51
|
Nakayama T, Mizoguchi T, Uehara S, Yamashita T, Kawahara I, Kobayashi Y, Moriyama Y, Kurihara S, Sahara N, Ozawa H, Udagawa N, Takahashi N. Polarized osteoclasts put marks of tartrate-resistant acid phosphatase on dentin slices--a simple method for identifying polarized osteoclasts. Bone 2011; 49:1331-9. [PMID: 21983021 DOI: 10.1016/j.bone.2011.09.045] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 09/14/2011] [Accepted: 09/16/2011] [Indexed: 10/17/2022]
Abstract
Osteoclasts form ruffled borders and sealing zones toward bone surfaces to resorb bone. Sealing zones are defined as ringed structures of F-actin dots (actin rings). Polarized osteoclasts secrete protons to bone surfaces via vacuolar proton ATPase through ruffled borders. Catabolic enzymes such as tartrate-resistant acid phosphatase (TRAP) and cathepsin K are also secreted to bone surfaces. Here we show a simple method of identifying functional vestiges of polarized osteoclasts. Osteoclasts obtained from cocultures of mouse osteoblasts and bone marrow cells were cultured for 48 h on dentin slices. Cultures were then fixed and stained for TRAP to identify osteoclasts on the slices. Cells were removed from the slices with cotton swabs, and the slices subjected to TRAP and Mayer's hematoxylin staining. Small TRAP-positive spots (TRAP-marks) were detected in the resorption pits stained with Mayer's hematoxylin. Pitted areas were not always located in the places of osteoclasts, but osteoclasts existed on all TRAP-marks. A time course experiment showed that the number of TRAP-marks was maintained, while the number of resorption pits increased with the culture period. The position of actin rings formed in osteoclasts corresponded to that of TRAP-marks on dentin slices. Immunostaining of dentin slices showed that both cathepsin K and vacuolar proton ATPase were colocalized with the TRAP-marks. Treatment of osteoclast cultures with alendronate, a bisphosphonate, suppressed the formation of TRAP-marks and resorption pits without affecting the cell viability. Calcitonin induced the disappearance of both actin rings and TRAP-marks in osteoclast cultures. These results suggest that TRAP-marks are vestiges of proteins secreted by polarized osteoclasts.
Collapse
Affiliation(s)
- Takahiro Nakayama
- Institute for Oral Science, Matsumoto Dental University, Shiojiri-shi, Nagano, 399-0781, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Crotti TN, O'Sullivan RP, Shen Z, Flannery MR, Fajardo RJ, Ross FP, Goldring SR, McHugh KP. Bone matrix regulates osteoclast differentiation and annexin A8 gene expression. J Cell Physiol 2011; 226:3413-21. [PMID: 21344395 DOI: 10.1002/jcp.22699] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
While attachment to bone is required for optimal osteoclast function, the molecular events that underlie this fact are unclear, other than that the cell requires adhesion to mineralized matrix to assume a fully differentiated phenotype. To address this issue, we cultured murine bone marrow-derived osteoclasts on either cell culture plastic or devitalized mouse calvariae to identify the distinct genetic profile induced by interaction with bone. Among a number of genes previously unknown to be expressed in osteoclasts we found that Annexin A8 (AnxA8) mRNA was markedly up-regulated by bone. AnxA8 protein was present at high levels in osteoclasts present in human tissues recovered from sites of pathological bone loss. The presence of bone mineral was required for up-regulation of AnxA8 mRNA since osteoclasts plated on decalcified bone express AnxA8 at low levels as did osteoclasts plated on native or denatured type I collagen. Finally, AnxA8-regulated cytoskeletal reorganization in osteoclasts generated on a mineralized matrix. Thus, we used a novel approach to define a distinct bone-dependent genetic program associated with terminal osteoclast differentiation and identified Anxa8 as a gene strongly induced late in osteoclast differentiation and a protein that regulates formation of the cell's characteristic actin ring.
Collapse
Affiliation(s)
- Tania N Crotti
- Discipline of Anatomy and Pathology, School of Medical Sciences, University of Adelaide, South Australia, Australia
| | | | | | | | | | | | | | | |
Collapse
|
53
|
Makihira S, Nikawa H, Kajiya M, Kawai T, Mine Y, Kosaka E, Silva MJ, Tobiume K, Terada Y. Blocking of sodium and potassium ion-dependent adenosine triphosphatase-α1 with ouabain and vanadate suppresses cell–cell fusion during RANKL-mediated osteoclastogenesis. Eur J Pharmacol 2011; 670:409-18. [DOI: 10.1016/j.ejphar.2011.08.044] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Revised: 08/23/2011] [Accepted: 08/26/2011] [Indexed: 10/17/2022]
|
54
|
Local injection/induction of osteoclasts for the treatment of calcified tendinitis. Med Hypotheses 2011; 77:875-7. [PMID: 21864992 DOI: 10.1016/j.mehy.2011.07.062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2010] [Revised: 07/21/2011] [Accepted: 07/26/2011] [Indexed: 11/22/2022]
Abstract
Calcified tendinitis is characterized by calcification in the rotary cuff tendon of the shoulder. The rationale of therapeutic methods is mainly removal of the calcification. Osteoclasts are the principle cells capable of resorbing bone and calcified tissues. Therefore, we hypothesized local injection of cultured human osteoclasts or induction of osteoclasts by recombinant RANKL in vivo may be effective for the treatment of calcified tendonitis. Human osteoclasts cultured in vitro is technically feasible and the osteoclasts are capable of active bone resorption. Thus, injection of osteoclasts may help remove the calcified tendonitis. In addition, human RANKL is commercially available. Therefore, local RANKL injection can recruit peripheral monocytes and macrophages. In the presence of RANKL, these monocytes and macrophages can subsequently differentiate into osteoclasts that can directly resorb calcification via their bone resorbing machinery. Different from the other treatments, the advantage of this therapeutic method includes: (1) less invasive because only local injection/induction of osteoclasts into the calcified lesion is conducted; (2) more efficient by direct osteoclasts injection or using RANKL to recruit osteoclasts to efficiently resorb calcification. Therefore, we proposed local injection/induction of osteoclasts as a potential biological method for clinical treatment of calcified tendinitis.
Collapse
|
55
|
Kim T, Ha H, Kim N, Park ES, Rho J, Kim EC, Lorenzo J, Choi Y, Lee SH. ATP6v0d2 deficiency increases bone mass, but does not influence ovariectomy-induced bone loss. Biochem Biophys Res Commun 2010; 403:73-8. [PMID: 21040703 DOI: 10.1016/j.bbrc.2010.10.117] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Accepted: 10/26/2010] [Indexed: 10/18/2022]
Abstract
Bone homeostasis is maintained through the balanced action of bone-forming osteoblasts and bone-resorbing osteoclasts. Under pathological conditions or with age, excessive bone loss is often observed due to increased bone resorption. Since osteoclasts are the primary cells in the body that can resorb bone, molecular understanding of osteoclast fate has important clinical implications. Over the past 20 years, many molecular players that govern osteoclast differentiation during normal development have been identified. However, whether the same molecules regulate bone loss occurring under pathological conditions remains largely unknown. We report here that although ATP6v0d2-deficient (ATP6v0d2 KO) mice exhibit an osteopetrotic phenotype due to inefficient osteoclast maturation, this deficiency fails to protect mice from ovariectomy (OVX)-induced bone loss, a model for post-menopause-associated osteoporosis. Moreover, we show that an OVX-induced increase in the number of colony forming unit-granulocyte/macrophage (CFU-GM) in bone marrow cells and subsequent osteoclast formation in vitro was not affected in the absence of ATP6v0d2. However, even after OVX, formation of large osteoclasts (>100 μm in diameter) with actin rings was still reduced in the absence of ATP6v0d2. Taken together, these findings suggest that the critical role of ATP6v0d2 may be limited to the control of bone homeostasis under normal development, and that OVX-induced bone loss is likely to be governed mostly by the increase in osteoclast precursors rather than increased efficiency of osteoclast maturation.
Collapse
Affiliation(s)
- Taesoo Kim
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Kartner N, Yao Y, Li K, Crasto GJ, Datti A, Manolson MF. Inhibition of osteoclast bone resorption by disrupting vacuolar H+-ATPase a3-B2 subunit interaction. J Biol Chem 2010; 285:37476-90. [PMID: 20837476 DOI: 10.1074/jbc.m110.123281] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Vacuolar H(+)-ATPases (V-ATPases) are highly expressed in ruffled borders of bone-resorbing osteoclasts, where they play a crucial role in skeletal remodeling. To discover protein-protein interactions with the a subunit in mammalian V-ATPases, a GAL4 activation domain fusion library was constructed from an in vitro osteoclast model, receptor activator of NF-κB ligand-differentiated RAW 264.7 cells. This library was screened with a bait construct consisting of a GAL4 binding domain fused to the N-terminal domain of V-ATPase a3 subunit (NTa3), the a subunit isoform that is highly expressed in osteoclasts (a1 and a2 are also expressed, to a lesser degree, whereas a4 is kidney-specific). One of the prey proteins identified was the V-ATPase B2 subunit, which is also highly expressed in osteoclasts (B1 is not expressed). Further characterization, using pulldown and solid-phase binding assays, revealed an interaction between NTa3 and the C-terminal domains of both B1 and B2 subunits. Dual B binding domains of equal affinity were observed in NTa, suggesting a possible model for interaction between these subunits in the V-ATPase complex. Furthermore, the a3-B2 interaction appeared to be moderately favored over a1, a2, and a4 interactions with B2, suggesting a mechanism for the specific subunit assembly of plasma membrane V-ATPase in osteoclasts. Solid-phase binding assays were subsequently used to screen a chemical library for inhibitors of the a3-B2 interaction. A small molecule benzohydrazide derivative was found to inhibit osteoclast resorption with an IC(50) of ∼1.2 μm on both synthetic hydroxyapatite surfaces and dentin slices, without significantly affecting RAW 264.7 cell viability or receptor activator of NF-κB ligand-mediated osteoclast differentiation. Further understanding of these interactions and inhibitors may contribute to the design of novel therapeutics for bone loss disorders, such as osteoporosis and rheumatoid arthritis.
Collapse
Affiliation(s)
- Norbert Kartner
- Dental Research Institute, Faculty of Dentistry, University of Toronto, Toronto, Ontario M5G 1G6 Canada
| | | | | | | | | | | |
Collapse
|
57
|
Nyman JKE, Väänänen HK. A rationale for osteoclast selectivity of inhibiting the lysosomal V-ATPase a3 isoform. Calcif Tissue Int 2010; 87:273-83. [PMID: 20596699 DOI: 10.1007/s00223-010-9395-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Accepted: 06/09/2010] [Indexed: 11/27/2022]
Abstract
Osteoclastic bone resorption can be completely abolished by inhibiting the vacuolar H(+)-ATPase (V-ATPase), a proton pump composed of at least 12 different subunits. However, V-ATPases are ubiquitous and it is unclear whether the osteoclast V-ATPase has a unique composition that would allow its selective inhibition. Aiming to answer this question, we compared human osteoclasts and monocytic THP.1 cells with respect to the localization of the a3 isoform of the 116-kDa subunit, which is indispensable for bone resorption, and sensitivity to SB242784, a V-ATPase inhibitor that prevents experimentally induced osteoporosis. By immunofluorescence, a3 was essentially nondetectable in THP.1 cells, while in osteoclasts a3 was highly upregulated and localized to lysosomes in nonresorbing osteoclasts. We isolated the lysosomal compartment from both sources as latex bead-containing phagolysosomes and compared them. Osteoclast phagolysosomes and THP.1 phagolysosomes both contained a3 and a1; however, the a3/a1 ratio was 3.8- to 11.2-fold higher in osteoclast phagolysosomes. Importantly, the V-ATPase-dependent acidification of phagolysosomes from both sources was essentially equally sensitive to SB242784. Thus, we observed no indication of a qualitative uniqueness of the osteoclast V-ATPase; rather, the high a3-level in osteoclasts may represent an upregulation of the common lysosomal V-ATPase. Our results, together with the reported phenotype of a3 deficiency and the reported efficacy of SB242784 in vivo, suggest that V-ATPase structure-independent mechanisms render bone resorption more sensitive than lysosomal function to V-ATPase inhibition. One such mechanism may be compensation of a3 by a1, which may be sufficient for retaining lysosomal function but not bone resorption.
Collapse
Affiliation(s)
- Jonas K E Nyman
- Department of Cell Biology and Anatomy, Institute of Biomedicine, University of Turku, Kiinamyllynkatu 10, 20520, Turku, Finland.
| | | |
Collapse
|
58
|
Kanayama K, Sriarj W, Shimokawa H, Ohya K, Doi Y, Shibutani T. Osteoclast and Osteoblast Activities on Carbonate Apatite Plates in Cell Cultures. J Biomater Appl 2010; 26:435-49. [DOI: 10.1177/0885328210374672] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Previous studies have demonstrated that carbonate apatite (CA) is superior to hydroxyapatite (HA) and β-tricalciumphosphate (β-TCP) with regard to osteoclastic resorption, but evidence on osteoclast and osteoblast response remains controversial. In the present study, the expression of bone related mRNA is examined on CA, HA, β-TCP, and titanium plates. ICR mouse osteoblast cells are cocultured with ICR mouse bone marrow cells. Crude osteoclast-like cell-rich suspensions are then seeded onto plates and cultured for 48 h. Total RNA is extracted and mRNA expression is examined by real-time RT-PCR. Amounts of vacuolar-type ATPase, cathepsin K, and TRAP mRNA are significantly greater on CA than on the other plates. The amount of osteoprotegerin mRNA is significantly greater on CA than on the other plates. RANKL mRNA expression, which is generally regarded as an osteoblast maker, varies with material, but shows no significant differences between CA and the other plates. The formation and activity of osteoclasts is greater with CA than with the other plates. Thus, CA is superior to β-TCP as a bioresorbable bone substitute for tissue engineering.
Collapse
Affiliation(s)
- Keiichi Kanayama
- Department of Periodontology, Division of Oral Infections and Health Science Asahi University School of Dentistry, 1851, Hozumi, Mizuho Gifu 501-0296, Japan
| | - Wantida Sriarj
- Section of Developmental Oral Health Science, Department of Orofacial Development and Function, Graduate School, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8549, Japan
| | - Hitoyata Shimokawa
- Section of Pharmacology, Department of Hard Tissue Engineering Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549, Japan
| | - Keiichi Ohya
- Section of Pharmacology, Department of Hard Tissue Engineering Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549, Japan
| | - Yutaka Doi
- Department of Dental Materials Science, Division of Oral Functional Science and Rehabilitation, Asahi University School of Dentistry, 1851, Hozumi Mizuho, Gifu 501-0296, Japan
| | - Toshiaki Shibutani
- Department of Periodontology, Division of Oral Infections and Health Science Asahi University School of Dentistry, 1851, Hozumi, Mizuho Gifu 501-0296, Japan
| |
Collapse
|
59
|
Roux S. New treatment targets in osteoporosis. Joint Bone Spine 2010; 77:222-8. [PMID: 20381400 DOI: 10.1016/j.jbspin.2010.02.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2009] [Accepted: 01/25/2010] [Indexed: 02/07/2023]
Abstract
Postmenopausal osteoporosis is characterized by bone remodeling alterations with an imbalance between excessive bone resorption and inadequate bone formation. At present, osteoporosis treatment rests on bone resorption inhibitors and, more specifically, on bisphosphonates. However, the introduction of anabolic agents such as parathyroid hormone that stimulate bone formation has expanded the range of treatment options. New treatment targets have been identified via improved knowledge on bone pathophysiology, bone remodeling, bone cells and intracellular signaling pathways. RANKL inhibition by anti-RANKL antibodies is undergoing considerable development as a treatment for osteoporosis. Also under development are anti-catabolic drugs that target the molecular mechanisms involved in bone resorption, including cathepsin K inhibitors and integrin alpha(v)beta(3) antagonists. The identification of new pathways involved in bone formation is directing clinical research efforts toward the development of anabolic agents. The signaling pathways involved in bone formation, most notably the Wnt-pathway, hold considerable promise as treatment targets in conditions characterized by insufficient bone formation. Current focuses of interest include antibodies against naturally occurring Wnt-pathway antagonists (e.g., sclerostin and Dkk1) and modulators of parathyroid hormone production (calcilytic agents). Thus, active research is ongoing to improve the treatment of osteoporosis, a disease whose high prevalence and considerable functional and socioeconomic impact will raise formidable challenges in the near future.
Collapse
Affiliation(s)
- Sophie Roux
- Service de rhumatologie, département de médecine, université de Sherbrooke, 12(e) avenue Nord, 3001 Sherbrooke, QC, J1H 5N4, Canada.
| |
Collapse
|
60
|
The vacuolar ATPase in bone cells: a potential therapeutic target in osteoporosis. Mol Biol Rep 2010; 37:3561-6. [DOI: 10.1007/s11033-010-0004-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2009] [Accepted: 02/08/2010] [Indexed: 11/26/2022]
|
61
|
Riihonen R, Nielsen S, Väänänen HK, Laitala-Leinonen T, Kwon TH. Degradation of hydroxyapatite in vivo and in vitro requires osteoclastic sodium-bicarbonate co-transporter NBCn1. Matrix Biol 2010; 29:287-94. [PMID: 20079835 DOI: 10.1016/j.matbio.2010.01.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Revised: 12/01/2009] [Accepted: 01/06/2010] [Indexed: 01/19/2023]
Abstract
Dissolution of the inorganic bone matrix releases not only calcium and phosphate ions, but also bicarbonate. Electroneutral sodium-bicarbonate co-transporter (NBCn1) is expressed in inactive osteoclasts, but its physiological role in bone resorption has remained unknown. We show here that NBCn1, encoded by the SLC4A7 gene, is directly involved in bone resorption. NBCn1 protein was specifically found at the bone-facing ruffled border areas, and metabolic acidosis increased NBCn1 expression in rats in vivo. In human hematopoietic stem cell cultures, NBCn1 mRNA expression was observed only after formation of resorbing osteoclasts. To further confirm the critical role of NBCn1 during bone resorption, human hematopoietic stem cells were transduced with SLC4A7 shRNA lentiviral particles. Downregulation of NBCn1 both on mRNA and protein level by lentiviral shRNAs significantly inhibited bone resorption and increased intracellular acidification in osteoclasts. The lentiviral particles did not impair osteoclast survival, or differentiation of the hematopoietic or mesenchymal precursor cells into osteoclasts or osteoblasts in vitro. Inhibition of NBCn1 activity may thus provide a new way to regulate osteoclast activity during pathological bone resorption.
Collapse
Affiliation(s)
- Riikka Riihonen
- Bone Biology Research Consortium, Department of Cell Biology and Anatomy, Institute of Biomedicine, University of Turku, FIN-20520 Turku, Finland
| | | | | | | | | |
Collapse
|
62
|
Witten PE, Huysseune A. A comparative view on mechanisms and functions of skeletal remodelling in teleost fish, with special emphasis on osteoclasts and their function. Biol Rev Camb Philos Soc 2009; 84:315-46. [PMID: 19382934 DOI: 10.1111/j.1469-185x.2009.00077.x] [Citation(s) in RCA: 211] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Resorption and remodelling of skeletal tissues is required for development and growth, mechanical adaptation, repair, and mineral homeostasis of the vertebrate skeleton. Here we review for the first time the current knowledge about resorption and remodelling of the skeleton in teleost fish, the largest and most diverse group of extant vertebrates. Teleost species are increasingly used in aquaculture and as models in biomedical skeletal research. Thus, detailed knowledge is required to establish the differences and similarities between mammalian and teleost skeletal remodelling, and between distantly related species such as zebrafish (Danio rerio) and medaka (Oryzias latipes). The cellular mechanisms of differentiation and activation of osteoclasts and the functions of teleost skeletal remodelling are described. Several characteristics, related to skeletal remodelling, distinguish teleosts from mammals. These characteristics include (a) the absence of osteocytes in most species; (b) the absence of haematopoietic bone marrow tissue; (c) the abundance of small mononucleated osteoclasts performing non-lacunar (smooth) bone resorption, in addition to or instead of multinucleated osteoclasts; and (d) a phosphorus- rather than calcium-driven mineral homeostasis (mainly affecting the postcranial dermal skeleton). Furthermore, (e) skeletal resorption is often absent from particular sites, due to sparse or lacking endochondral ossification. Based on the mode of skeletal remodelling in early ontogeny of all teleosts and in later stages of development of teleosts with acellular bone we suggest a link between acellular bone and the predominance of mononucleated osteoclasts, on the one hand, and cellular bone and multinucleated osteoclasts on the other. The evolutionary origin of skeletal remodelling is discussed and whether mononucleated osteoclasts represent an ancestral type of resorbing cells. Revealing the differentiation and activation of teleost skeletal resorbing cells, in the absence of several factors that trigger mammalian osteoclast differentiation, is a current challenge. Understanding which characters of teleost bone remodelling are derived and which characters are conserved should enhance our understanding of the process in fish and may provide insights into alternative pathways of bone remodelling in mammals.
Collapse
|
63
|
Bivi N, Bereszczak JZ, Romanello M, Zeef LAH, Delneri D, Quadrifoglio F, Moro L, Brancia FL, Tell G. Transcriptome and proteome analysis of osteocytes treated with nitrogen-containing bisphosphonates. J Proteome Res 2009; 8:1131-42. [PMID: 19226166 DOI: 10.1021/pr8005606] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We combined high-throughput screening of differential mRNAs with mass spectrometric characterization of proteins obtained from osteocytes untreated and treated with Risedronate. Microarray analysis revealed, upon treatment, a marked upregulation of messengers encoding zinc-proteins. MS analysis identified 84 proteins in the osteocytes proteome map. Risedronate affected the expression of 10 proteins, associated with cytoskeleton, stress-response and metabolism. Data validated using gel imaging in combination with the GLaD post digestion isotopic labeling method provide the molecular basis for understanding the role of bisphosphonates as antiapoptotic drugs for osteocytes.
Collapse
Affiliation(s)
- Nicoletta Bivi
- Department of Biomedical Sciences and Technologies, University of Udine, Udine, Italy, Shimadzu Research Laboratory (Europe), Manchester, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Affiliation(s)
- Roland Baron
- Departments of Orthopedics and Cell Biology, Yale University School of Medicine, 333 Cedar Street, P.O. Box 208044, New Haven, CT, 06510, USA, +1-203 785 4150, +1-203 785 2744
| |
Collapse
|
65
|
Holliday LS, Ostrov DA, Wronski TJ, Dolce C. Osteoclast polarization and orthodontic tooth movement. Orthod Craniofac Res 2009; 12:105-12. [DOI: 10.1111/j.1601-6343.2009.01443.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
66
|
Morimoto Y, Hoshino H, Sakurai T, Terakawa S, Nagano A. Quantitative evaluation of bone resorption activity of osteoclast-like cells by measuring calcium phosphate resorbing area using incubator-facilitated and video-enhanced microscopy. Microsc Res Tech 2009; 72:317-22. [DOI: 10.1002/jemt.20654] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
67
|
Targeted disruption of the Cl-/HCO3- exchanger Ae2 results in osteopetrosis in mice. Proc Natl Acad Sci U S A 2009; 106:1638-41. [PMID: 19164575 DOI: 10.1073/pnas.0811682106] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Osteoclasts are multinucleated bone-resorbing cells responsible for constant remodeling of bone tissue and for maintaining calcium homeostasis. The osteoclast creates an enclosed space, a lacuna, between their ruffled border membrane and the mineralized bone. They extrude H(+) and Cl(-) into these lacunae by the combined action of vesicular H(+)-ATPases and ClC-7 exchangers to dissolve the hydroxyapatite of bone matrix. Along with intracellular production of H(+) and HCO(3)(-) by carbonic anhydrase II, the H(+)-ATPases and ClC-7 exchangers seems prerequisite for bone resorption, because genetic disruption of either of these proteins leads to osteopetrosis. We aimed to complete the molecular model for lacunar acidification, hypothesizing that a HCO(3)(-) extruding and Cl(-) loading anion exchange protein (Ae) would be necessary to sustain bone resorption. The Ae proteins can provide both intracellular pH neutrality and serve as cellular entry mechanism for Cl(-) during bone resorption. Immunohistochemistry revealed that Ae2 is exclusively expressed at the contra-lacunar plasma membrane domain of mouse osteoclast. Severe osteopetrosis was encountered in Ae2 knockout (Ae2-/-) mice where the skeletal development was impaired with a higher diffuse radio-density on x-ray examination and the bone marrow cavity was occupied by irregular bone speculae. Furthermore, osteoclasts in Ae2-/- mice were dramatically enlarged and fail to form the normal ruffled border facing the lacunae. Thus, Ae2 is likely to be an essential component of the bone resorption mechanism in osteoclasts.
Collapse
|
68
|
Neutzsky-Wulff AV, Karsdal MA, Henriksen K. Characterization of the bone phenotype in ClC-7-deficient mice. Calcif Tissue Int 2008; 83:425-37. [PMID: 18958510 DOI: 10.1007/s00223-008-9185-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2008] [Accepted: 09/04/2008] [Indexed: 02/04/2023]
Abstract
Mice deficient in the chloride channel ClC-7, which is likely involved in acidification of the resorption lacuna, display severe osteopetrosis. To fully characterize the osteopetrotic phenotype, the phenotypes of osteoclasts and osteoblasts were evaluated. ClC-7(-/-) mice and their corresponding wild-type littermates were killed at 4-5 weeks of age. Biochemical markers of bone resorption (CTX-I), osteoclast number (TRAP5b), and osteoblast activity (ALP) were evaluated in serum. Splenocytes were differentiated into osteoclasts using M-CSF and RANKL. Mature osteoclasts were seeded on calcified or decalcified bone slices, and CTX-I, Ca(2+), and TRAP were measured. Acidification rates in membrane vesicles from bone cells were measured using acridine orange. Osteoblastogenesis and nodule formation in vitro were investigated using calvarial osteoblasts. ClC-7(-/-) osteoclasts were unable to resorb calcified bone in vitro. However, osteoclasts were able to degrade decalcified bone. Acid influx in bone membrane vesicles was reduced by 70% in ClC-7(-/-) mice. Serum ALP was increased by 30% and TRAP5b was increased by 250% in ClC-7(-/-) mice, whereas the CTX/TRAP5b ratio was reduced to 50% of the wild-type level. Finally, evaluation of calvarial ClC-7(-/-) osteoblasts showed normal osteoblastogenesis. In summary, we present evidence supporting a pivotal role for ClC-7 in acidification of the resorption lacuna and evidence indicating that bone formation and bone resorption are no longer balanced in ClC-7(-/-) mice.
Collapse
|
69
|
Bone resorption inhibitor alendronate normalizes the reduced bone thickness of TRPV5(-/-) mice. J Bone Miner Res 2008; 23:1815-24. [PMID: 18597625 DOI: 10.1359/jbmr.080613] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
TRPV5 is a Ca(2+)-selective channel involved in transcellular Ca(2+) absorption expressed in kidney and in the ruffled border of osteoclasts. Studies in hypercalciuric TRPV5 knockout (TRPV5(-/-)) mice, which display significantly increased vitamin D levels, showed that TRPV5 ablation increases number and size of osteoclasts but impairs osteoclast-mediated bone resorption. The latter is not in line with the observed decreased bone thickness in TRPV5(-/-) mice. Bisphosphonates also inhibit osteoclast-mediated bone resorption. The aim of this study was to evaluate the effect of alendronate on the expression of the Ca(2+) transporters in bone, kidney, and duodenum and, importantly, the bone phenotype in TRPV5(-/-) mice. Wildtype (TRPV5(+/+)) and TRPV5(-/-) mice were treated during 10 wk with 2 mg/kg alendronate or vehicle weekly and housed in metabolic cages at the end of treatment. Urine and blood samples were taken for biochemical analysis, and duodenum, kidney, and femur were sampled. Expression of Ca(2+) transporters and osteoclast ruffled border transporters in bone and cultured osteoclasts was determined by QPCR analysis. Femurs were scanned using muCT, and resorption pit assays were performed in bone marrow cultures isolated from TRPV5(+/+) and TRPV5(-/-) mice. Alendronate treatment enhanced bone thickness in TRPV5(+/+) mice but also normalized the disturbed bone morphometry parameters in TRPV5(-/-) mice. Bone TRPV5 expression was specifically enhanced by alendronate, whereas the expression of Ca(2+) transporters in kidney and intestine was not altered. The expression of the osteoclast ruffled border membrane proteins chloride channel 7 (CLC-7) and the vacuolar H(+)-ATPase did not differ between both genotypes, but alendronate significantly enhanced the expression and PTH levels in TRPV5(-/-) mice. The expression of TRPV5, CLC-7, and H(+)-ATPase in osteoclast cultures was not affected by alendronate. The number of resorption pits was reduced in TRPV5(-/-) bone marrow cultures, but the response to vitamin D was similar to that in TRPV5(+/+) cultures. The alendronate-induced upregulation of TRPV5 in bone together with the decreased resorptive capacity of TRPV5(-/-) osteoclasts in vitro suggests that TRPV5 has an important role in osteoclast function. However, our data indicate that significant bone resorption still occurs in TRPV5(-/-) mice, because alendronate treatment normalized bone thickness in these mice. Thus, TRPV5(-/-) mice are able to rescue the resulting defect in osteoclast-mediated bone resorption, possibly mediated by the long-term hypervitaminosis D or other (non)hormonal compensatory mechanisms.
Collapse
|
70
|
Chew CS, Chen X, Bollag RJ, Isales C, Ding KH, Zhang H. Targeted disruption of the Lasp-1 gene is linked to increases in histamine-stimulated gastric HCl secretion. Am J Physiol Gastrointest Liver Physiol 2008; 295:G37-G44. [PMID: 18483181 PMCID: PMC2494726 DOI: 10.1152/ajpgi.90247.2008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2008] [Accepted: 05/08/2008] [Indexed: 01/31/2023]
Abstract
Lasp-1 (LIM and SH3 domain protein 1) is a multidomain actin-binding protein that is differentially expressed within epithelial tissues and brain. In the gastric mucosa, Lasp-1 is highly expressed in the HCl-secreting parietal cell, where it is prominently localized within the F-actin-rich subcellular regions. Histamine-induced elevation of parietal cell [cAMP]i increases Lasp-1 phosphorylation, which is correlated with activation of HCl secretion. To determine whether Lasp-1 is involved in the regulation of HCl secretion in vivo, we generated a murine model with a targeted disruption of the Lasp-1 gene. Lasp-1-null mice had slightly lower body weights but developed normally and had no overt phenotypic abnormalities. Basal HCl secretion was unaffected by loss of Lasp-1, but histamine stimulation induced a more robust acid secretory response in Lasp-1-null mice compared with wild-type littermates. A similar effect of histamine was observed in isolated gastric glands on the basis of measurements of accumulation of the weak base [14C]aminopyrine. In addition, inhibition of the acid secretory response to histamine by H2 receptor blockade with ranitidine proceeded more slowly in glands from Lasp-1-null mice. These findings support the conclusion that Lasp-1 is involved in the regulation of parietal HCl secretion. We speculate that cAMP-dependent phosphorylation of Lasp-1 alters interactions with F-actin and/or endocytic proteins that interact with Lasp-1, thereby regulating the trafficking/activation of the H+, K+-ATPase (proton pump).
Collapse
Affiliation(s)
- Catherine S Chew
- Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA 30912-3175, USA.
| | | | | | | | | | | |
Collapse
|
71
|
Hollberg K, Marsell R, Norgård M, Larsson T, Jonsson KB, Andersson G. Osteoclast polarization is not required for degradation of bone matrix in rachitic FGF23 transgenic mice. Bone 2008; 42:1111-21. [PMID: 18346951 DOI: 10.1016/j.bone.2008.01.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2007] [Revised: 01/21/2008] [Accepted: 01/22/2008] [Indexed: 11/19/2022]
Abstract
Hypophosphatemic transgenic (tg) mice overexpressing FGF23 in osteoblasts display disorganized growth plates and reduced bone mineral density characteristic of rickets/osteomalacia. These FGF23 tg mice were used as an in vivo model to examine the relation between osteoclast polarization, secretion of proteolytic enzymes and resorptive activity. Tg mice had increased mRNA expression levels of the osteoblast differentiation marker Runx2 and mineralization-promoting proteins alkaline phosphatase and bone sialoprotein in the long bones compared to wild type (wt) mice. In contrast, expression of alpha1(I) collagen, osteocalcin, dentin matrix protein 1 and osteopontin was unchanged, indicating selective activation of osteoblasts promoting mineralization. The number of osteoclasts was unchanged in tg compared to wt mice, as determined by histomorphometry, serum levels of TRAP 5b activity as well as mRNA expression levels of TRAP and cathepsin K. However, tg mice displayed elevated serum concentrations of C-terminal telopeptide of collagen I (CTX) indicative of increased bone matrix degradation. The majority of osteoclasts in FGF23 tg mice lacked ultrastructural morphological signs of proper polarization. However, they secreted both cathepsin K and MMP-9 at levels comparable to osteoclasts with ruffled borders. Mineralization of bone matrix thus appears essential for inducing osteoclast polarization but not for secretion of osteoclast proteases. Finally, release of CTX by freshly isolated osteoclasts was increased on demineralized compared to mineralized bovine bone slices, indicating that the mineral component limits collagen degradation. We conclude that ruffled borders are implicated in acidification and subsequent demineralization of the bone matrix, however not required for matrix degradation. The data collectively provide evidence that osteoclasts, despite absence of ruffled borders, effectively participate in the degradation of hypomineralized bone matrix in rachitic FGF23 tg mice.
Collapse
Affiliation(s)
- Karin Hollberg
- Department of Laboratory Medicine, Division of Pathology, F46, Karolinska Institutet, Karolinska University Hospital Huddinge, SE-141 86 Huddinge, Sweden
| | | | | | | | | | | |
Collapse
|
72
|
Väänänen HK, Laitala-Leinonen T. Osteoclast lineage and function. Arch Biochem Biophys 2008; 473:132-8. [DOI: 10.1016/j.abb.2008.03.037] [Citation(s) in RCA: 184] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2008] [Revised: 03/27/2008] [Accepted: 03/28/2008] [Indexed: 01/03/2023]
|
73
|
Mulari MT, Nars M, Laitala-Leinonen T, Kaisto T, Metsikkö K, Sun Y, Väänänen HK. Recombinant VSV G proteins reveal a novel raft-dependent endocytic pathway in resorbing osteoclasts. Exp Cell Res 2008; 314:1641-51. [DOI: 10.1016/j.yexcr.2008.02.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2007] [Revised: 02/10/2008] [Accepted: 02/15/2008] [Indexed: 10/22/2022]
|
74
|
Supanchart C, Kornak U. Ion channels and transporters in osteoclasts. Arch Biochem Biophys 2008; 473:161-5. [PMID: 18406337 DOI: 10.1016/j.abb.2008.03.029] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2008] [Revised: 03/21/2008] [Accepted: 03/25/2008] [Indexed: 11/27/2022]
Abstract
The resorbing osteoclast is an exceptional cell that secretes large amounts of acid through the coupled activity of a v-type H+-ATPase and a chloride channel that both reside in the ruffled membrane. Impairment of this acid secretion machinery by genetic mutations can abolish bone resorption activity, resulting in osteopetrotic phenotypes. Another key feature of osteoclasts is the transport of high amounts of calcium and phosphate from the resorption lacuna to the basolateral plasma membrane. Evidence exists that this occurs in part through entry of these ions into the osteoclast cytosol. Handling of such large amounts of a cellular messenger requires elaborate mechanisms. Membrane proteins that regulate osteoclast calcium homeostasis and the effect of calcium on osteoclast function and survival are therefore the second main focus of this review.
Collapse
Affiliation(s)
- Chayarop Supanchart
- Institut fuer Medizinische Genetik, Charité Universitaetsmedizin, Campus Virchow, Augustenburger Platz 1, 13353 Berlin, Germany
| | | |
Collapse
|
75
|
David P, Baron R. Section Review: Oncologic, Endocrine & Metabolic: The vacuolar H+-ATPase: A potential target for drug development in bone diseases. Expert Opin Investig Drugs 2008. [DOI: 10.1517/13543784.4.8.725] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
76
|
Patel S. Section Review: Oncologic, Endocrine & Metabolic: Drugs in development for the treatment of metabolic bone disease. Expert Opin Investig Drugs 2008. [DOI: 10.1517/13543784.5.4.429] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
77
|
Yamada Y, Ito A, Kojima H, Sakane M, Miyakawa S, Uemura T, LeGeros RZ. Inhibitory effect of Zn2+ in zinc-containing beta-tricalcium phosphate on resorbing activity of mature osteoclasts. J Biomed Mater Res A 2008; 84:344-52. [PMID: 17618520 DOI: 10.1002/jbm.a.31265] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Long term effect of the growing instability of the bone-implant interface due to bone resorption at the interface is a problem for the implants, including bioactive ceramics. Zn2+ -containing tricalcium phosphate (ZnTCP) is a material which may overcome this problem. The present study aims to clarify whether Zn2+ -containing tricalcium phosphate (ZnTCP) ceramics with a Zn2+ content of 0.316 (ZnTCP316) and 0.633 (ZnTCP633) wt % suppress resorption by mature osteoclasts in vitro. Suppression would be due to an increase in the number of apoptotic osteoclasts and the inhibition of the resorbing activity of osteoclasts, the latter being the major mechanism of the suppression. The number of apoptotic osteoclasts was significantly 6.3 times higher with ZnTCP633 than with tricalcium phosphate ceramic (TCP) after 24-h culture. The net contribution to resorption of this change in apoptotic cell numbers is much smaller than that of the change in resorbing activity. The osteoclasts cultured on ZnTCP formed fewer actin rings than those cultured on the TCP. The mRNA expression of CAII and cathepsin K/OC2 in the osteoclasts on ZnTCP633 was downregulated 0.5-fold and 0.6-fold, respectively, compared with that on the TCP. The volume of resorption pits was downregulated 0.4-fold in the ZnTCP633 than that in TCP. These results suggest that ZnTCPs suppressed the resorbing activity of mature osteoclasts probably through a local increase in the level of Zn2+. Bone substitutes or coating layers containing ZnTCP would be promising biomaterials from the viewpoint of counteracting osteoclastic bone resorption at the bone-implant interface.
Collapse
Affiliation(s)
- Yasutaka Yamada
- Graduate School of Comprehensive Human Science, University of Tsukuba, 2-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan.
| | | | | | | | | | | | | |
Collapse
|
78
|
Rucci N. Molecular biology of bone remodelling. CLINICAL CASES IN MINERAL AND BONE METABOLISM : THE OFFICIAL JOURNAL OF THE ITALIAN SOCIETY OF OSTEOPOROSIS, MINERAL METABOLISM, AND SKELETAL DISEASES 2008; 5:49-56. [PMID: 22460846 PMCID: PMC2781193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Bone remodelling is an active and dynamic process that relies on the correct balance between bone resorption by osteoclasts and bone deposition by osteoblasts. Moreover, these two functions must be tightly coupled not only quantitatively, but also in time and space. When the coupling is lost, the correct bone mass could be compromised, leading to several skeletal pathologies. Indeed, bone loss and osteoporosis are the result of an increased osteoclast function and/or a reduced osteoblast activity. In contrast, other pathologies are related to osteoclast failure to resorbe bone, such as osteopetrosis, a rare genetic disorder characterized by an increased bone mass and also linked to an impairment of bone marrow functions. Starting from these assumptions, it is necessary to more deeply understand the molecular mechanisms regulating bone cell functions. Indeed, recent studies evidenced a complex interplay between the immune and skeletal systems, which share several regulatory molecules including cytokines, receptors and transcription factors. These data allowed to more deeply understand the mechanisms underlying bone mass regulation and could open new avenue to identify target molecules for alterantive therapies more efficacious against bone diseases.
Collapse
Affiliation(s)
- Nadia Rucci
- Department of Experimental Medicine, University of L'Aquila, L'Aquila, Italy
| |
Collapse
|
79
|
Detsch R, Mayr H, Ziegler G. Formation of osteoclast-like cells on HA and TCP ceramics. Acta Biomater 2008; 4:139-48. [PMID: 17723325 DOI: 10.1016/j.actbio.2007.03.014] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2006] [Revised: 03/09/2007] [Accepted: 03/16/2007] [Indexed: 12/20/2022]
Abstract
An essential property of bone substitute materials is that they are integrated into the natural bone remodelling process, which involves the resorption by osteoclast cells and the formation by osteoblast cells. If monocyte cells adhere to a calcium phosphate surface (bone or bone substitute material), they can fuse together and form multinucleated osteoclast cells. In this study we show that osteoclast-like cells derived from a human leukoma monocytic lineage responded in a different way to tricalciumphosphate (TCP) than to hydroxyapatite (HA) ceramics. Both ceramics were degraded by resorbing cells; however, HA enhanced the formation of giant cells. The osteoclast-like cells on HA formed a more pronounced actin ring, and larger lacunas could be observed. TCP ceramics are medically used as bone substitute materials because of their high dissolution rate. On the other hand, highly soluble calcium phosphate ceramics like TCP seem to be inappropriate for osteoclast resorption because they produce a high calcium concentration in the osteoclast interface and in the environment.
Collapse
Affiliation(s)
- R Detsch
- BioCer Entwicklungs-GmbH, 95447 Bayreuth, Germany.
| | | | | |
Collapse
|
80
|
Tropomyosin 4 regulates adhesion structures and resorptive capacity in osteoclasts. Exp Cell Res 2007; 314:564-73. [PMID: 18036591 DOI: 10.1016/j.yexcr.2007.10.018] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2007] [Revised: 10/18/2007] [Accepted: 10/19/2007] [Indexed: 01/14/2023]
Abstract
Tropomyosins (Tms) are alpha-helical dimers that bind and stabilize actin microfilaments while regulating their accessibility to other actin-associated proteins. Four genes encode expression of over forty Tms, most of which are expressed in nonmuscle cells. In recent years, it has become clear that individual Tm isoforms may regulate specific actin pools within cells. In this study, we examined how osteoclast function may be regulated by the tropomyosin isoform Tm-4, which we previously showed to be highly localized to podosomes and sealing zones of osteoclasts. RNAi-mediated knockdown of Tm-4, both in RAW264.7- and mouse marrow-derived osteoclasts, resulted in thinning of the actin ring of the sealing zone. Knockdown of Tm-4 also resulted in diminished bone resorptive capacity and altered resorption pit shape. In contrast, osteoclasts overexpressing Tm-4 demonstrated thickened podosomes on glass as well as thickened, aberrant actin structures on bone, and diminished motility and resorptive capacity. These results indicate that Tm-4 plays a role in regulating adhesion structures of osteoclasts, most likely by stabilizing the actin microfilaments present in podosomes and the sealing zone.
Collapse
|
81
|
Dixon N, Páli T, Kee TP, Ball S, Harrison MA, Findlay JBC, Nyman J, Väänänen K, Finbow ME, Marsh D. Interaction of spin-labeled inhibitors of the vacuolar H+-ATPase with the transmembrane Vo-sector. Biophys J 2007; 94:506-14. [PMID: 17872954 PMCID: PMC2157245 DOI: 10.1529/biophysj.107.111781] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The osteoclast variant of the vacuolar H(+)-ATPase (V-ATPase) is a potential therapeutic target for combating the excessive bone resorption that is involved in osteoporosis. The most potent in a series of synthetic inhibitors based on 5-(5,6-dichloro-2-indolyl)-2-methoxy-2,4-pentadienamide (INDOL0) has demonstrated specificity for the osteoclast enzyme, over other V-ATPases. Interaction of two nitroxide spin-labeled derivatives (INDOL6 and INDOL5) with the V-ATPase is studied here by using the transport-active 16-kDa proteolipid analog of subunit c from the hepatopancreas of Nephrops norvegicus, in conjunction with electron paramagnetic resonance (EPR) spectroscopy. Analogous experiments are also performed with vacuolar membranes from Saccharomyces cerevisiae, in which subunit c of the V-ATPase is replaced functionally by the Nephrops 16-kDa proteolipid. The INDOL5 derivative is designed to optimize detection of interaction with the V-ATPase by EPR. In membranous preparations of the Nephrops 16-kDa proteolipid, the EPR spectra of INDOL5 contain a motionally restricted component that arises from direct association of the indolyl inhibitor with the transmembrane domain of the proteolipid subunit c. A similar, but considerably smaller, motionally restricted population is detected in the EPR spectra of the INDOL6 derivative in vacuolar membranes, in addition to the larger population from INDOL6 in the fluid bilayer regions of the membrane. The potent classical V-ATPase inhibitor concanamycin A at high concentrations induces motional restriction of INDOL5, which masks the spectral effects of displacement at lower concentrations of concanamycin A. The INDOL6 derivative, which is closest to the parent INDOL0 inhibitor, displays limited subtype specificity for the osteoclast V-ATPase, with an IC(50) in the 10-nanomolar range.
Collapse
Affiliation(s)
- Neil Dixon
- Max-Planck-Institut für biophysikalische Chemie, Abt. Spektroskopie, Göttingen, Germany; University of Leeds, School of Chemistry and School of Biochemistry and Molecular Biology, Leeds, United Kingdom; University of Turku, Institute of Biomedicine, Department of Anatomy, Turku, Finland; and Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, United Kingdom
| | - Tibor Páli
- Max-Planck-Institut für biophysikalische Chemie, Abt. Spektroskopie, Göttingen, Germany; University of Leeds, School of Chemistry and School of Biochemistry and Molecular Biology, Leeds, United Kingdom; University of Turku, Institute of Biomedicine, Department of Anatomy, Turku, Finland; and Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, United Kingdom
| | - Terence P. Kee
- Max-Planck-Institut für biophysikalische Chemie, Abt. Spektroskopie, Göttingen, Germany; University of Leeds, School of Chemistry and School of Biochemistry and Molecular Biology, Leeds, United Kingdom; University of Turku, Institute of Biomedicine, Department of Anatomy, Turku, Finland; and Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, United Kingdom
| | - Stephen Ball
- Max-Planck-Institut für biophysikalische Chemie, Abt. Spektroskopie, Göttingen, Germany; University of Leeds, School of Chemistry and School of Biochemistry and Molecular Biology, Leeds, United Kingdom; University of Turku, Institute of Biomedicine, Department of Anatomy, Turku, Finland; and Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, United Kingdom
| | - Michael A. Harrison
- Max-Planck-Institut für biophysikalische Chemie, Abt. Spektroskopie, Göttingen, Germany; University of Leeds, School of Chemistry and School of Biochemistry and Molecular Biology, Leeds, United Kingdom; University of Turku, Institute of Biomedicine, Department of Anatomy, Turku, Finland; and Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, United Kingdom
| | - John B. C. Findlay
- Max-Planck-Institut für biophysikalische Chemie, Abt. Spektroskopie, Göttingen, Germany; University of Leeds, School of Chemistry and School of Biochemistry and Molecular Biology, Leeds, United Kingdom; University of Turku, Institute of Biomedicine, Department of Anatomy, Turku, Finland; and Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, United Kingdom
| | - Jonas Nyman
- Max-Planck-Institut für biophysikalische Chemie, Abt. Spektroskopie, Göttingen, Germany; University of Leeds, School of Chemistry and School of Biochemistry and Molecular Biology, Leeds, United Kingdom; University of Turku, Institute of Biomedicine, Department of Anatomy, Turku, Finland; and Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, United Kingdom
| | - Kalervo Väänänen
- Max-Planck-Institut für biophysikalische Chemie, Abt. Spektroskopie, Göttingen, Germany; University of Leeds, School of Chemistry and School of Biochemistry and Molecular Biology, Leeds, United Kingdom; University of Turku, Institute of Biomedicine, Department of Anatomy, Turku, Finland; and Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, United Kingdom
| | - Malcolm E. Finbow
- Max-Planck-Institut für biophysikalische Chemie, Abt. Spektroskopie, Göttingen, Germany; University of Leeds, School of Chemistry and School of Biochemistry and Molecular Biology, Leeds, United Kingdom; University of Turku, Institute of Biomedicine, Department of Anatomy, Turku, Finland; and Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, United Kingdom
| | - Derek Marsh
- Max-Planck-Institut für biophysikalische Chemie, Abt. Spektroskopie, Göttingen, Germany; University of Leeds, School of Chemistry and School of Biochemistry and Molecular Biology, Leeds, United Kingdom; University of Turku, Institute of Biomedicine, Department of Anatomy, Turku, Finland; and Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, United Kingdom
| |
Collapse
|
82
|
Abstract
Tumor microenvironment may play a key role in tumor malignancy. It is hypothesized that hypoxia and acidity may contribute to the progression from benign to malignant growth. In particular, the unfavorable environment may induce the selection of tumor cells able to survive in acidic and hypoxic conditions. In fact, the common components of the cancer phenotype result from active selection, and characteristics of tumor microenvironment may create the best condition for this selection. Acidity, in particular, has been shown to have a role in resistance to chemotherapy, proliferation and metastatic behavior. In fact, a mechanism of resistance to cytotoxic drugs may be the alteration of the tumor microenvironment through changes of the pH gradient between the extracellular environment and cell cytoplasm. The extracellular pH of solid tumors is significantly more acidic than that of normal tissues, thus impairing the uptake of weakly basic chemotherapeutic drugs and reducing their effect on tumors. An important determinant of tumor acidity is the anaerobic metabolism that allows selection of cells able to survive in an hypoxic-anoxic environment with the generation of lactate. However, this is not the major mechanism responsible for the development of an acidic environment within solid tumors. It appears clear that a complex framework of protein-protein, protein-lipid and lipid-lipid interactions underlay the pH homeostasis in mammalian cells. Malignant tumor cells seem to hijack some of these mechanism to protect themselves from the acidic environment and to maintain acidity in an environment unsuitable for normal or more differentiated cells. Recent data suggest that vacuolar-type (V-type) H(+)-ATPases, that pump protons across the plasma membrane, may have a key role in the acidification of the tumor microenvironment. Some human tumor cells are characterized by an increased V-type H(+)-ATPase expression and activity, and pretreatment with proton pump inhibitors -- a class of H(+)-ATPase inhibitors -- sensitized tumor cell lines to the effect of a variety of anticancer drugs. Proton pump inhibitor pretreatment has been associated with inhibition of V-type H(+)-ATPase activity and increase in both extracellular pH and pH of lysosomal organelles. In vivo experiments in human/mouse xenografts have shown that oral pretreatment with proton pump inhibitors is able to sensitize human solid tumors to anticancer drugs. These data suggest that tumor alkalinization may represent a key target of future antitumor strategies.
Collapse
Affiliation(s)
- Angelo De Milito
- Department of Drug Research and Evaluation, Pharmacogenetic, Drug Resistance and Experimental Therapeutic Section, Istituto Superiore di Sanità, Rome, Italy.
| | | |
Collapse
|
83
|
De Milito A, Iessi E, Logozzi M, Lozupone F, Spada M, Marino ML, Federici C, Perdicchio M, Matarrese P, Lugini L, Nilsson A, Fais S. Proton pump inhibitors induce apoptosis of human B-cell tumors through a caspase-independent mechanism involving reactive oxygen species. Cancer Res 2007; 67:5408-17. [PMID: 17545622 DOI: 10.1158/0008-5472.can-06-4095] [Citation(s) in RCA: 219] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Proton pumps like the vacuolar-type H+ ATPase (V-ATPase) are involved in the control of cellular pH in normal and tumor cells. Treatment with proton pump inhibitors (PPI) induces sensitization of cancer cells to chemotherapeutics via modifications of cellular pH gradients. It is also known that low pH is the most suitable condition for a full PPI activation. Here, we tested whether PPI treatment in unbuffered culture conditions could affect survival and proliferation of human B-cell tumors. First, we showed that PPI treatment increased the sensitivity to vinblastine of a pre-B acute lymphoblastic leukemia (ALL) cell line. PPI, per se, induced a dose-dependent inhibition of proliferation of tumor B cells, which was associated with a dose- and time-dependent apoptotic-like cytotoxicity in B-cell lines and leukemic cells from patients with pre-B ALL. The effect of PPI was mediated by a very early production of reactive oxygen species (ROS), that preceded alkalinization of lysosomal pH, lysosomal membrane permeabilization, and cytosol acidification, suggesting an early destabilization of the acidic vesicular compartment. Lysosomal alterations were followed by mitochondrial membrane depolarization, release of cytochrome c, chromatin condensation, and caspase activation. However, inhibition of caspase activity did not affect PPI-induced cell death, whereas specific inhibition of ROS by an antioxidant (N-acetylcysteine) significantly delayed cell death and protected both lysosomal and mitochondrial membranes. The proapoptotic activity of PPI was consistent with a clear inhibition of tumor growth following PPI treatment of B-cell lymphoma in severe combined immunodeficient mice. This study further supports the importance of acidity and pH gradients in tumor cell homeostasis and suggests new therapeutic approaches for human B-cell tumors based on PPI.
Collapse
Affiliation(s)
- Angelo De Milito
- Department of Drug Research and Evaluation, Pharmacogenetic, Drug Resistance, and Experimental Therapeutic Section, Istituto Superiore di Sanità, Rome, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Hristov KK, Knox KA, Mitev VI. Vanadate-induced inhibition of BCR-triggered apoptosis is coupled with tyrosine phosphorylation and induction of G2M growth arrest in Ramos-BL B cells. Immunol Invest 2007; 36:293-306. [PMID: 17558712 DOI: 10.1080/08820130601069814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The regulation of the tyrosine phosphorylation of key signaling molecules by tyrosine kinases and phosphatases is essential for BCR-triggered signaling cascades during B cell selection process. We used the non-selective tyrosine phosphatase inhibitor vanadate to study the importance of the late regulation of the tyrosine phosphorylation for BCR-triggered G1 growth arrest and apoptosis in Ramos-BL B cells. Vanadate induces G2M growth arrest in a dose-dependent manner and prevents BCR-triggered apoptosis. Vanadate-induced upregulation of the tyrosine phosphorylation is concomitant with increased expression of cyclin B and inhibition of caspase-3 activation and PARP cleavage. The anti-apoptotic effect of vanadate was observed even when added up to 6 hours after the treatment of Ramos-BL B cells with anti-IgM. Vanadate increases BCR-triggered tyrosine phosphorylation of the cytosolic tyrosine phosphatases, SHP-1 and SHP-2 after 24 hours. Co-stimulation with anti-CD40 prevents anti-IgM-triggered tyrosine phosphorylation of these phosphatases and up-regulates the expression of SHP-1. We conclude that the regulation of the tyrosine phosphatase activity is indispensable for BCR-triggered execution of the apoptosis in Ramos-BL B cells.
Collapse
Affiliation(s)
- Kroum K Hristov
- Department of Biochemistry, South Parks Road, University of Oxford, UK
| | | | | |
Collapse
|
85
|
Gregorini M, Wang J, Xie XS, Milligan RA, Engel A. Three-dimensional reconstruction of bovine brain V-ATPase by cryo-electron microscopy and single particle analysis. J Struct Biol 2007; 158:445-54. [PMID: 17349803 DOI: 10.1016/j.jsb.2007.01.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2006] [Revised: 01/03/2007] [Accepted: 01/04/2007] [Indexed: 11/19/2022]
Abstract
Bovine V-ATPase from brain clathrin-coated vesicles was investigated by cryo-electron microscopy and single particle analysis. Our studies revealed great flexibility of the central linker region connecting V1 and V0. As a consequence, the two sub-complexes were processed separately and the resulting volumes were merged computationally. We present the first three-dimensional (3D) map of a V-ATPase obtained from cryo-electron micrographs. The overall resolution was estimated 34A by Fourier shell correlation (0.5 cutoff). Our 3D reconstruction shows a large peripheral stalk and a smaller, isolated peripheral density, suggesting a second, less well-resolved peripheral connection. The 3D map reveals new features of the large peripheral stator and of the collar-like density attached to the membrane domain. Our analyses of the membrane domain indicate the presence of six proteolipid subunits. In addition, we could localize the V0 subunit a flanking the large peripheral stalk.
Collapse
Affiliation(s)
- Marco Gregorini
- Maurice E. Müller Institute for Structural Biology, Biozentrum University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland
| | | | | | | | | |
Collapse
|
86
|
Yuasa K, Mori K, Ishikawa H, Sudo A, Uchida A, Ito Y. Characterization of two types of osteoclasts from human peripheral blood monocytes. Biochem Biophys Res Commun 2007; 356:354-60. [PMID: 17368425 DOI: 10.1016/j.bbrc.2007.02.118] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2007] [Accepted: 02/20/2007] [Indexed: 10/23/2022]
Abstract
The two osteoclastogenesis pathways, receptor activator nuclear factor (NF)-kappaB ligand (RANKL)-mediated and fusion regulatory protein-1 (FRP-1)-mediated osteoclastogenesis, have recently been reported. There were significant differences in differentiation and activation mechanisms between the two pathways. When monocytes were cultured with FRP-1 without adding M-CSF, essential for the RANKL system, TRAP-positive polykaryocyte formation occurred. FRP-1-mediated osteoclasts formed larger pits on mineralized calcium phosphate plates than RANKL+M-CSF-mediated osteoclasts did. Lacunae on dentin surfaces induced by FRP-1-mediated osteoclasts were inclined to be single and isolated. However, osteoclasts induced by RANKL+M-CSF made many connected pits on dentin surfaces as if they crawled on there. Interestingly, FRP-1 osteoclastogenesis was enhanced by M-CSF/IL-1alpha, while chemotactic behavior to the dentin slices was not effected. There were differences in pH and concentration of HCO3- at culture endpoint and in adherent feature to dentin surfaces. Our findings indicate there are two types of osteoclasts with distinct properties.
Collapse
Affiliation(s)
- Kimitaka Yuasa
- Department of Microbiology, Mie University Graduate School of Medicine, Japan.
| | | | | | | | | | | |
Collapse
|
87
|
Otero-Rey EM, Somoza-Martín M, Barros-Angueira F, García-García A. Intracellular pH regulation in oral squamous cell carcinoma is mediated by increased V-ATPase activity via over-expression of the ATP6V1C1 gene. Oral Oncol 2007; 44:193-9. [PMID: 17467328 DOI: 10.1016/j.oraloncology.2007.02.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2006] [Revised: 02/13/2007] [Accepted: 02/14/2007] [Indexed: 11/16/2022]
Abstract
Oral squamous cell carcinomas represent more than 90% of all head and neck cancers, and comprise about 4% of all malignancies in western countries. Tumor cell mobility related to increasing intracellular pH results in impaired proliferation and metastasis, suggesting an important role of pH regulation in solid cancer tumorigenesis. The mechanism of physiological pH regulation has been shown to be activated in several solid tumors through constitutive activation of the ATPase complex. How cells regulate this mechanism has not been elucidated in human cancer in detail. The present study, using expression profiling by cDNA array analysis of oral squamous cell carcinoma cells, identified the V-ATPase system as a significant regulatory mechanism. ATP6V1C1 was the most strongly over-expressed gene in oral squamous cell carcinoma at the mRNA level compared to other genes of the V-ATPase complex. These findings provide evidence that intracellular pH regulation is mainly controlled by expression of a single gene, ATP6V1C1, notwithstanding the possible action of other secondary regulatory factors.
Collapse
Affiliation(s)
- Eva María Otero-Rey
- Oral Surgery and Oral Medicine Unit, University of Santiago de Compostela, Spain
| | | | | | | |
Collapse
|
88
|
Harokopakis-Hajishengallis E. Physiologic root resorption in primary teeth: molecular and histological events. J Oral Sci 2007; 49:1-12. [PMID: 17429176 DOI: 10.2334/josnusd.49.1] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Root resorption is a physiologic event for the primary teeth. It is still unclear whether odontoclasts, the cells which resorb the dental hard tissue, are different from the osteoclasts, the cells that resorb bone. Root resorption seems to be initiated and regulated by the stellate reticulum and the dental follicle of the underlying permanent tooth via the secretion of stimulatory molecules, i.e. cytokines and transcription factors. The primary root resorption process is regulated in a manner similar to bone remodeling, involving the same receptor ligand system known as RANK/RANKL (receptor activator of nuclear factor-kappa B/ RANK Ligand). Primary teeth without a permanent successor eventually exfoliate as well, but our current understanding on the underlying mechanism is slim. The literature is also vague on how resorption of the pulp and periodontal ligament of the primary teeth occurs. Knowledge on the mechanisms involved in the physiologic root resorption process may enable us to delay or even inhibit exfoliation of primary teeth in those cases that the permanent successor teeth are not present and thus preservation of the primary teeth is desirable.
Collapse
|
89
|
Riihonen R, Supuran CT, Parkkila S, Pastorekova S, Väänänen HK, Laitala-Leinonen T. Membrane-bound carbonic anhydrases in osteoclasts. Bone 2007; 40:1021-31. [PMID: 17291844 DOI: 10.1016/j.bone.2006.11.028] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2006] [Revised: 11/15/2006] [Accepted: 11/16/2006] [Indexed: 12/20/2022]
Abstract
Osteoclasts are multinucleated bone-resorbing cells that use multiple pH regulation mechanisms to create an acidic pH in the resorption lacuna. Carbonic anhydrase II and vacuolar H(+)-ATPases produce and transport protons, while chloride channels provide a Cl(-) flux into the resorption site. These activities are required for inorganic matrix dissolution that precedes enzymatic removal of organic bone matrix. In other cell types it has become evident that carbonic anhydrase isoenzymes interact with AE proteins to form transport metabolons that regulate intracellular pH. Membrane-bound carbonic anhydrase isoenzymes may also compensate for the lack of cytoplasmic carbonic anhydrase II. Therefore, our goal was to explore the expression of membrane-bound carbonic anhydrase (CA) isoenzymes CA IV, CA IX, CA XII and CA XIV in bone-resorbing osteoclasts. Immunohistochemistry and confocal microscopy showed expression of CA IV, CA XII and CA XIV in cultured rat and human osteoclasts. To confirm these results, RT-PCR was used. Immunohistochemistry revealed distinct staining patterns for CA IV, CA XII and CA XIV in rat trabecular bone specimens. A plasma membrane staining was observed in bone lining cells with the CA XII antibody while osteoclast plasma membranes were stained with CA IV and CA XIV antibodies. Confocal microscopy of cultured human osteoclasts showed a punctated intracellular CA IV staining and a perinuclear CA XIV staining while no CA IX or CA XII staining was observed. To evaluate the physiological role of membrane-bound CAs in osteoclasts, we used PCS, a novel membrane-impermeable CA inhibitor. Increased osteoclast number and bone resorption activity was observed in rat osteoclast cultures exposed to a low concentration of PCS while higher concentrations affected cell survival. PCS treatment also disturbed intracellular acidification in osteoclasts, as determined by live cell microscopy. In conclusion, our data shows that membrane-bound carbonic anhydrase isoenzymes CA IV and CA XIV are expressed both at mRNA and protein levels in osteoclasts in vivo and in vitro. In addition, the inhibitor experiments provide novel evidence to support the hypothesis that intracellular pH regulation in osteoclasts may indeed involve transport metabolons.
Collapse
Affiliation(s)
- Riikka Riihonen
- Bone Biology Research Consortium, Department of Anatomy, Institute of Biomedicine, Kiinamyllynkatu 10, FI-20520 Turku, Finland.
| | | | | | | | | | | |
Collapse
|
90
|
Role of cell-matrix interactions in osteoclast differentiation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 602:107-11. [PMID: 17966395 DOI: 10.1007/978-0-387-72009-8_14] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Osteoclast and their mononuclear cell precursors are present within the bone microenvironment at sites of physiologic and pathologic bone resorption. Analysis of tissues from sites of bone resorption reveal that cells expressing the full morphological and functional properties of mature osteoclasts are restricted to the immediate bone surface. We hypothesize that in addition to cytokines, components of the bone matrix and specific cell surface receptors on osteoclasts and their precursors play an essential role in determining the genetic profile and functional properties of fully differentiated resorbing osteoclasts. We have employed expression profiling, with an in vitro model of matrix-dependent osteoclast differentiation, to identify the molecular pathways by which bone matrix-interactions induce terminal osteoclast differentiation and activation. In preliminary studies, we have identified unique genes and transcriptional pathways that are induced by interaction of osteoclast precursors with specific components of the mineralized bone matrix. The authenticity of the gene profiles, as markers of osteoclast differentiation and activation, have been provisionally validated using an in vivo animal bone implantation model and by examination of tissues from patients with specific forms of pathologic osteoclast-mediated bone resorption. The ultimate goal of our studies is to identify new molecular targets for inhibiting osteoclast-mediated bone loss in disorders of pathologic bone loss. The early work of Walker et al. (Walker 1972) in parabiotic animals, and the subsequent studies of Burger et al. (Burger, Van der Meer, van de Gevel, et al. 1982) using a co-culture model with fetal bone rudiments and bone marrow-derived cells, have helped to establish that osteoclasts are derived from macrophage precursors of colony forming unit-macrophage (CFU-M lineage). As such, they share a common hematopoietic origin with other CFU-M lineage cells, including tissue macrophages that populate the lung (alveolar macrophages), liver (Kupfer cells), synovium (synovial macrophages) and other organs. They also share a common lineage
Collapse
|
91
|
Nakagawa H, Hasumi K, Takami M, Aida-Hyugaji S, Woo JT, Nagai K, Ishikawa T, Wachi M. Identification of two biologically crucial hydroxyl groups of (−)-epigallocatechin gallate in osteoclast culture. Biochem Pharmacol 2007; 73:34-43. [PMID: 17034764 DOI: 10.1016/j.bcp.2006.09.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2006] [Revised: 08/25/2006] [Accepted: 09/05/2006] [Indexed: 10/24/2022]
Abstract
(-)-Epigallocatechin gallate (EGCG) induces cell death of osteoclasts in an Fe(2+)- and H(2)O(2)-dependent manner. In the present study, we further explore the cytotoxic mechanism of EGCG using four EGCG analogues. Molecules methylated at position 4' in the B ring (EGCG-4'-O-Me) or at position 4'' in the D-ring (EGCG-4''-O-Me) showed markedly decreased cytotoxicity to osteoclasts, indicating that hydroxyl groups at these two positions of EGCG are crucial for inducing cell death of osteoclasts. EGCG-4'-O-Me also showed the lowest Fe(3+)-reducing activity among five EGCGs. The Fe(3+)-reducing activity of EGCG was enhanced under conditions whereby protonated EGCG levels were increased, indicating that the protonated status of EGCG was involved in the Fe(3+)-reducing activity. The hydroxyl group at position 4'' in the D-ring was shown by quantum chemical calculation to be preferentially deprotonated among all of the hydroxyl groups in EGCGs. It was also shown that the highest occupied molecular orbital (HOMO) was localized to the B-ring of EGCGs, except for EGCG-4'-O-Me. We report here that the HOMO on the B-ring plays crucial roles in both the Fe(3+)-reducing activity of EGCG and the cytotoxicity of EGCG to osteoclasts, while deprotonation of the hydroxyl group at position 4'' in the D-ring plays a supplementary role.
Collapse
Affiliation(s)
- Hiroshi Nakagawa
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | | | | | | | | | | | | | | |
Collapse
|
92
|
Hinoki A, Yoshimura K, Fujita K, Akita M, Ikeda R, Nagashima M, Nomura M, Satomi A. Suppression of proinflammatory cytokine production in macrophages by lansoprazole. Pediatr Surg Int 2006; 22:915-23. [PMID: 16932910 DOI: 10.1007/s00383-006-1767-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Macrophages (MPs) produce increased levels of proinflammatory cytokines in Crohn's disease; these cytokines are thought to play a central role in the occurrence of the disease. Biologics are currently available for anti-cytokine therapy, but treating intestinal inflammation through direct suppression of proinflammatory cytokine production could be more effective. P-ATPase inhibitors have been reported to be anti-inflammatory, and these inhibitors might suppress the production of MP proinflammatory cytokines. In this study, we examined the effect of two types of ATPase inhibitors on the expression patterns of typical proinflammatory cytokines. Peritoneal MPs from 6- to 8-week-old mice were cultured for 48 h in the presence of lansoprazole (P-ATPase inhibitor), bafilomycin A(1) (V-ATPase inhibitor), or the control solvent dimethylsulfoxide. The MPs were then examined for cytokine expression by quantitative real-time polymerase chain reaction (PCR), and culture supernatants were examined for cytokine production with a multiplex assay in a suspension array system. The possible existence of P-ATPase mRNA in MPs was explored using reverse-transcriptase PCR. P-ATPase mRNA was not detected in MP cells. However, all examined proinflammatory cytokines decreased significantly in their mRNA and protein expression in the lansoprazole-treated group. Conversely, bafilomycin A(1) increased the levels of these cytokines. Lansoprazole might be useful for the treatment of inflammatory bowel diseases (IBDs), including Crohn's disease, as it suppresses the production of relevant MP proinflammatory cytokines. However, because P-ATPase was not detected in MPs, the mechanism is unclear and remains to be studied further in an IBD animal model.
Collapse
Affiliation(s)
- Akinari Hinoki
- Department of Pediatric Surgery, Saitama Medical School, 38 Morohongo Moroyama-machi, Iruma-gun, Saitama, 350-0495, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
93
|
Imamura H, Funamoto S, Yoshida M, Yokoyama K. Reconstitution in vitro of V1 complex of Thermus thermophilus V-ATPase revealed that ATP binding to the A subunit is crucial for V1 formation. J Biol Chem 2006; 281:38582-91. [PMID: 17050529 DOI: 10.1074/jbc.m608253200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Vacuolar-type H(+)-ATPase (V-ATPase or V-type ATPase) is a multisubunit complex comprised of a water-soluble V(1) complex, responsible for ATP hydrolysis, and a membrane-embedded V(o) complex, responsible for proton translocation. The V(1) complex of Thermus thermophilus V-ATPase has the subunit composition of A(3)B(3)DF, in which the A and B subunits form a hexameric ring structure. A central stalk composed of the D and F subunits penetrates the ring. In this study, we investigated the pathway for assembly of the V(1) complex by reconstituting the V(1) complex from the monomeric A and B subunits and DF subcomplex in vitro. Assembly of these components into the V(1) complex required binding of ATP to the A subunit, although hydrolysis of ATP is not necessary. In the absence of the DF subcomplex, the A and B monomers assembled into A(1)B(1) and A(3)B(3) subcomplexes in an ATP binding-dependent manner, suggesting that ATP binding-dependent interaction between the A and B subunits is a crucial step of assembly into V(1) complex. Kinetic analysis of assembly of the A and B monomers into the A(1)B(1) heterodimer using fluorescence resonance energy transfer indicated that the A subunit binds ATP prior to binding the B subunit. Kinetics of binding of a fluorescent ADP analog, N-methylanthraniloyl ADP (mant-ADP), to the monomeric A subunit also supported the rapid nucleotide binding to the A subunit.
Collapse
Affiliation(s)
- Hiromi Imamura
- ATP System Project, Exploratory Research for Advanced Technology (ERATO), Japan Science and Technology Agency (JST), 5800-3 Nagatsuta, Midori-ku, Yokohama 226-0026, Japan
| | | | | | | |
Collapse
|
94
|
Rojas JD, Sennoune SR, Maiti D, Bakunts K, Reuveni M, Sanka SC, Martinez GM, Seftor EA, Meininger CJ, Wu G, Wesson DE, Hendrix MJC, Martínez-Zaguilán R. Vacuolar-type H+-ATPases at the plasma membrane regulate pH and cell migration in microvascular endothelial cells. Am J Physiol Heart Circ Physiol 2006; 291:H1147-57. [PMID: 16679513 DOI: 10.1152/ajpheart.00166.2006] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Microvascular endothelial cells involved in angiogenesis are exposed to an acidic environment that is not conducive for growth and survival. These cells must exhibit a dynamic intracellular (cytosolic) pH (pHcyt) regulatory mechanism to cope with acidosis, in addition to the ubiquitous Na+/H+exchanger and HCO3−-based H+-transporting systems. We hypothesize that the presence of plasmalemmal vacuolar-type proton ATPases (pmV-ATPases) allows microvascular endothelial cells to better cope with this acidic environment and that pmV-ATPases are required for cell migration. This study indicates that microvascular endothelial cells, which are more migratory than macrovascular endothelial cells, express pmV-ATPases. Spectral imaging microscopy indicates a more alkaline pHcytat the leading than at the lagging edge of microvascular endothelial cells. Treatment of microvascular endothelial cells with V-ATPase inhibitors decreases the proton fluxes via pmV-ATPases and cell migration. These data suggest that pmV-ATPases are essential for pHcytregulation and cell migration in microvascular endothelial cells.
Collapse
Affiliation(s)
- J D Rojas
- Department of Physiology, Texas Tech University Health Sciences Center, 3601 4th St., Lubbock, TX 79430-6551, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
95
|
Abstract
Resistance to cytotoxic agents is a major problem in treating cancer. The mechanisms underlying this phenomenon appear to take advantage of functions involved in the control of cell homeostasis. A mechanism of resistance may be alteration of the tumour microenvironment via changes in the pH gradient between the extracellular environment and the cell cytoplasm. The extracellular pH of solid tumours is significantly more acidic than that of normal tissues, thus impairing the uptake of weakly basic chemotherapeutic drugs and reducing their effect on tumours. An option to revert multi-drug resistance is the use of agents that disrupt the pH gradient in tumours by inhibiting the function of pumps generating the pH gradient, such as vacuolar H(+)-ATPases (V-H(+)-ATPases). V-H(+)-ATPases pump protons across the plasma membrane and across the membranes of various intracellular compartments. Some human tumour cells, particularly those selected for multi-drug resistance, exhibit enhanced V-H(+)-ATPase activity. A class of V-H(+)-ATPase inhibitors, called proton pump inhibitors (PPIs), have emerged as the drug class of choice for treating patients with peptic diseases. These drugs inhibit gastric acid secretion by targeting the gastric acid pump, but they also directly inhibit V-H(+)-ATPases. PPIs (including omeprazole, esomeprazole, lansoprazole, pantoprazole and rabeprazole) are protonable weak bases which selectively accumulate in acidic spaces. Recent findings from our group have shown that PPI pretreatment sensitised tumour cell lines to the effect of cisplatin, 5-fluoro-uracil and vinblastine. PPI pretreatment was associated with the inhibition of V-H(+)-ATPase activity and an increase of both extracellular pH and the pH of lysosomal organelles, consistent with a cytoplasmic retention of the cytotoxic drugs and targeting to the nucleus in the case of doxorubicin. In vivo experiments showed that oral pretreatment with omeprazole induced a sensitivity of the human solid tumours to anticancer drugs.
Collapse
|
96
|
Zuo J, Jiang J, Chen SH, Vergara S, Gong Y, Xue J, Huang H, Kaku M, Holliday LS. Actin binding activity of subunit B of vacuolar H+-ATPase is involved in its targeting to ruffled membranes of osteoclasts. J Bone Miner Res 2006; 21:714-21. [PMID: 16734386 DOI: 10.1359/jbmr.060201] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
UNLABELLED Adeno-associated virus was used to transduce primary mouse osteoclasts with the B1 isoform of vacuolar H(+)-ATPase. B1, which is not normally expressed in osteoclasts, was correctly targeted to ruffled membranes of resorbing osteoclasts. Mutant subunit B1 that lacked a functional actin-binding site did not accumulate in ruffled membranes. INTRODUCTION The B1 "kidney" and B2 "brain" isoforms of subunit B of vacuolar H(+)-ATPase (V-ATPase) have actin binding sites that mediate interactions between the intact enzyme and filamentous-actin. Accumulating data support the hypothesis that the actin binding activity in subunit B is required for targeting of V-ATPases to the ruffled plasma membrane of osteoclasts. This study was designed to directly test this hypothesis. MATERIALS AND METHODS Osteoclasts express B2, but not B1. Adeno-associated virus vectors were used to transduce mouse osteoclasts with wildtype B1 or B1(mut), a full-length B subunit that contained minor alterations that disrupted actin-binding activity. Immunofluorescence was performed using polyclonal antibodies specific for subunit E, B2, and B1 of V-ATPase. Immunoprecipitations were performed using an anti-E subunit antibody. Microfilaments were detected with phalloidin and actin rings were stained with phalloidin or anti-vinculin antibodies. Images were collected using a confocal microscope. RESULTS Immunoprecipitations of transduced osteoclasts suggested that both B1 and B1(mut) assembled with endogenous V-ATPase subunits to form intact enzyme in osteoclasts. Both B1 and B1(mut) were localized like endogenous V-ATPase subunits in unactivated osteoclasts. Wildtype B1 associated with the detergent-insoluble cytoskeleton and was transported to ruffled membranes of resorbing osteoclasts. In contrast, B1(mut) failed to associate with the actin cytoskeleton and was not transported efficiently to ruffled membranes. CONCLUSIONS The B1 isoform of B subunit contains the necessary information for targeting to the ruffled membranes of osteoclasts even though it is not normally expressed in osteoclasts. The actin binding activity of B1 is involved in proper ruffled membrane targeting.
Collapse
Affiliation(s)
- Jian Zuo
- Department of Orthodontics, University of Florida College of Dentistry, Gainesville, 32610, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
97
|
Laitala-Leinonen T, Rinne R, Saukko P, Väänänen HK, Rinne A. Cystatin B as an intracellular modulator of bone resorption. Matrix Biol 2006; 25:149-57. [PMID: 16321512 DOI: 10.1016/j.matbio.2005.10.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2005] [Accepted: 10/21/2005] [Indexed: 10/25/2022]
Abstract
Degradation of organic bone matrix requires proteinase activity. Cathepsin K is a major osteoclast proteinase needed for bone resorption, although osteoclasts also express a variety of other cysteine- and matrix metalloproteinases that are involved in bone remodellation. Cystatin B, an intracellular cysteine proteinase inhibitor, exhibits a lysosomal distribution preferentially in osteoclasts but it's role in osteoclast physiology has remained unknown. The current paper describes a novel regulatory function for cystatin B in bone-resorbing osteoclasts in vitro. Rat osteoclasts were cultured on bovine bone and spleen-derived cystatin B was added to the cultures. Nuclear morphology was evaluated and the number of actively resorbing osteoclasts and resorption pits was counted. Intracellular cathepsin K and tartrate-resistant acid phosphatase (TRACP) activities were monitored using fluorescent enzyme substrates and immunohistology was used to evaluate distribution of cystatin B in rat metaphyseal bone. Microscopical evaluation showed that cystatin B inactivated osteoclasts, thus resulting in impaired bone resorption. Cathepsin K and TRACP positive vesicles disappeared dose-dependently from the cystatin B-treated osteoclasts, indicating a decreased intracellular trafficking of bone degradation products. At the same time, cystatin B protected osteoclasts from experimentally induced apoptosis. These data show for the first time that, in addition to regulating cysteine proteinase activity and promoting cell survival in the nervous system, cystatin B inhibits bone resorption by down-regulating intracellular cathepsin K activity despite increased osteoclast survival.
Collapse
Affiliation(s)
- Tiina Laitala-Leinonen
- Bone Biology Research Consortium, Department of Anatomy, University of Turku, Kiinamyllynkatu 10, FIN-20520 Turku, Finland.
| | | | | | | | | |
Collapse
|
98
|
Czupalla C, Mansukoski H, Pursche T, Krause E, Hoflack B. Comparative study of protein and mRNA expression during osteoclastogenesis. Proteomics 2006; 5:3868-75. [PMID: 16145714 DOI: 10.1002/pmic.200402059] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Osteoclasts, the bone-digesting cells, are key players in bone remodeling. To identify proteins potentially involved in osteoclast function, we analyzed the patterns of protein expression during osteoclastogenesis by2-D DIGE. As a model system we used the mouse myeloid Raw 264.7 cell line that differentiates in vitro into osteoclasts upon treatment with specific growth factors. In 2-D DIGE, we identified 86 up- and 34 down-regulated proteins including known osteoclast differentiation markers as well as proteins regulating key cellular functions of osteoclasts such as energy production, cytoskeleton dynamics, and digestion of organic and inorganic bone matrix. Comparison of protein expression using 2-D DIGE techniques with mRNA expression analyzed by DNA microarrays revealed essentially two groups of genes. The first group comprises genes for which differences in both mRNA and protein expressions were found. A second group covers genes whose expression was not altered at the mRNA level but whose corresponding gene products exhibited different electrophoretic mobilities, thereby revealing potential changes in post-transcriptional processing and PTM. Thus, these combined approaches identify new potential therapeutic targets for treatment of bone diseases and provide complementary information on regulatory processes that might affect osteoclastogenesis.
Collapse
|
99
|
Zhao H, Väänänen HK. Pharmacological sequestration of intracellular cholesterol in late endosomes disrupts ruffled border formation in osteoclasts. J Bone Miner Res 2006; 21:456-65. [PMID: 16491294 DOI: 10.1359/jbmr.051204] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2005] [Revised: 10/28/2005] [Accepted: 12/12/2005] [Indexed: 11/18/2022]
Abstract
UNLABELLED We showed that the ruffled border lacks a late endosomal lipid, LBPA, but is enriched incholesterol. A hydrophobic amine, U18666A, causes cholesterol accumulation in LBPA+ late endosomes in osteoclasts. Specific targeting of cathepsin K and the vacuolar H+-ATPase at the ruffled border is blocked by U18666A. A membrane trafficking pathway from baso-lateral membrane toward the resorptive organelle is also arrested by the inhibitor. These results indicate cholesterol homeostasis regulates late endosomal/lysosomal trafficking and polarized secretion in resorbing osteoclasts. INTRODUCTION Protons and acidic proteases are secreted into the resorption lacuna through the ruffled border to solubilize bone mineral and digest the organic bone matrix, respectively. Whereas evidence suggests this event occurs through a vesicular trafficking mechanism, this issue remains unresolved. MATERIALS AND METHODS The distribution of lysobisphosphatidic acid (LBPA) and cholesterol in resorbing osteoclasts was examined by laser scanning confocal microscopy. The effects of U18666A on ruffled border formation were observed by electron microscopy. RESULTS AND CONCLUSIONS The ruffled border does not contain LBPA but is enriched in cholesterol. We found a hydrophobic amine, U18666A, which blocks the efflux of cholesterol from late endosomes in other cells, causes cholesterol accumulation in LBPA-containing late endosomes in osteoclasts, leading to diminished cholesterol at the ruffled border. Reflecting the U18666A-mediated inhibition of late endosome/lysosome transport, the resorptive membrane is disrupted and contains a paucity of cathepsin K and the vacuolar H+-ATPase. These results indicate that the ruffled border is formed by the fusion of lysosomes with the plasma membrane in osteoclasts through a process that is cholesterol regulated.
Collapse
Affiliation(s)
- Haibo Zhao
- Department of Anatomy, Institute of Biomedicine, University of Turku, Turku, Finland.
| | | |
Collapse
|
100
|
Thompson K, Rogers MJ, Coxon FP, Crockett JC. Cytosolic Entry of Bisphosphonate Drugs Requires Acidification of Vesicles after Fluid-Phase Endocytosis. Mol Pharmacol 2006; 69:1624-32. [PMID: 16501031 DOI: 10.1124/mol.105.020776] [Citation(s) in RCA: 182] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Bisphosphonates such as alendronate and zoledronate are blockbuster drugs used to inhibit osteoclast-mediated bone resorption. Although the molecular mechanisms by which bisphosphonates affect osteoclasts are now evident, the exact route by which they are internalized by cells is not known. To clarify this, we synthesized a novel, fluorescently labeled analog of alendronate (AF-ALN). AF-ALN was rapidly internalized into intracellular vesicles in J774 macrophages and rabbit osteoclasts; uptake of AF-ALN or [14C]zoledronate was stimulated by the presence of Ca2+ and Sr2+ and could be inhibited by addition of EGTA or clodronate, both of which chelate calcium ions. Both EGTA and clodronate also prevented the bisphosphonate-induced inhibition of Rap1A prenylation, an effect that was reversed by addition of Ca2+. In J774 cells and osteoclasts, vesicular AF-ALN colocalized with dextran (but not wheat germ agglutinin or transferrin), and uptake of AF-ALN or [14C]zoledronate was inhibited by dansylcadaverine, indicating that fluid-phase endocytosis is involved in the initial internalization of bisphosphonate into vesicles. Endosomal acidification then seems to be absolutely required for exit of bisphosphonate from vesicles and entry into the cytosol, because monensin and bafilomycin A1, both inhibitors of endosomal acidification, did not inhibit vesicular uptake of AF-ALN or internalization of [14C]zoledronate but prevented the inhibitory effect of alendronate or zoledronate on Rap1A prenylation. Taken together, these results demonstrate that cellular uptake of bisphosphonate drugs requires fluid-phase endocytosis and is enhanced by Ca2+ ions, whereas transfer from endocytic vesicles into the cytosol requires endosomal acidification.
Collapse
Affiliation(s)
- Keith Thompson
- Bone Research Group, Department of Medicine and Therapeutics, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB252ZD, UK
| | | | | | | |
Collapse
|