51
|
Amenta PS, Scivoletti NA, Newman MD, Sciancalepore JP, Li D, Myers JC. Proteoglycan-Collagen XV in Human Tissues Is Seen Linking Banded Collagen Fibers Subjacent to the Basement Membrane. J Histochem Cytochem 2016; 53:165-76. [PMID: 15684329 DOI: 10.1369/jhc.4a6376.2005] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Type XV is a large collagen-proteoglycan found in all human tissues examined. By light microscopy it was localized to most epithelial and all nerve, muscle, fat and endothelial basement membrane zones except for the glomerular capillaries or hepatic/splenic sinusoids. This widespread distribution suggested that type XV may be a discrete structural component that acts to adhere basement membrane to the underlying connective tissue. To address these issues, immunogold ultrastructural analysis of type XV collagen in human kidney, placenta, and colon was conducted. Surprisingly, type XV was found almost exclusively associated with the fibrillar collagen network in very close proximity to the basement membrane. Type XV exhibited a focal appearance directly on the surface of, or extending from, the fibers in a linear or clustered array. The most common single arrangement was a bridge of type XV gold particles linking thick-banded fibers. The function of type XV in this restricted microenvironment is expected to have an intrinsic dependence upon its modification with glycosaminoglycan chains. Present biochemical characterization showed that the type XV core protein in vivo carries chains of chondroitin/dermatan sulfate alone, or chondroitin/dermatan sulfate together with heparan sulfate in a differential ratio. Thus, type XV collagen may serve as a structural organizer to maintain a porous meshwork subjacent to the basement membrane, and in this domain may play a key role in signal transduction pathways.
Collapse
Affiliation(s)
- Peter S Amenta
- Department of Pathology and Laboratory Medicine, Robert Wood Johnson Medical School-UMDNJ, New Burnswick, New Jersey, USA
| | | | | | | | | | | |
Collapse
|
52
|
Wullink B, Pas HH, Van der Worp RJ, Kuijer R, Los LI. Type VII Collagen Expression in the Human Vitreoretinal Interface, Corpora Amylacea and Inner Retinal Layers. PLoS One 2015; 10:e0145502. [PMID: 26709927 PMCID: PMC4692387 DOI: 10.1371/journal.pone.0145502] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 12/04/2015] [Indexed: 11/18/2022] Open
Abstract
Type VII collagen, as a major component of anchoring fibrils found at basement membrane zones, is crucial in anchoring epithelial tissue layers to their underlying stroma. Recently, type VII collagen was discovered in the inner human retina by means of immunohistochemistry, while proteomic investigations demonstrated type VII collagen at the vitreoretinal interface of chicken. Because of its potential anchoring function at the vitreoretinal interface, we further assessed the presence of type VII collagen at this site. We evaluated the vitreoretinal interface of human donor eyes by means of immunohistochemistry, confocal microscopy, immunoelectron microscopy, and Western blotting. Firstly, type VII collagen was detected alongside vitreous fibers6 at the vitreoretinal interface. Because of its known anchoring function, it is likely that type VII collagen is involved in vitreoretinal attachment. Secondly, type VII collagen was found within cytoplasmic vesicles of inner retinal cells. These cells resided most frequently in the ganglion cell layer and inner plexiform layer. Thirdly, type VII collagen was found in astrocytic cytoplasmic inclusions, known as corpora amylacea. The intraretinal presence of type VII collagen was confirmed by Western blotting of homogenized retinal preparations. These data add to the understanding of vitreoretinal attachment, which is important for a better comprehension of common vitreoretinal attachment pathologies.
Collapse
Affiliation(s)
- Bart Wullink
- Department of Ophthalmology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
- W.J. Kolff Institute, Graduate School of Medical Sciences, University of Groningen, Groningen, the Netherlands
- * E-mail:
| | - Hendri H. Pas
- Department of Dermatology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Roelofje J. Van der Worp
- Department of Ophthalmology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
- W.J. Kolff Institute, Graduate School of Medical Sciences, University of Groningen, Groningen, the Netherlands
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Roel Kuijer
- W.J. Kolff Institute, Graduate School of Medical Sciences, University of Groningen, Groningen, the Netherlands
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Leonoor I. Los
- Department of Ophthalmology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
- W.J. Kolff Institute, Graduate School of Medical Sciences, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
53
|
Watt SA, Dayal JHS, Wright S, Riddle M, Pourreyron C, McMillan JR, Kimble RM, Prisco M, Gartner U, Warbrick E, McLean WHI, Leigh IM, McGrath JA, Salas-Alanis JC, Tolar J, South AP. Lysyl Hydroxylase 3 Localizes to Epidermal Basement Membrane and Is Reduced in Patients with Recessive Dystrophic Epidermolysis Bullosa. PLoS One 2015; 10:e0137639. [PMID: 26380979 PMCID: PMC4575209 DOI: 10.1371/journal.pone.0137639] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 08/19/2015] [Indexed: 11/18/2022] Open
Abstract
Recessive dystrophic epidermolysis bullosa (RDEB) is caused by mutations in COL7A1 resulting in reduced or absent type VII collagen, aberrant anchoring fibril formation and subsequent dermal-epidermal fragility. Here, we identify a significant decrease in PLOD3 expression and its encoded protein, the collagen modifying enzyme lysyl hydroxylase 3 (LH3), in RDEB. We show abundant LH3 localising to the basement membrane in normal skin which is severely depleted in RDEB patient skin. We demonstrate expression is in-part regulated by endogenous type VII collagen and that, in agreement with previous studies, even small reductions in LH3 expression lead to significantly less secreted LH3 protein. Exogenous type VII collagen did not alter LH3 expression in cultured RDEB keratinocytes and we show that RDEB patients receiving bone marrow transplantation who demonstrate significant increase in type VII collagen do not show increased levels of LH3 at the basement membrane. Our data report a direct link between LH3 and endogenous type VII collagen expression concluding that reduction of LH3 at the basement membrane in patients with RDEB will likely have significant implications for disease progression and therapeutic intervention.
Collapse
Affiliation(s)
- Stephen A. Watt
- Division of Cancer Research, University of Dundee, Dundee, United Kingdom
| | | | - Sheila Wright
- Division of Cancer Research, University of Dundee, Dundee, United Kingdom
| | - Megan Riddle
- Stem Cell Institute and Pediatric Blood and Marrow Transplantation, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Celine Pourreyron
- Division of Cancer Research, University of Dundee, Dundee, United Kingdom
| | - James R. McMillan
- The Centre for Children’s Burns Research, Queensland Children’s Medical Research Institute, Royal Children’s Hospital, The University of Queensland, Brisbane, Australia
| | - Roy M. Kimble
- The Centre for Children’s Burns Research, Queensland Children’s Medical Research Institute, Royal Children’s Hospital, The University of Queensland, Brisbane, Australia
| | - Marco Prisco
- Department of Dermatology & Cutaneous Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Ulrike Gartner
- Centre for Dermatology and Genetic Medicine, Division of Molecular Medicine, Colleges of Life Sciences and Medicine, Dentistry & Nursing, University of Dundee, Dundee, United Kingdom
| | - Emma Warbrick
- Centre for Dermatology and Genetic Medicine, Division of Molecular Medicine, Colleges of Life Sciences and Medicine, Dentistry & Nursing, University of Dundee, Dundee, United Kingdom
| | - W. H. Irwin McLean
- Centre for Dermatology and Genetic Medicine, Division of Molecular Medicine, Colleges of Life Sciences and Medicine, Dentistry & Nursing, University of Dundee, Dundee, United Kingdom
| | - Irene M. Leigh
- Division of Cancer Research, University of Dundee, Dundee, United Kingdom
| | - John A. McGrath
- St. John's Institute of Dermatology, King's College London (Guy's Campus), London, United Kingdom
| | - Julio C. Salas-Alanis
- Basic Sciences Department, Medicine School, University of Monterrey, Monterrey, Mexico
| | - Jakub Tolar
- Stem Cell Institute and Pediatric Blood and Marrow Transplantation, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Andrew P. South
- Division of Cancer Research, University of Dundee, Dundee, United Kingdom
- Department of Dermatology & Cutaneous Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
54
|
Hou Y, Guey LT, Wu T, Gao R, Cogan J, Wang X, Hong E, Vivian Ning W, Keene D, Liu N, Huang Y, Kaftan C, Tangarone B, Quinones-Garcia I, Uitto J, Francone OL, Woodley DT, Chen M. Intravenously Administered Recombinant Human Type VII Collagen Derived from Chinese Hamster Ovary Cells Reverses the Disease Phenotype in Recessive Dystrophic Epidermolysis Bullosa Mice. J Invest Dermatol 2015. [PMID: 26203639 DOI: 10.1038/jid.2015.291] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Recessive dystrophic epidermolysis bullosa (RDEB) is an inherited disorder characterized by skin fragility, blistering, and multiple skin wounds with no currently approved or consistently effective treatment. It is due to mutations in the gene encoding type VII collagen (C7). Using recombinant human C7 (rhC7) purified from human dermal fibroblasts (FB-rhC7), we showed previously that intravenously injected rhC7 distributed to engrafted RDEB skin, incorporated into its dermal-epidermal junction (DEJ), and reversed the RDEB disease phenotype. Human dermal fibroblasts, however, are not used for commercial production of therapeutic proteins. Therefore, we generated rhC7 from Chinese hamster ovary (CHO) cells. The CHO-derived recombinant type VII collagen (CHO-rhC7), similar to FB-rhC7, was secreted as a correctly folded, disulfide-bonded, helical trimer resistant to protease degradation. CHO-rhC7 bound to fibronectin and promoted human keratinocyte migration in vitro. A single dose of CHO-rhC7, administered intravenously into new-born C7-null RDEB mice, incorporated into the DEJ of multiple skin sites, tongue and esophagus, restored anchoring fibrils, improved dermal-epidermal adherence, and increased the animals' life span. Furthermore, no circulating or tissue-bound anti-C7 antibodies were observed in the mice. These data demonstrate the efficacy of CHO-rhC7 in a preclinical murine model of RDEB.
Collapse
Affiliation(s)
- Yingping Hou
- Department of Dermatology, University of Southern California, Los Angeles, California, USA
| | | | - Timothy Wu
- Department of Dermatology, University of Southern California, Los Angeles, California, USA
| | - Robert Gao
- Department of Dermatology, University of Southern California, Los Angeles, California, USA
| | - Jon Cogan
- Department of Dermatology, University of Southern California, Los Angeles, California, USA
| | - Xinyi Wang
- Department of Dermatology, University of Southern California, Los Angeles, California, USA
| | - Elizabeth Hong
- Department of Dermatology, University of Southern California, Los Angeles, California, USA
| | - Weihuang Vivian Ning
- Department of Dermatology, University of Southern California, Los Angeles, California, USA
| | - Douglas Keene
- Shriners Hospital for Children, Portland, Oregon, USA
| | - Nan Liu
- Shire, Lexington, Massachussetts, USA
| | - Yan Huang
- Shire, Lexington, Massachussetts, USA
| | | | | | | | - Jouni Uitto
- Department of Dermatology and Cutaneous Biology, Jefferson Medical College, Philadelphia, PA, USA
| | | | - David T Woodley
- Department of Dermatology, University of Southern California, Los Angeles, California, USA
| | - Mei Chen
- Department of Dermatology, University of Southern California, Los Angeles, California, USA.
| |
Collapse
|
55
|
From marrow to matrix: novel gene and cell therapies for epidermolysis bullosa. Mol Ther 2015; 23:987-992. [PMID: 25803200 DOI: 10.1038/mt.2015.47] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 03/11/2015] [Indexed: 12/22/2022] Open
Abstract
Epidermolysis bullosa encompasses a group of inherited connective tissue disorders that range from mild to lethal. There is no cure, and current treatment is limited to palliative care that is largely ineffective in treating the systemic, life-threatening pathology associated with the most severe forms of the disease. Although allogeneic cell- and protein-based therapies have shown promise, both novel and combinatorial approaches will undoubtedly be required to totally alleviate the disorder. Progress in the development of next-generation therapies that synergize targeted gene-correction and induced pluripotent stem cell technologies offers exciting prospects for personalized, off-the-shelf treatment options that could avoid many of the limitations associated with current allogeneic cell-based therapies. Although no single therapeutic avenue has achieved complete success, each has substantially increased our collective understanding of the complex biology underlying the disease, both providing mechanistic insights and uncovering new hurdles that must be overcome.
Collapse
|
56
|
Vorobyev A, Ujiie H, Recke A, Buijsrogge JJA, Jonkman MF, Pas HH, Iwata H, Hashimoto T, Kim SC, Hoon Kim J, Groves R, Samavedam U, Gupta Y, Schmidt E, Zillikens D, Shimizu H, Ludwig RJ. Autoantibodies to Multiple Epitopes on the Non-Collagenous-1 Domain of Type VII Collagen Induce Blisters. J Invest Dermatol 2015; 135:1565-1573. [PMID: 25689103 DOI: 10.1038/jid.2015.51] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 01/01/2015] [Accepted: 01/05/2015] [Indexed: 12/30/2022]
Abstract
Epidermolysis bullosa acquisita (EBA) is an autoimmune blistering disease of the skin and mucous membranes, characterized by autoantibodies against type VII collagen (COL7), a major component of anchoring fibrils. Different clinical EBA phenotypes are described, including mechanobullous and inflammatory variants. Most EBA patients' sera react with epitopes located within the non-collagenous 1 (NC1) domain of human COL7. However, it has remained unclear whether antibody binding to these different epitopes is pathogenically relevant. To address this issue, we generated recombinant proteins covering the entire NC1 domain. IgG reactivity with these proteins was analyzed in sera of 69 EBA patients. Most recognized clusters of epitopes throughout the NC1 domain. No correlation was detected between antibody specificity and clinical phenotype. To study the pathogenicity of antibodies specific to different NC1 subdomains, rabbit antibodies were generated. All these antibodies caused dermal-epidermal separation ex vivo. Antibodies against two of these subdomains were injected into mice carrying null mutations of mouse COL7 and the human COL7 transgene and induced subepidermal blisters. We here document that autoantibodies to COL7, independent of the targeted epitopes, induce blisters both ex vivo and in vivo. In addition, using COL7-humanized mice, we provide in vivo evidence of pathogenicity of autoantibodies binding to human COL7.
Collapse
Affiliation(s)
- Artem Vorobyev
- Department of Dermatology, University of Lübeck, Lübeck, Germany.
| | - Hideyuki Ujiie
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Andreas Recke
- Department of Dermatology, University of Lübeck, Lübeck, Germany
| | - Jacqueline J A Buijsrogge
- Department of Dermatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Marcel F Jonkman
- Department of Dermatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Hendri H Pas
- Department of Dermatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Hiroaki Iwata
- Department of Dermatology, University of Lübeck, Lübeck, Germany
| | - Takashi Hashimoto
- Department of Dermatology, Kurume University School of Medicine and Kurume University Institute of Cutaneous Cell Biology, Fukuoka, Japan
| | - Soo-Chan Kim
- Department of Dermatology and Cutaneous Biology Research Institute, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Jong Hoon Kim
- Department of Dermatology and Cutaneous Biology Research Institute, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Richard Groves
- Department of Immunodermatology, St John's Institute of Dermatology, St Thomas' Hospital, London, UK
| | - Unni Samavedam
- Department of Dermatology, University of Lübeck, Lübeck, Germany
| | - Yask Gupta
- Department of Dermatology, University of Lübeck, Lübeck, Germany
| | - Enno Schmidt
- Department of Dermatology, University of Lübeck, Lübeck, Germany
| | - Detlef Zillikens
- Department of Dermatology, University of Lübeck, Lübeck, Germany
| | - Hiroshi Shimizu
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Ralf J Ludwig
- Department of Dermatology, University of Lübeck, Lübeck, Germany
| |
Collapse
|
57
|
Turcan I, Jonkman MF. Blistering disease: insight from the hemidesmosome and other components of the dermal-epidermal junction. Cell Tissue Res 2014; 360:545-69. [PMID: 25502077 DOI: 10.1007/s00441-014-2021-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Accepted: 09/25/2014] [Indexed: 02/07/2023]
Abstract
The hemidesmosome is a specialized transmembrane complex that mediates the binding of epithelial cells to the underlying basement membrane. In the skin, this multiprotein structure can be regarded as the chief adhesion unit at the site of the dermal-epidermal junction. Focal adhesions are additional specialized attachment structures located between hemidesmosomes. The integrity of the skin relies on well-assembled and functional hemidesmosomes and focal adhesions (also known as integrin adhesomes). However, if these adhesion structures are impaired, e.g., as a result of circulating autoantibodies or inherited genetic mutations, the mechanical strength of the skin is compromised, leading to blistering and/or tissue inflammation. A particular clinical presentation emerges subject to the molecule that is targeted. None of these junctional complexes are simply compounds of adhesion molecules; they also play a significant role in signalling pathways involved in the differentiation and migration of epithelial cells such as during wound healing and in tumour invasion. We summarize current knowledge about hereditary and acquired blistering diseases emerging from pathologies of the hemidesmosome and its neighbouring proteins as components of the dermal-epidermal junction.
Collapse
Affiliation(s)
- Iana Turcan
- Centre for Blistering Diseases, Department of Dermatology, University Medical Centre Groningen, University of Groningen, P.O. Box 30.001, 9700 RB, Groningen, The Netherlands,
| | | |
Collapse
|
58
|
The collagenopathies: review of clinical phenotypes and molecular correlations. Curr Rheumatol Rep 2014; 16:394. [PMID: 24338780 DOI: 10.1007/s11926-013-0394-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Genetic defects of collagen formation (the collagenopathies) affect almost every organ system and tissue in the body. They can be grouped by clinical phenotype, which usually correlates with the tissue distribution of the affected collagen subtype. Many of these conditions present in childhood; however, milder phenotypes presenting in adulthood are increasingly recognized. Many are difficult to differentiate clinically. Precise diagnosis by means of genetic testing assists in providing prognosis information, family counseling, and individualized treatment. This review provides an overview of the current range of clinical presentations associated with collagen defects, and the molecular mechanisms important to understanding how the results of genetic testing affect medical care.
Collapse
|
59
|
Aminoglycosides restore full-length type VII collagen by overcoming premature termination codons: therapeutic implications for dystrophic epidermolysis bullosa. Mol Ther 2014; 22:1741-52. [PMID: 25155989 DOI: 10.1038/mt.2014.140] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 07/16/2014] [Indexed: 11/08/2022] Open
Abstract
Patients with recessive dystrophic epidermolysis bullosa (RDEB) have severe, incurable skin fragility, blistering, and multiple skin wounds due to mutations in the gene encoding type VII collagen (C7), the major component of anchoring fibrils mediating epidermal-dermal adherence. Nearly 10-25% of RDEB patients carry nonsense mutations leading to premature stop codons (PTCs) that result in truncated C7. In this study, we evaluated the feasibility of using aminoglycosides to suppress PTCs and induce C7 expression in two RDEB keratinocyte cell lines (Q251X/Q251X and R578X/R906) and two primary RDEB fibroblasts (R578X/R578X and R163X/R1683X). Incubation of these cells with aminoglycosides (geneticin, gentamicin, and paromomycin) resulted in the synthesis and secretion of a full-length C7 in a dose-dependent and sustained manner. Importantly, aminoglycoside-induced C7 reversed the abnormal RDEB cell phenotype and incorporated into the dermal-epidermal junction of skin equivalents. We further demonstrated the general utility of aminoglycoside-mediated readthrough in 293 cells transiently transfected with expression vectors encoding 22 different RDEB nonsense mutations. This is the first study demonstrating that aminoglycosides can induce PTC readthrough and restore functional C7 in RDEB caused by nonsense mutations. Therefore, aminoglycosides may have therapeutic potential for RDEB patients and other inherited skin diseases caused by nonsense mutations.
Collapse
|
60
|
Abstract
Genetic skin fragility manifests with diminished resistance of the skin and mucous membranes to external mechanical forces and with skin blistering, erosions, and painful wounds as clinical features. Skin fragility disorders, collectively called epidermolysis bullosa, are caused by mutations in 18 distinct genes that encode proteins involved in epidermal integrity and dermal-epidermal adhesion. The genetic spectrum, along with environmental and genetic modifiers, creates a large number of clinical phenotypes, spanning from minor localized lesions to severe generalized blistering, secondary skin cancer, or early demise resulting from extensive loss of the epidermis. Laboratory investigations of skin fragility have greatly augmented our understanding of genotype-phenotype correlations in epidermolysis bullosa and have also advanced skin biology in general. Current translational research concentrates on the development of biologically valid treatments with therapeutic genes, cells, proteins, or small-molecule compounds in preclinical settings or human pilot trials.
Collapse
Affiliation(s)
- Cristina Has
- Department of Dermatology, Medical Center-University of Freiburg, Freiburg 79104, Germany;
| | | |
Collapse
|
61
|
Vanden Oever MJ, Tolar J. Advances in understanding and treating dystrophic epidermolysis bullosa. F1000PRIME REPORTS 2014; 6:35. [PMID: 24860657 PMCID: PMC4017907 DOI: 10.12703/p6-35] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Epidermolysis bullosa is a group of inherited disorders that can be both systemic and life-threatening. Standard treatments for the most severe forms of this disorder, typically limited to palliative care, are ineffective in reducing the morbidity and mortality due to complications of the disease. Emerging therapies—such as the use of allogeneic cellular therapy, gene therapy, and protein therapy—have all shown promise, but it is likely that several approaches will need to be combined to realize a cure. For recessive dystrophic epidermolysis bullosa, each particular therapeutic approach has added to our understanding of type VII collagen (C7) function and the basic biology surrounding the disease. The efficacy of these therapies and the mechanisms by which they function also give us insight into developing future strategies for treating this and other extracellular matrix disorders.
Collapse
|
62
|
Dayal JHS, Cole CL, Pourreyron C, Watt SA, Lim YZ, Salas-Alanis JC, Murrell DF, McGrath JA, Stieger B, Jahoda C, Leigh IM, South AP. Type VII collagen regulates expression of OATP1B3, promotes front-to-rear polarity and increases structural organisation in 3D spheroid cultures of RDEB tumour keratinocytes. J Cell Sci 2014; 127:740-51. [PMID: 24357722 PMCID: PMC3924202 DOI: 10.1242/jcs.128454] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 11/12/2013] [Indexed: 12/24/2022] Open
Abstract
Type VII collagen is the main component of anchoring fibrils, structures that are integral to basement membrane homeostasis in skin. Mutations in the gene encoding type VII collagen COL7A1 cause recessive dystrophic epidermolysis bullosa (RDEB) an inherited skin blistering condition complicated by frequent aggressive cutaneous squamous cell carcinoma (cSCC). OATP1B3, which is encoded by the gene SLCO1B3, is a member of the OATP (organic anion transporting polypeptide) superfamily responsible for transporting a wide range of endogenous and xenobiotic compounds. OATP1B3 expression is limited to the liver in healthy tissues, but is frequently detected in multiple cancer types and is reported to be associated with differing clinical outcome. The mechanism and functional significance of tumour-specific expression of OATP1B3 has yet to be determined. Here, we identify SLCO1B3 expression in tumour keratinocytes isolated from RDEB and UV-induced cSCC and demonstrate that SLCO1B3 expression and promoter activity are modulated by type VII collagen. We show that reduction of SLCO1B3 expression upon expression of full-length type VII collagen in RDEB cSCC coincides with acquisition of front-to-rear polarity and increased organisation of 3D spheroid cultures. In addition, we show that type VII collagen positively regulates the abundance of markers implicated in cellular polarity, namely ELMO2, PAR3, E-cadherin, B-catenin, ITGA6 and Ln332.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Animals
- Antigens, CD
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Cadherins/genetics
- Cadherins/metabolism
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/metabolism
- Carcinoma, Squamous Cell/pathology
- Cell Adhesion Molecules/genetics
- Cell Adhesion Molecules/metabolism
- Cell Cycle Proteins/genetics
- Cell Cycle Proteins/metabolism
- Cell Polarity
- Coculture Techniques
- Collagen Type VII/physiology
- Cytoskeletal Proteins/genetics
- Cytoskeletal Proteins/metabolism
- Epidermolysis Bullosa Dystrophica/genetics
- Epidermolysis Bullosa Dystrophica/metabolism
- Epidermolysis Bullosa Dystrophica/pathology
- Gene Expression Regulation, Neoplastic
- Humans
- Integrin alpha6/genetics
- Integrin alpha6/metabolism
- Keratinocytes
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Mice
- Neoplasm Transplantation
- Organic Anion Transporters, Sodium-Independent/genetics
- Organic Anion Transporters, Sodium-Independent/metabolism
- Promoter Regions, Genetic
- Protein Transport
- Skin Neoplasms/genetics
- Skin Neoplasms/metabolism
- Skin Neoplasms/pathology
- Solute Carrier Organic Anion Transporter Family Member 1B3
- Transcription, Genetic
- Tumor Cells, Cultured
- beta Catenin/genetics
- beta Catenin/metabolism
- Kalinin
Collapse
Affiliation(s)
- Jasbani H. S. Dayal
- Division of Cancer Research, Medical Research Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK
| | - Clare L. Cole
- Division of Cancer Research, Medical Research Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK
| | - Celine Pourreyron
- Division of Cancer Research, Medical Research Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK
| | - Stephen A. Watt
- Division of Cancer Research, Medical Research Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK
| | - Yok Zuan Lim
- Division of Cancer Research, Medical Research Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK
| | | | - Dedee F. Murrell
- St George Hospital, University of New South Wales, Sydney, 2217 NSW, Australia
| | - John A. McGrath
- King's College School of Medicine, St Thomas' Hospital, Guys Campus, London WC2R 2LS, UK
| | - Bruno Stieger
- Swiss Federal Institute of Technology, 8092 Zurich, Switzerland
| | | | - Irene M. Leigh
- Division of Cancer Research, Medical Research Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK
| | - Andrew P. South
- Division of Cancer Research, Medical Research Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK
| |
Collapse
|
63
|
Jerman UD, Veranič P, Kreft ME. Amniotic membrane scaffolds enable the development of tissue-engineered urothelium with molecular and ultrastructural properties comparable to that of native urothelium. Tissue Eng Part C Methods 2013; 20:317-27. [PMID: 23947657 DOI: 10.1089/ten.tec.2013.0298] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The amniotic membrane (AM) is a naturally derived biomaterial that possesses biological and mechanical properties of great importance for tissue engineering. The aim of our study was to determine whether the AM enables the formation of a normal urinary bladder epithelium-urothelium--and to reveal any differences in the urothelial cell (UC) growth and differentiation when using different AM scaffolds. Cryopreserved human AM was used as a scaffold in three different ways. Normal porcine UCs were seeded on the AM epithelium (eAM), denuded AM (dAM), and stromal AM (sAM) and were cultured for 3 weeks. UC growth on AM scaffolds was monitored daily. By using electron microscopy, histochemical and immunofluorescence techniques, we here provide evidence that all three AM scaffolds enable the development of the urothelium. The fastest growth and the highest differentiation of UCs were demonstrated on the sAM scaffold, which enables the development of tissue-engineered urothelium with molecular and ultrastructural properties comparable to that of the native urothelium. Most importantly, the highly differentiated urothelia on the sAM scaffolds provide important experimental models for future drug delivery studies and developing tissue engineering strategies considering that subtle differences are identified before translation to the clinical settings.
Collapse
Affiliation(s)
- Urška Dragin Jerman
- 1 Institute of Cell Biology, Faculty of Medicine, University of Ljubljana , Ljubljana, Slovenia
| | | | | |
Collapse
|
64
|
Torricelli AAM, Singh V, Santhiago MR, Wilson SE. The corneal epithelial basement membrane: structure, function, and disease. Invest Ophthalmol Vis Sci 2013; 54:6390-400. [PMID: 24078382 DOI: 10.1167/iovs.13-12547] [Citation(s) in RCA: 173] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The corneal epithelial basement membrane (BM) is positioned between basal epithelial cells and the stroma. This highly specialized extracellular matrix functions not only to anchor epithelial cells to the stroma and provide scaffolding during embryonic development but also during migration, differentiation, and maintenance of the differentiated epithelial phenotype. Basement membranes are composed of a diverse assemblage of extracellular molecules, some of which are likely specific to the tissue where they function; but in general they are composed of four primary components--collagens, laminins, heparan sulfate proteoglycans, and nidogens--in addition to other components such as thrombospondin-1, matrilin-2, and matrilin-4 and even fibronectin in some BM. Many studies have focused on characterizing BM due to their potential roles in normal tissue function and disease, and these structures have been well characterized in many tissues. Comparatively few studies, however, have focused on the function of the epithelial BM in corneal physiology. Since the normal corneal stroma is avascular and has relatively low keratocyte density, it is expected that the corneal BM would be different from the BM in other tissues. One function that appears critical in homeostasis and wound healing is the barrier function to penetration of cytokines from the epithelium to stroma (such as transforming growth factor β-1), and possibly from stroma to epithelium (such as keratinocyte growth factor). The corneal epithelial BM is also involved in many inherited and acquired corneal diseases. This review examines this structure in detail and discusses the importance of corneal epithelial BM in homeostasis, wound healing, and disease.
Collapse
|
65
|
Nyström A, Velati D, Mittapalli VR, Fritsch A, Kern JS, Bruckner-Tuderman L. Collagen VII plays a dual role in wound healing. J Clin Invest 2013; 123:3498-509. [PMID: 23867500 PMCID: PMC3726167 DOI: 10.1172/jci68127] [Citation(s) in RCA: 149] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 05/09/2013] [Indexed: 01/01/2023] Open
Abstract
Although a host of intracellular signals is known to contribute to wound healing, the role of the cell microenvironment in tissue repair remains elusive. Here we employed 2 different mouse models of genetic skin fragility to assess the role of the basement membrane protein collagen VII (COL7A1) in wound healing. COL7A1 secures the attachment of the epidermis to the dermis, and its mutations cause a human skin fragility disorder coined recessive dystrophic epidermolysis bullosa (RDEB) that is associated with a constant wound burden. We show that COL7A1 is instrumental for skin wound closure by 2 interconnected mechanisms. First, COL7A1 was required for re-epithelialization through organization of laminin-332 at the dermal-epidermal junction. Its loss perturbs laminin-332 organization during wound healing, which in turn abrogates strictly polarized expression of integrin α6β4 in basal keratinocytes and negatively impacts the laminin-332/integrin α6β4 signaling axis guiding keratinocyte migration. Second, COL7A1 supported dermal fibroblast migration and regulates their cytokine production in the granulation tissue. These findings, which were validated in human wounds, identify COL7A1 as a critical player in physiological wound healing in humans and mice and may facilitate development of therapeutic strategies not only for RDEB, but also for other chronic wounds.
Collapse
Affiliation(s)
- Alexander Nyström
- Department of Dermatology, University Medical Center, Freiburg, Germany.
Freiburg Institute for Advanced Studies, School of Life Sciences — LifeNet, Freiburg, Germany
| | - Daniela Velati
- Department of Dermatology, University Medical Center, Freiburg, Germany.
Freiburg Institute for Advanced Studies, School of Life Sciences — LifeNet, Freiburg, Germany
| | - Venugopal R. Mittapalli
- Department of Dermatology, University Medical Center, Freiburg, Germany.
Freiburg Institute for Advanced Studies, School of Life Sciences — LifeNet, Freiburg, Germany
| | - Anja Fritsch
- Department of Dermatology, University Medical Center, Freiburg, Germany.
Freiburg Institute for Advanced Studies, School of Life Sciences — LifeNet, Freiburg, Germany
| | - Johannes S. Kern
- Department of Dermatology, University Medical Center, Freiburg, Germany.
Freiburg Institute for Advanced Studies, School of Life Sciences — LifeNet, Freiburg, Germany
| | - Leena Bruckner-Tuderman
- Department of Dermatology, University Medical Center, Freiburg, Germany.
Freiburg Institute for Advanced Studies, School of Life Sciences — LifeNet, Freiburg, Germany
| |
Collapse
|
66
|
Ockleford CD, McCracken SA, Rimmington LA, Hubbard ARD, Bright NA, Cockcroft N, Jefferson TB, Waldron E, d'Lacey C. Type VII collagen associated with the basement membrane of amniotic epithelium forms giant anchoring rivets which penetrate a massive lamina reticularis. Placenta 2013; 34:727-37. [PMID: 23834951 DOI: 10.1016/j.placenta.2013.06.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 05/29/2013] [Accepted: 06/03/2013] [Indexed: 10/26/2022]
Abstract
In human amnion a simple cuboidal epithelium and underlying fibroblast layer are separated by an almost acellular compact layer rich in collagen types I and III. This (>10 μm) layer, which may be a thick lamina reticularis, apparently presents an unusual set of conditions. Integration of the multilaminous tissue across it is apparently achieved by waisted structures which we have observed with the light microscope in frozen, paraffin-wax and semi-thin resin sections. We have also captured transmission and scanning electron micrographs of the structures. These structures which cross the compact layer we call "rivets". The composition of these "rivets" has been examined immunocytochemically and in three dimensions using the confocal laser scanning epi-fluorescence microscope. The rivets contain type VII collagen and an α6 integrin. They associate with type IV collagen containing structures (basement membrane lamina densa and spongy coils) and a special population of fibroblasts which may generate, maintain or anchor rivets to the underlying mesenchymal layer. Although type VII collagen is well known to anchor basal lamina to underlying mesodermal collagen fibres these "rivets" are an order of magnitude larger than any previously described type VII collagen containing anchoring structures. Intriguing possible functions of these features include nodes for growth of fibrous collagen sheets and sites of possible enzymatic degradation during regulated amnion weakening approaching term. If these sites are confirmed to be involved in amnion degradation and growth they may represent important targets for therapeutic agents that are designed to delay preterm premature rupture of the membranes a major cause of fetal morbidity and mortality.
Collapse
Affiliation(s)
- C D Ockleford
- Advanced Light Microscope Facility, Department of Infection Immunity and Inflammation, University of Leicester Medical School, University Rd, Leicester LE1 9HN, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Woodley DT, Wang X, Amir M, Hwang B, Remington J, Hou Y, Uitto J, Keene D, Chen M. Intravenously injected recombinant human type VII collagen homes to skin wounds and restores skin integrity of dystrophic epidermolysis bullosa. J Invest Dermatol 2013; 133:1910-3. [PMID: 23321924 PMCID: PMC3890237 DOI: 10.1038/jid.2013.10] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- David T. Woodley
- Department of Dermatology, University of Southern California, Los Angeles, CA
| | - Xinyi Wang
- Department of Dermatology, University of Southern California, Los Angeles, CA
| | - Mahsa Amir
- Department of Dermatology, University of Southern California, Los Angeles, CA
| | - Brian Hwang
- Department of Dermatology, University of Southern California, Los Angeles, CA
| | - Jennifer Remington
- Department of Dermatology, University of Southern California, Los Angeles, CA
| | - Yingpin Hou
- Department of Dermatology, University of Southern California, Los Angeles, CA
| | - Jouni Uitto
- Department of Dermatology Cutaneous Biology, Jefferson Medical College, Philadelphia, PA
| | | | - Mei Chen
- Department of Dermatology, University of Southern California, Los Angeles, CA
| |
Collapse
|
68
|
Wang X, Ghasri P, Amir M, Hwang B, Hou Y, Khilili M, Lin A, Keene D, Uitto J, Woodley DT, Chen M. Topical application of recombinant type VII collagen incorporates into the dermal-epidermal junction and promotes wound closure. Mol Ther 2013; 21:1335-44. [PMID: 23670575 PMCID: PMC3704128 DOI: 10.1038/mt.2013.87] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 04/11/2013] [Indexed: 11/08/2022] Open
Abstract
Patients with recessive dystrophic epidermolysis bullosa (RDEB) have incurable skin fragility, blistering, and skin wounds due to mutations in the gene that codes for type VII collagen (C7) that mediates dermal-epidermal adherence in human skin. In this study, we evaluated if topically applied human recombinant C7 (rC7) could restore C7 at the dermal-epidermal junction (DEJ) and enhance wound healing. We found that rC7 applied topically onto murine skin wounds stably incorporated into the newly formed DEJ of healed wounds and accelerated wound closure by increasing re-epithelialization. Topical rC7 decreased the expression of fibrogenic transforming growth factor-β2 (TGF-β2) and increased the expression of anti-fibrogenic TGF-β3. These were accompanied by the reduced expression of connective tissue growth factor, fewer α smooth muscle actin (α-SMA)-positive myofibroblasts, and less deposition of collagen in the healed neodermis, consistent with less scar formation. In addition, using a mouse model in which skin from C7 knock out mice was grafted onto immunodeficient mice, we showed that applying rC7 onto RDEB grafts with wounds restored C7 and anchoring fibrils (AFs) at the DEJ of the grafts and corrected the dermal-epidermal separation. The topical application of rC7 may be useful for treating patients with RDEB and patients who have chronic skin wounds.
Collapse
Affiliation(s)
- Xinyi Wang
- Department of Dermatology, University of
Southern California, Los Angeles, California,
USA
| | - Pedram Ghasri
- Department of Dermatology, University of
Southern California, Los Angeles, California,
USA
| | - Mahsa Amir
- Department of Dermatology, University of
Southern California, Los Angeles, California,
USA
| | - Brian Hwang
- Department of Dermatology, University of
Southern California, Los Angeles, California,
USA
| | - Yingpin Hou
- Department of Dermatology, University of
Southern California, Los Angeles, California,
USA
| | - Michael Khilili
- Department of Dermatology, University of
Southern California, Los Angeles, California,
USA
| | - Andrew Lin
- Department of Dermatology, University of
Southern California, Los Angeles, California,
USA
| | - Douglas Keene
- Department of Molecular and Medical Genetics,
Shriners Hospital for Children, Portland, Oregon,
USA
| | - Jouni Uitto
- Department of Dermatology and Cutaneous
Biology, Jefferson Medical College, Philadelphia,
Pennsylvania, USA
| | - David T Woodley
- Department of Dermatology, University of
Southern California, Los Angeles, California,
USA
| | - Mei Chen
- Department of Dermatology, University of
Southern California, Los Angeles, California,
USA
| |
Collapse
|
69
|
Nyström A, Buttgereit J, Bader M, Shmidt T, Özcelik C, Hausser I, Bruckner-Tuderman L, Kern JS. Rat model for dominant dystrophic epidermolysis bullosa: glycine substitution reduces collagen VII stability and shows gene-dosage effect. PLoS One 2013; 8:e64243. [PMID: 23717576 PMCID: PMC3662756 DOI: 10.1371/journal.pone.0064243] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 04/10/2013] [Indexed: 02/07/2023] Open
Abstract
Dystrophic epidermolysis bullosa, a severely disabling hereditary skin fragility disorder, is caused by mutations in the gene coding for collagen VII, a specialized adhesion component of the dermal-epidermal junction zone. Both recessive and dominant forms are known; the latter account for about 40% of cases. Patients with dominant dystrophic epidermolysis bullosa exhibit a spectrum of symptoms ranging from mild localized to generalized skin manifestations. Individuals with the same mutation can display substantial phenotypic variance, emphasizing the role of modifying genes in this disorder. The etiology of dystrophic epidermolysis bullosa has been known for around two decades; however, important pathogenetic questions such as involvement of modifier genes remain unanswered and a causative therapy has yet to be developed. Much of the failure to make progress in these areas is due to the lack of suitable animal models that capture all aspects of this complex monogenetic disorder. Here, we report the first rat model of dominant dystrophic epidermolysis bullosa. Affected rats carry a spontaneous glycine to aspartic acid substitution, p.G1867D, within the main structural domain of collagen VII. This confers dominant-negative interference of protein folding and decreases the stability of mutant collagen VII molecules and their polymers, the anchoring fibrils. The phenotype comprises fragile and blister-prone skin, scarring and nail dystrophy. The model recapitulates all signs of the human disease with complete penetrance. Homozygous carriers of the mutation are more severely affected than heterozygous ones, demonstrating for the first time a gene-dosage effect of mutated alleles in dystrophic epidermolysis bullosa. This novel viable and workable animal model for dominant dystrophic epidermolysis bullosa will be valuable for addressing molecular disease mechanisms, effects of modifying genes, and development of novel molecular therapies for patients with dominantly transmitted skin disease.
Collapse
Affiliation(s)
- Alexander Nyström
- Department of Dermatology, University Freiburg Medical Center, Freiburg, Germany
| | - Jens Buttgereit
- Max Delbück Center for Molecular Medicine (MDC), Campus Berlin-Buch, Berlin, Germany
- Experimental and Clinical Research Center (ECRC), Berlin, Germany
| | - Michael Bader
- Max Delbück Center for Molecular Medicine (MDC), Campus Berlin-Buch, Berlin, Germany
| | - Tatiana Shmidt
- Max Delbück Center for Molecular Medicine (MDC), Campus Berlin-Buch, Berlin, Germany
- Experimental and Clinical Research Center (ECRC), Berlin, Germany
| | - Cemil Özcelik
- Max Delbück Center for Molecular Medicine (MDC), Campus Berlin-Buch, Berlin, Germany
- Experimental and Clinical Research Center (ECRC), Berlin, Germany
| | - Ingrid Hausser
- Department of Dermatology, University of Heidelberg, Heidelberg, Germany
| | - Leena Bruckner-Tuderman
- Department of Dermatology, University Freiburg Medical Center, Freiburg, Germany
- Freiburg Institute for Advanced Studies, School of Life Sciences, LifeNet, University of Freiburg, Freiburg, Germany
- * E-mail:
| | - Johannes S. Kern
- Department of Dermatology, University Freiburg Medical Center, Freiburg, Germany
| |
Collapse
|
70
|
Kim JH, Kim SC. Epidermolysis bullosa acquisita. J Eur Acad Dermatol Venereol 2013; 27:1204-13. [PMID: 23368767 DOI: 10.1111/jdv.12096] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 12/17/2012] [Indexed: 12/29/2022]
Abstract
Epidermolysis bullosa acquisita (EBA) is a chronic autoimmune subepidermal bullous disease with clinical features similar to the genetic form of dystrophic epidermolysis bullosa. EBA is characterized by the presence of autoantibodies against type VII collagen which is a major component of the anchoring fibrils at the dermal-epidermal junction. EBA can be divided into two main clinical types; mechanobullous and inflammatory EBA. Mechanobullous EBA, referred to as classic EBA, presents with skin fragility, blisters and dystrophic changes on trauma-prone areas. Inflammatory EBA resembles other autoimmune subepidermal bullous diseases. Compelling evidence from mouse models supports a pathogenic role of autoantibodies against type VII collagen in EBA. Treatment of EBA is often unsatisfactory. The most widely used systemic treatment is corticosteroids. Colchicine and dapsone have been reported to be good treatment modalities when combined with corticosteroids. Some intractable cases of EBA have successfully been treated with intravenous immunoglobulin or rituximab.
Collapse
Affiliation(s)
- J H Kim
- Department of Dermatology and Cutaneous Biology Research Institute, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | | |
Collapse
|
71
|
Hirose M, Vafia K, Kalies K, Groth S, Westermann J, Zillikens D, Ludwig RJ, Collin M, Schmidt E. Enzymatic autoantibody glycan hydrolysis alleviates autoimmunity against type VII collagen. J Autoimmun 2012; 39:304-14. [DOI: 10.1016/j.jaut.2012.04.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2011] [Revised: 04/04/2012] [Accepted: 04/12/2012] [Indexed: 01/13/2023]
|
72
|
Bruckner-Tuderman L, Has C. Molecular heterogeneity of blistering disorders: the paradigm of epidermolysis bullosa. J Invest Dermatol 2012; 132 Suppl 3:E2-5. [PMID: 23154626 DOI: 10.1038/skinbio.2012.2] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
73
|
Umemoto H, Akiyama M, Domon T, Nomura T, Shinkuma S, Ito K, Asaka T, Sawamura D, Uitto J, Uo M, Kitagawa Y, Shimizu H. Type VII collagen deficiency causes defective tooth enamel formation due to poor differentiation of ameloblasts. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 181:1659-71. [PMID: 22940071 DOI: 10.1016/j.ajpath.2012.07.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Revised: 07/05/2012] [Accepted: 07/18/2012] [Indexed: 01/13/2023]
Abstract
Recessive dystrophic epidermolysis bullosa (RDEB) is caused by mutations in the gene encoding type VII collagen (COL7), a major component of anchoring fibrils in the epidermal basement membrane zone. Patients with RDEB present a low oral hygiene index and prevalent tooth abnormalities with caries. We examined the tooth enamel structure of an RDEB patient by scanning electron microscopy. It showed irregular enamel prisms, indicating structural enamel defects. To elucidate the pathomechanisms of enamel defects due to COL7 deficiency, we investigated tooth formation in Col7a1(-/-) and COL7-rescued humanized mice that we have established. The enamel from Col7a1(-/-) mice had normal surface structure. The enamel calcification and chemical composition of Col7a1(-/-) mice were similar to those of the wild type. However, transverse sections of teeth from the Col7a1(-/-) mice showed irregular enamel prisms, which were also observed in the RDEB patient. Furthermore, the Col7a1(-/-) mice teeth had poorly differentiated ameloblasts, lacking normal enamel protein-secreting Tomes' processes, and showed reduced mRNA expression of amelogenin and other enamel-related molecules. These enamel abnormalities were corrected in the COL7-rescued humanized mice expressing a human COL7A1 transgene. These findings suggest that COL7 regulates ameloblast differentiation and is essential for the formation of Tomes' processes. Collectively, COL7 deficiency is thought to disrupt epithelial-mesenchymal interactions, leading to defective ameloblast differentiation and enamel malformation in RDEB patients.
Collapse
Affiliation(s)
- Hiroko Umemoto
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Wiig H, Swartz MA. Interstitial Fluid and Lymph Formation and Transport: Physiological Regulation and Roles in Inflammation and Cancer. Physiol Rev 2012; 92:1005-60. [PMID: 22811424 DOI: 10.1152/physrev.00037.2011] [Citation(s) in RCA: 447] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The interstitium describes the fluid, proteins, solutes, and the extracellular matrix (ECM) that comprise the cellular microenvironment in tissues. Its alterations are fundamental to changes in cell function in inflammation, pathogenesis, and cancer. Interstitial fluid (IF) is created by transcapillary filtration and cleared by lymphatic vessels. Herein we discuss the biophysical, biomechanical, and functional implications of IF in normal and pathological tissue states from both fluid balance and cell function perspectives. We also discuss analysis methods to access IF, which enables quantification of the cellular microenvironment; such methods have demonstrated, for example, that there can be dramatic gradients from tissue to plasma during inflammation and that tumor IF is hypoxic and acidic compared with subcutaneous IF and plasma. Accumulated recent data show that IF and its convection through the interstitium and delivery to the lymph nodes have many and diverse biological effects, including in ECM reorganization, cell migration, and capillary morphogenesis as well as in immunity and peripheral tolerance. This review integrates the biophysical, biomechanical, and biological aspects of interstitial and lymph fluid and its transport in tissue physiology, pathophysiology, and immune regulation.
Collapse
Affiliation(s)
- Helge Wiig
- Department of Biomedicine, University of Bergen, Bergen, Norway; and Laboratory of Lymphatic and Cancer Bioengineering, Institute of Bioengineering and Swiss Institute for Experimental Cancer Research, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Melody A. Swartz
- Department of Biomedicine, University of Bergen, Bergen, Norway; and Laboratory of Lymphatic and Cancer Bioengineering, Institute of Bioengineering and Swiss Institute for Experimental Cancer Research, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
75
|
Agarwal P, Zwolanek D, Keene DR, Schulz JN, Blumbach K, Heinegård D, Zaucke F, Paulsson M, Krieg T, Koch M, Eckes B. Collagen XII and XIV, new partners of cartilage oligomeric matrix protein in the skin extracellular matrix suprastructure. J Biol Chem 2012; 287:22549-59. [PMID: 22573329 DOI: 10.1074/jbc.m111.335935] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The tensile and scaffolding properties of skin rely on the complex extracellular matrix (ECM) that surrounds cells, vasculature, nerves, and adnexus structures and supports the epidermis. In the skin, collagen I fibrils are the major structural component of the dermal ECM, decorated by proteoglycans and by fibril-associated collagens with interrupted triple helices such as collagens XII and XIV. Here we show that the cartilage oligomeric matrix protein (COMP), an abundant component of cartilage ECM, is expressed in healthy human skin. COMP expression is detected in the dermal compartment of skin and in cultured fibroblasts, whereas epidermis and HaCaT cells are negative. In addition to binding collagen I, COMP binds to collagens XII and XIV via their C-terminal collagenous domains. All three proteins codistribute in a characteristic narrow zone in the superficial papillary dermis of healthy human skin. Ultrastructural analysis by immunogold labeling confirmed colocalization and further revealed the presence of COMP along with collagens XII and XIV in anchoring plaques. On the basis of these observations, we postulate that COMP functions as an adapter protein in human skin, similar to its function in cartilage ECM, by organizing collagen I fibrils into a suprastructure, mainly in the vicinity of anchoring plaques that stabilize the cohesion between the upper dermis and the basement membrane zone.
Collapse
Affiliation(s)
- Pallavi Agarwal
- Department of Dermatology, University of Cologne, Cologne 50937, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Licarete E, Ganz S, Recknagel MJ, Di Zenzo G, Hashimoto T, Hertl M, Zambruno G, Hundorfean G, Mudter J, Neurath MF, Bruckner-Tuderman L, Sitaru C. Prevalence of collagen VII-specific autoantibodies in patients with autoimmune and inflammatory diseases. BMC Immunol 2012; 13:16. [PMID: 22471736 PMCID: PMC3368718 DOI: 10.1186/1471-2172-13-16] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Accepted: 04/04/2012] [Indexed: 11/20/2022] Open
Abstract
Background Autoimmunity to collagen VII is typically associated with the skin blistering disease epidermolysis bullosa acquisita (EBA), but also occurs occasionally in patients with systemic lupus erythematosus or inflammatory bowel disease. The aim of our present study was to develop an accurate immunoassay for assessing the presence of autoantibodies against collagen VII in large cohorts of patients and healthy donors. Methods Based on in silico antigenic analysis and previous wetlab epitope mapping data, we designed a chimeric collagen VII construct containing all collagen VII epitopes with higher antigenicity. ELISA was performed with sera from patients with EBA (n = 50), Crohn's disease (CD, n = 50), ulcerative colitis (UC, n = 50), bullous pemphigoid (BP, n = 76), and pemphigus vulgaris (PV, n = 42) and healthy donors (n = 245). Results By ELISA, the receiver operating characteristics analysis yielded an area under the curve of 0.98 (95% CI: 0.9638-1.005), allowing to set the cut-off at 0.32 OD at a calculated specificity of 98% and a sensitivity of 94%. Running the optimized test showed that serum IgG autoantibodies from 47 EBA (94%; 95% CI: 87.41%-100%), 2 CD (4%; 95% CI: 0%-9.43%), 8 UC (16%; 95% CI: 5.8%-26%), 2 BP (2.63%; 95% CI: 0%-6.23%), and 4 PV (9.52%; 95% CI: 0%-18.4%) patients as well as from 4 (1.63%; 95% CI: 0%-3.21%) healthy donors reacted with the chimeric protein. Further analysis revealed that in 34%, 37%, 16% and 100% of sera autoantibodies of IgG1, IgG2, IgG3, and IgG4 isotype, respectively, recognized the recombinant autoantigen. Conclusions Using a chimeric protein, we developed a new sensitive and specific ELISA to detect collagen specific antibodies. Our results show a low prevalence of collagen VII-specific autoantibodies in inflammatory bowel disease, pemphigus and bullous pemphigoid. Furthermore, we show that the autoimmune response against collagen VII is dominated by IgG4 autoantibodies. The new immunoassay should prove a useful tool for clinical and translational research and should improve the routine diagnosis and disease monitoring in diseases associated with collagen VII-specific autoimmunity.
Collapse
Affiliation(s)
- Emilia Licarete
- Department of Dermatology, University of Freiburg, Hauptstr, 7, Freiburg 79104, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Bars PL, Soueidan A. Distribution Patterns of E-Cadherin, Type VII Collagen and Fibronectin in Denture-Related Stomatitis: A Preliminary Study. Open Dent J 2012; 6:14-22. [PMID: 22291862 PMCID: PMC3267086 DOI: 10.2174/1874210601206010014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Revised: 10/25/2011] [Accepted: 10/31/2011] [Indexed: 11/22/2022] Open
Abstract
The distribution of epithelial E-cadherin, basement membrane type VII collagen, and underlying connective tissues fibronectin were investigated immunohistochemically and compared in normal palatal mucosa and in denture-related stomatitis (DRS) derivatives using monoclonal antibodies.Biopsies of palatal mucosa were obtained from twelve patients enrolled in this study, 8 with type II DRS and 4 with healthy mucosa.Our findings bring to the fore, using the expression of three components (E-cadherin, collagen type VII, fibronectin), the continuities of the disorder among epithelial, basement membrane and connective tissue in the case of DRS. In type II denture-related stomatitis, we found an expression of E-cadherinin all the strata of epithelia, and the diffuse and strong expression of type VII collagen at the interface between connective tissue and epithelial cells with discontinuities in BM. The strong expression of fibronectin in underlying connective tissue with penetration in some areas of the palatal mucosa may be an early consequence of advanced DRS. Nevertheless; no single change is pathognomonic of this inflammatory process.In normal tissues (healthy clinical aspect), E-cadherin was found to be restricted to the upper strata of the epithelia, and type VII collagen revealed thin linear staining in the basement membrane and fibronectin in underlying connective tissue combined epithelia.In the case of denture-related stomatitis DRS, these three markers reflect the immunohistological modifications from the superficial layer of the epithelium to the lamina propria.
Collapse
Affiliation(s)
- Pierre Le Bars
- Department of Prosthodontics, Faculté de Chirurgie Dentaire Université de Nantes 1, Place Alexis Ricordeau 44042 Nantes, France
| | - Assem Soueidan
- Department of Periodontology, ERT 2004Faculty of Dental Surgery, University of Nantes, 1 Place Alexis Ricordeau, 44042 Nantes, France
| |
Collapse
|
78
|
Steplewski A, Kasinskas A, Fertala A. Remodeling of the dermal-epidermal junction in bilayered skin constructs after silencing the expression of the p.R2622Q and p.G2623C collagen VII mutants. Connect Tissue Res 2012; 53:379-89. [PMID: 22352907 PMCID: PMC4246506 DOI: 10.3109/03008207.2012.668252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The integrity of skin depends on a complex system of extracellular matrix molecules that form a biological scaffold. One of its elements is the dermal basement membrane that provides a link between the epidermis and the dermis. Mutations in collagen VII, a key component of the dermal membrane zone, are associated with dystrophic epidermolysis bullosa. Although it has been proposed that silencing the mutated COL7A1 allele is a promising approach to restore the dermal basement membrane zone formed in the presence of collagen VII mutants, limitations exist to testing this proposal. Here, we employed a model that utilized skin-like constructs in which engineered collagen VII mutant chains harboring the R2622Q or G2623C substitution were expressed conditionally, but the wild-type chains were expressed unconditionally. We demonstrated that switching off the production of the mutant collagen VII chains in skin constructs restores the organization of collagen VII and laminin 332 deposits in the dermal-epidermal junction to the level of control. We also demonstrated that remodeling of collagen IV deposits was not fully effective after silencing the expression of collagen VII mutants. Thus, our study suggests that while silencing mutant alleles of COL7A1 may repair critical elements of the affected dermal basement membrane, it may not be sufficient to fully remodel its entire architecture initially formed in the presence of the mutant collagen VII chains.
Collapse
Affiliation(s)
- Andrzej Steplewski
- Department of Dermatology and Cutaneous Biology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Anthony Kasinskas
- Department of Dermatology and Cutaneous Biology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Andrzej Fertala
- Department of Dermatology and Cutaneous Biology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania,Correspondence to: Andrzej Fertala, Department of Orthopaedic Surgery, Jefferson Medical College, Thomas Jefferson University, Curtis Building, Room 501, 1015 Walnut Street, Philadelphia, PA 19107., Tel: 215-503-0113,
| |
Collapse
|
79
|
Boudko SP, Engel J, Bächinger HP. The crucial role of trimerization domains in collagen folding. Int J Biochem Cell Biol 2012; 44:21-32. [DOI: 10.1016/j.biocel.2011.09.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2011] [Revised: 09/27/2011] [Accepted: 09/27/2011] [Indexed: 10/17/2022]
|
80
|
Abstract
Epidermolysis bullosa (EB) is classified into the three major subtypes depending on the level of skin cleavage within the epidermal keratinocyte or basement membrane zone. Tissue separation occurs within the intraepidermal cytoplasm of the basal keratinocyte, through the lamina lucida, or in sublamina densa regions of the basal lamina (basement membrane) in EB simplex, junctional EB, and dystrophic EB, respectively. Transmission electron microscopy (TEM) is an effective method for determining the level of tissue separation and hemidesmosome (HD) and anchoring fibril morphology if performed by experienced operators, and has proven to be a powerful technique for the diagnosis of new EB patients. Recent advances in genetic and immunofluorescence studies have enabled us to diagnose EB more easily and with greater accuracy. This contribution reviews TEM findings in the EB subtypes and discusses the importance of observations in the molecular morphology of HD and basement membrane associated structures.
Collapse
|
81
|
Iriyama S, Tsunenaga M, Amano S, Adachi E. Key role of heparan sulfate chains in assembly of anchoring complex at the dermal-epidermal junction. Exp Dermatol 2011; 20:953-5. [PMID: 21824201 DOI: 10.1111/j.1600-0625.2011.01347.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Epidermal basement membrane forms anchoring complex composed of hemidesmosomes, anchoring filaments, lamina densa and anchoring fibrils to link epidermis to dermis. However, the anchoring complex is rarely formed in skin equivalent models, probably because of degradation of extracellular matrix (ECM) proteins and heparan sulfate chains by matrix metalloproteinases (MMPs) and heparanase, respectively. To explore the roles of ECM proteins and heparan sulfate in anchoring complex assembly, we used specific inhibitors of MMPs and heparanase, and the formation of anchoring complex was analysed in terms of polarized deposition of collagen VII, BP180 and β4 integrin at the dermal-epidermal junction (DEJ) by means of immunohistochemistry and transmission electron microscopy (TEM). The deposition of collagen VII was polarized to the basal side by the addition of MMP inhibitor, and the staining intensity was increased by combined treatment with MMP inhibitor and heparanase inhibitor, which enhanced anchoring fibril formation as observed by TEM. BP180 was polarized to the basal side by heparanase inhibitor, which protects HS chains, but not by MMP inhibitor. MMP inhibitor improved the polarization of β4 integrin. Hemidesmosomes were formed in the presence of each inhibitor, as observed by TEM, and formation was greatly enhanced by the combined treatment. These findings suggest that heparan sulfate chains, in addition to ECM proteins at the DEJ, play an important role in the assembly of anchoring complex, especially hemidesmosomes and anchoring fibrils.
Collapse
Affiliation(s)
- Shunsuke Iriyama
- Shiseido Research Center, Yokohama, Japan Department of Molecular Morphology, Graduate School of Medical Sciences, Kitasato University, Sagamihara, Japan.
| | | | | | | |
Collapse
|
82
|
Pérez V, Benavides J, Delgado L, Reyes L, García Marín J, Ferreras M. Dystrophic Epidermolysis Bullosa in Assaf Lambs. J Comp Pathol 2011; 145:226-30. [DOI: 10.1016/j.jcpa.2010.12.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Revised: 10/15/2010] [Accepted: 12/02/2010] [Indexed: 10/18/2022]
|
83
|
Abstract
The dermal-epidermal basement membrane is a complex assembly of proteins that provide adhesion and regulate many important processes such as development, wound healing, and cancer progression. This contribution focuses on the structure and function of individual components of the basement membrane, how they assemble together, and how they participate in human tissues and diseases, with an emphasis on skin involvement. Understanding the composition and structure of the basement membrane provides insight into the pathophysiology of inherited blistering disorders, such as epidermolysis bullosa, and acquired bullous diseases, such as the pemphigoid group of autoimmune diseases and epidermolysis bullosa acquisita.
Collapse
Affiliation(s)
- Sana Hashmi
- Stanford University School of Medicine, Li Ka Shing Building, 291 Campus Drive, Stanford, CA 94305, USA
| | | |
Collapse
|
84
|
Development of NC1 and NC2 domains of Type VII collagen ELISA for the diagnosis and analysis of the time course of epidermolysis bullosa acquisita patients. J Dermatol Sci 2011; 62:169-75. [DOI: 10.1016/j.jdermsci.2011.03.003] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Revised: 02/28/2011] [Accepted: 03/04/2011] [Indexed: 11/22/2022]
|
85
|
Abstract
Lymph formation is driven by hydraulic pressure gradients developing between the interstitial tissue and the lumen of initial lymphatics. While in vessels equipped with lymphatic smooth muscle cells these gradients are determined by well-synchronized spontaneous contractions of vessel segments, initial lymphatics devoid of smooth muscles rely on tissue motion to form lymph and propel it along the network. Lymphatics supplying highly moving tissues, such as skeletal muscle, diaphragm or thoracic tissues, undergo cyclic compression and expansion of their lumen imposed by local stresses arising in the tissue as a consequence of cardiac and respiratory activities. Active muscle contraction and not passive tissue displacement is required to support an efficient lymphatic drainage, as suggested by the fact that the respiratory activity promotes lymph formation during spontaneous, but not mechanical ventilation. The mechanical properties of the lymphatic wall and of the surrounding tissue also play an important role in lymphatic function. Modelling of stress distribution in the lymphatic wall suggests that compliant vessels behave as reservoirs accommodating absorbed interstitial fluid, while lymphatics with stiffer walls, taking advantage of a more efficient transmission of tissue stresses to the lymphatic lumen, propel fluid through the lumen of the lymphatic circuit.
Collapse
Affiliation(s)
- Daniela Negrini
- Dipartimento di Scienze Biomediche Sperimentali e Cliniche, Università degli Studi dell'Insubria, Via J.H. Dunant 5, 21100 Varese, Italy.
| | | |
Collapse
|
86
|
Gara SK, Grumati P, Squarzoni S, Sabatelli P, Urciuolo A, Bonaldo P, Paulsson M, Wagener R. Differential and restricted expression of novel collagen VI chains in mouse. Matrix Biol 2011; 30:248-57. [PMID: 21477648 DOI: 10.1016/j.matbio.2011.03.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Revised: 03/15/2011] [Accepted: 03/29/2011] [Indexed: 12/22/2022]
Abstract
Recently, three novel collagen VI chains, α4, α5 and α6, were identified. These are thought to substitute for the collagen VI α3 chain, probably forming α1α2α4, α1α2α5 or α1α2α6 heterotrimers. The expression pattern of the novel chains is so far largely unknown. In the present study, we compared the tissue distribution of the novel collagen VI chains in mouse with that of the α3 chain by immunohistochemistry, immunoelectron microscopy and immunoblots. In contrast to the widely expressed α3 chain, the novel chains show a highly differential, restricted and often complementary expression. The α4 chain is strongly expressed in the intestinal smooth muscle, surrounding the follicles in ovary, and in testis. The α5 chain is present in perimysium and at the neuromuscular junctions in skeletal muscle, in skin, in the kidney glomerulus, in the interfollicular stroma in ovary and in the tunica albuginea of testis. The α6 chain is most abundant in the endomysium and perimysium of skeletal muscle and in myocard. Immunoelectron microscopy of skeletal muscle localized the α6 chain to the reticular lamina of muscle fibers. The highly differential and restricted expression points to the possibility of tissue-specific roles of the novel chains in collagen VI assembly and function.
Collapse
|
87
|
Hundorfean G, Neurath MF, Sitaru C. Autoimmunity against type VII collagen in inflammatory bowel disease. J Cell Mol Med 2010; 14:2393-403. [PMID: 19878366 PMCID: PMC3823157 DOI: 10.1111/j.1582-4934.2009.00959.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2009] [Accepted: 10/21/2009] [Indexed: 01/15/2023] Open
Abstract
Autoimmunity against type VII collagen, an adhesion molecule of the extracellular matrix in epithelial basement membranes, is causing the rare organ-specific epidermolysis bullosa acquisita (EBA). An intriguing association between EBA and inflammatory bowel disease (IBD) has been extensively documented over the last decades, but, because of the very low incidence of EBA, received little attention from physicians involved in the care of patients with IBD. More recently, autoantibodies against type VII collagen have been detected in up to 68% of IBD patients. Although these findings suggest that chronic intestinal inflammation in IBD predisposes for autoimmunity against type VII collagen, their relevance for the pathogenesis of both IBD and EBA is still unclear. In this review article, the main features of the association between IBD and EBA are presented and pathomechanistic hypotheses as well as future lines of investigation in this area are discussed. Future research should provide new pathomechanistic insights and will likely facilitate the development of more specific and effective immunotherapeutic strategies for both conditions.
Collapse
Affiliation(s)
- Gheorghe Hundorfean
- Department of Internal Medicine A, Ernst-Moritz-Arndt University GreifswaldGreifswald, Germany
| | - Markus F Neurath
- Department of Internal Medicine 1, University Erlangen-NürnbergErlangen, Germany
| | - Cassian Sitaru
- Department of Dermatology, University of FreiburgFreiburg, Germany
- Centre for Biological Signalling Studies (BIOSS), University of FreiburgFreiburg, Germany
| |
Collapse
|
88
|
Mutasim DF. Autoimmune bullous dermatoses in the elderly: an update on pathophysiology, diagnosis and management. Drugs Aging 2010; 27:1-19. [PMID: 20030429 DOI: 10.2165/11318600-000000000-00000] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Elderly individuals are susceptible to autoimmune bullous dermatoses (ABDs), which may be associated with high morbidity and mortality. ABDs result from an autoimmune response to components of the basement membrane zone at the dermal-epidermal junction or desmosomes. Bullous pemphigoid results from autoimmunity to hemidesmosomal proteins present in the basement membrane of stratified squamous epithelia. Patients present with tense blisters in flexural areas of the skin. Mild disease may be treated with potent topical corticosteroids, while extensive disease usually requires systemic corticosteroids or systemic immunosuppressive agents such as azathioprine. Mucosal pemphigoid affects one or more mucous membranes that are lined by stratified squamous epithelia. The two most commonly involved sites are the eye and the oral cavity. Lesions frequently result in scar formation that may cause blindness. Patients with severe disease or ocular involvement require aggressive therapy with corticosteroids and cyclophosphamide. Epidermolysis bullosa acquisita results from autoimmunity to type VII collagen in the anchoring fibrils of the basement membrane. Lesions may either arise on an inflammatory base or be non-inflammatory and result primarily from trauma. Treatment options include corticosteroids, dapsone, ciclosporin, methotrexate and plasmapheresis/immunoapheresis. Paraneoplastic pemphigus results from autoimmunity to multiple desmosomal antigens. The disorder is associated with neoplasms, especially leukaemia, lymphoma and thymoma. Patients present with stomatitis and polymorphous skin eruption. The disease may respond to successful treatment of the underlying neoplasm or may require immunosuppressive therapy.
Collapse
Affiliation(s)
- Diya F Mutasim
- Department of Dermatology, University of Cincinnati, College of Medicine, 231 Albert Sabin Way, P.O. Box 670592, Cincinnati, OH 45267-0592, USA.
| |
Collapse
|
89
|
Järveläinen H, Sainio A, Koulu M, Wight TN, Penttinen R. Extracellular matrix molecules: potential targets in pharmacotherapy. Pharmacol Rev 2010; 61:198-223. [PMID: 19549927 DOI: 10.1124/pr.109.001289] [Citation(s) in RCA: 351] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The extracellular matrix (ECM) consists of numerous macromolecules classified traditionally into collagens, elastin, and microfibrillar proteins, proteoglycans including hyaluronan, and noncollagenous glycoproteins. In addition to being necessary structural components, ECM molecules exhibit important functional roles in the control of key cellular events such as adhesion, migration, proliferation, differentiation, and survival. Any structural inherited or acquired defect and/or metabolic disturbance in the ECM may cause cellular and tissue alterations that can lead to the development or progression of disease. Consequently, ECM molecules are important targets for pharmacotherapy. Specific agents that prevent the excess accumulation of ECM molecules in the vascular system, liver, kidney, skin, and lung; alternatively, agents that inhibit the degradation of the ECM in degenerative diseases such as osteoarthritis would be clinically beneficial. Unfortunately, until recently, the ECM in drug discovery has been largely ignored. However, several of today's drugs that act on various primary targets affect the ECM as a byproduct of the drugs' actions, and this activity may in part be beneficial to the drugs' disease-modifying properties. In the future, agents and compounds targeting directly the ECM will significantly advance the treatment of various human diseases, even those for which efficient therapies are not yet available.
Collapse
Affiliation(s)
- Hannu Järveläinen
- Department of Medicine, Turku University Hospital, Kiinamyllynkatu 4-8, FI-20520 Turku, Finland.
| | | | | | | | | |
Collapse
|
90
|
Chung HJ, Uitto J. Type VII collagen: the anchoring fibril protein at fault in dystrophic epidermolysis bullosa. Dermatol Clin 2010; 28:93-105. [PMID: 19945621 DOI: 10.1016/j.det.2009.10.011] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Type VII collagen is a major component of the anchoring fibrils of the dermal-epidermal adhesion on the dermal side at the lamina densa/papillary dermis interface. Dystrophic epidermolysis bullosa (DEB) emerged as a candidate for type VII collagen mutations becausing anchoring fibrils were shown to be morphologically altered, reduced in number, or completely absent in patients with different forms of DEB. Circulating autoantibodies recognize type VII collagen epitopes in epidermolysis bullosa acquisita. The suggestion that type VII collagen is required for human epidermal tumorigenesis relates to the increasing numbers of life-threatening complications associated with developing squamous cell carcinomas because of the extended life span of affected individuals with recessive DEB.
Collapse
Affiliation(s)
- Hye Jin Chung
- Department of Dermatology and Cutaneous Biology, Jefferson Medical College, and Jefferson Institute of Molecular Medicine, Thomas Jefferson University, 233 South 10th Street, Suite 450 BLSB, Philadelphia, PA 19107, USA
| | | |
Collapse
|
91
|
Ko MS, Marinkovich MP. Role of dermal-epidermal basement membrane zone in skin, cancer, and developmental disorders. Dermatol Clin 2010; 28:1-16. [PMID: 19945611 DOI: 10.1016/j.det.2009.10.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The dermal-epidermal basement membrane zone is an important epithelial and stromal interface, consisting of an intricately organized collection of intracellular, transmembrane, and extracellular matrix proteins. The basement membrane zone has several main functions including acting as a permeability barrier, forming an adhesive interface between epithelial cells and the underlying matrix, and controlling cellular organization and differentiation. This article identifies key molecular players of the dermal-epidermal membrane zone, and highlights recent research studies that have identified structural and functional roles of these components in the context of various blistering, neoplastic, and developmental syndromes.
Collapse
Affiliation(s)
- Myung S Ko
- Program in Epithelial Biology, Stanford University School of Medicine, 269 Campus Drive, Stanford, CA 94305, USA
| | | |
Collapse
|
92
|
South AP, O'Toole EA. Understanding the pathogenesis of recessive dystrophic epidermolysis bullosa squamous cell carcinoma. Dermatol Clin 2010; 28:171-8. [PMID: 19945632 DOI: 10.1016/j.det.2009.10.023] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Patients with recessive dystrophic epidermolysis bullosa develop numerous life-threatening skin cancers. The reasons for this remain unclear. Parallels exist with other scarring skin conditions, such as Marjolin ulcer. We summarize observational and experimental data and discuss proposed theories for the development of such aggressive skin cancers. A context-driven situation seems to be emerging, but more focused research is required to elucidate the pathogenesis of epidermolysis bullosa-associated squamous cell carcinoma.
Collapse
Affiliation(s)
- Andrew P South
- Centre For Oncology and Molecular Medicine, Ninewell's Hospital and Medical School, Dundee, DD1 9SY, UK.
| | | |
Collapse
|
93
|
Mouse AMACO, a kidney and skin basement membrane associated molecule that mediates RGD-dependent cell attachment. Matrix Biol 2009; 28:456-62. [DOI: 10.1016/j.matbio.2009.07.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Revised: 06/29/2009] [Accepted: 07/24/2009] [Indexed: 11/19/2022]
|
94
|
Guess CM, Quaranta V. Defining the role of laminin-332 in carcinoma. Matrix Biol 2009; 28:445-55. [PMID: 19686849 PMCID: PMC2875997 DOI: 10.1016/j.matbio.2009.07.008] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2009] [Revised: 07/27/2009] [Accepted: 07/28/2009] [Indexed: 01/10/2023]
Abstract
The deadly feature of cancer, metastasis, requires invasion of cells through basement membranes (BM), which normally act as barriers between tissue compartments. In the case of many epithelially-derived cancers (carcinomas), laminin-332 (Ln-332) is a key component of the BM barrier. This review provides a historical examination of Ln-332 from its discovery through identification of its functions in BM and possible role in carcinomas. Current understanding points to distinct roles for the three Ln-332 subunits (alpha3, beta3, gamma2) in cell adhesion, extracellular matrix stability, and cell signaling processes in cancer. Given the large number of studies linking Ln-332 gamma2 subunit with cancer prognosis, particular attention is given to the crucial role of this subunit in cancer invasion and to the unanswered questions in this area.
Collapse
Affiliation(s)
- Cherise M Guess
- Meharry Medical College, Department of Microbial Pathogenesis & Immune Response; Nashville, TN 37232-6840, USA.
| | | |
Collapse
|
95
|
Järveläinen H, Sainio A, Koulu M, Wight TN, Penttinen R. Extracellular Matrix Molecules: Potential Targets in Pharmacotherapy. Pharmacol Rev 2009. [DOI: 10.1124/pr.109.001289 doi:dx.doi.org] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
96
|
Abstract
The corneal epithelium adheres to the stroma through a series of linked structures termed collectively the adhesion complex. These structures include; intermediate filaments (keratin filaments) which are linked to the hemidesmosome; the hemidesmosome; the anchoring filaments which extend from the membrane at the hemidesmosome through the lamina lucida to the lamina densa region of the basement membrane; the anchoring fibrils which insert into the basement membrane from the stromal side; and the anchoring plaque on which anchoring fibrils terminate distal from their insertion on the basement membrane. Upon wounding, basal cells of the corneal epithelium disassemble their hemidesmosomes. During migration, the membranes along the wound bed exhibit a different kind of adhesion junction, the focal contact. This junction is present primarily in cells of the leading edge of migration and may be the provisional adhesion junction used by epithelial sheet moving to cover a wound.
Collapse
Affiliation(s)
- I K Gipson
- Eye Research Institute of Retina Foundation, Harvard Medical School, Boston, MA
| |
Collapse
|
97
|
Remington J, Wang X, Hou Y, Zhou H, Burnett J, Muirhead T, Uitto J, Keene DR, Woodley DT, Chen M. Injection of recombinant human type VII collagen corrects the disease phenotype in a murine model of dystrophic epidermolysis bullosa. Mol Ther 2009; 17:26-33. [PMID: 19018253 PMCID: PMC2834970 DOI: 10.1038/mt.2008.234] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2008] [Accepted: 09/25/2008] [Indexed: 11/09/2022] Open
Abstract
Patients with recessive dystrophic epidermolysis bullosa (RDEB) have incurable skin fragility, blistering, and scarring due to mutations in the gene that encodes for type VII collagen (C7) that mediates dermal-epidermal adherence in human skin. We showed previously that intradermal injection of recombinant C7 into transplanted human DEB skin equivalents stably restored C7 expression at the basement membrane zone (BMZ) and reversed the RDEB disease features. In this study, we evaluated the feasibility of protein therapy in a C7 null mouse (Col7a1(-/-)) which recapitulates the features of human RDEB. We intradermally injected purified human C7 into DEB mice and found that the injected human C7 stably incorporated into the mouse BMZ, formed anchoring fibrils, and corrected the DEB murine phenotype, as demonstrated by decreased skin fragility, reduced new blister formation, and markedly prolonged survival. After 4 weeks, treated DEB mice developed circulating anti-human C7 antibodies. Most surprisingly, these anti-C7 antibodies neither bound directly to the mouse's BMZ nor prevented the incorporation of newly injected human C7 into the BMZ. Anti-C7 antibody production was prevented by treating the mice with an anti-CD40L monoclonal antibody, MR1. We conclude that protein therapy may be feasible for the treatment of human patients with RDEB.
Collapse
Affiliation(s)
- Jennifer Remington
- Department of Dermatology, University of Southern California, Los Angeles, California, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Dang N, Murrell DF. Mutation analysis and characterization of COL7A1 mutations in dystrophic epidermolysis bullosa. Exp Dermatol 2008; 17:553-68. [PMID: 18558993 DOI: 10.1111/j.1600-0625.2008.00723.x] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Dystrophic epidermolysis bullosa (DEB) is inherited in both an autosomal dominant DEB and autosomal recessive manner RDEB, both of which result from mutations in the type VII collagen gene (COL7A1). To date, 324 pathogenic mutations have been detected within COL7A1 in different variants of DEB; many mutations are clustered in exon 73 (10.74%) which is close to the 39 amino acid interruption region. Dominant dystrophic epidermolysis bullosa usually involves glycine substitutions within the triple helix of COL7A1 although other missense mutations, deletions or splice-site mutations may underlie some cases. In recessive dystrophic epidermolysis bullosa, the mutations include nonsense, splice site, deletions or insertions, 'silent' glycine substitutions within the triple helix and non-glycine missense mutations within the triple helix or non-collagenous NC-2 domain. The nature of mutations in COL7A1 and their positions correlate reasonably logically with the severity of the resulting phenotypes.
Collapse
Affiliation(s)
- Ningning Dang
- Department of Dermatology, St George Hospital, Sydney, Australia
| | | |
Collapse
|
99
|
Chino T, Tamai K, Yamazaki T, Otsuru S, Kikuchi Y, Nimura K, Endo M, Nagai M, Uitto J, Kitajima Y, Kaneda Y. Bone marrow cell transfer into fetal circulation can ameliorate genetic skin diseases by providing fibroblasts to the skin and inducing immune tolerance. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 173:803-14. [PMID: 18688022 DOI: 10.2353/ajpath.2008.070977] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Recent studies have shown that skin injury recruits bone marrow-derived fibroblasts (BMDFs) to the site of injury to accelerate tissue repair. However, whether uninjured skin can recruit BMDFs to maintain skin homeostasis remains uncertain. Here, we investigated the appearance of BMDFs in normal mouse skin after embryonic bone marrow cell transplantation (E-BMT) with green fluorescent protein-transgenic bone marrow cells (GFP-BMCs) via the vitelline vein, which traverses the uterine wall and is connected to the fetal circulation. At 12 weeks of age, mice treated with E-BMT were observed to have successful engraftment of GFP-BMCs in hematopoietic tissues accompanied by induction of immune tolerance against GFP. We then investigated BMDFs in the skin of the same mice without prior injury and found that a significant number of BMDFs, which generate matrix proteins both in vitro and in vivo, were recruited and maintained after birth. Next, we performed E-BMT in a dystrophic epidermolysis bullosa mouse model (col7a1(-/-)) lacking type VII collagen in the cutaneous basement membrane zone. E-BMT significantly ameliorated the severity of the dystrophic epidermolysis bullosa phenotype in neonatal mice. Type VII collagen was deposited primarily in the follicular basement membrane zone in the vicinity of the BMDFs. Thus, gene therapy using E-BMT into the fetal circulation may offer a potential treatment option to ameliorate genetic skin diseases that are characterized by fibroblast dysfunction through the introduction of immune-tolerated BMDFs.
Collapse
Affiliation(s)
- Takenao Chino
- Division of Gene Therapy Science, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
100
|
Villone D, Fritsch A, Koch M, Bruckner-Tuderman L, Hansen U, Bruckner P. Supramolecular interactions in the dermo-epidermal junction zone: anchoring fibril-collagen VII tightly binds to banded collagen fibrils. J Biol Chem 2008; 283:24506-13. [PMID: 18599485 DOI: 10.1074/jbc.m802415200] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The dermis and the epidermis of normal human skin are functionally separated by a basement membrane but, together, form a stable structural continuum. Anchoring fibrils reinforce this connection by insertion into the basement membrane and by intercalation with banded collagen fibrils of the papillary dermis. Structural abnormalities in collagen VII, the major molecular constituent of anchoring fibrils, lead to a congenital skin fragility condition, dystrophic epidermolysis bullosa, associated with skin blistering. Here, we characterized the molecular basis of the interactions between anchoring fibrils and banded collagen fibrils. Suprastructural fragments of the dermo-epidermal junction zone were generated by mechanical disruption and by separation with magnetic Immunobeads. Anchoring fibrils were tightly attached to banded collagen fibrils. In vitro binding studies demonstrated that a von Willebrand factor A-like motif in collagen VII was essential for binding of anchoring fibrils to reconstituted collagen I fibrils. Since collagen I and VII molecules reportedly undergo only weak interactions, the attachment of anchoring fibrils to collagen fibrils depends on supramolecular organization of their constituents. This complex is stabilized in situ and resists dissociation by strong denaturants.
Collapse
Affiliation(s)
- Daniela Villone
- Institute for Physiological Chemistry and Pathobiochemistry, University Hospital of Münster, 48149 Münster, Germany
| | | | | | | | | | | |
Collapse
|