, APHP-Hopital Ambroise Pare, Boulogne-Billancourt, France
| | - Maurice Pérol
- Department of Medical Oncology, Centre Léon Bérard, Lyon, France
| | - Virginie Avrillon
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, France
| | - Sandra Ortiz-Cuaran
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, France
| | - Pierre de Saintigny
- Department of Medical Oncology, Centre Léon Bérard, Lyon, France.,Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, France
| | - Etienne Giroux Leprieur
- Université Paris-Saclay, UVSQ, EA 4340 BECCOH, Boulogne-Billancourt, France.,Department of Respiratory Diseases and Thoracic Oncology, APHP-Hopital Ambroise Pare, Boulogne-Billancourt, France
| |
Collapse
|
55
|
Peng X, Tao R, Chen Y, Su J, Huang Y, Zhu B. Transient HIV Reservoirs and Interleukin-6 Increase After Anti-Programmed Death-1 Antibody Infusion in HIV Patients with Lung Cancer. J Inflamm Res 2022; 15:199-204. [PMID: 35046694 PMCID: PMC8759997 DOI: 10.2147/jir.s349099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 12/24/2021] [Indexed: 11/27/2022] Open
Abstract
Background The purpose of this study is to examine the dynamic effects of anti-programmed death (PD)-1 antibody treatment on HIV reservoirs and inflammatory cytokines in patients with HIV infections who were diagnosed with non-small cell lung cancer (NSCLC). Methods This is a clinical trial in which three HIV patients with NSCLC were administered 14 infusions of anti-PD-1 antibody at 21-day intervals. Blood samples were collected from the participants before each infusion (0 h), and at 2 h, 24 h, and 7 days after each infusion of anti-PD-1 monoclonal antibody. The levels of cell-associated HIV RNA (CA-HIV-RNA), HIV DNA, and inflammatory cytokines (including interferon [IFN]-α, IFN-γ, tumor necrosis factor [TNF]-α, interleukin [IL]-2, IL-4, IL-6, IL-10, and IL-17A) were assessed at each timepoint. Results A significant increase in CA-HIV-RNA (P = 0.049) and HIV DNA (P = 0.042) was observed 24 h after each infusion of anti-PD-1 monoclonal antibody. The Z-score for IL-6 increased from −0.46 ± 0.53 to 0.28 ± 0.78 at 24 h after infusion (P = 0.02), and further increased to 0.61 ± 1.0 at 7 days after each infusion (P = 0.007). A significant correlation was observed between IL-6 and HIV DNA (P = 0.02). Conclusion The CA-HIV-RNA, HIV DNA, and IL-6 levels significantly increased after infusion of anti-PD-1 monoclonal antibody in the three HIV-infected patients with NSCLC. These results support an early transient effect of anti-PD-1 monoclonal antibody infusion on HIV reservoirs. However, the long-term effect needs to be investigated in a larger cohort with a longer follow-up period.
Collapse
Affiliation(s)
- Xiaorong Peng
- The Department of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, People’s Republic of China
| | - Ran Tao
- The Department of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, People’s Republic of China
| | - Ying Chen
- The Department of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, People’s Republic of China
| | - Junwei Su
- The Department of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, People’s Republic of China
| | - Ying Huang
- The Department of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, People’s Republic of China
| | - Biao Zhu
- The Department of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, People’s Republic of China
- Correspondence: Biao Zhu Email
| |
Collapse
|
56
|
Korman AJ, Garrett-Thomson SC, Lonberg N. The foundations of immune checkpoint blockade and the ipilimumab approval decennial. Nat Rev Drug Discov 2021; 21:509-528. [PMID: 34937915 DOI: 10.1038/s41573-021-00345-8] [Citation(s) in RCA: 323] [Impact Index Per Article: 80.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2021] [Indexed: 12/11/2022]
Abstract
Cancer immunity, and the potential for cancer immunotherapy, have been topics of scientific discussion and experimentation for over a hundred years. Several successful cancer immunotherapies - such as IL-2 and interferon-α (IFNα) - have appeared over the past 30 years. However, it is only in the past decade that immunotherapy has made a broad impact on patient survival in multiple high-incidence cancer indications. The emergence of immunotherapy as a new pillar of cancer treatment (adding to surgery, radiation, chemotherapy and targeted therapies) is due to the success of immune checkpoint blockade (ICB) drugs, the first of which - ipilimumab - was approved in 2011. ICB drugs block receptors and ligands involved in pathways that attenuate T cell activation - such as cytotoxic T lymphocyte antigen 4 (CTLA4), programmed cell death 1 (PD1) and its ligand, PDL1 - and prevent, or reverse, acquired peripheral tolerance to tumour antigens. In this Review we mark the tenth anniversary of the approval of ipilimumab and discuss the foundational scientific history of ICB, together with the history of the discovery, development and elucidation of the mechanism of action of the first generation of drugs targeting the CTLA4 and PD1 pathways.
Collapse
|
57
|
Cheng Y, Wang C, Wang Y, Dai L. Soluble PD-L1 as a predictive biomarker in lung cancer: a systematic review and meta-analysis. Future Oncol 2021; 18:261-273. [PMID: 34874185 DOI: 10.2217/fon-2021-0641] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Background: We performed a meta-analysis to evaluate the association between soluble PD-L1 (sPD-L1) and survival outcomes and treatment response in lung cancer. Methods & methods: Eligible studies were obtained by searching PubMed, EMBASE and Web of Science. Pooled effect estimates were calculated for overall survival (OS), progression-free survival (PFS) and objective response rate (ORR). Results: Twelve eligible studies with 1188 lung cancer patients were included. High sPD-L1 was significantly associated with worse OS (hazard ratio [HR] = 2.20; 95% CI: 1.59-3.05; p < 0.001) and PFS (HR = 2.42; 95% CI: 1.72-3.42; p < 0.001) in patients treated with immune checkpoint inhibitors (ICIs). Meanwhile, high sPD-L1 predicted worse OS (HR = 1.60; 95% CI: 1.31-1.96; p < 0.001) and lower ORR (odds ratio = 0.52; 95% CI: 0.35-0.80; p = 0.002) in patients treated with non-ICI therapies. Conclusion: sPD-L1 is a potential predictive biomarker of lung cancer.
Collapse
Affiliation(s)
- Yang Cheng
- Department of Respiratory & Critical Care Medicine, Beijing Jishuitan Hospital, The Fourth Medical College of Peking University, Beijing 100035, China
| | - Chong Wang
- Minimally Invasive Treatment Center, Beijing Chest Hospital, Beijing 101149, China
| | - Yan Wang
- Department of Respiratory & Critical Care Medicine, Beijing Jishuitan Hospital, The Fourth Medical College of Peking University, Beijing 100035, China
| | - Li Dai
- Department of Respiratory & Critical Care Medicine, Beijing Jishuitan Hospital, The Fourth Medical College of Peking University, Beijing 100035, China
| |
Collapse
|
58
|
Massafra M, Passalacqua MI, Gebbia V, Macrì P, Lazzari C, Gregorc V, Buda C, Altavilla G, Santarpia M. Immunotherapeutic Advances for NSCLC. Biologics 2021; 15:399-417. [PMID: 34675481 PMCID: PMC8517415 DOI: 10.2147/btt.s295406] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 09/22/2021] [Indexed: 12/26/2022]
Abstract
Immunotherapy with antibodies against PD-1 or PD-L1, either alone or in combination with chemotherapy, has revolutionized treatment paradigms of non-small cell lung cancer (NSCLC) patients without oncogenic driver alterations. These agents, namely immune checkpoint inhibitors (ICIs), have also widely demonstrated a remarkable efficacy in locally advanced as well as in early-stage NSCLC. Assessment of tumor PD-L1 expression by immunohistochemistry has entered into routine clinical practice to select patients for immunotherapy, even though its predictive role has long been debated. Despite improved survival outcomes over standard chemotherapy, treatment with ICIs is associated with initial low response rate, with a significant proportion of patients not responding to these agents. Hence, novel appealing predictive biomarkers, such as those related to tumor cell signaling pathways, metabolism or the tumor microenvironment, have emerged as potentially useful to select those patients most likely to benefit from immunotherapy. Moreover, most patients ultimately develop acquired resistance to ICI treatment over time and novel therapeutic strategies are urgently needed to overcome or delay resistance. Herein, we provide an overview on recent advances in immunotherapy in NSCLC, focusing on updated results from studies on ICIs in different disease settings and at different lines of treatment. We further describe currently emerging predictive biomarkers, beyond PD-L1, to optimize patient selection and novel strategies to improve clinical outcomes.
Collapse
Affiliation(s)
- Marco Massafra
- Medical Oncology Unit, Department of Human Pathology “G. Barresi”, University of Messina, Messina, Italy
| | - Maria Ilenia Passalacqua
- Medical Oncology Unit, Department of Human Pathology “G. Barresi”, University of Messina, Messina, Italy
| | - Vittorio Gebbia
- Medical Oncology and Supportive Care Unit, La Maddalena Cancer Center, Palermo, Italy
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Paolo Macrì
- Thoracic Surgery Unit, Humanitas Istituto Clinico Catanese, Catania, Italy
| | - Chiara Lazzari
- Department of Oncology, Università Vita-Salute, IRCCS-Ospedale San Raffaele, Milano, Italy
| | - Vanesa Gregorc
- Department of Oncology, Università Vita-Salute, IRCCS-Ospedale San Raffaele, Milano, Italy
| | - Carmelo Buda
- Medical Oncology Unit, Department of Human Pathology “G. Barresi”, University of Messina, Messina, Italy
| | - Giuseppe Altavilla
- Medical Oncology Unit, Department of Human Pathology “G. Barresi”, University of Messina, Messina, Italy
| | - Mariacarmela Santarpia
- Medical Oncology Unit, Department of Human Pathology “G. Barresi”, University of Messina, Messina, Italy
| |
Collapse
|
59
|
Khan M, Arooj S, Wang H. Soluble B7-CD28 Family Inhibitory Immune Checkpoint Proteins and Anti-Cancer Immunotherapy. Front Immunol 2021; 12:651634. [PMID: 34531847 PMCID: PMC8438243 DOI: 10.3389/fimmu.2021.651634] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 08/04/2021] [Indexed: 12/12/2022] Open
Abstract
Co-inhibitory B7-CD28 family member proteins negatively regulate T cell responses and are extensively involved in tumor immune evasion. Blockade of classical CTLA-4 (cytotoxic T lymphocyte-associated antigen-4) and PD-1 (programmed cell death protein-1) checkpoint pathways have become the cornerstone of anti-cancer immunotherapy. New inhibitory checkpoint proteins such as B7-H3, B7-H4, and BTLA (B and T lymphocyte attenuator) are being discovered and investigated for their potential in anti-cancer immunotherapy. In addition, soluble forms of these molecules also exist in sera of healthy individuals and elevated levels are found in chronic infections, autoimmune diseases, and cancers. Soluble forms are generated by proteolytic shedding or alternative splicing. Elevated circulating levels of these inhibitory soluble checkpoint molecules in cancer have been correlated with advance stage, metastatic status, and prognosis which underscore their broader involvement in immune regulation. In addition to their potential as biomarker, understanding their mechanism of production, biological activity, and pathological interactions may also pave the way for their clinical use as a therapeutic target. Here we review these aspects of soluble checkpoint molecules and elucidate on their potential for anti-cancer immunotherapy.
Collapse
Affiliation(s)
- Muhammad Khan
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
| | - Sumbal Arooj
- Department of Biochemistry, University of Sialkot, Sialkot, Pakistan
| | - Hua Wang
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
| |
Collapse
|
60
|
Cortinovis D, Malapelle U, Pagni F, Russo A, Banna GL, Sala E, Rolfo C. Diagnostic and prognostic biomarkers in oligometastatic non-small cell lung cancer: a literature review. Transl Lung Cancer Res 2021; 10:3385-3400. [PMID: 34430374 PMCID: PMC8350105 DOI: 10.21037/tlcr-20-1067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 06/15/2021] [Indexed: 12/25/2022]
Abstract
Objective This review aims to summarize the possibilities of recently discovered molecular diagnostic techniques in lung cancer, by evaluating their impact on diagnosis, monitoring, and prognosis in oligometastatic disease. Background Oligometastatic non-small cell lung cancer (OM-NSCLC) is currently defined based on morphological rather than biological features. Major advances in the detection of molecular biomarkers in cell-free tumoral DNA and the models of oncogene addiction make as feasible an early diagnosis and guide the therapeutic decision-making progress to improve the prognosis. Methods This narrative review EXAMINES current approaches of diagnosis, monitoring, and prognosis of OM-NSCLC and describes the fast-evolving therapeutic scenario of this disease. We provide an overview of the powerful capability of liquid biopsy techniques applied to blood and fluid and we focus on the technological advancement of circulant biomolecular factors in OM NSCLC pathology, starting from apparently simpler models such as oncogene addicted tumors to evaluate themselves in the light of treatment with immune-checkpoint inhibitors. Conclusions A better understanding of spatial and temporal evolution of oligometastatic diseases would contribute to a more accurate diagnosis and tailored treatment. Data from prospective clinical trials in the early stage of disease, coupled with knowledge of genetic characteristics of lung tumors, are warranted. These efforts would lead to improving the possibility to eradicate the residual disease in these low burden tumoral settings, thus enhancing the definitive cure perspectives.
Collapse
Affiliation(s)
- Diego Cortinovis
- SC Medical Oncology/SS Lung Unit, ASST-Monza San Gerardo Hospital, Monza, Italy
| | - Umberto Malapelle
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Fabio Pagni
- Department of Anatomic Pathology, University of Milano-Bicocca, Milan, Italy
| | | | - Giuseppe Luigi Banna
- Department of Oncology, Portsmouth Hospitals University NHS Trust, Portsmouth, UK
| | - Elisa Sala
- SC Medical Oncology/SS Lung Unit, ASST-Monza San Gerardo Hospital, Monza, Italy
| | - Christian Rolfo
- Marlene and Stewart Greenbaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
61
|
Honrubia-Peris B, Garde-Noguera J, García-Sánchez J, Piera-Molons N, Llombart-Cussac A, Fernández-Murga ML. Soluble Biomarkers with Prognostic and Predictive Value in Advanced Non-Small Cell Lung Cancer Treated with Immunotherapy. Cancers (Basel) 2021; 13:4280. [PMID: 34503087 PMCID: PMC8428366 DOI: 10.3390/cancers13174280] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 02/03/2023] Open
Abstract
Numerous targeted therapies have been evaluated for the treatment of non-small cell lung cancer (NSCLC). To date, however, only a few agents have shown promising results. Recent advances in cancer immunotherapy, most notably immune checkpoint inhibitors (ICI), have transformed the treatment scenario for these patients. Although some patients respond well to ICIs, many patients do not benefit from ICIs, leading to disease progression and/or immune-related adverse events. New biomarkers capable of reliably predicting response to ICIs are urgently needed to improve patient selection. Currently available biomarkers-including programmed death protein 1 (PD-1) and its ligand (PD-L1), and tumor mutational burden (TMB)-have major limitations. At present, no well-validated, reliable biomarkers are available. Ideally, these biomarkers would be obtained through less invasive methods such as plasma determination or liquid biopsy. In the present review, we describe recent advances in the development of novel soluble biomarkers (e.g., circulating immune cells, TMB, circulating tumor cells, circulating tumor DNA, soluble factor PD-L1, tumor necrosis factor, etc.) for patients with NSCLC treated with ICIs. We also describe the potential use of these biomarkers as prognostic indicators of treatment response and toxicity.
Collapse
Affiliation(s)
| | - Javier Garde-Noguera
- Medical Oncology Department, Hospital Arnau de Vilanova, Fundación para el Fomento de la Investigación Sanitaria i Biomédica de la Comunidad Valenciana (FISABIO), 46020 Valencia, Spain; (B.H.-P.); (J.G.-S.); (N.P.-M.); (A.L.-C.)
| | | | | | | | | |
Collapse
|
62
|
Khairil Anwar NA, Mohd Nazri MN, Murtadha AH, Mohd Adzemi ER, Balakrishnan V, Mustaffa KMF, Tengku Din TADAA, Yahya MM, Haron J, Mokshtar NF. Prognostic prospect of soluble programmed cell death ligand-1 in cancer management. Acta Biochim Biophys Sin (Shanghai) 2021; 53:961-978. [PMID: 34180502 DOI: 10.1093/abbs/gmab077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Indexed: 12/17/2022] Open
Abstract
Aggressive tissue biopsy is commonly unavoidable in the management of most suspected tumor cases to conclusively verify the presence of cancerous cells through histological assessment. The extracted tissue is also immunostained for detection of antigens (tissue tumor markers) of potential prognostic or therapeutic importance to assist in treatment decision. Although liquid biopsies can be a powerful tool for monitoring treatment response, they are still excluded from standard cancer diagnostics, and their utility is still being debated in the scientific community. With a myriad of soluble tissue tumor markers now being discovered, liquid biopsies could completely change the current paradigms of cancer management. Recently, soluble programmed cell death ligand-1 (sPD-L1), which is found in the peripheral blood, i.e. serum and plasma, has shown potential as a pre-therapeutic predictive marker as well as a prognostic biomarker to monitor treatment efficacy. Thus, this review focuses on the emergence of sPD-L1 and promising technologies for its detection in order to support liquid biopsies for future cancer management.
Collapse
Affiliation(s)
- Nur Amira Khairil Anwar
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Kubang Kerian, Kelantan 16150, Malaysia
| | - Muhammad Najmi Mohd Nazri
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Kubang Kerian, Kelantan 16150, Malaysia
| | - Ahmad Hafiz Murtadha
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Kubang Kerian, Kelantan 16150, Malaysia
| | - Elis Rosliza Mohd Adzemi
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Kubang Kerian, Kelantan 16150, Malaysia
| | - Venugopal Balakrishnan
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Kubang Kerian, Kelantan 16150, Malaysia
| | - Khairul Mohd Fadzli Mustaffa
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Kubang Kerian, Kelantan 16150, Malaysia
| | | | - Maya Mazuwin Yahya
- Breast Cancer Awareness & Research Unit (BestARi), Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Kota Bharu, Kelantan 16150, Malaysia
| | - Juhara Haron
- Breast Cancer Awareness & Research Unit (BestARi), Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Kota Bharu, Kelantan 16150, Malaysia
| | - Noor Fatmawati Mokshtar
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Kubang Kerian, Kelantan 16150, Malaysia
| |
Collapse
|
63
|
Wang M, Zhai X, Li J, Guan J, Xu S, Li Y, Zhu H. The Role of Cytokines in Predicting the Response and Adverse Events Related to Immune Checkpoint Inhibitors. Front Immunol 2021; 12:670391. [PMID: 34367136 PMCID: PMC8339552 DOI: 10.3389/fimmu.2021.670391] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 07/05/2021] [Indexed: 12/14/2022] Open
Abstract
Recently, the overall survival (OS) and progression-free survival (PFS) of patients with advanced cancer has been significantly improved due to the application of immune checkpoint inhibitors (ICIs). Low response rate and high occurrence of immune-related adverse events (irAEs) make urgently need for ideal predictive biomarkers to identity efficient population and guide treatment strategies. Cytokines are small soluble proteins with a wide range of biological activity that are secreted by activated immune cells or tumor cells and act as a bridge between innate immunity, infection, inflammation and cancer. Cytokines can be detected in peripheral blood and suitable for dynamic detection. During the era of ICIs, many studies investigated the role of cytokines in prediction of the efficiency and toxicity of ICIs. Herein, we review the relevant studies on TNF-α, IFN-γ, IL-6, IL-8, TGF-β and other cytokines as biomarkers for predicting ICI-related reactions and adverse events, and explore the immunomodulatory mechanisms. Finally, the most important purpose of this review is to help identify predictors of ICI to screen patients who are most likely to benefit from immunotherapy.
Collapse
Affiliation(s)
- Min Wang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Xiaoyang Zhai
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Ji Li
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Jingyuan Guan
- Department of Cardiology, Qilu Hospital Affiliated to Shandong University, Jinan, China
| | - Shuhui Xu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - YuYing Li
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Hui Zhu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
64
|
Wang P, Tang C, Liang J. [Blood-based Biomarkers in the Immune Checkpoint Inhibitor Treatment in
Non-small Cell Lung Cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2021; 24:503-512. [PMID: 34187157 PMCID: PMC8317092 DOI: 10.3779/j.issn.1009-3419.2021.102.24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
以免疫检查点抑制剂(immune checkpoint inhibitors, ICI)为代表的免疫治疗改变了非小细胞肺癌(non-small cell lung cancer, NSCLC)的治疗模式,标志物指导下的免疫治疗是精准治疗的关键。基于组织的程序性死亡受体配体1(programmed cell death ligand 1, PD-L1)和肿瘤突变负荷(tumor mutational burden, TMB)是临床上广泛接受的用于指导免疫治疗的生物标志物,然而组织标本不易获取且难以克服肿瘤的时空异质性。外周血标志物作为组织检测的补充,具有取材方便、无创等优势,同时可涵盖肿瘤和宿主免疫状态两方面的信息,在NSCLC免疫治疗疗效预测及治疗反应动态监测方面的价值日益凸显。本文总结NSCLC免疫检查点抑制剂治疗相关外周血生物标志物的研究进展,旨在为开发新型的生物标志物提供参考。
Collapse
Affiliation(s)
- Peng Wang
- Department of Radiation Oncology, Peking University International Hospital, Beijing 102206, China
| | - Chuanhao Tang
- Department of Oncology, Peking University International Hospital, Beijing 102206, China
| | - Jun Liang
- Department of Radiation Oncology, Peking University International Hospital, Beijing 102206, China
| |
Collapse
|
65
|
Eltahir M, Isaksson J, Mattsson JSM, Kärre K, Botling J, Lord M, Mangsbo SM, Micke P. Plasma Proteomic Analysis in Non-Small Cell Lung Cancer Patients Treated with PD-1/PD-L1 Blockade. Cancers (Basel) 2021; 13:cancers13133116. [PMID: 34206510 PMCID: PMC8268315 DOI: 10.3390/cancers13133116] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 12/26/2022] Open
Abstract
Simple Summary Immunotherapy leads to highly variable responses in lung cancer patients. We assessed the value of a blood-based test to predict which patients would benefit from this new treatment modality. We determined that some patients have higher and lower levels of immune markers in their blood samples, and that this is related to better survival without tumor growth. The blood test has the potential to help select the optimal therapy for lung cancer patients. Abstract Checkpoint inhibitors have been approved for the treatment of non-small cell lung cancer (NSCLC). However, only a minority of patients demonstrate a durable clinical response. PD-L1 scoring is currently the only biomarker measure routinely used to select patients for immunotherapy, but its predictive accuracy is modest. The aim of our study was to evaluate a proteomic assay for the analysis of patient plasma in the context of immunotherapy. Pretreatment plasma samples from 43 NSCLC patients who received anti-PD-(L)1 therapy were analyzed using a proximity extension assay (PEA) to quantify 92 different immune oncology-related proteins. The plasma protein levels were associated with clinical and histopathological parameters, as well as therapy response and survival. Unsupervised hierarchical cluster analysis revealed two patient groups with distinct protein profiles associated with high and low immune protein levels, designated as “hot” and “cold”. Further supervised cluster analysis based on T-cell activation markers showed that higher levels of T-cell activation markers were associated with longer progression-free survival (PFS) (p < 0.01). The analysis of single proteins revealed that high plasma levels of CXCL9 and CXCL10 and low ADA levels were associated with better response and prolonged PFS (p < 0.05). Moreover, in an explorative response prediction model, the combination of protein markers (CXCL9, CXCL10, IL-15, CASP8, and ADA) resulted in higher accuracy in predicting response than tumor PD-L1 expression or each protein assayed individually. Our findings demonstrate a proof of concept for the use of multiplex plasma protein levels as a tool for anti-PD-(L)1 response prediction in NSCLC. Additionally, we identified protein signatures that could predict the response to anti-PD-(L)1 therapy.
Collapse
Affiliation(s)
- Mohamed Eltahir
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden; (M.E.); (J.I.); (J.S.M.M.); (J.B.)
- Department of Pharmaceutical Biosciences, Science for Life Laboratory, Uppsala University, 751 24 Uppsala, Sweden; (M.L.); (S.M.M.)
| | - Johan Isaksson
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden; (M.E.); (J.I.); (J.S.M.M.); (J.B.)
- Centre for Research and Development, Uppsala University, Region Gävleborg, 801 88 Uppsala, Sweden
| | - Johanna Sofia Margareta Mattsson
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden; (M.E.); (J.I.); (J.S.M.M.); (J.B.)
| | - Klas Kärre
- Department of Microbiology, Cell and Tumor Biology, Karolinska Institute, 171 77 Stockholm, Sweden;
| | - Johan Botling
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden; (M.E.); (J.I.); (J.S.M.M.); (J.B.)
| | - Martin Lord
- Department of Pharmaceutical Biosciences, Science for Life Laboratory, Uppsala University, 751 24 Uppsala, Sweden; (M.L.); (S.M.M.)
| | - Sara M. Mangsbo
- Department of Pharmaceutical Biosciences, Science for Life Laboratory, Uppsala University, 751 24 Uppsala, Sweden; (M.L.); (S.M.M.)
| | - Patrick Micke
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden; (M.E.); (J.I.); (J.S.M.M.); (J.B.)
- Correspondence: ; Tel.: +46-18-6112615
| |
Collapse
|
66
|
Fu R, Jing CQ, Li XR, Tan ZF, Li HJ. Prognostic Significance of Serum PD-L1 Level in Patients with Locally Advanced or Metastatic Esophageal Squamous Cell Carcinoma Treated with Combination Cytotoxic Chemotherapy. Cancer Manag Res 2021; 13:4935-4946. [PMID: 34188546 PMCID: PMC8232859 DOI: 10.2147/cmar.s312690] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/19/2021] [Indexed: 01/10/2023] Open
Abstract
Background There are no useful biomarkers for the clinical outcome of advanced esophageal squamous cell carcinoma (ESCC). In this study, we aimed to investigate the prognostic value of soluble PD-L1 (sPD-L1) in serum of patients with locally advanced or metastatic ESCC who received cytotoxic chemotherapy as first-line treatment. Materials and Methods This study evaluated the expression pattern of PD-L1 by immunohistochemistry and sPD-L1 concentration, and correlation with clinicopathological factors and overall survival (OS) in 190 patients with ESCC. Results sPD-L1 concentration was highly expressed in ESCC, especially in female patients. Patients with a high sPD-L1 level (≥0.63 ng/mL) had a shorter OS than those with a low sPD-L1 level (<0.63 ng/mL). In a multivariate analysis, high sPD-L1 concentration remained an independent prognostic factor of OS after adjustment for possible confounders. However, tissue PD-L1 expression level was non-prognostic in this study. Conclusion There was no significant correlation between serum sPD-L1 concentration and tissue PD-L1 expression level. sPD-L1 concentration before treatment could be an effective and convenient biomarker of prognosis in patients with locally advanced or metastatic ESCC treated with combination cytotoxic chemotherapy.
Collapse
Affiliation(s)
- Rong Fu
- Clinical Department of Integrated Traditional Chinese and Western Medicine, The First Clinical Medical College of Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Chuan-Qing Jing
- Clinical Department of Integrated Traditional Chinese and Western Medicine, The First Clinical Medical College of Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Xiu-Rong Li
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Zhao-Feng Tan
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Hui-Jie Li
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| |
Collapse
|
67
|
Natua S, Dhamdhere SG, Mutnuru SA, Shukla S. Interplay within tumor microenvironment orchestrates neoplastic RNA metabolism and transcriptome diversity. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 13:e1676. [PMID: 34109748 DOI: 10.1002/wrna.1676] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/03/2021] [Accepted: 05/25/2021] [Indexed: 12/11/2022]
Abstract
The heterogeneous population of cancer cells within a tumor mass interacts intricately with the multifaceted aspects of the surrounding microenvironment. The reciprocal crosstalk between cancer cells and the tumor microenvironment (TME) shapes the cancer pathophysiome in a way that renders it uniquely suited for immune tolerance, angiogenesis, metastasis, and therapy resistance. This dynamic interaction involves a dramatic reconstruction of the transcriptomic landscape of tumors by altering the synthesis, modifications, stability, and processing of gene readouts. In this review, we categorically evaluate the influence of TME components, encompassing a myriad of resident and infiltrating cells, signaling molecules, extracellular vesicles, extracellular matrix, and blood vessels, in orchestrating the cancer-specific metabolism and diversity of both mRNA and noncoding RNA, including micro RNA, long noncoding RNA, circular RNA among others. We also highlight the transcriptomic adaptations in response to the physicochemical idiosyncrasies of TME, which include tumor hypoxia, extracellular acidosis, and osmotic stress. Finally, we provide a nuanced analysis of existing and prospective therapeutics targeting TME to ameliorate cancer-associated RNA metabolism, consequently thwarting the cancer progression. This article is categorized under: RNA Processing > Splicing Regulation/Alternative Splicing RNA Turnover and Surveillance > Regulation of RNA Stability RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Subhashis Natua
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, Madhya Pradesh, 462066, India
| | - Shruti Ganesh Dhamdhere
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, Madhya Pradesh, 462066, India
| | - Srinivas Abhishek Mutnuru
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, Madhya Pradesh, 462066, India
| | - Sanjeev Shukla
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, Madhya Pradesh, 462066, India
| |
Collapse
|
68
|
Duchemann B, Remon J, Naigeon M, Cassard L, Jouniaux JM, Boselli L, Grivel J, Auclin E, Desnoyer A, Besse B, Chaput N. Current and future biomarkers for outcomes with immunotherapy in non-small cell lung cancer. Transl Lung Cancer Res 2021; 10:2937-2954. [PMID: 34295689 PMCID: PMC8264336 DOI: 10.21037/tlcr-20-839] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 08/19/2020] [Indexed: 12/18/2022]
Abstract
Immune checkpoint inhibitors (ICI) have been validated as an effective new treatment strategy in several tumoral types including lung cancer. This remarkable shift in the therapeutic paradigm is in large part due to the duration of responses and long-term survival seen with ICI. However, despite this, the majority of cancer patients do not experience benefit from ICI. Even among patients who initially respond to ICI, disease progression may ultimately occur. Moreover, in some patients, these drugs may be associated with new patterns of progression such as pseudo-progression and hyper-progressive disease, and different toxicity profiles with immune-related adverse events. Therefore, the identification of predictive biomarkers may help to select those patients most likely to obtain a true benefit from these drugs, and avoid exposure to potential toxicity in patients who will not obtain clinical benefit, while also reducing the economic impact. In this review, we summarize current and promising potential predictive biomarkers of ICI in patients with non-small cell lung cancer (NSCLC), as well as pitfalls encountered with their use and areas of focus to optimize their routine clinical implementation.
Collapse
Affiliation(s)
- Boris Duchemann
- Gustave Roussy Cancer Campus, Laboratory of Immunomonitoring in Oncology, CNRS-UMS 3655 and INSERM-US23, Villejuif, France.,University Paris-Saclay, Faculty of Medicine, Le Kremlin Bicêtre, France.,Medical and Thoracic Oncology Department, Hopital Avicenne, AP-HP, Bobigny, France
| | - Jordi Remon
- Department of Medical Oncology, Centro Integral Oncológico Clara Campal (HM-CIOCC), Hospital HM Delfos, HM Hospitales, Barcelona, Spain
| | - Marie Naigeon
- Gustave Roussy Cancer Campus, Laboratory of Immunomonitoring in Oncology, CNRS-UMS 3655 and INSERM-US23, Villejuif, France.,University Paris-Saclay, Faculty of Medicine, Le Kremlin Bicêtre, France
| | - Lydie Cassard
- Gustave Roussy Cancer Campus, Laboratory of Immunomonitoring in Oncology, CNRS-UMS 3655 and INSERM-US23, Villejuif, France
| | - Jean Mehdi Jouniaux
- Gustave Roussy Cancer Campus, Laboratory of Immunomonitoring in Oncology, CNRS-UMS 3655 and INSERM-US23, Villejuif, France
| | - Lisa Boselli
- Gustave Roussy Cancer Campus, Laboratory of Immunomonitoring in Oncology, CNRS-UMS 3655 and INSERM-US23, Villejuif, France
| | - Jonathan Grivel
- Gustave Roussy Cancer Campus, Laboratory of Immunomonitoring in Oncology, CNRS-UMS 3655 and INSERM-US23, Villejuif, France
| | - Edouard Auclin
- Medical and Thoracic Oncology Department, Hôpital Européen Georges Pompidou, APHP, Paris, France
| | - Aude Desnoyer
- University Paris-Saclay, Faculté de Pharmacie, Chatenay-Malabry, France.,Laboratory of Genetic Instability and Oncogenesis, UMR CNRS 8200, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Benjamin Besse
- University Paris-Saclay, Faculty of Medicine, Le Kremlin Bicêtre, France.,Cancer Medicine Department, Gustave Roussy, Villejuif, France
| | - Nathalie Chaput
- Gustave Roussy Cancer Campus, Laboratory of Immunomonitoring in Oncology, CNRS-UMS 3655 and INSERM-US23, Villejuif, France.,University Paris-Saclay, Faculté de Pharmacie, Chatenay-Malabry, France.,Laboratory of Genetic Instability and Oncogenesis, UMR CNRS 8200, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| |
Collapse
|
69
|
Gkountakos A, Delfino P, Lawlor RT, Scarpa A, Corbo V, Bria E. Harnessing the epigenome to boost immunotherapy response in non-small cell lung cancer patients. Ther Adv Med Oncol 2021; 13:17588359211006947. [PMID: 34104224 PMCID: PMC8161860 DOI: 10.1177/17588359211006947] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 03/11/2021] [Indexed: 12/13/2022] Open
Abstract
The introduction of immune checkpoint inhibitor (ICI)-based therapy for non-oncogene addicted non-small cell lung cancer (NSCLC) has significantly transformed the treatment landscape of the disease. Inhibitors of the programmed cell death protein 1/programmed death-ligand 1 (PD-1/PD-L1) immune checkpoint axis, which were initially considered as a late-line treatment option, gradually became the standard of care as first-line treatment for subgroups of NSCLC patients. However, a significant fraction of patients either fails to respond or progresses after a partial response to ICI treatment. Thus, the identification of mechanisms responsible for innate and acquired resistance to immunotherapy within a rapidly evolving tumor microenvironment (TME) is urgently required, as is the identification of reliable predictive biomarkers beyond PD-L1 expression. The deregulation of the epigenome is a key driver of cancer initiation and progression, and it has also been shown to drive therapeutic resistance. Tumor education of infiltrating myeloid cells towards an immuno-suppressive phenotype as well as induction of T-cell dysfunction in the TME is also driven by epigenome reprogramming. As it stands and, given their dynamic nature, epigenetic changes in cancer and non-cancer cells represent an attractive target to increase immunotherapy activity in NSCLC. Accordingly, clinical trials of combinatorial immuno-epigenetic drug regimens have been associated with tumor response in previously immunotherapy-resistant NSCLC patients irrespective of their PD-L1 status. Moreover, epigenetic signatures might represent valuable theragnostic biomarkers as they can be assayed easily in liquid biopsy and provide multiple layers of information. In this review, we discuss the current knowledge regarding the dysregulated epigenetic mechanisms contributing to immunotherapy resistance in NSCLC. Although the clinical data are still maturing, we highlight the attractive perspective that the synergistic model of immuno-epigenetic strategies might overcome the current limitations of immunotherapy alone and will be translated into durable clinical benefit for a broader NSCLC population.
Collapse
Affiliation(s)
- Anastasios Gkountakos
- ARC-NET Applied Research on Cancer Center, University of Verona, P.le L.A. Scuro 10, Verona, 37134, Italy
| | - Pietro Delfino
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Rita T. Lawlor
- ARC-NET Applied Research on Cancer Center, University of Verona, Verona, Italy
| | - Aldo Scarpa
- ARC-NET Applied Research on Cancer Center, University of Verona, Verona, Italy
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Vincenzo Corbo
- ARC-NET Applied Research on Cancer Center, University of Verona, Verona, Italy
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Emilio Bria
- Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Department of Medical Oncology, Università Cattolica Del Sacro Cuore, Rome, Italy
| |
Collapse
|
70
|
Krafft U, Olah C, Reis H, Kesch C, Darr C, Grünwald V, Tschirdewahn S, Hadaschik B, Horvath O, Kenessey I, Nyirady P, Varadi M, Modos O, Csizmarik A, Szarvas T. High Serum PD-L1 Levels Are Associated with Poor Survival in Urothelial Cancer Patients Treated with Chemotherapy and Immune Checkpoint Inhibitor Therapy. Cancers (Basel) 2021; 13:cancers13112548. [PMID: 34067347 PMCID: PMC8196869 DOI: 10.3390/cancers13112548] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/15/2021] [Accepted: 05/20/2021] [Indexed: 01/08/2023] Open
Abstract
Serum PD-L1 (sPD-L1) levels are associated with prognosis in various tumors but has not yet been investigated in advanced bladder cancer. We assessed pretreatment serum samples from 83 BC patients who received platinum chemotherapy and from 12 patients who underwent immune checkpoint inhibitor (ICI) therapy. In addition, on-treatment samples from further therapy cycles were collected during chemotherapy (n = 58) and ICI therapy (n = 11). Serum PD-L1 levels were determined using ELISA. High baseline sPD-L1 levels were associated with worse ECOG status (p = 0.007) and shorter overall survival for both chemotherapy- and ICI-treated patients (p = 0.002 and p = 0.040, respectively). Multivariate analysis revealed high baseline sPD-L1 level as an independent predictor of poor survival for platinum-treated patients (p = 0.002). A correlation analysis between serum concentrations of PD-L1 and matrix metalloprotease-7 (MMP-7)-a protease which was recently found to cleave PD-L1-revealed a positive correlation (p = 0.001). No significant sPD-L1 changes were detected during chemotherapy, while in contrast we found a strong, 25-fold increase in sPD-L1 levels during atezolizumab treatment. In conclusion, our work demonstrates that pretreatment sPD-L1 levels are associated with a poor prognosis of BC patients undergoing platinum and ICI therapy. Future research should prospectively address the value of sPD-L1 in predicting treatment response.
Collapse
Affiliation(s)
- Ulrich Krafft
- West German Cancer Center, Department of Urology, University of Duisburg-Essen, 45147 Essen, Germany; (U.K.); (C.O.); (C.K.); (C.D.); (S.T.); (B.H.)
| | - Csilla Olah
- West German Cancer Center, Department of Urology, University of Duisburg-Essen, 45147 Essen, Germany; (U.K.); (C.O.); (C.K.); (C.D.); (S.T.); (B.H.)
| | - Henning Reis
- Institute of Pathology, University of Duisburg-Essen, 45147 Essen, Germany;
| | - Claudia Kesch
- West German Cancer Center, Department of Urology, University of Duisburg-Essen, 45147 Essen, Germany; (U.K.); (C.O.); (C.K.); (C.D.); (S.T.); (B.H.)
| | - Christopher Darr
- West German Cancer Center, Department of Urology, University of Duisburg-Essen, 45147 Essen, Germany; (U.K.); (C.O.); (C.K.); (C.D.); (S.T.); (B.H.)
| | - Viktor Grünwald
- Clinic for Urology and Clinic for Medical Oncology, West German Cancer Center, University Hospital Essen, 45147 Essen, Germany;
| | - Stephan Tschirdewahn
- West German Cancer Center, Department of Urology, University of Duisburg-Essen, 45147 Essen, Germany; (U.K.); (C.O.); (C.K.); (C.D.); (S.T.); (B.H.)
| | - Boris Hadaschik
- West German Cancer Center, Department of Urology, University of Duisburg-Essen, 45147 Essen, Germany; (U.K.); (C.O.); (C.K.); (C.D.); (S.T.); (B.H.)
| | - Orsolya Horvath
- Department of Genitourinary Medical Oncology and Pharmacology, National Institute of Oncology, 1122 Budapest, Hungary;
| | - Istvan Kenessey
- 2nd Department of Pathology, Semmelweis University, 1122 Budapest, Hungary;
- National Cancer Registry and Centre for Biostatistics, National Institute of Oncology, 1122 Budapest, Hungary
| | - Peter Nyirady
- Department of Urology, Semmelweis University, 1089 Budapest, Hungary; (P.N.); (M.V.); (O.M.); (A.C.)
| | - Melinda Varadi
- Department of Urology, Semmelweis University, 1089 Budapest, Hungary; (P.N.); (M.V.); (O.M.); (A.C.)
| | - Orsolya Modos
- Department of Urology, Semmelweis University, 1089 Budapest, Hungary; (P.N.); (M.V.); (O.M.); (A.C.)
| | - Anita Csizmarik
- Department of Urology, Semmelweis University, 1089 Budapest, Hungary; (P.N.); (M.V.); (O.M.); (A.C.)
| | - Tibor Szarvas
- West German Cancer Center, Department of Urology, University of Duisburg-Essen, 45147 Essen, Germany; (U.K.); (C.O.); (C.K.); (C.D.); (S.T.); (B.H.)
- Department of Urology, Semmelweis University, 1089 Budapest, Hungary; (P.N.); (M.V.); (O.M.); (A.C.)
- Correspondence: ; Tel.: +49-201-723-4547
| |
Collapse
|
71
|
Lim JU, Kang HS. A narrative review of current and potential prognostic biomarkers for immunotherapy in small-cell lung cancer. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:809. [PMID: 34268422 PMCID: PMC8246157 DOI: 10.21037/atm-21-68] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/24/2021] [Indexed: 12/28/2022]
Abstract
Small-cell lung cancer (SCLC) is a highly invasive and rapidly proliferating pathologic subtype that accounts for 13-15% of all lung cancer cases. Recently in extensive-stage SCLC, treatments that combine immunotherapy and chemotherapy showed increased efficacy compared to chemotherapy alone in several trials. However, the combination of immunotherapy and conventional chemotherapy regimens was introduced only recently for extensive-stage SCLC, with relatively little real-world data. The demand for reliable biomarkers that can predict the efficacy of immunotherapy in SCLC is high. Several studies evaluated various parameters including programmed cell death ligand-1 (PD-L1) expression, tumor mutation burden (TMB), gene expression profiling, autoantibody, and blood cytokines for predictive value for response to immunotherapy in SCLC. Despite some observed correlations, there is a lack of concrete support for the use of PD-L1 expression levels for readily available biomarker. High TMB in combination with smoking history is predictive of a better response to immunotherapy, but validation of cutoffs and testing methods is necessary before it can be widely applied in clinical settings. Other candidate biomarkers such as immune cell distribution among tumor microenvironment, and systemic inflammatory markers can also be evaluated, after an accumulation of real-life data from SCLC patients under immunotherapy.
Collapse
Affiliation(s)
- Jeong Uk Lim
- Division of Pulmonary, Critical Care and Allergy, Department of Internal Medicine, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hye Seon Kang
- Division of Pulmonary, Critical Care and Allergy, Department of Internal Medicine, Bucheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
72
|
Yang Q, Chen M, Gu J, Niu K, Zhao X, Zheng L, Xu Z, Yu Y, Li F, Meng L, Chen Z, Zhuo W, Zhang L, Sun J. Novel Biomarkers of Dynamic Blood PD-L1 Expression for Immune Checkpoint Inhibitors in Advanced Non-Small-Cell Lung Cancer Patients. Front Immunol 2021; 12:665133. [PMID: 33936103 PMCID: PMC8085403 DOI: 10.3389/fimmu.2021.665133] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 03/25/2021] [Indexed: 11/13/2022] Open
Abstract
Background Immune checkpoint inhibitors (ICIs) have become a high-profile regimen for malignancy recently. However, only a small subpopulation obtains long-term clinical benefit. How to select optimal patients by reasonable biomarkers remains a hot topic. Methods Paired tissue samples and blood samples from 51 patients with advanced malignancies were collected for correlation analysis. Dynamic changes in blood PD-L1 (bPD-L1) expression, including PD-L1 mRNA, exosomal PD-L1 (exoPD-L1) protein and soluble PD-L1 (sPD-L1), were detected after 2 months of ICIs treatment in advanced non-small-cell lung cancer (NSCLC) patients. The best cutoff values for progression-free survival (PFS) and overall survival (OS) of all three biomarkers were calculated with R software. Results In 51 cases of various malignancies, those with positive tissue PD-L1 (tPD-L1) had significantly higher PD-L1 mRNA than those with negative tPD-L1. In 40 advanced NSCLC patients, those with a fold change of PD-L1 mRNA ≥ 2.04 had better PFS, OS and best objective response (bOR) rate. In addition, a fold change of exoPD-L1 ≥ 1.86 was also found to be associated with better efficacy and OS in a cohort of 21 advanced NSCLC cases. The dynamic change of sPD-L1 was not associated with efficacy and OS. Furthermore, the combination of PD-L1 mRNA and exoPD-L1 could screen better patients for potential benefit from ICIs treatment. Conclusion There was a positive correlation between bPD-L1 and tPD-L1 expression. Increased expression of PD-L1 mRNA, exoPD-L1, or both in early stage of ICIs treatment could serve as positive biomarkers of efficacy and OS in advanced NSCLC patients.
Collapse
Affiliation(s)
- Qiao Yang
- Cancer Institute, Xinqiao Hospital, Army Medical University, Chongqing, China.,Department of Ultrasound, The 941st Hospital of the PLA Joint Logistic Support Force, Xining, China
| | - Mingjing Chen
- Cancer Institute, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Jiaoyang Gu
- Cancer Institute, Xinqiao Hospital, Army Medical University, Chongqing, China.,Department of Oncology, Liangping People's Hospital, Liangping, China
| | - Kai Niu
- Cancer Institute, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Xianlan Zhao
- Cancer Institute, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Linpeng Zheng
- Cancer Institute, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Zihan Xu
- Cancer Institute, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Yongxin Yu
- Cancer Institute, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Feng Li
- Cancer Institute, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Lingxin Meng
- Cancer Institute, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Zhengtang Chen
- Cancer Institute, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Wenlei Zhuo
- Cancer Institute, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Luping Zhang
- Cancer Institute, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Jianguo Sun
- Cancer Institute, Xinqiao Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
73
|
Mortensen JB, Monrad I, Enemark MB, Ludvigsen M, Kamper P, Bjerre M, d'Amore F. Soluble programmed cell death protein 1 (sPD-1) and the soluble programmed cell death ligands 1 and 2 (sPD-L1 and sPD-L2) in lymphoid malignancies. Eur J Haematol 2021; 107:81-91. [PMID: 33721375 DOI: 10.1111/ejh.13621] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 03/10/2021] [Accepted: 03/12/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND The programmed cell death protein 1 (PD-1) and its ligand 1 and 2 (PD-L1/PD-L2) regulate the immune system, and the checkpoint pathway can be exploited by malignant cells to evade anti-tumor immune response. Soluble forms (sPD-1/sPD-L1/sPD-L2) exist in the peripheral blood, but their biological and clinical significance is unclear. METHOD Time-resolved immunofluorometric assay (TRIFMA) and enzyme-linked immunosorbent assay (ELISA) were used to measure sPD-1, sPD-L1, and sPD-L2 levels in serum from 131 lymphoma patients and 22 healthy individuals. RESULTS Patients had higher sPD-1 and sPD-L2 levels than healthy individuals. In diffuse large B-cell lymphoma, patients with high International Prognostic Index score had higher sPD-1 levels and sPD-L2 levels correlated with subtype according to cell of origin. Compared to other lymphoma types, follicular lymphoma displayed higher sPD-1 and lower sPD-L1 levels along with lower ligand/receptor ratios. CONCLUSION This is the first study to simultaneously characterize pretherapeutic sPD-1, sPD-L1, and sPD-L2 in a variety of lymphoma subtypes. The relation between higher sPD-1 levels and adverse prognostic factors suggests a possible biological role and potential clinical usefulness of sPD-1. Moreover, the reverse expression pattern in follicular lymphoma and T-cell lymphoma/leukemia may reflect biological information relevant for immunotherapy targeting the PD-1 pathway.
Collapse
Affiliation(s)
- Julie B Mortensen
- Department of Hematology, Aarhus University Hospital, Aarhus, Denmark
| | - Ida Monrad
- Department of Hematology, Aarhus University Hospital, Aarhus, Denmark
| | - Marie B Enemark
- Department of Hematology, Aarhus University Hospital, Aarhus, Denmark
| | - Maja Ludvigsen
- Department of Hematology, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Peter Kamper
- Department of Hematology, Aarhus University Hospital, Aarhus, Denmark
| | - Mette Bjerre
- Medical/SDCA Research Laboratory, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Francesco d'Amore
- Department of Hematology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
74
|
Indini A, Rijavec E, Grossi F. Circulating Biomarkers of Response and Toxicity of Immunotherapy in Advanced Non-Small Cell Lung Cancer (NSCLC): A Comprehensive Review. Cancers (Basel) 2021; 13:cancers13081794. [PMID: 33918661 PMCID: PMC8070633 DOI: 10.3390/cancers13081794] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/02/2021] [Accepted: 04/03/2021] [Indexed: 01/15/2023] Open
Abstract
Simple Summary Although immunotherapy has dramatically revolutionized non-small cell lung cancer (NSCLC) treatment, not all the patients will benefit from this innovative therapy. The identification of potential biomarkers able to predict efficacy and toxicity of immunotherapy represents an urgent need for tailored treatment regimens. Liquid biopsy is a minimally invasive and economical tool that could provide important information about patients’ selection and treatment monitoring. Currently, several blood biomarkers are under investigation (circulating immune and tumor cells, soluble immunological mediators, peripheral blood cells). Prospective clinical trials are needed to validate their use in clinical practice. Abstract Immune checkpoint inhibitors (ICIs) targeting the programmed cell death (PD)-1 protein and its ligand, PD-L1, and cytotoxic T-lymphocyte-associated antigen (CTLA)-4, have revolutionized the management of patients with advanced non-small cell lung cancer (NSCLC). Unfortunately, only a small portion of NSCLC patients respond to these agents. Furthermore, although immunotherapy is usually well tolerated, some patients experience severe immune-related adverse events (irAEs). Liquid biopsy is a non-invasive diagnostic procedure involving the isolation of circulating biomarkers, such as circulating tumor cells (CTC), cell-free DNA (cfDNA), and microRNAs (miRNAs). Thanks to recent advances in technologies, such as next-generation sequencing (NGS) and digital polymerase chain reaction (dPCR), liquid biopsy has become a useful tool to provide baseline information on the tumor, and to monitor response to treatments. This review highlights the potential role of liquid biomarkers in the selection of NSCLC patients who could respond to immunotherapy, and in the identification of patients who are most likely to experience irAEs, in order to guide improvements in care.
Collapse
Affiliation(s)
- Alice Indini
- Medical Oncology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy;
| | - Erika Rijavec
- Medical Oncology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy;
- Correspondence:
| | - Francesco Grossi
- Unit of Medical Oncology, Department of Medicine and Surgery, University of Insubria, ASST dei Sette Laghi, 21100 Varese, Italy;
| |
Collapse
|
75
|
Clinical Activity of an hTERT-Specific Cancer Vaccine (Vx-001) in "Immune Desert" NSCLC. Cancers (Basel) 2021; 13:cancers13071658. [PMID: 33916194 PMCID: PMC8037524 DOI: 10.3390/cancers13071658] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/22/2021] [Accepted: 03/29/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary We investigated whether there is any correlation between Vx-001 clinical activity and the tumor immune microenvironment (TIME). Our hypothesis was that Vx-001 should be clinically effective in patients with tumor-infiltrating lymphocyte (TIL) negative/low infiltrated (non-immunogenic/cold) tumors which are lacking immunosuppressive TIME but not in highly TIL infiltrated (immunogenic/hot) tumors associated with immunosuppressive TIME. In this study, we show that the tumor vaccine Vx-001 offers a clinical benefit in patients with tumors lacking or weakly infiltrated with TILs. In contrast, Vx-001 is completely inactive in the context of tumors highly infiltrated with TILs, thus confirming our hypothesis. TIL negative/low tumor signature is an independent predictive factor of Vx-001 efficacy. To our knowledge, this is the first study showing an inverse correlation between tumor vaccine efficacy and the presence of TILs. These data support the selection of patients with TIL negative or low infiltrated tumors (i.e., patients known to be resistant to immune checkpoint inhibitors (ICIs) and with poor prognosis) as the best candidates to receive tumor vaccines and to get a clinical benefit from vaccination. Abstract Background: Tumors can be separated into immunogenic/hot and non-immunogenic/cold on the basis of the presence of tumor-infiltrating lymphocytes (TILs), the expression of PD-L1 and the tumor mutation burden (TMB). In immunogenic tumors, TILs become unable to control tumor growth because their activity is suppressed by different inhibitory pathways, including PD-1/PD-L1. We hypothesized that tumor vaccines may not be active in the immunosuppressive microenvironment of immunogenic/hot tumors while they could be efficient in the immune naïve microenvironment of non-immunogenic/cold tumors. Methods: The randomized phase II Vx-001-201 study investigated the effect of the Vx-001 vaccine as maintenance treatment in metastatic non-small cell lung cancer (NSCLC) patients. Biopsies from 131 (68 placebo and 63 Vx-001) patients were retrospectively analyzed for PD-L1 expression and TIL infiltration. TILs were measured as tumor-associated immune cells (TAICs), CD3-TILs, CD8-TILs and granzyme B-producing TILs (GZMB-TILs). Patients were distinguished into PD-L1(+) and PD-L1(-) and into TIL high and TIL low. Findings: There was no correlation between PD-L1 expression and Vx-001 clinical activity. In contrast, Vx-001 showed a significant improvement of overall survival (OS) vs. placebo in TAIC low (21 vs. 8.1 months, p = 0.003, HR = 0.404, 95% CI 0.219–0.745), CD3-TIL low (21.6 vs. 6.6 months, p < 0.001, HR = 0.279, 95% CI 0.131–0.595), CD8-TIL low (21 vs. 6.6 months, p < 0.001; HR = 0.240, 95% CI 0.11–0.522) and GZMB-TIL low (20.7 vs. 11.1 months, p = 0.011, HR = 0.490, 95% CI 0.278–0.863). Vx-001 did not offer any clinical benefit in patients with TAIC high, CD3-TIL high, CD8-TIL high or GZMB-TIL high tumors. CD3-TIL, CD8-TIL and GZMB-TIL were independent predictive factors of Vx-001 efficacy. Conclusions: These results support the hypothesis that Vx-001 may be efficient in patients with non-immunogenic/cold but not with immunogenic/hot tumors.
Collapse
|
76
|
Vashi N, Bakhoum SF. The Evolution of STING Signaling and Its Involvement in Cancer. Trends Biochem Sci 2021; 46:446-460. [PMID: 33461879 DOI: 10.1016/j.tibs.2020.12.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 12/04/2020] [Accepted: 12/17/2020] [Indexed: 12/14/2022]
Abstract
The cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway has been primarily characterized as an inflammatory mechanism in higher eukaryotes in response to cytosolic double-stranded DNA (dsDNA). Since its initial discovery, detailed mechanisms delineating the dynamic subcellular localization of its different components and downstream signaling have been uncovered, leading to attempts to harness its proinflammatory properties for therapeutic benefit in cancer. Emerging evidence, however, indicates that a crucial primordial function of STING is to promote autophagy, and that downstream interferon (IFN) signaling emerged recently in its evolutionary history. Furthermore, studies suggest that this pathway is a crucial regulator of cellular metabolism that potentially couples inflammation to nutrient availability. We focus on the evolutionarily conserved functions of STING, and we discuss how a broader understanding of this pathway can help us to better appreciate its potential role in cancer and harness it for therapeutic benefit.
Collapse
Affiliation(s)
- Nimi Vashi
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Samuel F Bakhoum
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
77
|
Wang Y, Chen H, Zhang T, Yang X, Zhong J, Wang Y, Chi Y, Wu M, An T, Li J, Zhao X, Dong Z, Wang Z, Zhao J, Zhuo M, Huang J. Plasma cytokines interleukin-18 and C-X-C motif chemokine ligand 10 are indicative of the anti-programmed cell death protein-1 treatment response in lung cancer patients. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:33. [PMID: 33553326 PMCID: PMC7859784 DOI: 10.21037/atm-20-1513] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Background Although programmed cell death protein-1 (PD-1)/programmed death ligand-1 (PD-L1) checkpoint inhibitors have shown prominent efficacy for treatment of advanced lung cancer, the outcomes of metastatic lung cancer remain poor throughout the world. Although progression-free survival (PFS) and overall survival (OS) have improved in the first- and second-line therapy settings for advanced lung cancer, the response rates to PD-1/PD-L1 inhibition range from 20% to 40%. Furthermore, patients may be at risk for immune-related adverse events (irAEs); hence, appropriate patient selection is crucial. This study aimed to identify a panel of plasma cytokines representing prognostic and predictive biomarkers of the response to anti-PD-1/PD-L1 treatment. Methods We prospectively studied 32 lung cancer patients who received anti-PD-1/PD-L1 antibody immunotherapy. Plasma cytokines in peripheral blood samples were evaluated and analyzed using flow cytometry at the time of diagnosis and at 2 months after the initiation of PD-1/PD-L1 inhibition. Results The baseline plasma concentrations of interleukin-18 (IL-18) and C-X-C motif chemokine ligand 10 (CXCL10) were correlated with the degree of tumor response. Moreover, the magnitude of plasma IL-18 and CXCL10 level fluctuations were correlated significantly with the objective tumor response to anti-PD-1/PD-L1 immunotherapy, and patients with high CXCL10 expression had significantly shorter PFS than those with low CXCL10 expression. A strong positive correlation between the fluctuation of IL-18 and interleukin-8 (IL-8) levels was detected, as was a negative correlation between the fluctuation of IL-18 and CXCL10 levels. The level of plasma C-C motif chemokine ligand 5 (CCL5) was significantly higher in patients with irAEs than in those without irAEs. Conclusions Plasma cytokines are related to the clinical efficacy of PD-1/PD-L1 inhibitors. IL-18 and CXCL10 are potential predictive markers for anti-PD-1/PD-L1 therapy in lung cancer patients and may play an important role in selecting patients who would benefit from PD-1/PD-L1 inhibitors.
Collapse
Affiliation(s)
- Yida Wang
- Department of Immunology, School of Basic Medical Sciences, Peking University, and NHC Key Laboratory of Medical Immunology (Peking University), Beijing, China.,Key Laboratory of Molecular Immunology, Chinese Academy of Medical Sciences, Beijing, China
| | - Hanxiao Chen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Medical Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Tianzhuo Zhang
- Department of Immunology, School of Basic Medical Sciences, Peking University, and NHC Key Laboratory of Medical Immunology (Peking University), Beijing, China
| | - Xue Yang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Medical Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Jia Zhong
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Medical Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Yuyan Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Medical Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Yujia Chi
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Medical Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Meina Wu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Medical Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Tongtong An
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Medical Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Jianjie Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Medical Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Xinghui Zhao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Medical Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Zhi Dong
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Medical Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Ziping Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Medical Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Jun Zhao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Medical Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Minglei Zhuo
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Medical Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Jing Huang
- Department of Immunology, School of Basic Medical Sciences, Peking University, and NHC Key Laboratory of Medical Immunology (Peking University), Beijing, China.,Key Laboratory of Molecular Immunology, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
78
|
Costantini A, Takam Kamga P, Julie C, Corjon A, Dumenil C, Dumoulin J, Ouaknine J, Giraud V, Chinet T, Rottman M, Emile JF, Giroux Leprieur E. Plasma Biomarkers Screening by Multiplex ELISA Assay in Patients with Advanced Non-Small Cell Lung Cancer Treated with Immune Checkpoint Inhibitors. Cancers (Basel) 2020; 13:cancers13010097. [PMID: 33396187 PMCID: PMC7795942 DOI: 10.3390/cancers13010097] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/14/2020] [Accepted: 12/23/2020] [Indexed: 12/22/2022] Open
Abstract
Simple Summary There is an unmet need for new predictive biomarkers associated with efficacy and immune-related toxicity of immune checkpoint inhibitors (ICIs) in non-small cell lung cancer (NSCLC). In this study, we performed multiplex ELISA screening in plasma from 35 consecutive patients with advanced NSCLC treated with nivolumab or pembrolizumab, allowing large-scale screening for 48 cytokines involved in immune response and tumour proliferation. We found an association between ICIs efficacy and three cytokines: soluble hepatocyte growth factor (sHGF), soluble Fibroblast Growth Factor (sFGF) and interleukine-12 (IL-12). Moreover, TNF-α, IL-16, IL-12p40 and MCP3 were candidate biomarkers for predicting grade 3–4 immune-related toxicity. This exploratory study shows the potential role of new plasma biomarkers in advanced NSCLC treated with ICIs. Abstract Immune checkpoint inhibitors (ICIs) are commonly used in patients with advanced non-small cell lung cancer (NSCLC). An unmet need remains for new biomarkers associated with ICIs. In this study, consecutive patients with advanced NSCLC treated with nivolumab or pembrolizumab were included. Plasma at ICIs initiation was prospectively collected and a multiplex ELISA assay testing 48 cytokines and growth factors was performed. Exploratory endpoints were the association between plasma biomarkers with outcome and grade III–IV immune related adverse events (irAEs). Thirty-five patients were included. Patients without clinical benefit (n = 22) had higher pre-ICI soluble Hepatocyte Growth Factor (sHGF) (210.9 vs. 155.8 pg/mL, p = 0.010), lower pre-ICI soluble Fibroblast Growth Factor (sFGF) (4.0 vs. 4.8 pg/mL, p = 0.043) and lower pre-ICI interleukine-12 (IL-12) (1.3 vs. 2.2 pg/mL, p = 0.043) concentrations. Patients with early progression (n = 23) had higher pre-ICIs sHGF (206.2 vs. 155.8 pg/mL, p = 0.025) concentrations. Patients with low sHGF levels at ICIs initiation had longer progression-free survival and overall survival than those with high sHGF levels: respectively 2.5 vs. 8.0 months (p = 0.002), and 5.5 vs. 35.0 months (p = 0.001). TNF-α, IL-16, IL-12p40 and MCP3 were associated with high grade irAEs. This study shows the potential association between several plasma biomarkers with outcome and grade 3–4 IrAEs in advanced NSCLC treated with ICIs.
Collapse
Affiliation(s)
- Adrien Costantini
- Department of Respiratory Diseases and Thoracic Oncology, APHP—Hôpital Ambroise Pare, 92100 Boulogne-Billancourt, France; (A.C.); (C.D.); (J.D.); (J.O.); (V.G.); (T.C.)
- EA 4340 BECCOH, UVSQ, Université Paris-Saclay, 92100 Boulogne-Billancourt, France; (P.T.K.); (C.J.); (J.-F.E.)
| | - Paul Takam Kamga
- EA 4340 BECCOH, UVSQ, Université Paris-Saclay, 92100 Boulogne-Billancourt, France; (P.T.K.); (C.J.); (J.-F.E.)
| | - Catherine Julie
- EA 4340 BECCOH, UVSQ, Université Paris-Saclay, 92100 Boulogne-Billancourt, France; (P.T.K.); (C.J.); (J.-F.E.)
- Department of Pathology, APHP—Hôpital Ambroise Pare, 92100 Boulogne-Billancourt, France;
| | - Alexandre Corjon
- Department of Pathology, APHP—Hôpital Ambroise Pare, 92100 Boulogne-Billancourt, France;
| | - Coraline Dumenil
- Department of Respiratory Diseases and Thoracic Oncology, APHP—Hôpital Ambroise Pare, 92100 Boulogne-Billancourt, France; (A.C.); (C.D.); (J.D.); (J.O.); (V.G.); (T.C.)
| | - Jennifer Dumoulin
- Department of Respiratory Diseases and Thoracic Oncology, APHP—Hôpital Ambroise Pare, 92100 Boulogne-Billancourt, France; (A.C.); (C.D.); (J.D.); (J.O.); (V.G.); (T.C.)
| | - Julia Ouaknine
- Department of Respiratory Diseases and Thoracic Oncology, APHP—Hôpital Ambroise Pare, 92100 Boulogne-Billancourt, France; (A.C.); (C.D.); (J.D.); (J.O.); (V.G.); (T.C.)
| | - Violaine Giraud
- Department of Respiratory Diseases and Thoracic Oncology, APHP—Hôpital Ambroise Pare, 92100 Boulogne-Billancourt, France; (A.C.); (C.D.); (J.D.); (J.O.); (V.G.); (T.C.)
| | - Thierry Chinet
- Department of Respiratory Diseases and Thoracic Oncology, APHP—Hôpital Ambroise Pare, 92100 Boulogne-Billancourt, France; (A.C.); (C.D.); (J.D.); (J.O.); (V.G.); (T.C.)
- EA 4340 BECCOH, UVSQ, Université Paris-Saclay, 92100 Boulogne-Billancourt, France; (P.T.K.); (C.J.); (J.-F.E.)
| | - Martin Rottman
- Department of Microbiology, APHP—Hôpital Raymond Poincaré, 92380 Garches, France;
- UMR 1173, UVSQ, Université Paris-Saclay, 78180 Montigny-le-Bretonneux, France
| | - Jean-François Emile
- EA 4340 BECCOH, UVSQ, Université Paris-Saclay, 92100 Boulogne-Billancourt, France; (P.T.K.); (C.J.); (J.-F.E.)
- Department of Pathology, APHP—Hôpital Ambroise Pare, 92100 Boulogne-Billancourt, France;
| | - Etienne Giroux Leprieur
- Department of Respiratory Diseases and Thoracic Oncology, APHP—Hôpital Ambroise Pare, 92100 Boulogne-Billancourt, France; (A.C.); (C.D.); (J.D.); (J.O.); (V.G.); (T.C.)
- EA 4340 BECCOH, UVSQ, Université Paris-Saclay, 92100 Boulogne-Billancourt, France; (P.T.K.); (C.J.); (J.-F.E.)
- Correspondence: ; Tel.: +33-1-49-09-58-02
| |
Collapse
|
79
|
Duchemann B, Remon J, Naigeon M, Mezquita L, Ferrara R, Cassard L, Jouniaux JM, Boselli L, Grivel J, Auclin E, Desnoyer A, Besse B, Chaput N. Integrating Circulating Biomarkers in the Immune Checkpoint Inhibitor Treatment in Lung Cancer. Cancers (Basel) 2020; 12:cancers12123625. [PMID: 33287347 PMCID: PMC7761725 DOI: 10.3390/cancers12123625] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Immune checkpoint inhibitors (ICI) are now a cornerstone of treatment for non-small cell lung cancer (NSCLC). Despite reporting tremendous results for some patients, ICI efficacy remains reserved to a subgroup that is not yet fully characterized. Tissue based assays, such as Programmed cell death protein 1 (PD-L1) expression may enrich the responder population, but this biomarker is not always available or reliable, as responses have been observed in patients with negative PD-L1. Blood markers are hoped to be easier to access and follow, and to give an insight on patient’s immune status and tumor as well. To date, several papers have been looking for circulating biomarkers that are focused on tumor cells or host specific or general immunity in NSCLC treated with ICI. In this article, we review these circulating biomarkers in peculiar circulating immune cell, tumor related cell and soluble systemic marker. We describe the available data and comment on the technical requirements and limits of these promising techniques. Abstract Immune checkpoint inhibitors are now a cornerstone of treatment for non-small cell lung cancer (NSCLC). Tissue-based assays, such as Programmed cell death protein 1 (PD-L1) expression or mismatch repair deficiency/microsatellite instability (MMRD/MSI) status, are approved as treatment drivers in various settings, and represent the main field of research in biomarkers for immunotherapy. Nonetheless, responses have been observed in patients with negative PD-L1 or low tumor mutational burden. Some aspects of biomarker use remain poorly understood and sub-optimal, in particular tumoral heterogeneity, time-evolving sampling, and the ability to detect patients who are unlikely to respond. Moreover, tumor biopsies offer little insight into the host’s immune status. Circulating biomarkers offer an alternative non-invasive solution to address these pitfalls. Here, we summarize current knowledge on circulating biomarkers while using liquid biopsies in patients with lung cancer who receive treatment with immune checkpoint inhibitors, in terms of their potential as being predictive of outcome as well as their role in monitoring ongoing treatment. We address host biomarkers, notably circulating immune cells and soluble systemic immune and inflammatory markers, and also review tumor markers, including blood-based tumor mutational burden, circulating tumor cells, and circulating tumor DNA. Technical requirements are discussed along with the current limitations that are associated with these promising biomarkers.
Collapse
Affiliation(s)
- Boris Duchemann
- Laboratory of Immunomonitoring in Oncology, Gustave Roussy Cancer Campus, CNRS-UMS 3655 and INSERM-US23, F-94805 Villejuif, France; (B.D.); (M.N.); (L.C.); (J.M.J.); (L.B.); (J.G.); (A.D.)
- Faculty of Medicine, University Paris-Saclay, F-94276 Le Kremlin Bicêtre, France;
- Hopital Avicenne, Oncologie Médical et Thoracique, Assistance Publique des Hôpitaux de Paris (AP-HP), F-93000 Bobigny, France
| | - Jordi Remon
- Department of Medical Oncology, Centro Integral Oncológico Clara Campal (HM-CIOCC), Hospital HM Delfos, HM Hospitales, 08023 Barcelona, Spain;
| | - Marie Naigeon
- Laboratory of Immunomonitoring in Oncology, Gustave Roussy Cancer Campus, CNRS-UMS 3655 and INSERM-US23, F-94805 Villejuif, France; (B.D.); (M.N.); (L.C.); (J.M.J.); (L.B.); (J.G.); (A.D.)
- Faculty of Medicine, University Paris-Saclay, F-94276 Le Kremlin Bicêtre, France;
- Faculty of Pharmacy, University Paris-Saclay, F-92296 Chatenay-Malabry, France
| | - Laura Mezquita
- Cancer Medicine Department, Gustave Roussy Cancer Campus, F-94800 Villejuif, France;
| | - Roberto Ferrara
- Thoracic Oncology Unit, Department of Oncology, Fondazione I.R.C.C.S. Istituto Nazionale dei Tumori, 20133 Milan, Italy;
| | - Lydie Cassard
- Laboratory of Immunomonitoring in Oncology, Gustave Roussy Cancer Campus, CNRS-UMS 3655 and INSERM-US23, F-94805 Villejuif, France; (B.D.); (M.N.); (L.C.); (J.M.J.); (L.B.); (J.G.); (A.D.)
| | - Jean Mehdi Jouniaux
- Laboratory of Immunomonitoring in Oncology, Gustave Roussy Cancer Campus, CNRS-UMS 3655 and INSERM-US23, F-94805 Villejuif, France; (B.D.); (M.N.); (L.C.); (J.M.J.); (L.B.); (J.G.); (A.D.)
| | - Lisa Boselli
- Laboratory of Immunomonitoring in Oncology, Gustave Roussy Cancer Campus, CNRS-UMS 3655 and INSERM-US23, F-94805 Villejuif, France; (B.D.); (M.N.); (L.C.); (J.M.J.); (L.B.); (J.G.); (A.D.)
| | - Jonathan Grivel
- Laboratory of Immunomonitoring in Oncology, Gustave Roussy Cancer Campus, CNRS-UMS 3655 and INSERM-US23, F-94805 Villejuif, France; (B.D.); (M.N.); (L.C.); (J.M.J.); (L.B.); (J.G.); (A.D.)
| | - Edouard Auclin
- Medical and Thoracic Oncology Department, Hôpital Européen Georges Pompidou, APHP, F-75015 Paris, France;
| | - Aude Desnoyer
- Laboratory of Immunomonitoring in Oncology, Gustave Roussy Cancer Campus, CNRS-UMS 3655 and INSERM-US23, F-94805 Villejuif, France; (B.D.); (M.N.); (L.C.); (J.M.J.); (L.B.); (J.G.); (A.D.)
- Faculty of Pharmacy, University Paris-Saclay, F-92296 Chatenay-Malabry, France
| | - Benjamin Besse
- Faculty of Medicine, University Paris-Saclay, F-94276 Le Kremlin Bicêtre, France;
- Cancer Medicine Department, Gustave Roussy Cancer Campus, F-94800 Villejuif, France;
| | - Nathalie Chaput
- Laboratory of Immunomonitoring in Oncology, Gustave Roussy Cancer Campus, CNRS-UMS 3655 and INSERM-US23, F-94805 Villejuif, France; (B.D.); (M.N.); (L.C.); (J.M.J.); (L.B.); (J.G.); (A.D.)
- Faculty of Pharmacy, University Paris-Saclay, F-92296 Chatenay-Malabry, France
- Laboratory of Genetic Instability and Oncogenesis, UMR CNRS 8200, Gustave Roussy, Université Paris-Saclay, F-94805 Villejuif, France
- Correspondence: ; Tel.: +33-(0)1-42-11-56-55; Fax: +33-(0)1-42-11-37-60-94
| |
Collapse
|
80
|
Brueckl WM, Ficker JH, Zeitler G. Clinically relevant prognostic and predictive markers for immune-checkpoint-inhibitor (ICI) therapy in non-small cell lung cancer (NSCLC). BMC Cancer 2020; 20:1185. [PMID: 33272262 PMCID: PMC7713034 DOI: 10.1186/s12885-020-07690-8] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 11/25/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Immune checkpoint inhibitors (ICI) either alone or in combination with chemotherapy have expanded our choice of agents for the palliative treatment of non-small cell lung cancer (NSCLC) patients. Unfortunately, not all patients will experience favorable response to treatment with ICI and may even suffer from severe side effects. Therefore, prognostic and predictive markers, beyond programmed death ligand 1 (PD-L1) expression status, are of utmost importance for decision making in the palliative treatment. This review focuses on clinical, laboratory and genetic markers, most of them easily to obtain in the daily clinical practice. RESULTS Recently, a number of prognostic and predictive factors in association to palliative ICI therapy have been described in NSCLC. Besides biometric parameters and clinical characteristics of the tumor, there are useful markers from routine blood sampling as well as innovative soluble genetic markers which can be determined before and during ICI treatment. Additionally, the level of evidence is noted. CONCLUSIONS These factors can be helpful to predict patients' outcome and tumor response to ICI. They should be implemented prospectively in ICI based clinical trials to develop reliable algorithms for palliative NSCLC treatment.
Collapse
Affiliation(s)
- Wolfgang M Brueckl
- Department of Respiratory Medicine, Allergology and Sleep Medicine / Nuremberg Lung Cancer Center, Paracelsus Medical University, General Hospital Nuremberg, Prof.-Ernst-Nathan-Str. 1, 90419, Nuremberg, Germany.
- Paracelsus Medical Private University Nuremberg, Prof.-Ernst-Nathan-Str. 1, 90419, Nuremberg, Germany.
| | - Joachim H Ficker
- Department of Respiratory Medicine, Allergology and Sleep Medicine / Nuremberg Lung Cancer Center, Paracelsus Medical University, General Hospital Nuremberg, Prof.-Ernst-Nathan-Str. 1, 90419, Nuremberg, Germany
- Paracelsus Medical Private University Nuremberg, Prof.-Ernst-Nathan-Str. 1, 90419, Nuremberg, Germany
| | - Gloria Zeitler
- Paracelsus Medical Private University Nuremberg, Prof.-Ernst-Nathan-Str. 1, 90419, Nuremberg, Germany
| |
Collapse
|
81
|
Bacot SM, Harper TA, Matthews RL, Fennell CJ, Akue A, KuKuruga MA, Lee S, Wang T, Feldman GM. Exploring the Potential Use of a PBMC-Based Functional Assay to Identify Predictive Biomarkers for Anti-PD-1 Immunotherapy. Int J Mol Sci 2020; 21:E9023. [PMID: 33261003 PMCID: PMC7730837 DOI: 10.3390/ijms21239023] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/17/2020] [Accepted: 11/23/2020] [Indexed: 01/05/2023] Open
Abstract
The absence of reliable, robust, and non-invasive biomarkers for anti- Programmed cell death protein 1 (PD-1) immunotherapy is an urgent unmet medical need for the treatment of cancer patients. No predictive biomarkers have been established based on the direct assessment of T cell functions, the primary mechanism of action of anti-PD-1 therapy. In this study, we established a model system to test T cell functions modulated by Nivolumab using anti-CD3 monoclonal antibody (mAb)-stimulated peripheral blood mononuclear cells (PBMCs), and characterized T cell functions primarily based on the knowledge gained from retrospective observations of patients treated with anti-PD-1 immunotherapy. During a comprehensive cytokine profile assessment to identify potential biomarkers, we found that Nivolumab increases expression of T helper type 1 (Th1) associated cytokines such as interferon-γ (IFN-γ) and interleukin-2 (IL-2) in a subset of donors. Furthermore, Nivolumab increases production of Th2, Th9, and Th17 associated cytokines, as well as many proinflammatory cytokines such as IL-6 in a subset of donors. Conversely, Nivolumab treatment has no impact on T cell proliferation, expression of CD25, CD69, or Granzyme B, and only modestly increases in the expansion of regulatory T cells. Our results suggest that assessment of cytokine production using a simple PBMC-based T cell functional assay could be used as a potential predictive marker for anti-PD-1 immunotherapy.
Collapse
Affiliation(s)
- Silvia M. Bacot
- Office of Biotechnology Products, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA; (S.M.B.); (T.A.H.); (R.L.M.); (C.J.F.)
| | - Taylor A. Harper
- Office of Biotechnology Products, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA; (S.M.B.); (T.A.H.); (R.L.M.); (C.J.F.)
| | - Rebecca L. Matthews
- Office of Biotechnology Products, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA; (S.M.B.); (T.A.H.); (R.L.M.); (C.J.F.)
| | - Christie Jane Fennell
- Office of Biotechnology Products, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA; (S.M.B.); (T.A.H.); (R.L.M.); (C.J.F.)
| | - Adovi Akue
- Office of Vaccines Research & Review, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA; (A.A.); (M.A.K.)
| | - Mark A. KuKuruga
- Office of Vaccines Research & Review, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA; (A.A.); (M.A.K.)
| | - Shiowjen Lee
- Office of Biostatistics and Epidemiology, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA;
| | - Tao Wang
- Office of Biotechnology Products, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA; (S.M.B.); (T.A.H.); (R.L.M.); (C.J.F.)
| | - Gerald M. Feldman
- Office of Biotechnology Products, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA; (S.M.B.); (T.A.H.); (R.L.M.); (C.J.F.)
| |
Collapse
|
82
|
Soluble Immune Checkpoints, Gut Metabolites and Performance Status as Parameters of Response to Nivolumab Treatment in NSCLC Patients. J Pers Med 2020; 10:jpm10040208. [PMID: 33158018 PMCID: PMC7712566 DOI: 10.3390/jpm10040208] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 10/31/2020] [Accepted: 11/03/2020] [Indexed: 02/06/2023] Open
Abstract
Patients with non-small cell lung cancer (NSCLC) have been shown to benefit from the introduction of anti-PD1 treatment. However, not all patients experience tumor regression and durable response. The identification of a string of markers that are direct or indirect indicators of the immune system fitness is needed to choose optimal therapeutic schedules in the management of NSCLC patients. We analyzed 34 immuno-related molecules (14 soluble immune checkpoints, 17 cytokines/chemokines, 3 adhesion molecules) released in the serum of 22 NSCLC patients under Nivolumab treatment and the gut metabolomic profile at baseline. These parameters were correlated with performance status (PS) and/or response to treatment. Nivolumab affected the release of soluble immune checkpoints (sICs). Patients with a better clinical outcome and with an optimal PS (PS = 0) showed a decreased level of PD1 and maintained low levels of several sICs at first clinical evaluation. Low levels of PDL1, PDL2, Tim3, CD137 and BTLA4 were also correlated with a long response to treatment. Moreover, responding patients showed a high proportion of eubiosis-associated gut metabolites. In this exploratory study, we propose a combination of immunological and clinical parameters (sICs, PS and gut metabolites) for the identification of patients more suitable for Nivolumab treatment. This string of parameters validated in a network analysis on a larger cohort of patients could help oncologists to improve their decision-making in an NSCLC setting.
Collapse
|
83
|
Hallqvist A, Rohlin A, Raghavan S. Immune checkpoint blockade and biomarkers of clinical response in non-small cell lung cancer. Scand J Immunol 2020; 92:e12980. [PMID: 33015859 PMCID: PMC7757202 DOI: 10.1111/sji.12980] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/21/2020] [Accepted: 09/25/2020] [Indexed: 12/26/2022]
Abstract
Immunotherapy with PD‐1 and PD‐L1 inhibitors has revolutionized the treatment for patients with NSCLC the last years with increased overall survival and in particular increased number of long‐time survivors in patients with metastatic disease. It is now a treatment of choice for patients with distant metastases (stage IV) and in conjunction with chemoradiotherapy for patients with limited spread confined to the chest (stage III). PD‐1 inhibition has been proven to be superior to standard chemotherapy, both as a single treatment and when combined with either chemotherapy or CTLA‐4 inhibition. Despite the success of immunotherapy, the majority of patients do not respond or relapse within a short time frame. Biomarkers that would help to properly select patients with a high likelihood of clinical response to PD‐1 and PD‐L1 inhibitors are scarce and far from optimal, and only one (PD‐L1 expression) has reached clinical practice. Thus for immunotherapy to be effective, the discovery and validation of additional biomarkers is critical for patient selection and prediction of clinical response. In this mini‐review, we give an overview of current clinical management of NSCLC including treatment landscape with regard to immunotherapy, as well as discuss the current genetic and immune cell biomarker studies and their potential for introduction into clinical practice.
Collapse
Affiliation(s)
- Andreas Hallqvist
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Oncology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Anna Rohlin
- Laboratory Medicine, Institute of Biomedicine at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Unit of Genetic Analysis and Bioinformatics, Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Sukanya Raghavan
- Department of Microbiology and Immunology, Institute of Biomedicine at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
84
|
Zucali PA, Cordua N, D'Antonio F, Borea F, Perrino M, De Vincenzo F, Santoro A. Current Perspectives on Immunotherapy in the Peri-Operative Setting of Muscle-Infiltrating Bladder Cancer. Front Oncol 2020; 10:568279. [PMID: 33194654 PMCID: PMC7609911 DOI: 10.3389/fonc.2020.568279] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 09/15/2020] [Indexed: 12/22/2022] Open
Abstract
Patients with muscle-infiltrating bladder cancer (MIBC) present a high risk of postoperative recurrence and death from metastatic urothelial cancer despite surgical resection. Before the use of peri-operative chemotherapy, about half (52%) of patients undergoing radical cystectomy had had a relapse of tumor disease within 5 years of surgery. However, when peri-operative cisplatin-based chemotherapy is added to radical cystectomy for patients with MIBC it provides limited benefit in terms of survival, disease recurrence and development of metastases, at the expense of toxic effects. In fact, a significant proportion of patients still recurs and die to metastatic disease. Given the success of immune-oncological drugs in metastatic urothelial cancer, several trials started to test them in patients with non-metastatic MIBC either in neo-adjuvant and adjuvant setting. The preliminary results of these studies in neo-adjuvant setting are showing great promise, confirming the potential benefits of immunotherapy also in patients with non-metastatic MIBC. The aim of this review is to present an overview of developments happening on the introduction of immunotherapy in peri-operative setting in non-metastatic urothelial cancer. Moreover, an analysis of the critical issues regarding how best customize the delivery of immunotherapy to optimize efficacy and minimize the adverse effects, with particular focus on potential prognostic and predictive molecular biomarkers, is done.
Collapse
Affiliation(s)
- Paolo Andrea Zucali
- Department of Medical Oncology and Hematology, Humanitas Clinical and Research Center-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rozzano, Italy.,Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Nadia Cordua
- Department of Medical Oncology and Hematology, Humanitas Clinical and Research Center-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rozzano, Italy
| | - Federica D'Antonio
- Department of Medical Oncology and Hematology, Humanitas Clinical and Research Center-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rozzano, Italy
| | - Federica Borea
- Department of Medical Oncology and Hematology, Humanitas Clinical and Research Center-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rozzano, Italy
| | - Matteo Perrino
- Department of Medical Oncology and Hematology, Humanitas Clinical and Research Center-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rozzano, Italy
| | - Fabio De Vincenzo
- Department of Medical Oncology and Hematology, Humanitas Clinical and Research Center-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rozzano, Italy
| | - Armando Santoro
- Department of Medical Oncology and Hematology, Humanitas Clinical and Research Center-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rozzano, Italy.,Department of Biomedical Sciences, Humanitas University, Milan, Italy
| |
Collapse
|
85
|
Li S, Zhang C, Pang G, Wang P. Emerging Blood-Based Biomarkers for Predicting Response to Checkpoint Immunotherapy in Non-Small-Cell Lung Cancer. Front Immunol 2020; 11:603157. [PMID: 33178229 PMCID: PMC7596386 DOI: 10.3389/fimmu.2020.603157] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 09/30/2020] [Indexed: 12/14/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs) have brought impressive clinical benefits in a variety of malignancies over the past years, which dramatically revolutionized the cancer treatment paradigm. Monotherapy or in combination with chemotherapy of ICIs targeting programmed death 1/programmed death ligand 1 (PD-L1) has emerged as an alternative treatment for patients with advanced non-small-cell lung cancer (NSCLC). However, constrained by primary or acquired resistance, most patients obtain limited benefits from ICIs and occasionally suffer from severe immune-related adverse events. Moreover, owing to the complexity of the tumor microenvironment and the technical limitations, clinical application of PD-L1 and tumor mutation burden as biomarkers shows many deficiencies. Thus, additional predictive biomarkers are required to further advance the precision of proper patient selection, avoiding the exposure of potential non-responders to unnecessary immunotoxicity. Nowadays, an increasing number of investigations are focusing on peripheral blood as a noninvasive alternative to tissue biopsy in predicting and monitoring treatment outcomes. Herein, we summarize the emerging blood-based biomarkers that could predict the clinical response to checkpoint immunotherapy, specifically in patients with NSCLC.
Collapse
Affiliation(s)
- Shumin Li
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Chengyan Zhang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Guanchao Pang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Pingli Wang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
86
|
Riemann D, Schütte W, Turzer S, Seliger B, Möller M. High PD-L1/CD274 Expression of Monocytes and Blood Dendritic Cells Is a Risk Factor in Lung Cancer Patients Undergoing Treatment with PD1 Inhibitor Therapy. Cancers (Basel) 2020; 12:cancers12102966. [PMID: 33066260 PMCID: PMC7602055 DOI: 10.3390/cancers12102966] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/07/2020] [Accepted: 10/09/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Tumor cells can evade destruction via immune cells by expressing coinhibitory membrane molecules, which suppress antitumoral immune responses. Immune checkpoint inhibitor therapy acts by blocking these inhibitory pathways. Although this type of immunotherapy has shown promising results for selected cancer patients during recent years, an important challenge remains to identify baseline characteristics of patients who will mostly benefit from such therapy. The aim of our study was to assess the expression of the coinhibitory molecule PD-L1/CD274 on different antigen-presenting cells (monocytes and dendritic cell subsets) in the peripheral blood of 35 patients with nonsmall cell lung cancer undergoing checkpoint inhibitor therapy. CD274 expression correlated with therapy response and the survival of patients. Tumor patients with high CD274 expression levels of antigen-presenting cells in blood rarely responded to checkpoint inhibitor therapy. Our results implicate that a high CD274 expression in monocytes and dendritic cell subsets is a risk factor for therapy response. Abstract The aim of this study was to investigate the expression of the coinhibitory molecule PD-L1/CD274 in monocytes and dendritic cells (DC) in the blood of lung cancer patients undergoing PD1 inhibitor therapy and to correlate data with patient’s outcome. PD-L1/CD274 expression of monocytes, CD1c+ myeloid DC (mDC) and CD303+ plasmacytoid DC (pDC) was determined by flow cytometry in peripheral blood at immunotherapy onset. The predictive value of the PD-L1/CD274-expression data was determined by patients’ survival analysis. Patients with a high PD-L1/CD274 expression of monocytes and blood DC subpopulations rarely responded to PD1 inhibitor therapy. Low PD-L1/CD274 expression of monocytes and DC correlated with prolonged progression-free survival (PFS) as well as overall survival (OS). The highest PD-L1/CD274 expression was found in CD14+HLA-DR++CD16+ intermediate monocytes. Whereas the PD-L1/CD274 expression of monocytes and DC showed a strong positive correlation, only the PD-L1/CD274 expression of DC inversely correlated with DC amounts and lymphocyte counts in peripheral blood. Our results implicate that a high PD-L1/CD274 expression of blood monocytes and DC subtypes is a risk factor for therapy response and for the survival of lung cancer patients undergoing PD1 inhibitor therapy.
Collapse
Affiliation(s)
- Dagmar Riemann
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, 06112 Halle, Germany; (S.T.); (B.S.)
- Correspondence: ; Tel.: +49-345-5571358
| | - Wolfgang Schütte
- Clinic of Internal Medicine, Hospital Martha-Maria Halle-Dölau, 06120 Halle, Germany; (W.S.); (M.M.)
| | - Steffi Turzer
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, 06112 Halle, Germany; (S.T.); (B.S.)
| | - Barbara Seliger
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, 06112 Halle, Germany; (S.T.); (B.S.)
| | - Miriam Möller
- Clinic of Internal Medicine, Hospital Martha-Maria Halle-Dölau, 06120 Halle, Germany; (W.S.); (M.M.)
| |
Collapse
|
87
|
Jia Y, Li X, Zhao C, Ren S, Su C, Gao G, Li W, Zhou F, Li J, Zhou C. Soluble PD-L1 as a Predictor of the Response to EGFR-TKIs in Non-small Cell Lung Cancer Patients With EGFR Mutations. Front Oncol 2020; 10:1455. [PMID: 32983977 PMCID: PMC7477347 DOI: 10.3389/fonc.2020.01455] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 07/09/2020] [Indexed: 12/12/2022] Open
Abstract
Programmed cell death ligand 1 (PD-L1) expressed on tumor tissues is a vital molecule for immune suppression and its impact on the response to epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) has been reported. The significance of soluble PD-L1 (sPD-L1) for lung cancer patients remains unknown. This study investigated whether sPD-L1 could predict the response of EGFR-mutated non-small cell lung cancer (NSCLC) to EGFR-targeted therapy. We retrospectively evaluated patients who received first-line treatment with EGFR-TKIs for advanced NSCLC with EGFR mutations. Pre-treatment plasma concentrations of PD-L1 and on-treatment (1 month after treatment initiation) plasma concentrations of PD-L1 were measured using the R-plex Human PD-L1 assay. The association between the sPD-L1 level and the clinical outcome was analyzed. Among 66 patients who were eligible for the study, patients with high pre-treatment or on-treatment sPD-L1 levels had decreased objective response rate (ORR) compared with that of patients with low sPD-L1 levels (39.4 vs. 66.7%, p = 0.026 for pre-treatment sPD-L1 level, and 43.5 vs. 73.9%, p = 0.025 for on-treatment sPD-L1 level). A high baseline sPD-L1 level was associated with a shortened progression-free survival (PFS) rate (9.9 vs. 16.1 months, p = 0.005). Both univariate and multivariate analyses showed that a high baseline sPD-L1 level was an independent factor associated with the PFS (hazard ratio [HR] 2.56, p = 0.011). Our study revealed that the sPD-L1 level was strongly related to the outcome of EGFR-TKIs in NSCLC patients harboring EGFR mutations.
Collapse
Affiliation(s)
- Yijun Jia
- Department of Medical Oncology, Shanghai Pulmonary Hospital and Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Xuefei Li
- Department of Lung Cancer and Immunology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chao Zhao
- Department of Lung Cancer and Immunology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shengxiang Ren
- Department of Medical Oncology, Shanghai Pulmonary Hospital and Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Chunxia Su
- Department of Medical Oncology, Shanghai Pulmonary Hospital and Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Guanghui Gao
- Department of Medical Oncology, Shanghai Pulmonary Hospital and Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Wei Li
- Department of Medical Oncology, Shanghai Pulmonary Hospital and Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Fei Zhou
- Department of Medical Oncology, Shanghai Pulmonary Hospital and Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Jiayu Li
- Department of Medical Oncology, Shanghai Pulmonary Hospital and Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Caicun Zhou
- Department of Medical Oncology, Shanghai Pulmonary Hospital and Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
88
|
Bocanegra A, Blanco E, Fernandez-Hinojal G, Arasanz H, Chocarro L, Zuazo M, Morente P, Vera R, Escors D, Kochan G. PD-L1 in Systemic Immunity: Unraveling Its Contribution to PD-1/PD-L1 Blockade Immunotherapy. Int J Mol Sci 2020; 21:E5918. [PMID: 32824655 PMCID: PMC7460585 DOI: 10.3390/ijms21165918] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 08/11/2020] [Accepted: 08/13/2020] [Indexed: 12/21/2022] Open
Abstract
The use of monoclonal antibodies targeting PD-1/PD-L1 axis completely changed anticancer treatment strategies. However, despite the significant improvement in overall survival and progression-free survival of patients undergoing these immunotherapy treatments, the only clinically accepted biomarker with some prediction capabilities for the outcome of the treatment is PD-L1 expression in tumor biopsies. Nevertheless, even when having PD-L1-positive tumors, numerous patients do not respond to these treatments. Considering the high cost of these therapies and the risk of immune-related adverse events during therapy, it is necessary to identify additional biomarkers that would facilitate stratifying patients in potential responders and non-responders before the start of immunotherapies. Here, we review the utility of PD-L1 expression not only in tumor cells but in immune system cells and their influence on the antitumor activity of immune cell subsets.
Collapse
Affiliation(s)
- Ana Bocanegra
- Oncoimmunology Group, Biomedical Research Centre Navarrabiomed-UPNA, IdISNA, Irunlarrea 3, 31008 Pamplona, Spain; (E.B.); (H.A.); (L.C.); (M.Z.); (P.M.); (D.E.)
| | - Ester Blanco
- Oncoimmunology Group, Biomedical Research Centre Navarrabiomed-UPNA, IdISNA, Irunlarrea 3, 31008 Pamplona, Spain; (E.B.); (H.A.); (L.C.); (M.Z.); (P.M.); (D.E.)
| | - Gonzalo Fernandez-Hinojal
- Department of Oncology, Complejo Hospitalario de Navarra, IdISNA, Irunlarrea 3, 31008 Pamplona, Spain; (G.F.-H.); (R.V.)
| | - Hugo Arasanz
- Oncoimmunology Group, Biomedical Research Centre Navarrabiomed-UPNA, IdISNA, Irunlarrea 3, 31008 Pamplona, Spain; (E.B.); (H.A.); (L.C.); (M.Z.); (P.M.); (D.E.)
| | - Luisa Chocarro
- Oncoimmunology Group, Biomedical Research Centre Navarrabiomed-UPNA, IdISNA, Irunlarrea 3, 31008 Pamplona, Spain; (E.B.); (H.A.); (L.C.); (M.Z.); (P.M.); (D.E.)
| | - Miren Zuazo
- Oncoimmunology Group, Biomedical Research Centre Navarrabiomed-UPNA, IdISNA, Irunlarrea 3, 31008 Pamplona, Spain; (E.B.); (H.A.); (L.C.); (M.Z.); (P.M.); (D.E.)
| | - Pilar Morente
- Oncoimmunology Group, Biomedical Research Centre Navarrabiomed-UPNA, IdISNA, Irunlarrea 3, 31008 Pamplona, Spain; (E.B.); (H.A.); (L.C.); (M.Z.); (P.M.); (D.E.)
| | - Ruth Vera
- Department of Oncology, Complejo Hospitalario de Navarra, IdISNA, Irunlarrea 3, 31008 Pamplona, Spain; (G.F.-H.); (R.V.)
| | - David Escors
- Oncoimmunology Group, Biomedical Research Centre Navarrabiomed-UPNA, IdISNA, Irunlarrea 3, 31008 Pamplona, Spain; (E.B.); (H.A.); (L.C.); (M.Z.); (P.M.); (D.E.)
| | - Grazyna Kochan
- Oncoimmunology Group, Biomedical Research Centre Navarrabiomed-UPNA, IdISNA, Irunlarrea 3, 31008 Pamplona, Spain; (E.B.); (H.A.); (L.C.); (M.Z.); (P.M.); (D.E.)
| |
Collapse
|
89
|
Xing S, Lu Z, Huang Q, Li H, Wang Y, Lai Y, He Y, Deng M, Liu W. An ultrasensitive hybridization chain reaction-amplified CRISPR-Cas12a aptasensor for extracellular vesicle surface protein quantification. Theranostics 2020; 10:10262-10273. [PMID: 32929347 PMCID: PMC7481432 DOI: 10.7150/thno.49047] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 08/04/2020] [Indexed: 12/22/2022] Open
Abstract
Tumor-derived extracellular vesicle (TEV) protein biomarkers facilitate cancer diagnosis and prognostic evaluations. However, the lack of reliable and convenient quantitative methods for evaluating TEV proteins prevents their clinical application. Methods: Here, based on dual amplification of hybridization chain reaction (HCR) and CRISPR-Cas12a, we developed the apta-HCR-CRISPR assay for direct high-sensitivity detection of TEV proteins. The TEV protein-targeted aptamer was amplified by HCR to produce a long-repeated sequence comprising multiple CRISPR RNA (crRNA) targetable barcodes, and the signals were further amplified by CRISPR-Cas12a collateral cleavage activities, resulting in a fluorescence signal. Results: The established strategy was verified by detecting the TEV protein markers nucleolin and programmed death ligand 1 (PD-L1). Both achieved limit of detection (LOD) values as low as 102 particles/µL, which is at least 104-fold more sensitive than aptamer-ELISA and 102-fold more sensitive than apta-HCR-ELISA. We directly applied our assay to a clinical analysis of circulating TEVs from 50 µL of serum, revealing potential applications of nucleolin+ TEVs for nasopharyngeal carcinoma cancer (NPC) diagnosis and PD-L1+ TEVs for therapeutic monitoring. Conclusion: The platform was simple and easy to operate, and this approach should be useful for the highly sensitive and versatile quantification of TEV proteins in clinical samples.
Collapse
|
90
|
Abstract
Stimulator of interferon response cGAMP interactor 1 (STING1, best known as STING) is an endoplasmic reticulum-sessile protein that serves as a signaling hub, receiving input from several pattern recognition receptors, most of which sense ectopic DNA species in the cytosol. In particular, STING ensures the production of type I interferon (IFN) in response to invading DNA viruses, bacterial pathogens, as well as DNA leaking from mitochondria or the nucleus (e.g., in cells exposed to chemotherapy or radiotherapy). As a type I IFN is critical for the initiation of anticancer immune responses, the pharmaceutical industry has generated molecules that directly activate STING for use in oncological indications. Such STING agonists are being tested in clinical trials with the rationale of activating STING in tumor cells or tumor-infiltrating immune cells (including dendritic cells) to elicit immunostimulatory effects, alone or in combination with a range of established chemotherapeutic and immunotherapeutic regimens. In this Trial Watch, we discuss preclinical evidence and accumulating clinical experience shaping the design of Phase I and Phase II trials that evaluate the safety and preliminary efficacy of STING agonists in cancer patients.
Collapse
Affiliation(s)
- Julie Le Naour
- Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, INSERM, Centre de Recherche des Cordeliers, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.,Gustave Roussy Cancer Campus, Villejuif, France.,Université Paris Sud, Paris Saclay, Medicine Kremlin Bicêtre, France
| | - Laurence Zitvogel
- Gustave Roussy Cancer Campus, Villejuif, France.,Equipe Labellisée Ligue Contre Le Cancer, INSERM, Villejuif, France.,Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, France
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, USA.,Sandra and Edward Meyer Cancer Center, New York, USA.,Caryl and Israel Englander Institute for Precision Medicine, New York, USA.,Department of Dermatology, Yale School of Medicine, New Haven, CT, USA.,Université de Paris, Paris, France
| | - Erika Vacchelli
- Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, INSERM, Centre de Recherche des Cordeliers, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.,Gustave Roussy Cancer Campus, Villejuif, France.,Université Paris Sud, Paris Saclay, Medicine Kremlin Bicêtre, France
| | - Guido Kroemer
- Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, INSERM, Centre de Recherche des Cordeliers, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.,Gustave Roussy Cancer Campus, Villejuif, France.,Université Paris Sud, Paris Saclay, Medicine Kremlin Bicêtre, France.,Hôpital Européen Georges Pompidou, AP-HP, Paris, France.,Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China.,Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
91
|
Le Naour J, Galluzzi L, Zitvogel L, Kroemer G, Vacchelli E. Trial watch: IDO inhibitors in cancer therapy. Oncoimmunology 2020; 9:1777625. [PMID: 32934882 PMCID: PMC7466863 DOI: 10.1080/2162402x.2020.1777625] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Indoleamine 2,3-dioxygenase 1 (IDO1) catalyzes the first, rate-limiting step of the so-called “kynurenine pathway”, which converts the essential amino acid L-tryptophan (Trp) into the immunosuppressive metabolite L-kynurenine (Kyn). While expressed constitutively by some tissues, IDO1 can also be induced in specific subsets of antigen-presenting cells that ultimately favor the establishment of immune tolerance to tumor antigens. At least in part, the immunomodulatory functions of IDO1 can be explained by depletion of Trp and accumulation of Kyn and its derivatives. In animal tumor models, genetic or pharmacological IDO1 inhibition can cause the (re)activation of anticancer immune responses. Similarly, neoplasms expressing high levels of IDO1 may elude anticancer immunosurveillance. Therefore, IDO1 inhibitors represent promising therapeutic candidates for cancer therapy, and some of them have already entered clinical evaluation. Here, we summarize preclinical and clinical studies testing IDO1-targeting interventions for oncologic indications.
Collapse
Affiliation(s)
- Julie Le Naour
- Equipe Labellisée Par La Ligue Contre Le Cancer, Université De Paris, Sorbonne Université, INSERM U1138, Centre De Recherche Des Cordeliers, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.,Gustave Roussy Cancer Campus, Villejuif, France.,Faculty of Medicine Kremlin Bicêtre, Université Paris Sud, Paris Saclay, France
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.,Sandra and Edward Meyer Cancer Center, New York, NY, USA.,Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA.,Department of Dermatology, Yale School of Medicine, New Haven, CT, USA.,Université De Paris, Paris, France
| | - Laurence Zitvogel
- Gustave Roussy Cancer Campus, Villejuif, France.,Equipe Labellisée Ligue Contre Le Cancer, Villejuif, France.,Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, France
| | - Guido Kroemer
- Equipe Labellisée Par La Ligue Contre Le Cancer, Université De Paris, Sorbonne Université, INSERM U1138, Centre De Recherche Des Cordeliers, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.,Gustave Roussy Cancer Campus, Villejuif, France.,Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, France.,Hôpital Européen Georges Pompidou, AP-HP, Paris, France.,Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China.,Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
| | - Erika Vacchelli
- Equipe Labellisée Par La Ligue Contre Le Cancer, Université De Paris, Sorbonne Université, INSERM U1138, Centre De Recherche Des Cordeliers, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.,Gustave Roussy Cancer Campus, Villejuif, France
| |
Collapse
|
92
|
Jain S, Kumar S. Cancer immunotherapy: dawn of the death of cancer? Int Rev Immunol 2020; 39:1-18. [PMID: 32530336 DOI: 10.1080/08830185.2020.1775827] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 05/11/2020] [Accepted: 05/16/2020] [Indexed: 02/08/2023]
Abstract
Cancer is one of the proficient evaders of the immune system which claims millions of lives every year. Developing therapeutics against cancer is extremely challenging as cancer involves aberrations in self, most of which are not detected by the immune system. Conventional therapeutics like chemotherapy, radiotherapy are not only toxic but they significantly lower the quality of life. Immunotherapy, which gained momentum in the 20th century, is emerging as one of the alternatives to the conventional therapies and is relatively less harmful but more costly. This review explores the modern advances in an array of such therapies and try to compare them along with a limited analysis of concerns associated with them.
Collapse
Affiliation(s)
- Sidhant Jain
- Department of Zoology, University of Delhi, Delhi, India
| | - Sahil Kumar
- Department of Pharmacology, Maulana Azad Medical College and Lok Nayak Hospital, New Delhi, India
| |
Collapse
|
93
|
Le Naour J, Galluzzi L, Zitvogel L, Kroemer G, Vacchelli E. Trial watch: TLR3 agonists in cancer therapy. Oncoimmunology 2020; 9:1771143. [PMID: 32934877 PMCID: PMC7466857 DOI: 10.1080/2162402x.2020.1771143] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Toll-like receptor 3 (TLR3) is a pattern recognition receptor that senses exogenous (viral) as well as endogenous (mammalian) double-stranded RNA in endosomes. On activation, TLR3 initiates a signal transduction pathway that culminates with the secretion of pro-inflammatory cytokines including type I interferon (IFN). The latter is essential not only for innate immune responses to infection but also for the initiation of antigen-specific immunity against viruses and malignant cells. These aspects of TLR3 biology have supported the development of various agonists for use as stand-alone agents or combined with other therapeutic modalities in cancer patients. Here, we review recent preclinical and clinical advances in the development of TLR3 agonists for oncological disorders. Abbreviations cDC, conventional dendritic cell; CMT, cytokine modulating treatment; CRC, colorectal carcinoma; CTL, cytotoxic T lymphocyte; DC, dendritic cell; dsRNA, double-stranded RNA; FLT3LG, fms-related receptor tyrosine kinase 3 ligand; HNSCC, head and neck squamous cell carcinoma; IFN, interferon; IL, interleukin; ISV, in situ vaccine; MUC1, mucin 1, cell surface associated; PD-1, programmed cell death 1; PD-L1, programmed death-ligand 1; polyA:U, polyadenylic:polyuridylic acid; polyI:C, polyriboinosinic:polyribocytidylic acid; TLR, Toll-like receptor.
Collapse
Affiliation(s)
- Julie Le Naour
- Equipe Labellisée Par La Ligue Contre Le Cancer, Université De Paris, Sorbonne Université, INSERM U1138, Centre De Recherche Des Cordeliers, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.,Gustave Roussy Cancer Campus, Villejuif, France.,Faculty of Medicine Kremlin Bicêtre, Université Paris Sud, Paris Saclay, Kremlin Bicêtre, France
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.,Sandra and Edward Meyer Cancer Center, New York, NY, USA.,Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA.,Department of Dermatology, Yale School of Medicine, New Haven, CT, USA.,Université De Paris, Paris, France
| | - Laurence Zitvogel
- Gustave Roussy Cancer Campus, Villejuif, France.,Equipe Labellisée Ligue Contre Le Cancer, INSERM, Villejuif, France.,Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, France
| | - Guido Kroemer
- Equipe Labellisée Par La Ligue Contre Le Cancer, Université De Paris, Sorbonne Université, INSERM U1138, Centre De Recherche Des Cordeliers, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.,Gustave Roussy Cancer Campus, Villejuif, France.,Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, France.,AP-HP, Hôpital Européen Georges Pompidou, Paris, France.,Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China.,Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
| | - Erika Vacchelli
- Equipe Labellisée Par La Ligue Contre Le Cancer, Université De Paris, Sorbonne Université, INSERM U1138, Centre De Recherche Des Cordeliers, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.,Gustave Roussy Cancer Campus, Villejuif, France
| |
Collapse
|
94
|
Castello A, Rossi S, Toschi L, Mansi L, Lopci E. Soluble PD-L1 in NSCLC Patients Treated with Checkpoint Inhibitors and Its Correlation with Metabolic Parameters. Cancers (Basel) 2020; 12:cancers12061373. [PMID: 32471030 PMCID: PMC7352887 DOI: 10.3390/cancers12061373] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/22/2020] [Accepted: 05/25/2020] [Indexed: 12/14/2022] Open
Abstract
We investigated the role of soluble PD-L1 (sPD-L1) in non-small cell lung carcinoma (NSCLC) patients treated with immune checkpoint inhibitors (ICI) and analyzed its association with clinical outcomes and metabolic parameters by 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG-PET/CT). Between July 2017 and May 2019, we enrolled 20 candidate patients of ICI therapy who had serum frozen samples and 18F-FDG PET/CT available, both at baseline and at the first response evaluation. This analysis is embedded into a larger prospective study (NCT03563482). Twelve out of 20 patients received nivolumab, one patient received combination of nivolumab and ipilimumab, whereas the others received pembrolizumab. Median sPD-L1 level at baseline was 27.22 pg/mL. We found a significant association between patients with elevated sPD-L1, above the median value, and high metabolic tumor burden, expressed by metabolic tumor volume (MTV, 115.3 vs. 35.5, p = 0.034) and total lesion glycolysis (TLG, 687 vs. 210.1, p = 0.049). At the first restaging after 7–8 weeks, median sPD-L1 levels significantly increased as compared to baseline median value (43.9 pg/mL, p = 0.017). No significant differences in response rates were detected, according to both morphological and metabolic response criteria. Likewise, no difference in survival outcomes were observed between low sPD-L1 and high sPD-L1 patients. The increase of sPD-L1 concentrations during ICI treatment may reflect the expansion of tumor volume and the tumor lysis. Moreover, it is supposed that sPD-L1 has its own biological action, either by reducing membrane PD-1 sites available for nivolumab or by inducing lymphocytes exhaustion after binding their membrane PD-1. Further, larger studies are needed to confirm our preliminary results on the role of sPD-L1 during ICI therapy.
Collapse
Affiliation(s)
- Angelo Castello
- Nuclear Medicine, Humanitas Clinical and Research Hospital—IRCCS, 20089 Rozzano (MI), Italy;
| | - Sabrina Rossi
- Medical Oncology, Humanitas Clinical and Research Hospital—IRCCS, 20089 Rozzano (MI), Italy; (S.R.); (L.T.)
| | - Luca Toschi
- Medical Oncology, Humanitas Clinical and Research Hospital—IRCCS, 20089 Rozzano (MI), Italy; (S.R.); (L.T.)
| | - Luigi Mansi
- Section Health and Development, Interuniversity Research Center for Sustainability (CIRPS), 80100 Naples, Italy;
| | - Egesta Lopci
- Nuclear Medicine, Humanitas Clinical and Research Hospital—IRCCS, 20089 Rozzano (MI), Italy;
- Correspondence: or ; Tel.: +39-0282247542; Fax: +39-0282246693
| |
Collapse
|
95
|
Shek D, Read SA, Akhuba L, Qiao L, Gao B, Nagrial A, Carlino MS, Ahlenstiel G. Non-coding RNA and immune-checkpoint inhibitors: friends or foes? Immunotherapy 2020; 12:513-529. [DOI: 10.2217/imt-2019-0204] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Non-coding RNAs (ncRNAs) are an abundant component of the human transcriptome. Their biological role, however, remains incompletely understood. Nevertheless, ncRNAs are highly associated with cancer development and progression due to their ability to modulate gene expression, protein translation and growth pathways. Immune-checkpoint inhibitors (ICIs) are considered one of the most promising and highly effective therapeutic approaches for cancer treatment. ICIs are monoclonal antibodies targeting immune checkpoints such as CTLA-4, PD-1 and PD-L1 signalling pathways that stimulate T cell cytotoxicity and can result in tumor growth suppression. This Review will summarize existing knowledge regarding ncRNAs and their role in cancer and ICI therapy. In addition, we will discuss potential mechanisms by which ncRNAs may influence ICI treatment outcomes.
Collapse
Affiliation(s)
- Dmitrii Shek
- Blacktown Clinical School & Research Centre, Western Sydney University, Sydney, NSW, Australia
- Accreditation Centre, RUDN University, Moscow, Russia
| | - Scott A Read
- Blacktown Clinical School & Research Centre, Western Sydney University, Sydney, NSW, Australia
- Storr Liver Centre, Westmead Institute for Medical Research, University of Sydney, Sydney, NSW, Australia
- Blacktown Hospital, Sydney, NSW, Australia
| | - Liia Akhuba
- Accreditation Centre, RUDN University, Moscow, Russia
| | - Liang Qiao
- Storr Liver Centre, Westmead Institute for Medical Research, University of Sydney, Sydney, NSW, Australia
- Westmead Hospital & Westmead Clinical School, University of Sydney, Sydney, NSW, Australia
| | - Bo Gao
- Westmead Hospital & Westmead Clinical School, University of Sydney, Sydney, NSW, Australia
- Blacktown Hospital, Sydney, NSW, Australia
| | - Adnan Nagrial
- Westmead Hospital & Westmead Clinical School, University of Sydney, Sydney, NSW, Australia
- Blacktown Hospital, Sydney, NSW, Australia
| | - Matteo S Carlino
- Westmead Hospital & Westmead Clinical School, University of Sydney, Sydney, NSW, Australia
- Melanoma Institute Australia, Sydney, NSW, Australia
- Blacktown Hospital, Sydney, NSW, Australia
| | - Golo Ahlenstiel
- Blacktown Clinical School & Research Centre, Western Sydney University, Sydney, NSW, Australia
- Storr Liver Centre, Westmead Institute for Medical Research, University of Sydney, Sydney, NSW, Australia
- Blacktown Hospital, Sydney, NSW, Australia
| |
Collapse
|
96
|
The Validity and Predictive Value of Blood-Based Biomarkers in Prediction of Response in the Treatment of Metastatic Non-Small Cell Lung Cancer: A Systematic Review. Cancers (Basel) 2020; 12:cancers12051120. [PMID: 32365836 PMCID: PMC7280996 DOI: 10.3390/cancers12051120] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/21/2020] [Accepted: 04/27/2020] [Indexed: 12/11/2022] Open
Abstract
With the introduction of targeted therapies and immunotherapy, molecular diagnostics gained a more profound role in the management of non-small cell lung cancer (NSCLC). This study aimed to systematically search for studies reporting on the use of liquid biopsies (LB), the correlation between LBs and tissue biopsies, and finally the predictive value in the management of NSCLC. A systematic literature search was performed, including results published after 1 January 2014. Articles studying the predictive value or validity of a LB were included. The search (up to 1 September 2019) retrieved 1704 articles, 1323 articles were excluded after title and abstract screening. Remaining articles were assessed for eligibility by full-text review. After full-text review, 64 articles investigating the predictive value and 78 articles describing the validity were included. The majority of studies investigated the predictive value of LBs in relation to therapies targeting the epidermal growth factor receptor (EGFR) or anaplastic lymphoma kinase (ALK) receptor (n = 38). Of studies describing the validity of a biomarker, 55 articles report on one or more EGFR mutations. Although a variety of blood-based biomarkers are currently under investigation, most studies evaluated the validity of LBs to determine EGFR mutation status and the subsequent targeting of EGFR tyrosine kinase inhibitors based on the mutation status found in LBs of NSCLC patients.
Collapse
|
97
|
Rossi G, Russo A, Tagliamento M, Tuzi A, Nigro O, Vallome G, Sini C, Grassi M, Dal Bello MG, Coco S, Longo L, Zullo L, Tanda ET, Dellepiane C, Pronzato P, Genova C. Precision Medicine for NSCLC in the Era of Immunotherapy: New Biomarkers to Select the Most Suitable Treatment or the Most Suitable Patient. Cancers (Basel) 2020; 12:E1125. [PMID: 32365882 PMCID: PMC7281184 DOI: 10.3390/cancers12051125] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/20/2020] [Accepted: 04/27/2020] [Indexed: 12/13/2022] Open
Abstract
In recent years, the evolution of treatments has made it possible to significantly improve the outcomes of patients with non-small cell lung cancer (NSCLC). In particular, while molecular targeted therapies are effective in specific patient sub-groups, immune checkpoint inhibitors (ICIs) have greatly influenced the outcomes of a large proportion of NSCLC patients. While nivolumab activity was initially assessed irrespective of predictive biomarkers, subsequent pivotal studies involving other PD-1/PD-L1 inhibitors in pre-treated advanced NSCLC (atezolizumab within the OAK study and pembrolizumab in the Keynote 010 study) reported the first correlations between clinical outcomes and PD-L1 expression. However, PD-L1 could not be sufficient on its own to select patients who may benefit from immunotherapy. Many studies have tried to discover more precise markers that are derived from tumor tissue or from peripheral blood. This review aims to analyze any characteristics of the immunogram that could be used as a predictive biomarker for response to ICIs. Furthermore, we describe the most important genetic alteration that might predict the activity of immunotherapy.
Collapse
Affiliation(s)
- Giovanni Rossi
- Lung Cancer Unit, Medical Oncology 2, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy; (M.T.); (G.V.); (M.G.); (M.G.D.B.); (S.C.); (L.L.); (L.Z.); (C.D.); (P.P.); (C.G.)
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100 Sassari, Italy
| | | | - Marco Tagliamento
- Lung Cancer Unit, Medical Oncology 2, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy; (M.T.); (G.V.); (M.G.); (M.G.D.B.); (S.C.); (L.L.); (L.Z.); (C.D.); (P.P.); (C.G.)
| | - Alessandro Tuzi
- UO Oncologia, ASST Sette Laghi, 21100 Varese, Italy; (A.T.); (O.N.)
| | - Olga Nigro
- UO Oncologia, ASST Sette Laghi, 21100 Varese, Italy; (A.T.); (O.N.)
| | - Giacomo Vallome
- Lung Cancer Unit, Medical Oncology 2, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy; (M.T.); (G.V.); (M.G.); (M.G.D.B.); (S.C.); (L.L.); (L.Z.); (C.D.); (P.P.); (C.G.)
| | - Claudio Sini
- Oncologia Medica e CPDO, ASSL di Olbia-ATS Sardegna, 07026 Olbia, Italy;
| | - Massimiliano Grassi
- Lung Cancer Unit, Medical Oncology 2, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy; (M.T.); (G.V.); (M.G.); (M.G.D.B.); (S.C.); (L.L.); (L.Z.); (C.D.); (P.P.); (C.G.)
| | - Maria Giovanna Dal Bello
- Lung Cancer Unit, Medical Oncology 2, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy; (M.T.); (G.V.); (M.G.); (M.G.D.B.); (S.C.); (L.L.); (L.Z.); (C.D.); (P.P.); (C.G.)
| | - Simona Coco
- Lung Cancer Unit, Medical Oncology 2, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy; (M.T.); (G.V.); (M.G.); (M.G.D.B.); (S.C.); (L.L.); (L.Z.); (C.D.); (P.P.); (C.G.)
| | - Luca Longo
- Lung Cancer Unit, Medical Oncology 2, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy; (M.T.); (G.V.); (M.G.); (M.G.D.B.); (S.C.); (L.L.); (L.Z.); (C.D.); (P.P.); (C.G.)
| | - Lodovica Zullo
- Lung Cancer Unit, Medical Oncology 2, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy; (M.T.); (G.V.); (M.G.); (M.G.D.B.); (S.C.); (L.L.); (L.Z.); (C.D.); (P.P.); (C.G.)
| | - Enrica Teresa Tanda
- Medical Oncology 2, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy;
| | - Chiara Dellepiane
- Lung Cancer Unit, Medical Oncology 2, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy; (M.T.); (G.V.); (M.G.); (M.G.D.B.); (S.C.); (L.L.); (L.Z.); (C.D.); (P.P.); (C.G.)
| | - Paolo Pronzato
- Lung Cancer Unit, Medical Oncology 2, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy; (M.T.); (G.V.); (M.G.); (M.G.D.B.); (S.C.); (L.L.); (L.Z.); (C.D.); (P.P.); (C.G.)
| | - Carlo Genova
- Lung Cancer Unit, Medical Oncology 2, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy; (M.T.); (G.V.); (M.G.); (M.G.D.B.); (S.C.); (L.L.); (L.Z.); (C.D.); (P.P.); (C.G.)
| |
Collapse
|
98
|
Orme JJ, Jazieh KA, Xie T, Harrington S, Liu X, Ball M, Madden B, Charlesworth MC, Azam TU, Lucien F, Wootla B, Li Y, Villasboas JC, Mansfield AS, Dronca RS, Dong H. ADAM10 and ADAM17 cleave PD-L1 to mediate PD-(L)1 inhibitor resistance. Oncoimmunology 2020; 9:1744980. [PMID: 32363112 PMCID: PMC7185206 DOI: 10.1080/2162402x.2020.1744980] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 02/19/2020] [Accepted: 02/20/2020] [Indexed: 12/30/2022] Open
Abstract
ADAM10 and ADAM17 expression and soluble PD-L1 (sPD-L1) predict poor prognosis in many malignancies, including in patients treated with PD-(L)1 inhibitors. The mechanism of soluble PD-L1 production and its effects are unknown. Here we uncover a novel mechanism of ADAM10- and ADAM17-mediated resistance to PD-(L)1 inhibitors. ADAM10 and ADAM17 cleave PD-L1 from the surface of malignant cells and extracellular vesicles. This cleavage produces an active sPD-L1 fragment that induces apoptosis in CD8 + T cells and compromises the killing of tumor cells by CD8 + T cells. Reduced tumor site PD-L1 protein-to-mRNA ratios predict poor outcomes and are correlated with elevated ADAM10 and ADAM17 expression in multiple cancers. These results may explain the discordance between PD-L1 immunohistochemistry and PD-(L)1 inhibitor response. Thus, including ADAM10 and ADAM17 tissue staining may improve therapy selection. Furthermore, treatment with an ADAM10/ADAM17 inhibitor may abrogate PD-(L)1 inhibitor resistance and improve clinical responses to PD-(L)1 immunotherapy.
Collapse
Affiliation(s)
- Jacob J Orme
- Division of Medical Oncology, Mayo Clinic, Rochester, MN, USA
| | - Khalid A Jazieh
- Department of Urology, Mayo Clinic, Rochester, MN, USA.,Department of Internal Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Tiancheng Xie
- Department of Urology, Mayo Clinic, Rochester, MN, USA
| | | | - Xin Liu
- Department of Urology, Mayo Clinic, Rochester, MN, USA
| | - Matthew Ball
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | | | | | - Tariq U Azam
- Department of Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Fabrice Lucien
- Department of Urology, Mayo Clinic, Rochester, MN, USA.,Department of Immunology, Mayo Clinic, Rochester, MN, USA
| | - Bharath Wootla
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN, USA
| | - Yanli Li
- Department of Urology, Mayo Clinic, Rochester, MN, USA.,Department of Internal Medicine, Cleveland Clinic, Cleveland, OH, USA
| | | | | | - Roxana S Dronca
- Division of Hematology/Oncology, Department of Internal Medicine, Mayo Clinic, Jacksonville, FL, USA
| | - Haidong Dong
- Department of Internal Medicine, Cleveland Clinic, Cleveland, OH, USA.,Department of Immunology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
99
|
Lu T, Chen Y, Li J, Guo Q, Lin W, Zheng Y, Su Y, Zong J, Lin S, Ye Y, Pan J. High Soluble Programmed Death-Ligand 1 Predicts Poor Prognosis in Patients with Nasopharyngeal Carcinoma. Onco Targets Ther 2020; 13:1757-1765. [PMID: 32161471 PMCID: PMC7051865 DOI: 10.2147/ott.s242517] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 02/18/2020] [Indexed: 12/13/2022] Open
Abstract
Purpose Immune checkpoint proteins in the tumor microenvironment can enter the blood circulation and are potential markers for liquid biopsy. The aims of this study were to explore differences in immune checkpoint protein expression between patients with nasopharyngeal carcinoma (NPC) and healthy controls and to investigate the prognostic value of the soluble form of programmed death-ligand 1 (sPD-L1) in NPC. Methods In total, 242 patients were included in the disease group. Plasma samples from 23 NPC patients and 15 healthy control were used for immune checkpoint protein panel assays. Samples from 219 patients with NPC including 30 paired pre-treatment and post-radiotherapy samples were evaluated by enzyme-linked immunosorbent assay to determine sPD-L1 levels. Results A total of 14 immune checkpoint proteins, including sPD-L1were upregulated in 23 patients with NPC (all p<0.001) compared with 15 healthy controls. Among 219 patients, the median follow-up time was 50 months (7–82 months). Based on the optimal cutoff value of 93.7 pg/mL, patients with high expression of sPD-L1 had worse distant metastasis-free survival (87.5% vs 74.0%, p=0.006) than those of patients with low expression. Multivariate analysis showed that sPD-L1 (HR=1.99, p=0.048) and EBV-DNA (HR=2.51, p=0.030) were poor prognostic factors for DMFS. In the group with high EBV-DNA expression, DMFS was worse for patients with high sPD-L1 expression than those with low sPD-L1 expression (56.4% vs 82.6%, p=0.002). Conclusion Plasma immune checkpoint protein expression differed significantly between patients with NPC and healthy donors. Plasma sPD-L1 levels are a candidate prognostic biomarker, especially when combined with EBV-DNA.
Collapse
Affiliation(s)
- Tianzhu Lu
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, People's Republic of China
| | - Yiping Chen
- Department of Radiation Oncology, Fujian Cancer Hospital, Fujian Medical University, Fuzhou, People's Republic of China
| | - Jieyu Li
- Laboratory of Immuno-Oncology, Fujian Cancer Hospital, Fuzhou, People's Republic of China
| | - Qiaojuan Guo
- Department of Radiation Oncology, Fujian Cancer Hospital, Fujian Medical University, Fuzhou, People's Republic of China
| | - Wansong Lin
- Laboratory of Immuno-Oncology, Fujian Cancer Hospital, Fuzhou, People's Republic of China
| | - Yuhong Zheng
- Department of Clinical Laboratory, Fujian Cancer Hospital, Fujian Medical University, Fuzhou, People's Republic of China
| | - Ying Su
- Department of Radiation Biology, Fujian Cancer Hospital, Fujian Medical University, Fuzhou, People's Republic of China
| | - Jingfeng Zong
- Department of Radiation Oncology, Fujian Cancer Hospital, Fujian Medical University, Fuzhou, People's Republic of China
| | - Shaojun Lin
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, People's Republic of China.,Department of Radiation Oncology, Fujian Cancer Hospital, Fujian Medical University, Fuzhou, People's Republic of China
| | - Yunbin Ye
- Laboratory of Immuno-Oncology, Fujian Cancer Hospital, Fuzhou, People's Republic of China.,The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, People's Republic of China
| | - Jianji Pan
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, People's Republic of China.,Department of Radiation Oncology, Fujian Cancer Hospital, Fujian Medical University, Fuzhou, People's Republic of China
| |
Collapse
|
100
|
Tiako Meyo M, Jouinot A, Giroux-Leprieur E, Fabre E, Wislez M, Alifano M, Leroy K, Boudou-Rouquette P, Tlemsani C, Khoudour N, Arrondeau J, Thomas-Schoemann A, Blons H, Mansuet-Lupo A, Damotte D, Vidal M, Goldwasser F, Alexandre J, Blanchet B. Predictive Value of Soluble PD-1, PD-L1, VEGFA, CD40 Ligand and CD44 for Nivolumab Therapy in Advanced Non-Small Cell Lung Cancer: A Case-Control Study. Cancers (Basel) 2020; 12:cancers12020473. [PMID: 32085544 PMCID: PMC7072584 DOI: 10.3390/cancers12020473] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/05/2020] [Accepted: 02/13/2020] [Indexed: 02/07/2023] Open
Abstract
A large interindividual variability has been observed in anti Programmed cell Death 1 (anti-PD1) therapies efficacy. The aim of this study is to assess the correlation of soluble PD-1 (sPD-1), soluble Programmed cell Death Ligand 1 (sPD-L1), Vascular Endothelial Growth Factor A (VEGFA), soluble CD40 ligand (sCD40L) and soluble CD44 (sCD44), with survival in nivolumab-treated metastatic non-small cell lung cancer (NSCLC) patients. Plasma biomarkers were assayed at baseline and after two cycles of nivolumab. A cut-off of positivity for sPD-1, sPD-L1 and sCD40L expressions was defined as a plasma level above the lower limit of quantification. Baseline sPD-1 and sPD-L1 levels were subsequently analyzed in a control group of EGFR-mutated (Epidermal Growth Factor Receptor) NSCLC patients. Association between survival and biomarkers was investigated using Cox proportional hazard regression model. Eighty-seven patients were included (51 nivolumab-treated patients, 36 in EGFR-mutated group). In nivolumab group, baseline sPD-1, sPD-L1 and sCD40L were positive for 15(29.4%), 27(52.9%) and 18(50%) patients, respectively. We defined a composite criteria (sCombo) corresponding to sPD-1 and/or sPD-L1 positivity for each patient. In nivolumab group, baseline sCombo positivity was associated with shorter median progression-free survival (PFS) (78 days 95%CI (55–109) vs. 658 days (222-not reached); HR: 4.12 (1.95–8.71), p = 0.0002) and OS (HR: 3.99(1.63–9.80), p = 0.003). In multivariate analysis, baseline sCombo independently correlated with PFS (HR: 2.66 (1.17–6.08), p = 0.02) but not OS. In EGFR-mutated group, all patients were baseline sCombo positive; therefore this factor was not associated with survival. After two cycles of nivolumab, an increased or stable sPD-1 level independently correlated with longer PFS (HR: 0.49, 95%CI (0.30–0.80), p = 0.004) and OS (HR: 0.39, 95%CI (0.21–0.71), p = 0.002). VEGFA, sCD40L and sCD44 did not correlate with survival. We propose a composite biomarker using sPD-1and sPDL-1 to predict nivolumab efficacy in NSCLC patients. A larger validation study is warranted.
Collapse
Affiliation(s)
- Manuela Tiako Meyo
- Drug Biology–Toxicology, Cochin Hospital, AP-HP, CARPEM, 75014 Paris, France; (N.K.); (M.V.); (B.B.)
- UMR8038 CNRS, U1268 INSERM, Faculty of Pharmacy, Paris Descartes University, PRES Sorbonne Paris Cité, 75006 Paris, France;
- Department of Medical Oncology, Cochin Hospital, AP-HP, Paris Descartes University, CARPEM, 75014 Paris, France; (A.J.); (P.B.-R.); (C.T.); (J.A.); (F.G.); (J.A.)
- Correspondence: ; Tel.: +331-5841-2313; Fax: +331-5841-2315
| | - Anne Jouinot
- Department of Medical Oncology, Cochin Hospital, AP-HP, Paris Descartes University, CARPEM, 75014 Paris, France; (A.J.); (P.B.-R.); (C.T.); (J.A.); (F.G.); (J.A.)
- Institut Cochin, INSERM U1016, 75014 Paris, France
| | - Etienne Giroux-Leprieur
- Department of Respiratory Diseases and Thoracic Oncology, APHP-AmbroiseParé Hospital and EA 4340 University Versailles-Saint Quentin en Yvelines, 92100 Boulogne, France;
| | - Elizabeth Fabre
- Department of Thoracic Oncology, Georges Pompidou European Hospital, AP-HP, 75015 Paris, France;
| | - Marie Wislez
- Department of Pneumology, Cochin Hospital, APHP, 75014 Paris, France;
| | - Marco Alifano
- Department of Thoracic Surgery, Cochin Hospital, APHP, 75014 Paris, France;
| | - Karen Leroy
- Department of Cyto-pathology, Cochin Hospital, AP-HP, 75014 Paris, France; (K.L.); (A.M.-L.); (D.D.)
| | - Pascaline Boudou-Rouquette
- Department of Medical Oncology, Cochin Hospital, AP-HP, Paris Descartes University, CARPEM, 75014 Paris, France; (A.J.); (P.B.-R.); (C.T.); (J.A.); (F.G.); (J.A.)
| | - Camille Tlemsani
- Department of Medical Oncology, Cochin Hospital, AP-HP, Paris Descartes University, CARPEM, 75014 Paris, France; (A.J.); (P.B.-R.); (C.T.); (J.A.); (F.G.); (J.A.)
| | - Nihel Khoudour
- Drug Biology–Toxicology, Cochin Hospital, AP-HP, CARPEM, 75014 Paris, France; (N.K.); (M.V.); (B.B.)
| | - Jennifer Arrondeau
- Department of Medical Oncology, Cochin Hospital, AP-HP, Paris Descartes University, CARPEM, 75014 Paris, France; (A.J.); (P.B.-R.); (C.T.); (J.A.); (F.G.); (J.A.)
| | - Audrey Thomas-Schoemann
- UMR8038 CNRS, U1268 INSERM, Faculty of Pharmacy, Paris Descartes University, PRES Sorbonne Paris Cité, 75006 Paris, France;
- Department of Medical Oncology, Cochin Hospital, AP-HP, Paris Descartes University, CARPEM, 75014 Paris, France; (A.J.); (P.B.-R.); (C.T.); (J.A.); (F.G.); (J.A.)
| | - Hélène Blons
- Department of Cyto-pathology, Georges Pompidou European Hospital, AP-HP, 75015 Paris, France;
| | - Audrey Mansuet-Lupo
- Department of Cyto-pathology, Cochin Hospital, AP-HP, 75014 Paris, France; (K.L.); (A.M.-L.); (D.D.)
| | - Diane Damotte
- Department of Cyto-pathology, Cochin Hospital, AP-HP, 75014 Paris, France; (K.L.); (A.M.-L.); (D.D.)
| | - Michel Vidal
- Drug Biology–Toxicology, Cochin Hospital, AP-HP, CARPEM, 75014 Paris, France; (N.K.); (M.V.); (B.B.)
- UMR8038 CNRS, U1268 INSERM, Faculty of Pharmacy, Paris Descartes University, PRES Sorbonne Paris Cité, 75006 Paris, France;
| | - François Goldwasser
- Department of Medical Oncology, Cochin Hospital, AP-HP, Paris Descartes University, CARPEM, 75014 Paris, France; (A.J.); (P.B.-R.); (C.T.); (J.A.); (F.G.); (J.A.)
- Institut Cordeliers, INSERM U1147, 75006 Paris, France
| | - Jérôme Alexandre
- Department of Medical Oncology, Cochin Hospital, AP-HP, Paris Descartes University, CARPEM, 75014 Paris, France; (A.J.); (P.B.-R.); (C.T.); (J.A.); (F.G.); (J.A.)
- Institut Cochin, INSERM U1016, 75014 Paris, France
- Institut Cordeliers, INSERM U1147, 75006 Paris, France
| | - Benoit Blanchet
- Drug Biology–Toxicology, Cochin Hospital, AP-HP, CARPEM, 75014 Paris, France; (N.K.); (M.V.); (B.B.)
- UMR8038 CNRS, U1268 INSERM, Faculty of Pharmacy, Paris Descartes University, PRES Sorbonne Paris Cité, 75006 Paris, France;
| |
Collapse
|