51
|
Hanson SR, Best MD, Wong CH. Sulfatases: Structure, Mechanism, Biological Activity, Inhibition, and Synthetic Utility. Angew Chem Int Ed Engl 2004; 43:5736-63. [PMID: 15493058 DOI: 10.1002/anie.200300632] [Citation(s) in RCA: 287] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Sulfatases, which cleave sulfate esters in biological systems, play a key role in regulating the sulfation states that determine the function of many physiological molecules. Sulfatase substrates range from small cytosolic steroids, such as estrogen sulfate, to complex cell-surface carbohydrates, such as the glycosaminoglycans. The transformation of these molecules has been linked with important cellular functions, including hormone regulation, cellular degradation, and modulation of signaling pathways. Sulfatases have also been implicated in the onset of various pathophysiological conditions, including hormone-dependent cancers, lysosomal storage disorders, developmental abnormalities, and bacterial pathogenesis. These findings have increased interest in sulfatases and in targeting them for therapeutic endeavors. Although numerous sulfatases have been identified, the wide scope of their biological activity is only beginning to emerge. Herein, accounts of the diversity and growing biological relevance of sulfatases are provided along with an overview of the current understanding of sulfatase structure, mechanism, and inhibition.
Collapse
Affiliation(s)
- Sarah R Hanson
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, BCC 357, La Jolla, California 92037, USA
| | | | | |
Collapse
|
52
|
Hanson SR, Best MD, Wong CH. Sulfatasen: Struktur, Mechanismus, biologische Aktivität, Inhibition, Anwendung in Synthesen. Angew Chem Int Ed Engl 2004. [DOI: 10.1002/ange.200300632] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
53
|
Kosourov S, Seibert M, Ghirardi ML. Effects of extracellular pH on the metabolic pathways in sulfur-deprived, H2-producing Chlamydomonas reinhardtii cultures. PLANT & CELL PHYSIOLOGY 2003; 44:146-155. [PMID: 12610217 DOI: 10.1093/pcp/pcg020] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Sustained photoproduction of H(2) by the green alga, Chlamydomonas reinhardtii, can be obtained by incubating cells in sulfur-deprived medium [Ghirardi et al. (2000b) Trends Biotechnol. 18: 506; Melis et al. (2000) Plant Physiol. 122: 127]. The current work focuses on (a) the effects of different initial extracellular pHs on the inactivation of photosystem II (PSII) and O(2)-sensitive H(2)-production activity in sulfur-deprived algal cells and (b) the relationships among H(2)-production, photosynthetic, aerobic and anaerobic metabolisms under different pH regimens. The maximum rate and yield of H(2) production occur when the pH at the start of the sulfur deprivation period is 7.7 and decrease when the initial pH is lowered to 6.5 or increased to 8.2. The pH profile of hydrogen photoproduction correlates with that of the residual PSII activity (optimum pH 7.3-7.9), but not with the pH profiles of photosynthetic electron transport through photosystem I or of starch and protein degradation. In vitro hydrogenase activity over this pH range is much higher than the actual in situ rates of H(2) production, indicating that hydrogenase activity per se is not limiting. Starch and protein catabolisms generate formate, acetate and ethanol; contribute some reductant for H(2) photoproduction, as indicated by 3-(3,4-dichlorophenyl)-1,1-dimethylurea and 2,5-dibromo-6-isopropyl-3-methyl-1,4-benzoquinone inhibition results; and are the primary sources of reductant for respiratory processes that remove photosynthetically generated O(2). Carbon balances demonstrate that alternative metabolic pathways predominate at different pHs, and these depend on whether residual photosynthetic activity is present or not.
Collapse
Affiliation(s)
- Sergey Kosourov
- National Renewable Energy Laboratory, 1617 Cole Blvd., Golden, CO 80401, U.S.A
| | | | | |
Collapse
|
54
|
Grossman AR, van Waasbergen LG, Kehoe D. Environmental Regulation of Phycobilisome Biosynthesis. LIGHT-HARVESTING ANTENNAS IN PHOTOSYNTHESIS 2003. [DOI: 10.1007/978-94-017-2087-8_17] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
55
|
Ravina CG, Chang CI, Tsakraklides GP, McDermott JP, Vega JM, Leustek T, Gotor C, Davies JP. The sac mutants of Chlamydomonas reinhardtii reveal transcriptional and posttranscriptional control of cysteine biosynthesis. PLANT PHYSIOLOGY 2002; 130:2076-84. [PMID: 12481091 PMCID: PMC166719 DOI: 10.1104/pp.012484] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2002] [Revised: 08/11/2002] [Accepted: 08/22/2002] [Indexed: 05/20/2023]
Abstract
Algae and vascular plants are cysteine (Cys) prototrophs. They are able to import, reduce, and assimilate sulfate into Cys, methionine, and other organic sulfur-containing compounds. Characterization of genes encoding the enzymes required for Cys biosynthesis from the unicellular green alga Chlamydomonas reinhardtii reveals that transcriptional and posttranscriptional mechanisms regulate the pathway. The derived amino acid sequences of the C. reinhardtii genes encoding 5'-adenylylsulfate (APS) reductase and serine (Ser) acetyltransferase are orthologous to sequences from vascular plants. The Cys biosynthetic pathway of C. reinhardtii is regulated by sulfate availability. The steady-state level of transcripts and activity of ATP sulfurylase, APS reductase, Ser acetyltransferase, and O-acetyl-Ser (thiol) lyase increase when cells are deprived of sulfate. The sac1 mutation, which impairs C. reinhardtii ability to acclimate to sulfur-deficient conditions, prevents the increase in accumulation of the transcripts encoding these enzymes and also prevents the increase in activity of all the enzymes except APS reductase. The sac2 mutation, which does not affect accumulation of APS reductase transcripts, blocks the increase in APS reductase activity. These results suggest that APS reductase activity is regulated posttranscriptionally in a SAC2-dependent process.
Collapse
Affiliation(s)
- Cristina G Ravina
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Cientificas, Universidad de Sevilla, 41092 Sevilla, Spain
| | | | | | | | | | | | | | | |
Collapse
|
56
|
Takahashi H, Braby CE, Grossman AR. Sulfur economy and cell wall biosynthesis during sulfur limitation of Chlamydomonas reinhardtii. PLANT PHYSIOLOGY 2001; 127:665-673. [PMID: 11598240 DOI: 10.1104/pp.010257] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
We have identified two novel periplasmic/cell wall polypeptides that specifically accumulate during sulfur limitation of Chlamydomonas reinhardtii. These polypeptides, present at high levels in the extracellular polypeptide fraction from a sulfur-deprived, cell wall-minus C. reinhardtii strain, have apparent molecular masses of 76 and 88 kD and are designated Ecp76 and Ecp88. N-terminal sequences of these polypeptides facilitated the isolation of full-length Ecp76 and Ecp88 cDNAs. Ecp76 and Ecp88 polypeptides are deduced to be 583 and 595 amino acids, respectively. Their amino acid sequences are similar to each other, with features characteristic of cell wall-localized hydroxyproline-rich glycoproteins; the N terminus of each polypeptide contains a predicted signal sequence, whereas the C terminus is rich in proline, alanine, and serine. Ecp76 and Ecp88 have either no (Ecp88) or one (Ecp76) sulfur-containing amino acid and transcripts encoding these polypeptides are not detected in cultures maintained on complete medium, but accumulate when cells are deprived of sulfur. This accumulation is temporally delayed relative to the accumulation of sulfur stress-induced arylsulfatase and ATP sulfurylase transcripts. The addition of sulfate back to sulfur-starved cultures caused a rapid decline in Ecp76 and Ecp88 mRNAs (half lives < 10 min). Furthermore, the C. reinhardtii sac1 mutant, which lacks a regulatory protein critical for acclimation to sulfur limitation, does not accumulate Ecp76 or Ecp88 transcripts. These results suggest that the Ecp76 and Ecp88 genes are under SacI control, and that restructuring of the C. reinhardtii cell wall during sulfur limitation may be important for redistribution of internal and efficient utilization of environmental sulfur-containing molecules.
Collapse
Affiliation(s)
- H Takahashi
- The Institute of Physical and Chemical Research Plant Science Center, Hirosawa 2-1, Wako, Saitama 351-0198, Japan
| | | | | |
Collapse
|
57
|
Takahashi H, Braby CE, Grossman AR. Sulfur economy and cell wall biosynthesis during sulfur limitation of Chlamydomonas reinhardtii. PLANT PHYSIOLOGY 2001; 127:665-73. [PMID: 11598240 PMCID: PMC125101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/15/2001] [Revised: 04/12/2001] [Accepted: 06/15/2001] [Indexed: 04/17/2023]
Abstract
We have identified two novel periplasmic/cell wall polypeptides that specifically accumulate during sulfur limitation of Chlamydomonas reinhardtii. These polypeptides, present at high levels in the extracellular polypeptide fraction from a sulfur-deprived, cell wall-minus C. reinhardtii strain, have apparent molecular masses of 76 and 88 kD and are designated Ecp76 and Ecp88. N-terminal sequences of these polypeptides facilitated the isolation of full-length Ecp76 and Ecp88 cDNAs. Ecp76 and Ecp88 polypeptides are deduced to be 583 and 595 amino acids, respectively. Their amino acid sequences are similar to each other, with features characteristic of cell wall-localized hydroxyproline-rich glycoproteins; the N terminus of each polypeptide contains a predicted signal sequence, whereas the C terminus is rich in proline, alanine, and serine. Ecp76 and Ecp88 have either no (Ecp88) or one (Ecp76) sulfur-containing amino acid and transcripts encoding these polypeptides are not detected in cultures maintained on complete medium, but accumulate when cells are deprived of sulfur. This accumulation is temporally delayed relative to the accumulation of sulfur stress-induced arylsulfatase and ATP sulfurylase transcripts. The addition of sulfate back to sulfur-starved cultures caused a rapid decline in Ecp76 and Ecp88 mRNAs (half lives < 10 min). Furthermore, the C. reinhardtii sac1 mutant, which lacks a regulatory protein critical for acclimation to sulfur limitation, does not accumulate Ecp76 or Ecp88 transcripts. These results suggest that the Ecp76 and Ecp88 genes are under SacI control, and that restructuring of the C. reinhardtii cell wall during sulfur limitation may be important for redistribution of internal and efficient utilization of environmental sulfur-containing molecules.
Collapse
Affiliation(s)
- H Takahashi
- The Institute of Physical and Chemical Research Plant Science Center, Hirosawa 2-1, Wako, Saitama 351-0198, Japan
| | | | | |
Collapse
|
58
|
Leisinger U, Rüfenacht K, Fischer B, Pesaro M, Spengler A, Zehnder AJ, Eggen RI. The glutathione peroxidase homologous gene from Chlamydomonas reinhardtii is transcriptionally up-regulated by singlet oxygen. PLANT MOLECULAR BIOLOGY 2001; 46:395-408. [PMID: 11485197 DOI: 10.1023/a:1010601424452] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The glutathione peroxidase homologous gene (Gpxh gene) in Chlamydomonas reinhardtii is up-regulated under oxidative stress conditions. The Gpxh gene showed a remarkably strong and fast induction by the singlet oxygen-generating photosensitizers neutral red, methylene blue and rose Bengal. The Gpxh mRNA levels strongly increased, albeit much more slowly, upon exposure to the organic hydroperoxides tert-butyl hydroperoxide (t-BOOH) and cumene hydroperoxide. In contrast, the Gpxh mRNA levels were only weakly induced by exposure to the superoxide-generating compound paraquat and by hydrogen peroxide. A comparison of the Gpxh mRNA levels with those of the heat shock protein HSP70A and the iron superoxide dismutase gene showed qualitative and quantitative differences for the three genes under oxidative stress conditions tested. The Gpxh gene is specifically induced by singlet-oxygen photosensitizers and the relative induction by other compounds is much weaker for Gpxh than for the other genes investigated. Using Gpxh promoter fusions with the arylsulfatase reporter gene, we have shown that the Gpxh was transcriptionally up-regulated by singlet-oxygen photosensitizers. It is also shown that the Gpxh promoter contains a region between 104 and 179 bp upstream of the transcription start that is responsible for the mRNA up-regulation upon exposure to 1O2 but not t-BOOH. Within this region a regulatory sequence homologous to the mammalian cAMP response element (CRE) and activator protein 1 (AP-1) binding site was identified within a 16 bp palindrome.
Collapse
Affiliation(s)
- U Leisinger
- Department of Environmental Microbiology and Molecular Ecotoxicology, Swiss Federal Institute for Environmental Science and Technology (EAWAG), Duebendorf
| | | | | | | | | | | | | |
Collapse
|
59
|
Grossman A, Takahashi H. MACRONUTRIENT UTILIZATION BY PHOTOSYNTHETIC EUKARYOTES AND THE FABRIC OF INTERACTIONS. ANNUAL REVIEW OF PLANT PHYSIOLOGY AND PLANT MOLECULAR BIOLOGY 2001; 52:163-210. [PMID: 11337396 DOI: 10.1146/annurev.arplant.52.1.163] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Organisms acclimate to a continually fluctuating nutrient environment. Acclimation involves responses specific for the limiting nutrient as well as responses that are more general and occur when an organism experiences different stress conditions. Specific responses enable organisms to efficiently scavenge the limiting nutrient and may involve the induction of high-affinity transport systems and the synthesis of hydrolytic enzymes that facilitate the release of the nutrient from extracellular organic molecules or from internal reserves. General responses include changes in cell division rates and global alterations in metabolic activities. In photosynthetic organisms there must be precise regulation of photosynthetic activity since when severe nutrient limitation prevents continued cell growth, excitation of photosynthetic pigments could result in the formation of reactive oxygen species, which can severely damage structural and functional features of the cell. This review focuses on ways that photosynthetic eukaryotes assimilate the macronutrients nitrogen, sulfur, and phosphorus, and the mechanisms that govern assimilatory activities. Also discussed are molecular responses to macronutrient limitation and the elicitation of those responses through integration of environmental and cellular cues.
Collapse
Affiliation(s)
- Arthur Grossman
- Department of Plant Biology, The Carnegie Institution of Washington 260 Panama Street, Stanford, California 94305; e-mail: , RIKEN Plant Science Center, 2-l Hirosawa, Wako, Saitama, 351-0198, Japan; e-mail:
| | | |
Collapse
|
60
|
Loppes R, Radoux M. Identification of short promoter regions involved in the transcriptional expression of the nitrate reductase gene in Chlamydomonas reinhardtii. PLANT MOLECULAR BIOLOGY 2001; 45:215-227. [PMID: 11289512 DOI: 10.1023/a:1006401312916] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
In Chlamydomonas reinhardtii, the expression of the Nia1 gene encoding NAD(P)H nitrate reductase is controlled at the transcriptional level, positively by light and negatively by ammonium. Previous work has shown that the region -279 to +269 with respect to the start site of transcription was sufficient to confer regulated expression of a promoterless arylsulfatase (Ars) reporter gene. To understand the mechanisms underlying this regulation, the -279 to +2 sequence was analysed for the presence of ammonium-responsive elements using either pJD54 (promoterless Ars gene) or pJD100 (minimal beta-tubulin promoter-driven Ars gene). The region lying between -195 and -120 was shown to be dispensable. Essential responsive elements were found in four distinct regions between -231 and -219, -120 and -100, -76 and -65 and -33 and -8. Each of these sequences is required for maximal expression in the absence of ammonium and a conserved GGA/TAGGGT motif is present in two of these regions. Several deletions within the region -33 to -77 were shown to partially relieve the transformants from the negative effect of ammonium. These experiments demonstrate that Nia1 expression is promoted by at least four elements between -231 and -8 and suggest that part of the repression by ammonium takes place through a proximal element located in the -51 to -33 sequence.
Collapse
Affiliation(s)
- R Loppes
- Genetics of Microorganisms, Department of Plant Biology, University of Liège, Sart Tilman, Belgium.
| | | |
Collapse
|
61
|
Abstract
To cope with low nutrient availability in nature, organisms have evolved inducible systems that enable them to scavenge and efficiently utilize the limiting nutrient. Furthermore, organisms must have the capacity to adjust their rate of metabolism and make specific alterations in metabolic pathways that favor survival when the potential for cell growth and division is reduced. In this article I will focus on the acclimation of Chlamydomonas reinhardtii, a unicellular, eukaryotic green alga to conditions of nitrogen, sulfur and phosphorus deprivation. This organism has a distinguished history as a model for classical genetic analyses, but it has recently been developed for exploitation using an array of molecular and genomic tools. The application of these tools to the analyses of nutrient limitation responses (and other biological processes) is revealing mechanisms that enable Chlamydomonas to survive harsh environmental conditions and establishing relationships between the responses of this morphologically simple, photosynthetic eukaryote and those of both nonphotosynthetic organisms and vascular plants.
Collapse
|
62
|
Leustek T, Martin MN, Bick JA, Davies JP. PATHWAYS AND REGULATION OF SULFUR METABOLISM REVEALED THROUGH MOLECULAR AND GENETIC STUDIES. ACTA ACUST UNITED AC 2000; 51:141-165. [PMID: 15012189 DOI: 10.1146/annurev.arplant.51.1.141] [Citation(s) in RCA: 352] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Sulfur is essential for life. Its oxidation state is in constant flux as it circulates through the global sulfur cycle. Plants play a key role in the cycle since they are primary producers of organic sulfur compounds. They are able to couple photosynthesis to the reduction of sulfate, assimilation into cysteine, and further metabolism into methionine, glutathione, and many other compounds. The activity of the sulfur assimilation pathway responds dynamically to changes in sulfur supply and to environmental conditions that alter the need for reduced sulfur. Molecular genetic analysis has allowed many of the enzymes and regulatory mechanisms involved in the process to be defined. This review focuses on recent advances in the field of plant sulfur metabolism. It also emphasizes areas about which little is known, including transport and recycling/degradation of sulfur compounds.
Collapse
Affiliation(s)
- Thomas Leustek
- 1Biotechnology Center for Agriculture and the Environment, Rutgers University, New Brunswick, New Jersey 08901-8520; e-mail: , , , 2Department of Botany, Iowa State University, 459 Bessey Hall, Ames, Iowa 50011-1020; e-mail:
| | | | | | | |
Collapse
|
63
|
Kertesz MA. Riding the sulfur cycle â metabolism of sulfonates and sulfate esters in Gram-negative bacteria. FEMS Microbiol Rev 2000. [DOI: 10.1111/j.1574-6976.2000.tb00537.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
64
|
Kertesz MA. Riding the sulfur cycle--metabolism of sulfonates and sulfate esters in gram-negative bacteria. FEMS Microbiol Rev 2000; 24:135-75. [PMID: 10717312 DOI: 10.1016/s0168-6445(99)00033-9] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Sulfonates and sulfate esters are widespread in nature, and make up over 95% of the sulfur content of most aerobic soils. Many microorganisms can use sulfonates and sulfate esters as a source of sulfur for growth, even when they are unable to metabolize the carbon skeleton of the compounds. In these organisms, expression of sulfatases and sulfonatases is repressed in the presence of sulfate, in a process mediated by the LysR-type regulator protein CysB, and the corresponding genes therefore constitute an extension of the cys regulon. Additional regulator proteins required for sulfonate desulfonation have been identified in Escherichia coli (the Cbl protein) and Pseudomonas putida (the AsfR protein). Desulfonation of aromatic and aliphatic sulfonates as sulfur sources by aerobic bacteria is oxygen-dependent, carried out by the alpha-ketoglutarate-dependent taurine dioxygenase, or by one of several FMNH(2)-dependent monooxygenases. Desulfurization of condensed thiophenes is also FMNH(2)-dependent, both in the rhodococci and in two Gram-negative species. Bacterial utilization of aromatic sulfate esters is catalyzed by arylsulfatases, most of which are related to human lysosomal sulfatases and contain an active-site formylglycine group that is generated post-translationally. Sulfate-regulated alkylsulfatases, by contrast, are less well characterized. Our increasing knowledge of the sulfur-regulated metabolism of organosulfur compounds suggests applications in practical fields such as biodesulfurization, bioremediation, and optimization of crop sulfur nutrition.
Collapse
Affiliation(s)
- M A Kertesz
- Institute of Microbiology, Swiss Federal Institute of Technology, ETH-Zentrum, CH-8092, Zürich, Switzerland.
| |
Collapse
|
65
|
Kucho KI, Ohyama K, Fukuzawa H. CO(2)-responsive transcriptional regulation of CAH1 encoding carbonic anhydrase is mediated by enhancer and silencer regions in Chlamydomonas reinhardtii. PLANT PHYSIOLOGY 1999; 121:1329-38. [PMID: 10594120 PMCID: PMC59500 DOI: 10.1104/pp.121.4.1329] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/1999] [Accepted: 09/07/1999] [Indexed: 05/19/2023]
Abstract
Chlamydomonas reinhardtii adapts to the stress of CO(2)-limiting conditions through the induction of a set of genes including CAH1, which encodes a periplasmic carbonic anhydrase. CAH1 is up-regulated under low-CO(2) conditions (air containing 0.04% [v/v] CO(2)) in the presence of light, whereas it is down-regulated under high-CO(2) conditions (5% [v/v] CO(2)) or in the dark. In an effort to identify cis-elements involved in the transcriptional regulation of CAH1, a series of 5'-nested deletions of the region upstream of CAH1 were fused to a promoterless arylsulfatase reporter gene (ARS). The upstream region from -651 to +41 relative to the transcription start site was sufficient to regulate the expression of ARS with kinetics similar to those of endogenous CAH1. Deletion of the region between -651 and -294 resulted in a significant decrease in the level of arylsulfatase activity expressed under low-CO(2) conditions. The 543-bp upstream region from -651 to -109, without any promoter elements, CAAT-box, or TATA-box, could confer CO(2) and light responsiveness on the beta(2)-tubulin minimal promoter. This 543-bp region was divided into two parts: a 358-bp silencer region from -651 to -294, which represses the minimal promoter activity under high-CO(2) conditions, and a 185-bp enhancer region from -293 to -109, which activates the promoter under low-CO(2) conditions in the presence of light.
Collapse
Affiliation(s)
- K i Kucho
- Laboratory of Plant Molecular Biology, Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | | | | |
Collapse
|
66
|
Loppes R, Radoux M, Ohresser MC, Matagne RF. Transcriptional regulation of the Nia1 gene encoding nitrate reductase in Chlamydomonas reinhardtii: effects of various environmental factors on the expression of a reporter gene under the control of the Nia1 promoter. PLANT MOLECULAR BIOLOGY 1999; 41:701-11. [PMID: 10645729 DOI: 10.1023/a:1006381527119] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The NAD(P)H nitrate reductase (NR) from Chlamydomonas reinhardtii is encoded by the structural gene Nia1. Numerous data from the literature indicate that this enzyme is submitted to complex regulation mechanisms involving multiple controls at transcriptional and post-transcriptional levels. To specifically investigate the regulation of the Nia1 gene at the transcriptional level, NR+ and NR- transformed cells harbouring the Nia1:Ars construct (Nia1 promoter fused to the arylsulfatase (ARS)-encoding Ars reporter gene) were cultivated under various experimental conditions and the ARS activities were recorded. ARS levels were very low in cells grown in the presence of NH4Cl and dramatically increased on agar medium deprived of any nitrogen source or containing nitrate, nitrite, urea, arginine or glutamine. Compared to nitrogen-free medium, a slight positive effect of nitrate in the NR+ strain and a significant negative effect of nitrite in both NR+ and NR- strains were observed. The ARS activities were high in the light and very low in the dark or in the light in the presence of DCMU, indicating that Nia1 transcription is strikingly dependent on photosynthetic activity. Acetate used as a carbon source in the dark did not substitute for light in stimulating Nia1:Ars expression. Inactivation of NR by tungstate treatment of the NR+ strain resulted in a dramatic increase of ARS level suggesting that in Chlamydomonas, like in higher plants, active NR negatively regulates the transcription of the NR structural gene. Deleting the major part of the Nia1 leader sequence still present in the chimeric gene resulted in a decrease of ARS level but did not modify the regulation pattern.
Collapse
Affiliation(s)
- R Loppes
- Department of Plant Biology, University of Liège, Sart Tilman, Belgium.
| | | | | | | |
Collapse
|
67
|
Davies JP, Yildiz FH, Grossman AR. Sac3, an Snf1-like serine/threonine kinase that positively and negatively regulates the responses of Chlamydomonas to sulfur limitation. THE PLANT CELL 1999; 11:1179-90. [PMID: 10368187 PMCID: PMC144238 DOI: 10.1105/tpc.11.6.1179] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The Sac3 gene product of Chlamydomonas positively and negatively regulates the responses of the cell to sulfur limitation. In wild-type cells, arylsulfatase activity is detected only during sulfur limitation. The sac3 mutant expresses arylsulfatase activity even when grown in nutrient-replete medium, which suggests that the Sac3 protein has a negative effect on the induction of arylsulfatase activity. In contrast to its effect on arylsulfatase activity, Sac3 positively regulates the high-affinity sulfate transport system-the sac3 mutant is unable to fully induce high-affinity sulfate transport during sulfur limitation. We have complemented the sac3 mutant and cloned a cDNA copy of the Sac3 gene. The deduced amino acid sequence of the Sac3 gene product is similar to the catalytic domain of the yeast Snf1 family of serine/threonine kinases and is therefore classified as a Snf1-related kinase (SnRK). Specifically, Sac3 falls within the SnRK2 subfamily of kinases from vascular plants. In addition to the 11 subdomains common to Snf1-like serine/threonine kinases, Sac3 and the plant kinases have two additional subdomains and a highly acidic C-terminal region. The role of Sac3 in the signal transduction system that regulates the responses of Chlamydomonas to sulfur limitation is discussed.
Collapse
Affiliation(s)
- J P Davies
- Department of Botany, 353 Bessey Hall, Iowa State University, Ames, Iowa 50011-1020, USA.
| | | | | |
Collapse
|
68
|
Dolganov N, Grossman AR. A polypeptide with similarity to phycocyanin alpha-subunit phycocyanobilin lyase involved in degradation of phycobilisomes. J Bacteriol 1999; 181:610-7. [PMID: 9882677 PMCID: PMC93417 DOI: 10.1128/jb.181.2.610-617.1999] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To optimize the utilization of photosynthate and avoid damage that can result from the absorption of excess excitation energy, photosynthetic organisms must rapidly modify the synthesis and activities of components of the photosynthetic apparatus in response to environmental cues. During nutrient-limited growth, cyanobacteria degrade their light-harvesting complex, the phycobilisome, and dramatically reduce the rate of photosynthetic electron transport. In this report, we describe the isolation and characterization of a cyanobacterial mutant that does not degrade its phycobilisomes during either sulfur or nitrogen limitation and exhibits an increased ratio of phycocyanin to chlorophyll during nutrient-replete growth. The mutant phenotype was complemented by a gene encoding a polypeptide with similarities to polypeptides that catalyze covalent bond formation between linear tetrapyrrole chromophores and subunits of apophycobiliproteins. The complementing gene, designated nblB, is expressed at approximately the same level in cells grown in nutrient-replete medium and medium devoid of either sulfur or nitrogen. These results suggest that the NblB polypeptide may be a constitutive part of the machinery that coordinates phycobilisome degradation with environmental conditions.
Collapse
Affiliation(s)
- N Dolganov
- Department of Plant Biology, The Carnegie Institution of Washington, Stanford, California 94305, USA
| | | |
Collapse
|
69
|
Quinn JM, Merchant S. Copper-responsive gene expression during adaptation to copper deficiency. Methods Enzymol 1998; 297:263-79. [PMID: 9750208 DOI: 10.1016/s0076-6879(98)97020-3] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- J M Quinn
- Department of Chemistry and Biochemistry, University of California, Los Angeles 90095, USA
| | | |
Collapse
|
70
|
Schwarz R, Grossman AR. A response regulator of cyanobacteria integrates diverse environmental signals and is critical for survival under extreme conditions. Proc Natl Acad Sci U S A 1998; 95:11008-13. [PMID: 9724820 PMCID: PMC28011 DOI: 10.1073/pnas.95.18.11008] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/1998] [Accepted: 07/06/1998] [Indexed: 11/18/2022] Open
Abstract
Microorganisms must sense their environment and rapidly tune their metabolism to ambient conditions to efficiently use available resources. We have identified a gene encoding a response regulator, NblR, that complements a cyanobacterial mutant unable to degrade its light-harvesting complex (phycobilisome), in response to nutrient deprivation. Cells of the nblR mutant (i) have more phycobilisomes than wild-type cells during nutrient-replete growth, (ii) do not degrade phycobilisomes during sulfur, nitrogen, or phosphorus limitation, (iii) cannot properly modulate the phycobilisome level during exposure to high light, and (iv) die rapidly when starved for either sulfur or nitrogen, or when exposed to high light. Apart from regulation of phycobilisome degradation, NblR modulates additional functions critical for cell survival during nutrient-limited and high-light conditions. NblR does not appear to be involved in acclimation responses that occur only during a specific nutrient limitation. In contrast, it controls at least some of the general acclimation responses; those that occur during any of a number of different stress conditions. NblR plays a pivotal role in integrating different environmental signals that link the metabolism of the cell to light harvesting capabilities and the activities of the photosynthetic apparatus; this modulation is critical for cell survival.
Collapse
Affiliation(s)
- R Schwarz
- Department of Plant Biology, The Carnegie Institution of Washington, 260 Panama Street, Stanford, CA 94305, USA
| | | |
Collapse
|
71
|
Hahn D, Kaltenbach C, Kück U. The Calvin cycle enzyme sedoheptulose-1,7-bisphosphatase is encoded by a light-regulated gene in Chlamydomonas reinhardtii. PLANT MOLECULAR BIOLOGY 1998; 36:929-934. [PMID: 9520283 DOI: 10.1023/a:1005911022601] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
We have studied the light-dependent expression of the Chlamydomonas reinhardtii csbp gene encoding sedoheptulose-1,7-bisphosphatase (SBPase), an enzyme of the pentose-phosphate pathway. Expression studies using light/dark-synchronized cultures revealed that csbp mRNA abundance increases significantly during illumination. We have used a 1.4 kb region upstream of the csbp gene in transcriptional fusions to the homologous arylsulfatase-encoding reporter gene (ars). In transformants carrying the chimeric csbp/ars reporter gene, arylsulfatase activity is detected in the absence of sulfate, a condition under which the endogenous ars gene is repressed. Moreover, ars mRNA accumulation is dramatically stimulated by light, indicating that 1.4 kb of the csbp 5'-untranslated region are sufficient to confer light-dependent expression on the ars reporter gene.
Collapse
Affiliation(s)
- D Hahn
- Lehrstuhl für Allgemeine Botanik, Ruhr Universität Bochum, Germany
| | | | | |
Collapse
|
72
|
[3] High-frequency nuclear transformation of Chlamydomonas reinhardtii. Methods Enzymol 1998. [DOI: 10.1016/s0076-6879(98)97005-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
|
73
|
Yildiz FH, Davies JP, Grossman A. Sulfur availability and the SAC1 gene control adenosine triphosphate sulfurylase gene expression in Chlamydomonas reinhardtii. PLANT PHYSIOLOGY 1996; 112:669-75. [PMID: 8883379 PMCID: PMC157991 DOI: 10.1104/pp.112.2.669] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
A Chlamydomonas reinhardtii adenosine triphosphate (ATP) sulfurylase cDNA clone (pATS1) was selected by complementing a mutation in the ATP sulfurylase gene (cysD) of Escherichia coli. E. coli cysD strains harboring pATS1 grow on medium containing sulfate as the sole sulfur source and exhibit ATP sulfurylase activity. The amino acid sequence of the C. reinhardtii ATP sulfurylase, derived from the nucleotide sequence of the complementing gene (ATS1), is 25 to 40% identical to that of ATP sulfurylases in other eukaryotic organisms and has a putative transit peptide at its amino terminus. ATP sulfurylase mRNA was present when cells were grown in sulfur-replete medium, but accumulated to higher levels when the cells were exposed to sulfur-limiting conditions. Furthermore, sulfur-stress-induced accumulation of the ATS1 transcript was reduced in a strain defective in SAC1, a gene that is critical for acclimation to sulfur-limited growth.
Collapse
Affiliation(s)
- F H Yildiz
- Carnegie Institution of Washington, Department of Plant Biology, Stanford, California 94305, USA
| | | | | |
Collapse
|
74
|
Jacobshagen S, Kindle KL, Johnson CH. Transcription of CABII is regulated by the biological clock in Chlamydomonas reinhardtii. PLANT MOLECULAR BIOLOGY 1996; 31:1173-1184. [PMID: 8914533 DOI: 10.1007/bf00040834] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The small gene family encoding the chlorophyll a/b-binding proteins of photosystem II (CABII or lhcb) is known to exhibit circadian rhythms of mRNA abundance in Chlamydomonas reinhardtii. In this study we investigated the role of transcription in the phenomenon. We used as reporters Chlamydomonas genes that encode nitrate reductase (NITI) and arylsulfatase (ARS2) transcriptionally fused to sequences upstream of one of the CABII genes (called CABII-1). We found that both reporters exhibited the same circadian rhythm of mRNA abundance in phase, period, and amplitude as does the endogenous CABII-1 gene. We also evaluated the efficacy of arylsulfatase enzymatic activity as a reporter and found that its half-life is too long to make it a useful reporter of rhythmic transcription during a circadian or diurnal cycle. The amount of mRNA synthesis from the CABII-1 gene was examined by in vivo labeling experiments and a circadian rhythm in transcription rate was demonstrated. In vivo labeling also revealed a circadian rhythm of mRNA synthesis for the CABII gene family as a whole. The results from the transcriptional reporter assays together with the in vivo labeling experiments strongly support the conclusion that the biological clock regulates the transcriptional activity of the CABII-I gene, and moreover that regulation at the transcriptional level is the predominant mode by which the clock regulates this gene.
Collapse
Affiliation(s)
- S Jacobshagen
- Department of Biology, Vanderbilt University, Nashville, TN/USA
| | | | | |
Collapse
|
75
|
Quisel JD, Wykoff DD, Grossman AR. Biochemical characterization of the extracellular phosphatases produced by phosphorus-deprived Chlamydomonas reinhardtii. PLANT PHYSIOLOGY 1996; 111:839-48. [PMID: 8754684 PMCID: PMC157902 DOI: 10.1104/pp.111.3.839] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
We have examined the extracellular phosphatases produced by the terrestrial green alga Chlamydomonas reinhardtii in response to phosphorus deprivation. Phosphorus-deprived cells increase extra-cellular alkaline phosphatase activity 300-fold relative to unstarved cells. The alkaline phosphatases are released into the medium by cell-wall-deficient strains and by wild-type cells after treatment with autolysin, indicating that they are localized to the periplasm. Anion-exchange chromatography and analysis by nondenaturing polyacrylamide gel electrophoresis revealed that there are two major inducible alkaline phosphatases. A calcium-dependent enzyme composed of 190-kD glycoprotein subunits accounts for 85 to 95% of the Alkaline phosphatase activity. This phosphatase has optimal activity at pH 9.5 and a Km of 120 to 262 microns for all physiological substrates tested, with the exception of phytic acid, which it cleaved with a 50-fold lower efficiency. An enzyme with optimal activity at pH 9 and no requirement for divalent cations accounts for 2 to 10% of the alkaline phosphatase activity. This phosphatase was only able to efficiently hydrolyze arylphosphates. The information reported here, in conjunction with the results of previous studies, defines the complement of extracellular phosphatases produced by phosphorus-deprived Chlamydomonas cells.
Collapse
Affiliation(s)
- J D Quisel
- Carnegie Institution of Washington, Department of Plant Biology, Stanford, California 94305, USA.
| | | | | |
Collapse
|
76
|
Davies JP, Yildiz FH, Grossman A. Sac1, a putative regulator that is critical for survival of Chlamydomonas reinhardtii during sulfur deprivation. EMBO J 1996; 15:2150-9. [PMID: 8641280 PMCID: PMC450137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The sac1 mutant of Chlamydomonas reinhardtii is aberrant in most of the normal responses to sulfur limitation; it cannot synthesize arylsulfatase, does not take up sulfate as rapidly as wild-type cells, and does not synthesize periplasmic proteins that normally accumulate during sulfur-limited growth. Here, we show that the sac1 mutant dies much more rapidly than wild-type cells during sulfur deprivation; this emphasizes the vital role of the acclimation process. The loss of viability of the sac1 mutant during sulfur deprivation is only observed in the light and is mostly inhibited by DCMU. During sulfur-stress, wild-type cells, but not the sac1 mutant, downregulate photosynthesis. Thus, death of the sac1 mutant during sulfur deprivation is probably a consequence of its inability to downregulate photosynthesis. Furthermore, since SAC1 is necessary for the downregulation of photosynthesis, the process must be highly controlled and not simply the result of a general decrease in protein synthesis due to sulfur limitation. Genomic and cDNA copies of the SAC1 gene have been cloned. The deduced amino acid sequence of Sac1 is similar to an Escherichia coli gene that may involved in the response of E.coli to nutrient deprivation.
Collapse
Affiliation(s)
- J P Davies
- Carnegie Institution of Washington, Department of Plant Biology, Stanford, CA 94305, USA
| | | | | |
Collapse
|
77
|
Quinn JM, Merchant S. Two copper-responsive elements associated with the Chlamydomonas Cyc6 gene function as targets for transcriptional activators. THE PLANT CELL 1995; 7:623-8. [PMID: 7780310 PMCID: PMC160809 DOI: 10.1105/tpc.7.5.623] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
In Chlamydomonas reinhardtii, cytochrome c6 (cyt c6) is synthesized only under conditions of copper deficiency when plastocyanin cannot be synthesized. In previous work, the copper-responsive regulation of cyt c6 synthesis was demonstrated to occur by control of transcription, with no contribution from post-transcriptional processes. To understand the mechanism underlying its regulation, the genomic DNA encoding cyt c6 (Cyc6) was analyzed for the presence of copper-responsive elements. Sequences lying between positions -127 and -7 with respect to the start site of transcription were found to be sufficient to confer copper-responsive expression on either a promoterless or a minimal beta-tubulin promoter-driven (arylsulfatase-encoding) reporter gene. Analysis of this 120-bp fragment indicated that copper-responsive elements lie in two distinct regions (between -110 to -56 and -127 to -109). ATG fusions between copper-insensitive promoters and the coding plus 3' untranslated region of the Cyc6 gene resulted in the accumulation of cyt c6 in copper-supplemented medium; this confirms earlier studies indicating a lack of post-transcriptional control in this copper-responsive pathway. In the context of a constitutive promoter (derived from the beta-tubulin gene), each region was found to function as an activator of transcription in copper-deficient cells, and the metal specificity of the response of reporter genes containing either one or both regions was identical to that of the endogenous Cyc6 gene. The copper-responsive synthesis of cyt c6 is thus attributed to these two 5' upstream sequences.
Collapse
Affiliation(s)
- J M Quinn
- Department of Chemistry and Biochemistry, University of California at Los Angeles 90095-1569, USA
| | | |
Collapse
|
78
|
Quinn JM, Merchant S. Two copper-responsive elements associated with the Chlamydomonas Cyc6 gene function as targets for transcriptional activators. THE PLANT CELL 1995; 7:623-628. [PMID: 7780310 DOI: 10.2307/3870120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
In Chlamydomonas reinhardtii, cytochrome c6 (cyt c6) is synthesized only under conditions of copper deficiency when plastocyanin cannot be synthesized. In previous work, the copper-responsive regulation of cyt c6 synthesis was demonstrated to occur by control of transcription, with no contribution from post-transcriptional processes. To understand the mechanism underlying its regulation, the genomic DNA encoding cyt c6 (Cyc6) was analyzed for the presence of copper-responsive elements. Sequences lying between positions -127 and -7 with respect to the start site of transcription were found to be sufficient to confer copper-responsive expression on either a promoterless or a minimal beta-tubulin promoter-driven (arylsulfatase-encoding) reporter gene. Analysis of this 120-bp fragment indicated that copper-responsive elements lie in two distinct regions (between -110 to -56 and -127 to -109). ATG fusions between copper-insensitive promoters and the coding plus 3' untranslated region of the Cyc6 gene resulted in the accumulation of cyt c6 in copper-supplemented medium; this confirms earlier studies indicating a lack of post-transcriptional control in this copper-responsive pathway. In the context of a constitutive promoter (derived from the beta-tubulin gene), each region was found to function as an activator of transcription in copper-deficient cells, and the metal specificity of the response of reporter genes containing either one or both regions was identical to that of the endogenous Cyc6 gene. The copper-responsive synthesis of cyt c6 is thus attributed to these two 5' upstream sequences.
Collapse
Affiliation(s)
- J M Quinn
- Department of Chemistry and Biochemistry, University of California at Los Angeles 90095-1569, USA
| | | |
Collapse
|
79
|
Yildiz FH, Davies JP, Grossman AR. Characterization of Sulfate Transport in Chlamydomonas reinhardtii during Sulfur-Limited and Sulfur-Sufficient Growth. PLANT PHYSIOLOGY 1994; 104:981-987. [PMID: 12232142 PMCID: PMC160696 DOI: 10.1104/pp.104.3.981] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
We have characterized sulfate transport in the unicellular green alga Chlamydomonas reinhardtii during growth under sulfur-sufficient and sulfur-deficient conditions. Both the Vmax and the substrate concentration at which sulfate transport is half of the maximum velocity of the sulfate transport (K1/2) for uptake were altered in starved cells: the Vmax increased approximately 10-fold, and the K1/2 decreased approximately 7-fold. This suggests that sulfur-deprived C. reinhardtii cells synthesize a new, high-affinity sulfate transport system. This system accumulated rapidly; it was detected in cells within 1 h of sulfur deprivation and reached a maximum by 6 h. A second response to sulfur-limited growth, the production of arylsulfatase, was apparent only after 3 h of growth in sulfur-free medium. The enhancement of sulfate transport upon sulfur starvation was prevented by cycloheximide, but not by chloramphenicol, demonstrating that protein synthesis on 80S ribosomes was required for the development of the new, high-affinity system. The transport of sulfate into the cells occurred in both the light and the dark. Inhibition of ATP formation by the antibiotics carbonylcyanide m-chlorophenylhydrazone and gramicidin-S and inhibition of either F- or P-type ATPases by N,N-dicyclohexylcarbodiimide and vanadate completely abolished sulfate uptake. Furthermore, nigericin, a carboxylate ionophore that exchanges H+ for K+, inhibited transport in both the light and the dark. Finally, uptake in the dark was strongly inhibited by valinomycin. These results suggest that sulfate transport in C. reinhardtii is an energy-dependent process and that it may be driven by a proton gradient generated by a plasma membrane ATPase.
Collapse
Affiliation(s)
- F. H. Yildiz
- Department of Plant Biology, Carnegie Institution of Washington, Stanford, California 94305
| | | | | |
Collapse
|
80
|
Davies JP, Yildiz F, Grossman AR. Mutants of Chlamydomonas with Aberrant Responses to Sulfur Deprivation. THE PLANT CELL 1994; 6:53-63. [PMID: 12244220 DOI: 10.2307/3869674] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
In the absence of sulfur, Chlamydomonas reinhardtii, a unicellular green alga, increases its rate of sulfate import and synthesizes several periplasmic proteins, including an arylsulfatase (Ars). These changes appear to help cells acclimate to a sulfur-deficient environment. The elevated rate of sulfate import results from an increase in the capacity and affinity of the transport system for sulfate. The synthesis of Ars, a periplasmic enzyme that cleaves sulfate from aromatic compounds, enables cells to use these molecules as a source of sulfur when free sulfate is not available. To characterize the ways in which C. reinhardtii perceives changes in the sulfur status of the environment and regulates its responses to these changes, we mutagenized cells and isolated strains exhibiting aberrant accumulation of Ars activity. These mutants were characterized for Ars activity, ars mRNA accumulation, periplasmic protein accumulation, and sulfate transport activity when grown in both sulfur-sufficient and sulfur-deficient conditions. All of the mutants exhibited pleiotropic effects with respect to several of these responses. Strains harboring double mutant combinations were constructed and characterized for Ars activity and ars mRNA accumulation. From the mutant phenotypes, we inferred that both positive and negative regulatory elements were involved in the acclimation process. Both the epistatic relationships among the mutations and the effects of the lesions on the responses of C. reinhardtii to sulfur limitation distinguished these mutants from similar mutants in Neurospora crassa.
Collapse
Affiliation(s)
- J. P. Davies
- Carnegie Institution of Washington, Department of Plant Biology, 290 Panama Street, Stanford, California 94305
| | | | | |
Collapse
|
81
|
Davies JP, Yildiz F, Grossman AR. Mutants of Chlamydomonas with Aberrant Responses to Sulfur Deprivation. THE PLANT CELL 1994; 6:53-63. [PMID: 12244220 PMCID: PMC160415 DOI: 10.1105/tpc.6.1.53] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
In the absence of sulfur, Chlamydomonas reinhardtii, a unicellular green alga, increases its rate of sulfate import and synthesizes several periplasmic proteins, including an arylsulfatase (Ars). These changes appear to help cells acclimate to a sulfur-deficient environment. The elevated rate of sulfate import results from an increase in the capacity and affinity of the transport system for sulfate. The synthesis of Ars, a periplasmic enzyme that cleaves sulfate from aromatic compounds, enables cells to use these molecules as a source of sulfur when free sulfate is not available. To characterize the ways in which C. reinhardtii perceives changes in the sulfur status of the environment and regulates its responses to these changes, we mutagenized cells and isolated strains exhibiting aberrant accumulation of Ars activity. These mutants were characterized for Ars activity, ars mRNA accumulation, periplasmic protein accumulation, and sulfate transport activity when grown in both sulfur-sufficient and sulfur-deficient conditions. All of the mutants exhibited pleiotropic effects with respect to several of these responses. Strains harboring double mutant combinations were constructed and characterized for Ars activity and ars mRNA accumulation. From the mutant phenotypes, we inferred that both positive and negative regulatory elements were involved in the acclimation process. Both the epistatic relationships among the mutations and the effects of the lesions on the responses of C. reinhardtii to sulfur limitation distinguished these mutants from similar mutants in Neurospora crassa.
Collapse
Affiliation(s)
- J. P. Davies
- Carnegie Institution of Washington, Department of Plant Biology, 290 Panama Street, Stanford, California 94305
| | | | | |
Collapse
|
82
|
Davies JP, Weeks DP, Grossman AR. Expression of the arylsulfatase gene from the beta 2-tubulin promoter in Chlamydomonas reinhardtii. Nucleic Acids Res 1992; 20:2959-65. [PMID: 1620590 PMCID: PMC312423 DOI: 10.1093/nar/20.12.2959] [Citation(s) in RCA: 132] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Arylsulfatase, produced by Chlamydomonas reinhardtii during sulfur-limited growth, is secreted into the periplasmic space and is readily assayed using a chromogenic substrate. To assess the usefulness of the gene encoding arylsulfatase (ars) as a reporter gene in C. reinhardtii, we have fused the promoter region of the beta 2-tubulin gene (tubB2) to the coding region of an ars genomic clone to form a tubB2/ars chimeric sequence. This construct was introduced into C. reinhardtii, strain CC425 (cw-15, arg-2), via cotransformation with the argininosuccinate lyase gene (which complements the arg-2 lesion) (1). Transformants expressing arylsulfatase (Ars) in sulfur-sufficient medium were isolated and subsequently shown to contain the tubB2/ars gene. RNA analysis determined that tubB2/ars transcripts accumulated in these cells. Abundance of the chimeric transcript increased immediately following deflagellation in a manner similar to that of the endogenous tubB2 transcript. Thus, chimeric genes incorporating ars coding sequences and heterologous promoters can be used to examine regulated gene expression in C. reinhardtii.
Collapse
Affiliation(s)
- J P Davies
- Carnegie Institution of Washington, Department of Plant Biology, Stanford, CA 94305
| | | | | |
Collapse
|
83
|
Molecular cloning and regulatory analysis of the arylsulfatase structural gene of Neurospora crassa. Mol Cell Biol 1989. [PMID: 2528685 DOI: 10.1128/mcb.9.9.3630] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ars-1+ gene of Neurospora crassa encodes the enzyme arylsulfatase. ars-1+ is in a group of highly regulated sulfur-related structural genes that are expressed under conditions of sulfur limitation and are under coordinate control of the cys-3+ and scon+ regulatory genes. The ars-1+ gene was cloned by chromosome walking from the qa gene cluster, using a lambda library. Cotransformation of an N. crassa ars-1 mutant with the isolated lambda clones and the benomyl resistance gene, followed by assay for arylsulfatase activity, was used to screen for the ars-1+ gene. Further confirmation that the cloned segment mapped to the ars-1+ locus was obtained by restriction-fragment-length polymorphism analysis. Northern (RNA) blot analysis showed that the ars-1+ gene was transcribed to give an mRNA of 2.3 kilobases. In wild-type cells, the ars-1+ transcript was abundant under sulfur-derepressing conditions but absent under repressing conditions. Time course analysis showed that the appearance of ars-1+ message in sulfur-derepressed cultures paralleled the appearance of arylsulfatase enzyme activity. In addition, transcription of ars-1+ was detected only under derepressing conditions in a nuclear transcription assay. In a cys-3 regulatory mutant that was unable to synthesize arylsulfatase (or other sulfur-controlled enzymes), there was no ars-1+ transcript under repressing or derepressing conditions. In a temperature-sensitive cys-3 mutant, the ars-1+ transcript was present only at the permissive growth temperature and under sulfur derepression. A negative regulatory mutant, sconc, displayed both constitutive expression of arylsulfatase enzyme activity and content of ars-1+ message.
Collapse
|
84
|
Paietta JV. Molecular cloning and regulatory analysis of the arylsulfatase structural gene of Neurospora crassa. Mol Cell Biol 1989; 9:3630-7. [PMID: 2528685 PMCID: PMC362423 DOI: 10.1128/mcb.9.9.3630-3637.1989] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The ars-1+ gene of Neurospora crassa encodes the enzyme arylsulfatase. ars-1+ is in a group of highly regulated sulfur-related structural genes that are expressed under conditions of sulfur limitation and are under coordinate control of the cys-3+ and scon+ regulatory genes. The ars-1+ gene was cloned by chromosome walking from the qa gene cluster, using a lambda library. Cotransformation of an N. crassa ars-1 mutant with the isolated lambda clones and the benomyl resistance gene, followed by assay for arylsulfatase activity, was used to screen for the ars-1+ gene. Further confirmation that the cloned segment mapped to the ars-1+ locus was obtained by restriction-fragment-length polymorphism analysis. Northern (RNA) blot analysis showed that the ars-1+ gene was transcribed to give an mRNA of 2.3 kilobases. In wild-type cells, the ars-1+ transcript was abundant under sulfur-derepressing conditions but absent under repressing conditions. Time course analysis showed that the appearance of ars-1+ message in sulfur-derepressed cultures paralleled the appearance of arylsulfatase enzyme activity. In addition, transcription of ars-1+ was detected only under derepressing conditions in a nuclear transcription assay. In a cys-3 regulatory mutant that was unable to synthesize arylsulfatase (or other sulfur-controlled enzymes), there was no ars-1+ transcript under repressing or derepressing conditions. In a temperature-sensitive cys-3 mutant, the ars-1+ transcript was present only at the permissive growth temperature and under sulfur derepression. A negative regulatory mutant, sconc, displayed both constitutive expression of arylsulfatase enzyme activity and content of ars-1+ message.
Collapse
Affiliation(s)
- J V Paietta
- Department of Biochemistry, Wright State University, Dayton, Ohio 45435
| |
Collapse
|
85
|
de Hostos EL, Schilling J, Grossman AR. Structure and expression of the gene encoding the periplasmic arylsulfatase of Chlamydomonas reinhardtii. MOLECULAR & GENERAL GENETICS : MGG 1989; 218:229-39. [PMID: 2476654 DOI: 10.1007/bf00331273] [Citation(s) in RCA: 98] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Chlamydomonas reinhardtii produces a periplasmic arylsulfatase in response to sulfur deprivation. We have isolated and sequenced arylsulfatase cDNAs from a lambda gt11 expression library. The amino acid sequence of the protein, as deduced from the nucleotide sequence, has features characteristic of secreted proteins, including a signal sequence and putative glycosylation sites. The gene has a broad codon usage with seven codons, all having A residues in the third position, not previously observed in C. reinhardtii genes. Arylsulfatase transcription is tightly regulated by sulfur availability. The approximately 2.7 kb arylsulfatase transcript is very susceptible to degradation, disappearing in less than an hour after sulfur starved cells are administered either sulfate or alpha-amanitin. The accumulation of the arylsulfatase transcript is also suppressed by the addition of cycloheximide. Transcription initiation from the arylsulfatase gene occurs approximately 100 bp upstream of the initiation codon, in a region that is 5' to a 43 bp imperfect inverted repeat. Preceding the transcription start site are sequences similar to those present in promoter regions of other genes from C. reinhardtii.
Collapse
Affiliation(s)
- E L de Hostos
- Department of Biological Sciences, Stanford University, CA 94305
| | | | | |
Collapse
|
86
|
Sasaki H, Yamada K, Akasaka K, Kawasaki H, Suzuki K, Saito A, Sato M, Shimada H. cDNA cloning, nucleotide sequence and expression of the gene for arylsulfatase in the sea urchin (Hemicentrotus pulcherrimus) embryo. EUROPEAN JOURNAL OF BIOCHEMISTRY 1988; 177:9-13. [PMID: 3181160 DOI: 10.1111/j.1432-1033.1988.tb14338.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Arylsulfatase is known to be synthesized in large amounts at the early gastrula stage of sea urchin development. We determined the amino acid sequence of a portion of the purified sea urchin embryonic arylsulfatase, and then isolated a cDNA clone for arylsulfatase by screening a sea urchin plutei lambda gt10 cDNA library with an oligodeoxynucleotide probe synthesized according to the determined amino acid sequence. The longest cDNA clones were selected and the nucleotide sequence determined. The cDNA is 2422 nucleotides long and encodes 551 amino acids. The deduced amino acid sequence has not sequence similarity with any of the peptides registered in NBRF peptide databank. Northern blot analysis revealed that the arylsulfatase cDNA hybridizes to a 2.9-kb mRNA. This mRNA exists in the unfertilized egg in small amounts, but markedly increases after the blastula stage preceding the increase of the arylsulfatase activity.
Collapse
Affiliation(s)
- H Sasaki
- Zoological Institute, Faculty of Science, University of Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
87
|
Manuel LJ, Moroney JV. Inorganic Carbon Accumulation by Chlamydomonas reinhardtii: New Proteins are made During Adaptation to Low CO(2). PLANT PHYSIOLOGY 1988; 88:491-6. [PMID: 16666333 PMCID: PMC1055606 DOI: 10.1104/pp.88.2.491] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
When the unicellular green alga Chlamydomonas reinhardtii is placed under low CO(2) conditions it adapts by making an inorganic carbon accumulating mechanism. Algal cells were labeled with (35)SO(4) (-2) during this adaptation period and labeled proteins specific for this low CO(2) adaptation were identified. Four major proteins were preferentially synthesized under low CO(2) conditions and had M(r) of 46, 44, 37, and 20 kilodaltons. The 37 kilodalton protein is most likely the periplasmic carbonic anhydrase previously identified as being part of the inorganic carbon accumulation mechanism of C. reinhardtii. The other three proteins have not been identified. The 46 and the 44 kilodalton proteins were not synthesized by a mutant algal strain, pmp-1, which cannot grow at low CO(2) concentrations. This strain does make the 37 and 20 kilodalton proteins, however. These data suggest that at least two or three proteins in addition to the periplasmic carbonic anhydrase are part of the inorganic carbon accumulation mechanism in C. reinhardtii.
Collapse
Affiliation(s)
- L J Manuel
- Department of Botany, Louisiana State University, Baton Rouge, Louisiana 70803
| | | |
Collapse
|