51
|
Schmülling T, Röhrig H. Gene silencing in transgenic tobacco hybrids: frequency of the event and visualization of somatic inactivation pattern. MOLECULAR & GENERAL GENETICS : MGG 1995; 249:375-90. [PMID: 8552042 DOI: 10.1007/bf00287099] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We have investigated the stability of the expression of different T-DNA-borne genes in hybrid tobacco lines. These lines were constructed to rescue rolC-induced male sterility in kanamycin-resistant P35s-rolC transgenic tobacco plants by expression of rolC antisense genes. Using five different tester lines, a total of 158 hybrids was obtained. We observed inactivation of transgene expression in 20% of the F1 progeny and in 35% of the backcrossed F2 progeny, as indicated by the loss of kanamycin resistance. In 3% of all crosses complete loss of antibiotic resistance was noted, while in most affected hybrid progeny only part of the population became kanamycin sensitive. Single genes could be selectively inactivated on T-DNAs harboring several genes. Gene inactivation was not restricted to one of the two T-DNAs examined. Somatic silencing, visualized by a cell-specific 35SGUSINT marker gene, occurred in a random fashion or exhibited an inherited specific pattern. The type of somatic silencing pattern observed indicated developmental control of the process. Two phenotypic classes could be distinguished with respect to frequency and timing of the inactivation process. Rapid gene inactivation, occurring within a few weeks after germination of hybrid seedlings, was characterized by complete methylation of restriction sites in the promoter of the silenced gene, resetting of gene expression during meiosis, heredity of the developmentally controlled program of gene silencing in subsequent generations, and rapid reactivation of gene expression after genetic separation of the different T-DNAs. In contrast, a slow type of gene inactivation was of a more stochastic nature and was recognized only in hybrids of the backcrossed F2 generation. In this case the degree of promoter methylation, which could extend beyond the T-DNA borders, was not correlated with the reduction in steady-state poly(A)+ mRNA levels, the silenced state was transmitted through meiosis and reactivation lasted several generations. The implications of the observations for our understanding of the gene inactivation process are discussed.
Collapse
MESH Headings
- Blotting, Northern
- Blotting, Southern
- Cinnamates
- Crosses, Genetic
- DNA, Bacterial/genetics
- Drug Resistance/genetics
- Gene Expression Regulation, Plant
- Genotype
- Glucuronidase/genetics
- Glucuronidase/metabolism
- Histocytochemistry
- Hygromycin B/analogs & derivatives
- Hygromycin B/pharmacology
- Kanamycin/metabolism
- Kanamycin/pharmacology
- Methylation
- Phenotype
- Plants, Genetically Modified/drug effects
- Plants, Genetically Modified/genetics
- Plants, Toxic
- Promoter Regions, Genetic/genetics
- Nicotiana/drug effects
- Nicotiana/genetics
- Transcription, Genetic/genetics
- Transgenes
Collapse
Affiliation(s)
- T Schmülling
- Universität Tübingen, Lehrstuhl für Allgemeine Genetik, Germany
| | | |
Collapse
|
52
|
Jones BW, Fetter RD, Tear G, Goodman CS. glial cells missing: a genetic switch that controls glial versus neuronal fate. Cell 1995; 82:1013-23. [PMID: 7553843 DOI: 10.1016/0092-8674(95)90280-5] [Citation(s) in RCA: 380] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The glial cells missing (gcm) gene in Drosophila encodes a novel nuclear protein that is transiently expressed early in the development of nearly all glia. In loss-of-function gcm mutant alleles, nearly all glia fail to differentiate, and, where we can follow them in the PNS, are transformed into neurons. In gain-if-function gcm conditions using transgenic constructs that drive ectopic gcm expression, many presumptive neurons are transformed into glia. Thus, gcm appears to function as a binary genetic switch for glia versus neurons. In the presence of gcm protein, presumptive neurons become glia, while in its absence, presumptive glia become neurons.
Collapse
Affiliation(s)
- B W Jones
- Howard Hughes Medical Institute, Department of Molecular and Cell Biology, University of California, Berkeley 94720, USA
| | | | | | | |
Collapse
|
53
|
Abstract
Relatively little is known about the spatial organization of RNA synthesis, processing, and transport in (mammalian) cell nuclei. This review summarizes results of electron microscopic mapping of RNA synthetic sites and macromolecules involved directly, or indirectly, in the metabolism of RNAs in somatic cell mammalian nuclei. Significance of these results will be discussed in the context of the molecular mechanisms underlying spatial arrangements of RNA metabolism.
Collapse
Affiliation(s)
- I Raska
- Laboratory of Cell Biology, Academy of Sciences of Czech Republic, Prague, Czech Republic
| |
Collapse
|
54
|
Auld VJ, Fetter RD, Broadie K, Goodman CS. Gliotactin, a novel transmembrane protein on peripheral glia, is required to form the blood-nerve barrier in Drosophila. Cell 1995; 81:757-67. [PMID: 7539719 DOI: 10.1016/0092-8674(95)90537-5] [Citation(s) in RCA: 200] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Peripheral glia help ensure that motor and sensory axons are bathed in the appropriate ionic and biochemical environment. In Drosophila, peripheral glia help shield these axons against the high K+ concentration of the hemolymph, which would largely abolish their excitability. Here, we describe the molecular genetic analysis of gliotactin, a novel transmembrane protein that is transiently expressed on peripheral glia and that is required for the formation of the peripheral blood-nerve barrier. In gliotactin mutant embryos, the peripheral glia develop normally in many respects, except that ultrastructurally and physiologically they do not form a complete blood-nerve barrier. As a result, peripheral motor axons are exposed to the high K+ hemolymph, action potentials fail to propagate, and the embryos are nearly paralyzed.
Collapse
Affiliation(s)
- V J Auld
- Howard Hughes Medical Institute, Department of Molecular and Cell Biology, University of California, Berkeley 94720, USA
| | | | | | | |
Collapse
|
55
|
Kapoun AM, Kaufman TC. Regulatory regions of the homeotic gene proboscipedia are sensitive to chromosomal pairing. Genetics 1995; 140:643-58. [PMID: 7498743 PMCID: PMC1206641 DOI: 10.1093/genetics/140.2.643] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
We have identified regulatory regions of the homeotic gene proboscipedia that are capable of repressing a linked white minigene in a manner that is sensitive to chromosomal pairing. Normally, the eye color of transformants containing white in a P-element vector is affected by the number of copies of the transgene; homozygous flies have darker eyes than heterozygotes. However, we found that flies homozygous for select pb DNA-containing transgenes had lighter eyes than heterozygotes. Several pb DNA fragments are capable of causing this pairing sensitive (PS) negative regulation of white. Two fragments in the upstream DNA of pb, 0.58 and 0.98 kb, are PS; additionally, two PS sites are located in the second intron, including a 0.5-kb region and 49-bp sequence. This phenotype is not observed when two PS sites are located at different chromosomal insertion sites (in trans-heterozygous transgenic animals), indicating that the pb-DNA-mediated repression of white is dependent on the pairing or proximity of the PS regions. The observed phenomenon is similar to transvection in which certain alleles of a gene can complement each other, but only when homologous chromosomes are paired. Interestingly, the intronic PS regions contain positive regulatory sequences for pb, whereas the upstream PS sites contain pb negative regulatory elements.
Collapse
Affiliation(s)
- A M Kapoun
- Howard Hughes Medical Institute, Department of Biology, Indiana University, Bloomington 47405, USA
| | | |
Collapse
|
56
|
Wu CT, Howe M. A genetic analysis of the Suppressor 2 of zeste complex of Drosophila melanogaster. Genetics 1995; 140:139-81. [PMID: 7635282 PMCID: PMC1206544 DOI: 10.1093/genetics/140.1.139] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The zeste1 (z1) mutation of Drosophila melanogaster produces a mutant yellow eye color instead of the wild-type red. Genetic and molecular data suggest that z1 achieves this change by altering expression of the wild-type white gene in a manner that exhibits transvection effects. There exist suppressor and enhancer mutations that modify the z1 eye color, and this paper summarizes our studies of those belonging to the Suppressor 2 of zeste complex [Su(z)2-C]. The Su(z)2-C consists of at least three subregions called Psc (Posterior sex combs), Su(z)2 and Su(z)2D (Distal). The products of these subregions are proposed to act at the level of chromatin. Complementation analyses predict that the products are functionally similar and interacting. The alleles of Psc define two overlapping phenotypic classes, the hopeful and hapless. The distinctions between these two classes and the intragenic complementation seen among some of the Psc alleles are consistent with a multidomain structure for the product of Psc. Psc is a member of the homeotic Polycomb group of genes. A general discussion of the Polycomb and trithorax group of genes, position-effect variegation, transvection, chromosome pairing and chromatin structure is presented.
Collapse
Affiliation(s)
- C T Wu
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
57
|
Parks AL, Turner FR, Muskavitch MA. Relationships between complex Delta expression and the specification of retinal cell fates during Drosophila eye development. Mech Dev 1995; 50:201-16. [PMID: 7619731 DOI: 10.1016/0925-4773(94)00336-l] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Analysis of retinal development in Delta (Dl) temperature-sensitive mutants reveals requirements for Delta function in the specification of all retinal cells, including photoreceptors, cone cells, pigment cells and cells that make up interommatidial bristles. In situ hybridization and immunohistochemistry indicate that Delta is expressed dynamically during the specification of different cell types. Comparisons of Delta expression patterns with developmental defects in Dl mutants implies that Delta functions in a cell-nonautonomous manner in the specification of photoreceptors. Delta protein resides predominantly in subcellular vesicles located primarily at the apical ends of developing retinal cells. Localization of Delta protein in Dl and shibire tsl mutants implies that Delta is targeted to the cell surface, but is efficiently removed via endocytosis, resulting in vesicular accumulation.
Collapse
Affiliation(s)
- A L Parks
- Department of Biology, Indiana University, Bloomington 47405, USA
| | | | | |
Collapse
|
58
|
Talbert PB, Garber RL. The Drosophila homeotic mutation Nasobemia (AntpNs) and its revertants: an analysis of mutational reversion. Genetics 1994; 138:709-20. [PMID: 7851768 PMCID: PMC1206221 DOI: 10.1093/genetics/138.3.709] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The homeotic gene Antennapedia (Antp) controls determination of many different cell types in the thorax and abdomen of Drosophila melanogaster. The spontaneous mutant allele Nasobemia (AntpNs) and its revertants have been widely used to infer normal Antp gene function but have not themselves been thoroughly characterized. Our analysis reveals that AntpNs consists of an internal 25-kb partial duplication of the Antp gene as well as a complex insertion of > 40 kb of new DNA including two roo transposons. The duplication gives the mutant gene three Antp promoters, and transcripts from each of these are correctly processed to yield functional ANTP proteins. At least two of the promoters are ectopically active in the eye-antenna imaginal discs, leading to homeotic transformation of the adult head. A molecular and genetic description of several AntpNs revertants shows them to be diverse in structure and activity, including a restoration of the wild type, rearrangements separating two of the AntpNs promoters from the coding sequences, and protein nulls and hypomorphs affecting expression from all three of the promoters. Finally, one revertant has a suppressing lesion in the osa locus far away from Antp. These features explain the unusual homozygous viable nature of AntpNs, suggest a mechanism by which its homeotic transformation occurs, and exemplify the diversity of ways in which mutational reversion can take place.
Collapse
Affiliation(s)
- P B Talbert
- University of Washington, Department of Genetics, Seattle 98195
| | | |
Collapse
|
59
|
Spikes DA, Kramer J, Bingham PM, Van Doren K. SWAP pre-mRNA splicing regulators are a novel, ancient protein family sharing a highly conserved sequence motif with the prp21 family of constitutive splicing proteins. Nucleic Acids Res 1994; 22:4510-9. [PMID: 7971282 PMCID: PMC308487 DOI: 10.1093/nar/22.21.4510] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Regulators responsible for the pervasive, nonsex-specific alternative pre-mRNA splicing characteristic of metazoans are almost entirely unknown or uncertain. We describe here a novel family of splicing regulators present throughout metazoans. Specifically, we analyze two nematode (Caenorhabditis elegans) genes. One, CeSWAP, is a cognate of the suppressor-of-white-apricot (DmSWAP) splicing regulator from the arthropod Drosophila. Our results define the ancient, conserved SWAP protein family whose members share a colinearly arrayed series of novel sequence motifs. Further, we describe evidence that the CeSWAP protein autoregulates its levels by feedback control of splicing of its own pre-mRNA analogously to the DmSWAP protein and as expected of a splicing regulator. The second nematode gene, Ceprp21, encodes an abundant nuclear cognate of the constitutive yeast splicing protein, prp21, on the basis of several lines of evidence. Our analysis defines prp21 as a second novel, ancient protein family. One of the motifs conserved in prp21 proteins--designated surp--is shared with SWAP proteins. Several lines of evidence indicate that both new families of surp-containing proteins act at the same (or very similar) step in early prespliceosome assembly. We discuss implications of our results for regulated metazoan pre-mRNA splicing.
Collapse
Affiliation(s)
- D A Spikes
- Department of Biochemistry and Cell Biology, University of New York, Stony Brook, NY 11794
| | | | | | | |
Collapse
|
60
|
Kolodkin AL, Pickup AT, Lin DM, Goodman CS, Banerjee U. Characterization of Star and its interactions with sevenless and EGF receptor during photoreceptor cell development in Drosophila. Development 1994; 120:1731-45. [PMID: 7924981 DOI: 10.1242/dev.120.7.1731] [Citation(s) in RCA: 88] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Loss-of-function mutations in Star impart a dominant rough eye phenotype and, when homozygous, are embryonic lethal with ventrolateral cuticular defects. We have cloned the Star gene and show that it encodes a novel protein with a putative transmembrane domain. Star transcript is expressed in a dynamic pattern in the embryo including in cells of the ventral midline. In the larval eye disc, Star is expressed first at the morphogenetic furrow, then in the developing R2, R5, and R8 cells as well as in the posterior clusters of the disc in additional R cells. Star interacts with Drosophila EGF receptor in the eye and mosaic analysis of Star in the larval eye disc reveals that homozygous Star patches contain no developing R cells. Taken together with the expression pattern at the morphogenetic furrow, these results demonstrate an early role for Star in photoreceptor development. Additionally, loss-of-function mutations in Star act as suppressors of R7 development in a sensitized genetic background involving the Son of sevenless (Sos) locus, and overexpression of Star enhances R7 development in this genetic background. Based on the genetic interactions with Sos, we suggest that Star also has a later role in photoreceptor development including the recruitment of the R7 cell through the sevenless pathway.
Collapse
Affiliation(s)
- A L Kolodkin
- Howard Hughes Medical Institute, Department of Molecular and Cell Biology, University of California, Berkeley 94720
| | | | | | | | | |
Collapse
|
61
|
Wansink DG, van Driel R, de Jong L. Organization of (pre-)mRNA metabolism in the cell nucleus. Mol Biol Rep 1994; 20:45-55. [PMID: 7715609 DOI: 10.1007/bf00996353] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- D G Wansink
- E.C. Slater Institute, University of Amsterdam, The Netherlands
| | | | | |
Collapse
|
62
|
Abstract
We review new evidence suggesting that metazoan nuclear pre-mRNA metabolism occurs in a small subnuclear compartment consisting of a network of channels defined by exclusion from various condensed structures. Nuclear components, including mRNA en route from the gene to the nuclear surface, apparently move through these channels by conventional diffusion.
Collapse
Affiliation(s)
- J Kramer
- Department of Biochemistry and Cell Biology, University of New York, Stony Brook, NY 11794, USA
| | | | | |
Collapse
|
63
|
Nesic D, Maquat LE. Upstream introns influence the efficiency of final intron removal and RNA 3'-end formation. Genes Dev 1994; 8:363-75. [PMID: 7906237 DOI: 10.1101/gad.8.3.363] [Citation(s) in RCA: 83] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
For all intron-containing pre-mRNAs of higher eukaryotes that have been examined using either living cells or cell-free extracts, a functional 3' splice site within the 3'-terminal intron is required for efficient RNA 3'-end formation. The mechanism by which intron sequences facilitate RNA 3'-end formation, which is achieved by endonucleolytic cleavage and polyadenylation, is not understood. We report here that in intact cells the efficiency of RNA 3'-end formation correlates with the efficiency of final intron removal, even when the intron is normally a 5'-terminal or internal intron. Therefore, the influence of the 3'-terminal intron on 3'-end formation is likely to be attributable to the determinants of splicing efficiency, which include but are not limited to the 3' splice site. Quantitative RNase mapping and methods that couple reverse transcription and the polymerase chain reaction were used to assess the consequence to RNA 3'-end formation of intron deletions within the human gene for triosephosphate isomerase (TPI). Results indicate that the formation of TPI RNA 3' ends requires TPI gene introns in addition to the last intron, intron 6, to proceed efficiently. These additional TPI gene introns are also required for the efficient removal of intron 6. When introns 1 and 5 were engineered to be the final intron, they were found, as was intron 6, to function in RNA 3'-end formation with an efficiency that correlated with their efficiency of removal. The simultaneous deletion of the 5' and 3' splice sites of intron 6 reduced the efficiencies of both RNA 3'-end formation and the removal of intron 5, which constituted the 3'-most functional intron. Deletion of only the 3' splice site of intron 6 precluded RNA 3'-end formation but had no effect on the efficiency of intron 5 removal. Deletion of only the 5' splice site of intron 6, which resulted in exon 6 skipping (i.e., the removal of intron 5, exon 6, and intron 6 as a single unit), had no effect on the efficiencies of either RNA 3'-end formation or the removal of intron 5-exon 6-intron 6. These results indicate that sequences within the 3'-terminal intron are functionally coupled to both RNA 3'-end formation and removal of the penultimate intron via a network of interactions that form across the last two exons and, most likely, between RNA processing factors.
Collapse
Affiliation(s)
- D Nesic
- Roswell Park Cancer Institute, Buffalo, New York 14263
| | | |
Collapse
|
64
|
Kolodkin AL, Matthes DJ, Goodman CS. The semaphorin genes encode a family of transmembrane and secreted growth cone guidance molecules. Cell 1993; 75:1389-99. [PMID: 8269517 DOI: 10.1016/0092-8674(93)90625-z] [Citation(s) in RCA: 746] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
In addition to its expression on subsets of axons, grasshopper Semaphorin I (Sema I, previously called Fasciclin [Fas] IV) is expressed on an epithelial stripe in the limb bud, where it functions in the guidance of two sensory growth cones as they abruptly turn upon encountering this sema I boundary. We report here on the cloning and characterization of two sema genes in Drosophila, one in human, and the identification of two related viral sequences, all of which encode proteins with conserved Semaphorin domains. Drosophila sema (D-Sema) I is a transmembrane protein, while D-Sema II and human Sema III are putative secreted proteins that are similar to the recently reported chick collapsin. D-Sema I and D-Sema II are expressed by subsets of neurons and muscles. Genetic analysis in Drosophila reveals that semall is an essential gene that is required for both proper adult behavior and survival.
Collapse
Affiliation(s)
- A L Kolodkin
- Howard Hughes Medical Institute, Department of Molecular and Cell Biology, University of California, Berkeley 94720
| | | | | |
Collapse
|
65
|
Xing Y, Lawrence JB. Nuclear RNA tracks: structural basis for transcription and splicing? Trends Cell Biol 1993; 3:346-53. [PMID: 14731904 DOI: 10.1016/0962-8924(93)90105-a] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Knowledge of how the biochemical machineries governing metabolism and transport of several distinct classes of RNA may be organized and integrated into the structure of the nucleus remains very limited. Recent observations, including advances in the detection of specific nucleotide sequences directly within the nucleus, have heightened the long-standing interest in the structural organization of pre-mRNA transcription and processing.
Collapse
Affiliation(s)
- Y Xing
- University of Massachusetts Medical School, Department of Cell Biology, 55 Lake Avenue North, Worcester, MA 01655, USA
| | | |
Collapse
|
66
|
Abstract
In cultured cells, little if any mRNA accumulates from an intronless version of the human gene for triosephosphate isomerase (TPI), a gene that normally contains six introns. By deleting introns either individually or in combinations, it was demonstrated by Northern (RNA) blot hybridization that while the deletion of a greater number of introns generally results in a lower level of product mRNA, not all introns contribute equally to mRNA formation. For example, intron 1 appeared to be dispensable, at least when the remaining introns are present, but deletion of the last intron, intron 6, reduced the level of product mRNA to 51% of normal. To determine how intron 6 contributes to mRNA formation, partial deletions of intron 6 were constructed and analyzed. Deletion of the lariat and acceptor splice sites or the donor, lariat, and acceptor splice sites, each of which precluded removal of the intron 6 sequences that remained, reduced the level of product mRNA to < 1 or 27% of normal, respectively. As measured by RNase mapping and cDNA sequencing, the decrease in mRNA abundance that was attributable to the complete and partial intron 6 deletions was accompanied by an increase in the abundance of pre-mRNA that lacked a mature 3' end, i.e., that was neither cleaved nor polyadenylated. We infer from these and other data that sequences within the final intron facilitate proper 3'-end formation, possibly through an association with the components of a productive spliceosome.
Collapse
|
67
|
Nesic D, Cheng J, Maquat LE. Sequences within the last intron function in RNA 3'-end formation in cultured cells. Mol Cell Biol 1993; 13:3359-69. [PMID: 7684497 PMCID: PMC359795 DOI: 10.1128/mcb.13.6.3359-3369.1993] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
In cultured cells, little if any mRNA accumulates from an intronless version of the human gene for triosephosphate isomerase (TPI), a gene that normally contains six introns. By deleting introns either individually or in combinations, it was demonstrated by Northern (RNA) blot hybridization that while the deletion of a greater number of introns generally results in a lower level of product mRNA, not all introns contribute equally to mRNA formation. For example, intron 1 appeared to be dispensable, at least when the remaining introns are present, but deletion of the last intron, intron 6, reduced the level of product mRNA to 51% of normal. To determine how intron 6 contributes to mRNA formation, partial deletions of intron 6 were constructed and analyzed. Deletion of the lariat and acceptor splice sites or the donor, lariat, and acceptor splice sites, each of which precluded removal of the intron 6 sequences that remained, reduced the level of product mRNA to < 1 or 27% of normal, respectively. As measured by RNase mapping and cDNA sequencing, the decrease in mRNA abundance that was attributable to the complete and partial intron 6 deletions was accompanied by an increase in the abundance of pre-mRNA that lacked a mature 3' end, i.e., that was neither cleaved nor polyadenylated. We infer from these and other data that sequences within the final intron facilitate proper 3'-end formation, possibly through an association with the components of a productive spliceosome.
Collapse
Affiliation(s)
- D Nesic
- Department of Human Genetics, Roswell Park Cancer Institute, Buffalo, New York 14263
| | | | | |
Collapse
|
68
|
Zachar Z, Kramer J, Mims IP, Bingham PM. Evidence for channeled diffusion of pre-mRNAs during nuclear RNA transport in metazoans. J Cell Biol 1993; 121:729-42. [PMID: 8491768 PMCID: PMC2119787 DOI: 10.1083/jcb.121.4.729] [Citation(s) in RCA: 126] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
We report studies using an enhanced experimental system to investigate organization of nuclear pre-mRNA metabolism. It is based on the powerful genetic system and polytene nuclei of Drosophila. We observe (at steady state) movement of a specific pre-mRNA between its gene and the nuclear surface. This movement is isotropic, at rates consistent with diffusion and is restricted to a small nuclear subcompartment defined by exclusion from chromosome axes and the nucleolus. Bulk polyadenylated nuclear pre-mRNA precisely localizes in this same subcompartment indicating that most or all pre-mRNAs use the same route of intranuclear movement. In addition to association with nascent transcripts, snRNPs are coconcentrated with pre-mRNA in this subcompartment. In contrast to constitutive splices, at least one regulated splice occurs slowly and may undergo execution remotely from the site of pre-mRNA synthesis. Details of our results suggest that retention of incompletely spliced pre-mRNA is a function of the nuclear surface. We propose a simple model--based on channeled diffusion--for organization of intranuclear transport and metabolism of pre-mRNAs in polytene nuclei. We argue that this model can be generalized to all metazoan nuclei.
Collapse
Affiliation(s)
- Z Zachar
- Department of Biochemistry and Cell Biology, University of New York, Stony Brook 11794-5215
| | | | | | | |
Collapse
|
69
|
Dirks RW, van de Rijke FM, Fujishita S, van der Ploeg M, Raap AK. Methodologies for specific intron and exon RNA localization in cultured cells by haptenized and fluorochromized probes. J Cell Sci 1993; 104 ( Pt 4):1187-97. [PMID: 8391016 DOI: 10.1242/jcs.104.4.1187] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have determined optimal conditions for the detection of mRNA sequences in cultured cells by nonradioactive in situ hybridization. For this purpose a number of different cell lines have been used: rat 9G cells for the detection of human cytomegalovirus immediate early mRNA, and HeLa as well as 5637 carcinoma cells for the detection of housekeeping gene mRNAs. Extensive optimization of fixation and pretreatment conditions revealed that most intense hybridization signals are obtained when cells are grown on glass microscope slides, fixed with a mixture of formaldehyde and acetic acid, pretreated with pepsin and denatured prior to hybridization. In addition, we also studied the potential of fluorochromized probes for the direct detection of multiple RNA sequences. The optimized in situ hybridization procedure revealed that immediate early mRNA transcripts are, in addition to a cytoplasmic localization, localized within nuclei of rat 9G cells. Double hybridization experiments showed that intron and exon sequences colocalize within the main nuclear signal. In addition, the presence of small, intron-specific, fluorescent spots scattered around the main nuclear signals indicates that intron sequences which are spliced out can be visualized. Additional information about the functioning of cells could be obtained by the detection of mRNA simultaneously with bromodeoxyuridine, incorporated during S-phase, or its cognate protein. The sensitivity of these methods is such that mRNAs of abundantly expressed housekeeping genes can be detected in a variety of cell lines with high signal to noise ratios.
Collapse
Affiliation(s)
- R W Dirks
- Department of Cytochemistry and Cytometry, Leiden University, The Netherlands
| | | | | | | | | |
Collapse
|