51
|
Eckley DM, Gill SR, Melkonian KA, Bingham JB, Goodson HV, Heuser JE, Schroer TA. Analysis of dynactin subcomplexes reveals a novel actin-related protein associated with the arp1 minifilament pointed end. J Cell Biol 1999; 147:307-20. [PMID: 10525537 PMCID: PMC2174220 DOI: 10.1083/jcb.147.2.307] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The multisubunit protein, dynactin, is a critical component of the cytoplasmic dynein motor machinery. Dynactin contains two distinct structural domains: a projecting sidearm that interacts with dynein and an actin-like minifilament backbone that is thought to bind cargo. Here, we use biochemical, ultrastructural, and molecular cloning techniques to obtain a comprehensive picture of dynactin composition and structure. Treatment of purified dynactin with recombinant dynamitin yields two assemblies: the actin-related protein, Arp1, minifilament and the p150(Glued) sidearm. Both contain dynamitin. Treatment of dynactin with the chaotropic salt, potassium iodide, completely depolymerizes the Arp1 minifilament to reveal multiple protein complexes that contain the remaining dynactin subunits. The shoulder/sidearm complex contains p150(Glued), dynamitin, and p24 subunits and is ultrastructurally similar to dynactin's flexible projecting sidearm. The dynactin shoulder complex, which contains dynamitin and p24, is an elongated, flexible assembly that may link the shoulder/sidearm complex to the Arp1 minifilament. Pointed-end complex contains p62, p27, and p25 subunits, plus a novel actin-related protein, Arp11. p62, p27, and p25 contain predicted cargo-binding motifs, while the Arp11 sequence suggests a pointed-end capping activity. These isolated dynactin subdomains will be useful tools for further analysis of dynactin assembly and function.
Collapse
Affiliation(s)
- D. Mark Eckley
- Department of Biology, The Johns Hopkins University, Baltimore, Maryland 21218
| | - Steven R. Gill
- Department of Biology, The Johns Hopkins University, Baltimore, Maryland 21218
| | - Karin A. Melkonian
- Department of Biology, The Johns Hopkins University, Baltimore, Maryland 21218
| | - James B. Bingham
- Department of Biology, The Johns Hopkins University, Baltimore, Maryland 21218
| | - Holly V. Goodson
- Department of Cell Biology, University of Geneva, 12000 Geneva, Switzerland
| | - John E. Heuser
- Department of Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, Missouri 63130
| | - Trina A. Schroer
- Department of Biology, The Johns Hopkins University, Baltimore, Maryland 21218
| |
Collapse
|
52
|
Pfister KK. Cytoplasmic dynein and microtubule transport in the axon: the action connection. Mol Neurobiol 1999; 20:81-91. [PMID: 10966115 DOI: 10.1007/bf02742435] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The neuron uses two families of microtubule-based motors for fast axonal transport, kinesin, and cytoplasmic dynein. Cytoplasmic dynein moves membranous organelles from the distal regions of the axon to the cell body. Because dynein is synthesized in the cell body, it must first be delivered to the axon tip. It has recently been shown that cytoplasmic dynein is moved from the cell body along the axon by two different mechanisms. A small amount is associated with fast anterograde transport, the membranous organelles moved by kinesin. Most of the dynein is transported in slow component b, the actin-based transport compartment. Dynactin, a protein complex that binds dynein, is also transported in slow component b. The dynein in slow component b binds to microtubules in an ATP-dependent manner in vitro, suggesting that this dynein is enzymatically active. The finding that functionally active dynein, and dynactin, are associated with the actin-based transport compartment suggests a mechanism whereby dynein anchored to the actin cytoskeleton via dynactin provides the motive force for microtubule movement in the axon.
Collapse
Affiliation(s)
- K K Pfister
- Cell Biology Department, School of Medicine, University of Virginia, Charlottesville 22908-0732, USA
| |
Collapse
|
53
|
Robinson JT, Wojcik EJ, Sanders MA, McGrail M, Hays TS. Cytoplasmic dynein is required for the nuclear attachment and migration of centrosomes during mitosis in Drosophila. J Cell Biol 1999; 146:597-608. [PMID: 10444068 PMCID: PMC2150560 DOI: 10.1083/jcb.146.3.597] [Citation(s) in RCA: 189] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Cytoplasmic dynein is a multisubunit minus-end-directed microtubule motor that serves multiple cellular functions. Genetic studies in Drosophila and mouse have demonstrated that dynein function is essential in metazoan organisms. However, whether the essential function of dynein reflects a mitotic requirement, and what specific mitotic tasks require dynein remains controversial. Drosophila is an excellent genetic system in which to analyze dynein function in mitosis, providing excellent cytology in embryonic and somatic cells. We have used previously characterized recessive lethal mutations in the dynein heavy chain gene, Dhc64C, to reveal the contributions of the dynein motor to mitotic centrosome behavior in the syncytial embryo. Embryos lacking wild-type cytoplasmic dynein heavy chain were analyzed by in vivo analysis of rhodamine-labeled microtubules, as well as by immunofluorescence in situ methods. Comparisons between wild-type and Dhc64C mutant embryos reveal that dynein function is required for the attachment and migration of centrosomes along the nuclear envelope during interphase/prophase, and to maintain the attachment of centrosomes to mitotic spindle poles. The disruption of these centrosome attachments in mutant embryos reveals a critical role for dynein function and centrosome positioning in the spatial organization of the syncytial cytoplasm of the developing embryo.
Collapse
Affiliation(s)
- John T. Robinson
- University of Minnesota, Department of Genetics, Cell Biology and Development, St. Paul, Minnesota 55108-1095
| | - Edward J. Wojcik
- University of Minnesota, Department of Genetics, Cell Biology and Development, St. Paul, Minnesota 55108-1095
| | - Mark A. Sanders
- University of Minnesota, Department of Genetics, Cell Biology and Development, St. Paul, Minnesota 55108-1095
| | - Maura McGrail
- University of Minnesota, Department of Genetics, Cell Biology and Development, St. Paul, Minnesota 55108-1095
| | - Thomas S. Hays
- University of Minnesota, Department of Genetics, Cell Biology and Development, St. Paul, Minnesota 55108-1095
| |
Collapse
|
54
|
Abstract
Research over the past 18 months has revealed that many membranous organelles move along both actin filaments and microtubules. It is highly likely that the activity of the microtubule motors, myosins and static linker proteins present on any organelle are co-ordinately regulated and that this control is linked to the processes of membrane traffic itself.
Collapse
Affiliation(s)
- V J Allan
- School of Biological Sciences, University of Manchester, 2.205 Stopford Building, Oxford Road, Manchester, M13 9PT, UK.
| | | |
Collapse
|
55
|
Zeng X, Kahana JA, Silver PA, Morphew MK, McIntosh JR, Fitch IT, Carbon J, Saunders WS. Slk19p is a centromere protein that functions to stabilize mitotic spindles. J Cell Biol 1999; 146:415-25. [PMID: 10427094 PMCID: PMC3206577 DOI: 10.1083/jcb.146.2.415] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/1999] [Accepted: 06/21/1999] [Indexed: 11/30/2022] Open
Abstract
We have identified a novel centromere-associated gene product from Saccharomyces cerevisiae that plays a role in spindle assembly and stability. Strains with a deletion of SLK19 (synthetic lethal Kar3p gene) exhibit abnormally short mitotic spindles, increased numbers of astral microtubules, and require the presence of the kinesin motor Kar3p for viability. When cells are deprived of both Slk19p and Kar3p, rapid spindle breakdown and mitotic arrest is observed. A functional fusion of Slk19p to green fluorescent protein (GFP) localizes to kinetochores and, during anaphase, to the spindle midzone, whereas Kar3p-GFP was found at the nuclear side of the spindle pole body. Thus, these proteins seem to play overlapping roles in stabilizing spindle structure while acting from opposite ends of the microtubules.
Collapse
Affiliation(s)
- X Zeng
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | | | | | | | | | | | | | | |
Collapse
|
56
|
Minke PF, Lee IH, Tinsley JH, Bruno KS, Plamann M. Neurospora crassa ro-10 and ro-11 genes encode novel proteins required for nuclear distribution. Mol Microbiol 1999; 32:1065-76. [PMID: 10361308 DOI: 10.1046/j.1365-2958.1999.01421.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Movement and distribution of nuclei in fungi have been shown to be dependent on cytoplasmic microtubules and the microtubule-associated motor cytoplasmic dynein. We have isolated hundreds of Neurospora crassa mutants, known as ropy, that are defective in nuclear distribution. Three of the ro genes, ro-1, ro-3 and ro-4, have been shown to encode subunits of either cytoplasmic dynein or the dynein activator complex, dynactin. In this report, we describe the isolation and initial characterization of two additional ro genes, ro-10 and ro-11. ro-10 and ro-11 are non-essential genes that encode novel 24 kDa and 75 kDa proteins respectively. Both ro-10 and ro-11 mutants retain the ability to generate long cytoplasmic microtubule tracks, suggesting that the nuclear distribution defect is not caused by a gross defect in the microtubule cytoskeleton. RO10, as well as RO4 (actin-related protein ARP1, the most abundant subunit of dynactin), appears to be required for the stability of RO3 (p150Glued), the largest subunit of dynactin. We propose that ro-10 mutants lack proper nuclear distribution, because RO10 is either a subunit of dynactin and required for dynactin activity or essential for assembly of the dynactin complex. ro-11 mutations have no effect on RO1 or RO3 levels and have only a very slight effect on the localization pattern of cytoplasmic dynein and dynactin. The role of RO11 in the movement and distribution of nuclei in N. crassa hyphae remains unknown.
Collapse
Affiliation(s)
- P F Minke
- Department of Biology, Texas A and M University, College Station, TX 77843-3258, USA
| | | | | | | | | |
Collapse
|
57
|
Berrueta L, Tirnauer JS, Schuyler SC, Pellman D, Bierer BE. The APC-associated protein EB1 associates with components of the dynactin complex and cytoplasmic dynein intermediate chain. Curr Biol 1999; 9:425-8. [PMID: 10226031 DOI: 10.1016/s0960-9822(99)80190-0] [Citation(s) in RCA: 122] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Human EB1 is a highly conserved protein that binds to the carboxyl terminus of the human adenomatous polyposis coli (APC) tumor suppressor protein [1], a domain of APC that is commonly deleted in colorectal neoplasia [2]. EB1 belongs to a family of microtubule-associated proteins that includes Schizosaccharomyces pombe Mal3 [3] and Saccharomyces cerevisiae Bim1p [4]. Bim1p appears to regulate the timing of cytokinesis as demonstrated by a genetic interaction with Act5, a component of the yeast dynactin complex [5]. Whereas the predominant function of the dynactin complex in yeast appears to be in positioning the mitotic spindle [6], in animal cells, dynactin has been shown to function in diverse processes, including organelle transport, formation of the mitotic spindle, and perhaps cytokinesis [7] [8] [9] [10]. Here, we demonstrate that human EB1 can be coprecipitated with p150(Glued), a member of the dynactin protein complex. EB1 was also found associated with the intermediate chain of cytoplasmic dynein (CDIC) and with dynamitin (p50), another component of the dynactin complex, but not with dynein heavy chain, in a complex that sedimented at approximately 5S in a sucrose density gradient. The association of EB1 with members of the dynactin complex was independent of APC and was preserved in the absence of an intact microtubule cytoskeleton. The molecular interaction of EB1 with members of the dynactin complex and with CDIC may be important for microtubule-based processes.
Collapse
Affiliation(s)
- L Berrueta
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachussetts 02115, USA
| | | | | | | | | |
Collapse
|
58
|
Uzbekov R, Prigent C, Arlot-Bonnemains Y. Cell cycle analysis and synchronization of the Xenopus laevis XL2 cell line: study of the kinesin related protein XlEg5. Microsc Res Tech 1999; 45:31-42. [PMID: 10206152 DOI: 10.1002/(sici)1097-0029(19990401)45:1<31::aid-jemt3>3.0.co;2-k] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cell free extracts prepared from Xenopus eggs are one of the most powerful in vitro systems to analyze cell cycle-regulated mechanisms such as DNA replication, nuclear assembly, chromosome condensation, or spindle formation. Xenopus embryos can complete several synchronous cell cycles in the absence of transcription, consequently Xenopus extracts are very helpful to study the molecular level of cellular mechanisms. Many key cell cycle regulators like p34cdc2 and cdk2 have been discovered and characterized using those extracts, but their regulation during somatic cell cycles have only been studied in mammalian cultured cells. In this paper, we describe optimized conditions to obtain cell cycle arrested Xenopus XL2 cultured cells. Synchronization of XL2 cells at different stages of the cell cycle was achieved by serum starvation and drug treatments such as aphidicolin, nocodazole, and ALLN. The degree of synchronization was assessed by indirect fluorescence microscopy and FACS analysis. This method was used to study the cell cycle expression of the Xenopus kinesin-related protein, XlEg5, a microtubule-based motor protein involved in movement and cell division in early development. We found that the expression of the protein was maximum in mitosis and minimum in G1, which correlated with the expression of its messenger RNA. XL2 cultured cells were also used to analyze the ultrastructural sub-cellular localization of XlEg5. During mitosis, the protein was found around the centrosome in prophase, on the spindle microtubules in metaphase, and, interestingly, around the minus end of the midbody microtubules in telophase.
Collapse
Affiliation(s)
- R Uzbekov
- Laboratoire de Biologie et Génétique du Développement, Groupe Cycle Cellulaire, CNRS UPR 41, Faculté de Médecine de Rennes, France
| | | | | |
Collapse
|
59
|
Karki S, Holzbaur EL. Cytoplasmic dynein and dynactin in cell division and intracellular transport. Curr Opin Cell Biol 1999; 11:45-53. [PMID: 10047518 DOI: 10.1016/s0955-0674(99)80006-4] [Citation(s) in RCA: 385] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Since the initial discovery of cytoplasmic dynein, it has become apparent that this microtubule-based motor is involved in several cellular functions including cell division and intracellular transport. Another multisubunit complex, dynactin, may be required for most, if not all, cytoplasmic dynein-driven activities and may provide clues to dynein's functional diversity. Recent genetic and biochemical findings have illuminated the cellular roles of dynein and dynactin and provided insight into the functional mechanism of this complex motor.
Collapse
Affiliation(s)
- S Karki
- University of Pennsylvania Department of Animal Biology 143 Rosenthal Building 3800 Spruce Street Philadelphia PA 19104-6046 USA.
| | | |
Collapse
|
60
|
Waterman-Storer CM, Salmon E. Positive feedback interactions between microtubule and actin dynamics during cell motility. Curr Opin Cell Biol 1999; 11:61-7. [PMID: 10047528 DOI: 10.1016/s0955-0674(99)80008-8] [Citation(s) in RCA: 209] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The migration of tissue cells requires interplay between the microtubule and actin cytoskeletal systems. Recent reports suggest that interactions of microtubules with actin dynamics creates a polarization of microtubule assembly behavior in cells, such that microtubule growth occurs at the leading edge and microtubule shortening occurs at the cell body and rear. Microtubule growth and shortening may activate Rac1 and RhoA signaling, respectively, to control actin dynamics. Thus, an actin-dependent gradient in microtubule dynamic-instability parameters in cells may feed back through the activation of specific signalling pathways to perpetuate the polarized actin-assembly dynamics required for cell motility.
Collapse
Affiliation(s)
- C M Waterman-Storer
- Department of Biology 607 Fordham Hall University of North Carolina Chapel Hill NC 27599-3280 USA.
| | | |
Collapse
|
61
|
Jiang W, Jimenez G, Wells NJ, Hope TJ, Wahl GM, Hunter T, Fukunaga R. PRC1: a human mitotic spindle-associated CDK substrate protein required for cytokinesis. Mol Cell 1998; 2:877-85. [PMID: 9885575 DOI: 10.1016/s1097-2765(00)80302-0] [Citation(s) in RCA: 265] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
We have identified a novel human protein, PRC1, that is involved in cytokinesis. PRC1 is a good substrate for several CDKs in vitro and is phosphorylated in vivo at sites that are phosphorylated by CDK in vitro, strongly suggesting that PRC1 is an in vivo CDK substrate. PRC1 has sequence homology to the budding yeast anaphase spindle elongation factor Ase1p. Like Ase1p, PRC1 protein levels are high during S and G2/M and drop dramatically after cells exit mitosis and enter G1. PRC1 is a nuclear protein in interphase, becomes associated with mitotic spindles in a highly dynamic manner during mitosis, and localizes to the cell mid-body during cytokinesis. Microinjection of anti-PRC1 antibodies into HeLa cells blocked cellular cleavage, but not nuclear division, indicating a functional role for PRC1 in the process of cytokinesis.
Collapse
Affiliation(s)
- W Jiang
- Salk Institute, La Jolla, California 92037, USA.
| | | | | | | | | | | | | |
Collapse
|
62
|
Tokito MK, Holzbaur EL. The genomic structure of DCTN1, a candidate gene for limb-girdle muscular dystrophy (LGMD2B). BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1442:432-6. [PMID: 9805007 DOI: 10.1016/s0167-4781(98)00195-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Dynactin is a required activator for the molecular motor cytoplasmic dynein, and is likely to be essential for normal neuronal development. Previously we mapped the human gene encoding the p150Glued subunit of dynactin to 2p13, in the vicinity of the locus linked to limb-girdle muscular dystrophy (LGMB2B). We now report the genomic organization of DCTN1. We have identified 32 exons in the gene which spans approximately 25 kb. Alternative splicing of several of the exons generates functionally distinct isoforms of the p150Glued polypeptide.
Collapse
Affiliation(s)
- M K Tokito
- Department of Animal Biology, University of Pennsylvania School of Veterinary Medicine, 143 Rosenthal Building, 3800 Spruce Street, Philadelphia, PA 19104-6046, USA
| | | |
Collapse
|