51
|
Peterson BG, Glaser ML, Rapoport TA, Baldridge RD. Cycles of autoubiquitination and deubiquitination regulate the ERAD ubiquitin ligase Hrd1. eLife 2019; 8:50903. [PMID: 31713515 PMCID: PMC6914336 DOI: 10.7554/elife.50903] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 11/11/2019] [Indexed: 12/28/2022] Open
Abstract
Misfolded proteins in the lumen of the endoplasmic reticulum (ER) are retrotranslocated into the cytosol and polyubiquitinated before being degraded by the proteasome. The multi-spanning ubiquitin ligase Hrd1 forms the retrotranslocation channel and associates with three other membrane proteins (Hrd3, Usa1, Der1) of poorly defined function. The Hrd1 channel is gated by autoubiquitination, but how Hrd1 escapes degradation by the proteasome and returns to its inactive ground state is unknown. Here, we show that autoubiquitination of Hrd1 is counteracted by Ubp1, a deubiquitinating enzyme that requires its N-terminal transmembrane segment for activity towards Hrd1. The Hrd1 partner Hrd3 serves as a brake for autoubiquitination, while Usa1 attenuates Ubp1’s deubiquitination activity through an inhibitory effect of its UBL domain. These results lead to a model in which the Hrd1 channel is regulated by cycles of autoubiquitination and deubiquitination, reactions that are modulated by the other components of the Hrd1 complex. Just like factories make mistakes when producing products, cells make mistakes when producing proteins. In cells, a compartment called the endoplasmic reticulum is where about one third of all proteins are produced, and where new proteins undergo quality control. Damaged or misfolded proteins are removed by a process called endoplasmic reticulum-associated degradation (ERAD for short), because if damaged proteins accumulate, cells become stressed. One type of ERAD is driven by a protein called Hrd1. Together with other components, Hrd1 labels damaged proteins with a ubiquitin tag that acts as a flag for degradation. Hrd1 has a paradoxical feature, however. To be active, Hrd1 tags itself with ubiquitin but this also makes it more prone to becoming degraded. How does Hrd1 remain active while avoiding its own degradation? To address this question, Peterson et al. forced budding yeast cells to produce high levels of 23 different enzymes that remove ubiquitin tags. One of these enzymes, called Ubp1, was able remove the ubiquitin tag from Hrd1, though it had not been seen in the ERAD pathway before. Further experiments also showed that Ubp1 was able to regulate Hrd1 activity, making Ubp1 a regulator of Hrd1 dependent protein quality control. Without protein quality control, damaged proteins can contribute to various diseases. ERAD is a common quality control system for proteins, present in many different species, ranging from yeast to animals. Therefore, understanding how ERAD works in budding yeast may also increase understanding of how human cells deal with damaged proteins.
Collapse
Affiliation(s)
- Brian G Peterson
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, United States
| | - Morgan L Glaser
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, United States
| | - Tom A Rapoport
- Department of Cell Biology, Harvard Medical School, Howard Hughes Medical Institute, Boston, United States
| | - Ryan D Baldridge
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, United States
| |
Collapse
|
52
|
PAWH1 and PAWH2 are plant-specific components of an Arabidopsis endoplasmic reticulum-associated degradation complex. Nat Commun 2019; 10:3492. [PMID: 31375683 PMCID: PMC6677890 DOI: 10.1038/s41467-019-11480-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Accepted: 07/16/2019] [Indexed: 01/23/2023] Open
Abstract
Endoplasmic reticulum-associated degradation (ERAD) is a unique mechanism to degrade misfolded proteins via complexes containing several highly-conserved ER-anchored ubiquitin ligases such as HMG-CoA reductase degradation1 (Hrd1). Arabidopsis has a similar Hrd1-containing ERAD machinery; however, our knowledge of this complex is limited. Here we report two closely-related Arabidopsis proteins, Protein Associated With Hrd1-1 (PAWH1) and PAWH2, which share a conserved domain with yeast Altered Inheritance of Mitochondria24. PAWH1 and PAWH2 localize to the ER membrane and associate with Hrd1 via EMS-mutagenized Bri1 Suppressor7 (EBS7), a plant-specific component of the Hrd1 complex. Simultaneously elimination of two PAWHs constitutively activates the unfolded protein response and compromises stress tolerance. Importantly, the pawh1 pawh2 double mutation reduces the protein abundance of EBS7 and Hrd1 and inhibits degradation of several ERAD substrates. Our study not only discovers additional plant-specific components of the Arabidopsis Hrd1 complex but also reveals a distinct mechanism for regulating the Hrd1 stability.
Collapse
|
53
|
Needham PG, Guerriero CJ, Brodsky JL. Chaperoning Endoplasmic Reticulum-Associated Degradation (ERAD) and Protein Conformational Diseases. Cold Spring Harb Perspect Biol 2019; 11:cshperspect.a033928. [PMID: 30670468 DOI: 10.1101/cshperspect.a033928] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Misfolded proteins compromise cellular homeostasis. This is especially problematic in the endoplasmic reticulum (ER), which is a high-capacity protein-folding compartment and whose function requires stringent protein quality-control systems. Multiprotein complexes in the ER are able to identify, remove, ubiquitinate, and deliver misfolded proteins to the 26S proteasome for degradation in the cytosol, and these events are collectively termed ER-associated degradation, or ERAD. Several steps in the ERAD pathway are facilitated by molecular chaperone networks, and the importance of ERAD is highlighted by the fact that this pathway is linked to numerous protein conformational diseases. In this review, we discuss the factors that constitute the ERAD machinery and detail how each step in the pathway occurs. We then highlight the underlying pathophysiology of protein conformational diseases associated with ERAD.
Collapse
Affiliation(s)
- Patrick G Needham
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | | | - Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| |
Collapse
|
54
|
Graham JB, Canniff NP, Hebert DN. TPR-containing proteins control protein organization and homeostasis for the endoplasmic reticulum. Crit Rev Biochem Mol Biol 2019; 54:103-118. [PMID: 31023093 DOI: 10.1080/10409238.2019.1590305] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The endoplasmic reticulum (ER) is a complex, multifunctional organelle comprised of a continuous membrane and lumen that is organized into a number of functional regions. It plays various roles including protein translocation, folding, quality control, secretion, calcium signaling, and lipid biogenesis. Cellular protein homeostasis is maintained by a complicated chaperone network, and the largest functional family within this network consists of proteins containing tetratricopeptide repeats (TPRs). TPRs are well-studied structural motifs that mediate intermolecular protein-protein interactions, supporting interactions with a wide range of ligands or substrates. Seven TPR-containing proteins have thus far been shown to localize to the ER and control protein organization and homeostasis within this multifunctional organelle. Here, we discuss the roles of these proteins in controlling ER processes and organization. The crucial roles that TPR-containing proteins play in the ER are highlighted by diseases or defects associated with their mutation or disruption.
Collapse
Affiliation(s)
- Jill B Graham
- a Molecular Cellular Biology Program , University of Massachusetts , Amherst , MA , USA.,b Biochemistry and Molecular Biology Department , University of Massachusetts , Amherst , MA , USA
| | - Nathan P Canniff
- a Molecular Cellular Biology Program , University of Massachusetts , Amherst , MA , USA.,b Biochemistry and Molecular Biology Department , University of Massachusetts , Amherst , MA , USA
| | - Daniel N Hebert
- a Molecular Cellular Biology Program , University of Massachusetts , Amherst , MA , USA.,b Biochemistry and Molecular Biology Department , University of Massachusetts , Amherst , MA , USA
| |
Collapse
|
55
|
Zheng L, Chen Y, Ding D, Zhou Y, Ding L, Wei J, Wang H. Endoplasmic reticulum-localized UBC34 interaction with lignin repressors MYB221 and MYB156 regulates the transactivity of the transcription factors in Populus tomentosa. BMC PLANT BIOLOGY 2019; 19:97. [PMID: 30866808 PMCID: PMC6416899 DOI: 10.1186/s12870-019-1697-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 02/27/2019] [Indexed: 05/06/2023]
Abstract
BACKGROUND Regulation of lignin biosynthesis is known to occur at the level of transcription factors (TFs), of which R2R3-MYB family members have been proposed to play a central role via the AC cis-elements. Despite the important roles of TFs in lignin biosynthesis, the post-translational regulation of these TFs, particularly their ubiquitination regulation, has not been thoroughly explored. RESULTS We describe the discovery of a Populus tomentosa E2 ubiquitin-conjugating enzyme 34 (PtoUBC34), which is involved in the post-translational regulation of transactivation activity of lignin-associated transcriptional repressors PtoMYB221 and PtoMYB156. PtoUBC34 is localized at the endoplasmic reticulum (ER) membrane where it interacts with transcriptional repressors PtoMYB221 and PtoMYB156. This specific interaction allows for the translocation of TFs PtoMYB221 and PtoMYB156 to the ER and reduces their repression activity in a PtoUBC34 abundance-dependent manner. By taking a molecular biology approach with quantitative real-time polymerase chain reaction (qRT-PCR) analysis, we found that PtoUBC34 is expressed in all aboveground tissues of trees in P. tomentosa, and in particular, it is ubiquitous in all distinct differentiation stages across wood formation, including phloem differentiation, cambium maintaining, early and developing xylem differentiation, secondary cell wall thickening, and programmed cell death. Additionally, we discovered that PtoUBC34 is induced by treatment with sodium chloride and heat shock. CONCLUSIONS Our data suggest a possible mechanism by which lignin biosynthesis is regulated by ER-localized PtoUBC34 in poplar, probably through the ER-associated degradation (ERAD) of lignin-associated repressors PtoMYB221 and PtoMYB156.
Collapse
Affiliation(s)
- Lin Zheng
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agricultural and Forestry Sciences, No. 9, Shuguang Huayuan Middle Road, Haidian District, Beijing, 100097 People’s Republic of China
| | - Yajuan Chen
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agricultural and Forestry Sciences, No. 9, Shuguang Huayuan Middle Road, Haidian District, Beijing, 100097 People’s Republic of China
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Academy of Agricultural and Forestry Sciences, No. 9, Shuguang Huayuan Middle Road, Haidian District, Beijing, 100097 People’s Republic of China
| | - Dong Ding
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agricultural and Forestry Sciences, No. 9, Shuguang Huayuan Middle Road, Haidian District, Beijing, 100097 People’s Republic of China
| | - Ying Zhou
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agricultural and Forestry Sciences, No. 9, Shuguang Huayuan Middle Road, Haidian District, Beijing, 100097 People’s Republic of China
| | - Liping Ding
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agricultural and Forestry Sciences, No. 9, Shuguang Huayuan Middle Road, Haidian District, Beijing, 100097 People’s Republic of China
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Academy of Agricultural and Forestry Sciences, No. 9, Shuguang Huayuan Middle Road, Haidian District, Beijing, 100097 People’s Republic of China
| | - Jianhua Wei
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agricultural and Forestry Sciences, No. 9, Shuguang Huayuan Middle Road, Haidian District, Beijing, 100097 People’s Republic of China
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Academy of Agricultural and Forestry Sciences, No. 9, Shuguang Huayuan Middle Road, Haidian District, Beijing, 100097 People’s Republic of China
| | - Hongzhi Wang
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agricultural and Forestry Sciences, No. 9, Shuguang Huayuan Middle Road, Haidian District, Beijing, 100097 People’s Republic of China
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Academy of Agricultural and Forestry Sciences, No. 9, Shuguang Huayuan Middle Road, Haidian District, Beijing, 100097 People’s Republic of China
| |
Collapse
|
56
|
Xu Y, Melo-Cardenas J, Zhang Y, Gau I, Wei J, Montauti E, Zhang Y, Gao B, Jin H, Sun Z, Lee SM, Fang D. The E3 ligase Hrd1 stabilizes Tregs by antagonizing inflammatory cytokine-induced ER stress response. JCI Insight 2019; 4:121887. [PMID: 30843874 DOI: 10.1172/jci.insight.121887] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 01/09/2019] [Indexed: 12/23/2022] Open
Abstract
Treg differentiation, maintenance, and function are controlled by the transcription factor FoxP3, which can be destabilized under inflammatory or other pathological conditions. Tregs can be destabilized under inflammatory or other pathological conditions, but the underlying mechanisms are not fully defined. Herein, we show that inflammatory cytokines induce ER stress response, which destabilizes Tregs by suppressing FoxP3 expression, suggesting a critical role of the ER stress response in maintaining Treg stability. Indeed, genetic deletion of Hrd1, an E3 ligase critical in suppressing the ER stress response, leads to elevated expression of ER stress-responsive genes in Treg and largely diminishes Treg suppressive functions under inflammatory condition. Mice with Treg-specific ablation of Hrd1 displayed massive multiorgan lymphocyte infiltration, body weight loss, and the development of severe small intestine inflammation with aging. At the molecular level, the deletion of Hrd1 led to the activation of both the ER stress sensor IRE1α and its downstream MAPK p38. Pharmacological suppression of IRE1α kinase, but not its endoribonuclease activity, diminished the elevated p38 activation and fully rescued the stability of Hrd1-null Tregs. Taken together, our studies reveal ER stress response as a previously unappreciated mechanism underlying Treg instability and that Hrd1 is crucial for maintaining Treg stability and functions through suppressing the IRE1α-mediated ER stress response.
Collapse
Affiliation(s)
- Yuanming Xu
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Johanna Melo-Cardenas
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Yana Zhang
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Isabella Gau
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Juncheng Wei
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Elena Montauti
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Yusi Zhang
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Beixue Gao
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Hongjian Jin
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Zhaolin Sun
- Department of Pharmacology School of Pharmacy, Dalian Medical University, Dalian, China
| | - Sang-Myeong Lee
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Chonbuk National University, Iksan, South Korea
| | - Deyu Fang
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
57
|
Jiang H, Lin L, Tang W, Chen X, Zheng Q, Huang J, Yang T, Su L, Dong Y, Wang B, Wang Z. Putative Interaction Proteins of the Ubiquitin Ligase Hrd1 in Magnaporthe oryzae. Evol Bioinform Online 2018; 14:1176934318810990. [PMID: 30559593 PMCID: PMC6291861 DOI: 10.1177/1176934318810990] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 09/12/2018] [Indexed: 12/22/2022] Open
Abstract
The endoplasmic reticulum (ER) is the entry portal of the conventional secretory pathway where the newly synthesized polypeptides fold, modify, and assemble. The ER responses to the unfolded proteins in its lumen (ER stress) by triggering intracellular signal transduction pathways include the ER-associated degradation (ERAD) pathway and the unfolded protein response (UPR) pathway. In yeast and mammals, the ubiquitin ligase Hrd1 is indispensable for the ERAD pathway, and also Hrd1-mediated ERAD pathway plays a crucial role in maintaining homeostasis and metabolism of human beings. However, the underlying physiological roles and regulatory mechanism of the Hrd1-involved ERAD pathway in the plant pathogenic fungi are still unclear. Here, we identified the Hrd1 orthologous proteins from 9 different fungi and noticed that these Hrd1 orthologs are conserved. Through identification of MoHrd1 putative interacting proteins by co-immunoprecipitation assays and enrichment analysis, we found that MoHrd1 is involved in the secretory pathway, energy synthesis, and metabolism. Taken together, our results suggest that MoHrd1 is conserved among fungi and play an important role in cellular metabolism and infection-related development. Our finding helps uncover the mechanism of Hrd1-involved ERAD pathway in fungi and sheds a new light to understand the pathogenic mechanism of Magnaporthe oryzae.
Collapse
Affiliation(s)
- Haolang Jiang
- Fujian University Key Laboratory for
Plant-Microbe Interaction and College of Plant Protection, Fujian Agriculture and
Forestry University, Fuzhou, China
| | - Lianyu Lin
- Fujian University Key Laboratory for
Plant-Microbe Interaction and College of Life Sciences, Fujian Agriculture and
Forestry University, Fuzhou, China
| | - Wei Tang
- Fujian University Key Laboratory for
Plant-Microbe Interaction and College of Plant Protection, Fujian Agriculture and
Forestry University, Fuzhou, China
| | - Xuehang Chen
- Fujian University Key Laboratory for
Plant-Microbe Interaction and College of Plant Protection, Fujian Agriculture and
Forestry University, Fuzhou, China
| | - Qiaojia Zheng
- Fujian University Key Laboratory for
Plant-Microbe Interaction and College of Plant Protection, Fujian Agriculture and
Forestry University, Fuzhou, China
| | - Jun Huang
- Fujian University Key Laboratory for
Plant-Microbe Interaction and College of Plant Protection, Fujian Agriculture and
Forestry University, Fuzhou, China
| | - Tao Yang
- Fujian University Key Laboratory for
Plant-Microbe Interaction and College of Plant Protection, Fujian Agriculture and
Forestry University, Fuzhou, China
| | - Li Su
- Fujian University Key Laboratory for
Plant-Microbe Interaction and College of Plant Protection, Fujian Agriculture and
Forestry University, Fuzhou, China
| | | | - Baohua Wang
- Fujian University Key Laboratory for
Plant-Microbe Interaction and College of Plant Protection, Fujian Agriculture and
Forestry University, Fuzhou, China
| | - Zonghua Wang
- Fujian University Key Laboratory for
Plant-Microbe Interaction and College of Plant Protection, Fujian Agriculture and
Forestry University, Fuzhou, China
- Institute of Oceanography, Minjiang
University, Fuzhou, China
| |
Collapse
|
58
|
Omura T, Matsuda H, Nomura L, Imai S, Denda M, Nakagawa S, Yonezawa A, Nakagawa T, Yano I, Matsubara K. Ubiquitin ligase HMG-CoA reductase degradation 1 (HRD1) prevents cell death in a cellular model of Parkinson's disease. Biochem Biophys Res Commun 2018; 506:516-521. [PMID: 30361093 DOI: 10.1016/j.bbrc.2018.10.094] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 10/15/2018] [Indexed: 12/22/2022]
Abstract
Endoplasmic reticulum (ER) stress may play a role in the etiology of Parkinson's disease (PD). We have previously reported that ubiquitin ligase 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase degradation 1 (HRD1) involved in ER stress degrades unfolded protein that accumulates in the ER due to loss of function of Parkin, which is a causative factor in familial PD. We have also demonstrated that cell death is suppressed by the degradation of unfolded proteins. These findings indicate that HRD1 may serve as a compensatory mechanism for the loss of function of Parkin in familial PD patients. However, the role of HRD1 in sporadic PD has not yet been identified. This study aimed to reveal the roles of HRD1 and associated molecules in a cellular model of PD. We demonstrated that expressions of HRD1 and Suppressor/Enhancer Lin12 1-like (SEL1L: a HRD1 stabilizer) increased in SH-SY5Y human neuroblastoma cells upon exposure to 6-hydroxydopamine (6-OHDA). The 6-OHDA-induced cell death was suppressed in cells overexpressing wt-HRD1, whereas cell death was enhanced in cells with knockdown of HRD1 expression. These results suggest that HRD1 is a key molecule involved in 6-OHDA-induced cell death. By contrast, suppression of SEL1L expression decreased the amount of HRD1 protein. As a result, 6-OHDA-induced cell death was enhanced in cells suppressing SEL1L expression, and this cell death was much more evident than that in cells with suppression of HRD1 expression. These findings strongly indicate that SEL1L is necessary for maintaining and stabilizing the amount of HRD1 protein, and stabilizing the amount of HRD1 protein through SEL1L may serve to protect against 6-OHDA-induced cell death. Furthermore, the expression of Parkin was reinforced when HRD1 mRNA had been suppressed in cells, but was not observed when SEL1L mRNA had been restrained. It is possible that Parkin expression is induced as a compensatory mechanism when HRD1 mRNA decreases. This intracellular transduction may suppress the enhancement of 6-OHDA-induced cell death caused by the loss of HRD1. Taken together with these results, it is suggested that HRD1 and its stabilizer (SEL1L) are key molecules for elucidating the pathogenesis and treatment of PD.
Collapse
Affiliation(s)
- Tomohiro Omura
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, Sakyo-ku, Kyoto, Japan.
| | - Hiroki Matsuda
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, Sakyo-ku, Kyoto, Japan
| | - Luna Nomura
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, Sakyo-ku, Kyoto, Japan
| | - Satoshi Imai
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, Sakyo-ku, Kyoto, Japan
| | - Masaya Denda
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, Sakyo-ku, Kyoto, Japan; Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Shunsaku Nakagawa
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, Sakyo-ku, Kyoto, Japan
| | - Atsushi Yonezawa
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, Sakyo-ku, Kyoto, Japan; Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Takayuki Nakagawa
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, Sakyo-ku, Kyoto, Japan
| | - Ikuko Yano
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, Sakyo-ku, Kyoto, Japan; Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Kazuo Matsubara
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, Sakyo-ku, Kyoto, Japan
| |
Collapse
|
59
|
Mehrtash AB, Hochstrasser M. Ubiquitin-dependent protein degradation at the endoplasmic reticulum and nuclear envelope. Semin Cell Dev Biol 2018; 93:111-124. [PMID: 30278225 DOI: 10.1016/j.semcdb.2018.09.013] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 09/26/2018] [Accepted: 09/27/2018] [Indexed: 01/01/2023]
Abstract
Numerous nascent proteins undergo folding and maturation within the luminal and membrane compartments of the endoplasmic reticulum (ER). Despite the presence of various factors in the ER that promote protein folding, many proteins fail to properly fold and assemble and are subsequently degraded. Regulatory proteins in the ER also undergo degradation in a way that is responsive to stimuli or the changing needs of the cell. As in most cellular compartments, the ubiquitin-proteasome system (UPS) is responsible for the majority of the degradation at the ER-in a process termed ER-associated degradation (ERAD). Autophagic processes utilizing ubiquitin-like protein-conjugating systems also play roles in protein degradation at the ER. The ER is continuous with the nuclear envelope (NE), which consists of the outer nuclear membrane (ONM) and inner nuclear membrane (INM). While ERAD is known also to occur at the NE, only some of the ERAD ubiquitin-ligation pathways function at the INM. Protein degradation machineries in the ER/NE target a wide variety of substrates in multiple cellular compartments, including the cytoplasm, nucleoplasm, ER lumen, ER membrane, and the NE. Here, we review the protein degradation machineries of the ER and NE and the underlying mechanisms dictating recognition and processing of substrates by these machineries.
Collapse
Affiliation(s)
- Adrian B Mehrtash
- Department of Molecular, Cellular, & Developmental Biology, Yale University, New Haven, 06520, CT, USA.
| | - Mark Hochstrasser
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT, 06520, USA; Department of Molecular, Cellular, & Developmental Biology, Yale University, New Haven, 06520, CT, USA.
| |
Collapse
|
60
|
Moon HW, Han HG, Jeon YJ. Protein Quality Control in the Endoplasmic Reticulum and Cancer. Int J Mol Sci 2018; 19:E3020. [PMID: 30282948 PMCID: PMC6213883 DOI: 10.3390/ijms19103020] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 09/22/2018] [Accepted: 10/01/2018] [Indexed: 12/21/2022] Open
Abstract
The endoplasmic reticulum (ER) is an essential compartment of the biosynthesis, folding, assembly, and trafficking of secretory and transmembrane proteins, and consequently, eukaryotic cells possess specialized machineries to ensure that the ER enables the proteins to acquire adequate folding and maturation for maintaining protein homeostasis, a process which is termed proteostasis. However, a large variety of physiological and pathological perturbations lead to the accumulation of misfolded proteins in the ER, which is referred to as ER stress. To resolve ER stress and restore proteostasis, cells have evolutionary conserved protein quality-control machineries of the ER, consisting of the unfolded protein response (UPR) of the ER, ER-associated degradation (ERAD), and autophagy. Furthermore, protein quality-control machineries of the ER play pivotal roles in the control of differentiation, progression of cell cycle, inflammation, immunity, and aging. Therefore, severe and non-resolvable ER stress is closely associated with tumor development, aggressiveness, and response to therapies for cancer. In this review, we highlight current knowledge in the molecular understanding and physiological relevance of protein quality control of the ER and discuss new insights into how protein quality control of the ER is implicated in the pathogenesis of cancer, which could contribute to therapeutic intervention in cancer.
Collapse
Affiliation(s)
- Hye Won Moon
- Department of Biochemistry, Chungnam National University College of Medicine, Daejeon 35015, Korea.
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon 35015, Korea.
| | - Hye Gyeong Han
- Department of Biochemistry, Chungnam National University College of Medicine, Daejeon 35015, Korea.
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon 35015, Korea.
| | - Young Joo Jeon
- Department of Biochemistry, Chungnam National University College of Medicine, Daejeon 35015, Korea.
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon 35015, Korea.
| |
Collapse
|
61
|
Park JH, Kang CH, Nawkar GM, Lee ES, Paeng SK, Chae HB, Chi YH, Kim WY, Yun DJ, Lee SY. EMR, a cytosolic-abundant ring finger E3 ligase, mediates ER-associated protein degradation in Arabidopsis. THE NEW PHYTOLOGIST 2018; 220:163-177. [PMID: 29932218 DOI: 10.1111/nph.15279] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 05/18/2018] [Indexed: 05/16/2023]
Abstract
Investigation of the endoplasmic reticulum-associated degradation (ERAD) system in plants led to the identification of ERAD-mediating RING finger protein (EMR) as a plant-specific ERAD E3 ligase from Arabidopsis. EMR was significantly up-regulated under endoplasmic reticulum (ER) stress conditions. The EMR protein purified from bacteria displayed high E3 ligase activity, and tobacco leaf-produced EMR mediated mildew resistance locus O-12 (MLO12) degradation in a proteasome-dependent manner. Subcellular localization and coimmunoprecipitation analyses showed that EMR forms a complex with ubiquitin-conjugating enzyme 32 (UBC32) as a cytosolic interaction partner. Mutation of EMR and RNA interference (RNAi) increased the tolerance of plants to ER stress. EMR RNAi in the bri1-5 background led to partial recovery of the brassinosteroid (BR)-insensitive phenotypes as compared with the original mutant plants and increased ER stress tolerance. The presented results suggest that EMR is involved in the plant ERAD system that affects BR signaling under ER stress conditions as a novel Arabidopsis ring finger E3 ligase mainly present in cytosol while the previously identified ERAD E3 components are typically membrane-bound proteins.
Collapse
Affiliation(s)
- Joung Hun Park
- Division of Applied Life Sciences (BK21+) and Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, Korea
| | - Chang Ho Kang
- Division of Applied Life Sciences (BK21+) and Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, Korea
| | - Ganesh M Nawkar
- Division of Applied Life Sciences (BK21+) and Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, Korea
| | - Eun Seon Lee
- Division of Applied Life Sciences (BK21+) and Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, Korea
| | - Seol Ki Paeng
- Division of Applied Life Sciences (BK21+) and Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, Korea
| | - Ho Byoung Chae
- Division of Applied Life Sciences (BK21+) and Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, Korea
| | - Yong Hun Chi
- Division of Applied Life Sciences (BK21+) and Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, Korea
| | - Woe Yeon Kim
- Division of Applied Life Sciences (BK21+) and Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, Korea
| | - Dae-Jin Yun
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, 05029, Korea
| | - Sang Yeol Lee
- Division of Applied Life Sciences (BK21+) and Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, Korea
| |
Collapse
|
62
|
Hwang J, Qi L. Quality Control in the Endoplasmic Reticulum: Crosstalk between ERAD and UPR pathways. Trends Biochem Sci 2018; 43:593-605. [PMID: 30056836 PMCID: PMC6327314 DOI: 10.1016/j.tibs.2018.06.005] [Citation(s) in RCA: 396] [Impact Index Per Article: 56.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 05/30/2018] [Accepted: 06/11/2018] [Indexed: 01/14/2023]
Abstract
Endoplasmic reticulum (ER)-associated degradation (ERAD) and the unfolded protein response (UPR) are two key quality-control machineries in the cell. ERAD is responsible for the clearance of misfolded proteins in the ER for cytosolic proteasomal degradation, while UPR is activated in response to the accumulation of misfolded proteins. It has long been thought that ERAD is an integral part of UPR because expression of many ERAD genes is controlled by UPR; however, recent studies have suggested that ERAD has a direct role in controlling the protein turnover and abundance of IRE1α, the most conserved UPR sensor. Here, we review recent advances in our understanding of IRE1α activation and propose that UPR and ERAD engage in an intimate crosstalk to define folding capacity and maintain homeostasis in the ER.
Collapse
Affiliation(s)
- Jiwon Hwang
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48105, USA.
| | - Ling Qi
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48105, USA; Division of Metabolism, Endocrinology & Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48105, USA.
| |
Collapse
|
63
|
Wangeline MA, Vashistha N, Hampton RY. Proteostatic Tactics in the Strategy of Sterol Regulation. Annu Rev Cell Dev Biol 2018; 33:467-489. [PMID: 28992438 DOI: 10.1146/annurev-cellbio-111315-125036] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In eukaryotes, the synthesis and uptake of sterols undergo stringent multivalent regulation. Both individual enzymes and transcriptional networks are controlled to meet changing needs of the many sterol pathway products. Regulation is tailored by evolution to match regulatory constraints, which can be very different in distinct species. Nevertheless, a broadly conserved feature of many aspects of sterol regulation is employment of proteostasis mechanisms to bring about control of individual proteins. Proteostasis is the set of processes that maintain homeostasis of a dynamic proteome. Proteostasis includes protein quality control pathways for the detection, and then the correction or destruction, of the many misfolded proteins that arise as an unavoidable feature of protein-based life. Protein quality control displays not only the remarkable breadth needed to manage the wide variety of client molecules, but also extreme specificity toward the misfolded variants of a given protein. These features are amenable to evolutionary usurpation as a means to regulate proteins, and this approach has been used in sterol regulation. We describe both well-trod and less familiar versions of the interface between proteostasis and sterol regulation and suggest some underlying ideas with broad biological and clinical applicability.
Collapse
Affiliation(s)
- Margaret A Wangeline
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093;
| | - Nidhi Vashistha
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093;
| | - Randolph Y Hampton
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093;
| |
Collapse
|
64
|
Wu X, Rapoport TA. Mechanistic insights into ER-associated protein degradation. Curr Opin Cell Biol 2018; 53:22-28. [PMID: 29719269 DOI: 10.1016/j.ceb.2018.04.004] [Citation(s) in RCA: 260] [Impact Index Per Article: 37.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 04/11/2018] [Accepted: 04/11/2018] [Indexed: 12/16/2022]
Abstract
Misfolded proteins of the endoplasmic reticulum (ER) are discarded by a conserved process, called ER-associated protein degradation (ERAD). ERAD substrates are retro-translocated into the cytosol, polyubiquitinated, extracted from the ER membrane, and ultimately degraded by the proteasome. Recent in vitro experiments with purified components have given insight into the mechanism of ERAD. ERAD substrates with misfolded luminal or intramembrane domains are moved across the ER membrane through a channel formed by the multispanning ubiquitin ligase Hrd1. Following polyubiquitination, substrates are extracted from the membrane by the Cdc48/p97 ATPase complex and transferred to the proteasome. We discuss the molecular mechanism of these processes and point out remaining open questions.
Collapse
Affiliation(s)
- Xudong Wu
- Howard Hughes Medical Institute and Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, United States
| | - Tom A Rapoport
- Howard Hughes Medical Institute and Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, United States.
| |
Collapse
|
65
|
Zhang H, Mukherjee M, Kim J, Yu W, Shim W. Fsr1, a striatin homologue, forms an endomembrane-associated complex that regulates virulence in the maize pathogen Fusarium verticillioides. MOLECULAR PLANT PATHOLOGY 2018; 19:812-826. [PMID: 28467007 PMCID: PMC6638083 DOI: 10.1111/mpp.12562] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 04/06/2017] [Indexed: 05/09/2023]
Abstract
Fsr1, a homologue of mammalian striatin, containing multiple protein-binding domains and a coiled-coil (CC) domain, is critical for Fusarium verticillioides virulence. In mammals, striatin interacts with multiple proteins to form a STRIPAK (striatin-interacting phosphatase and kinase) complex that regulates a variety of developmental processes and cellular mechanisms. In this study, we identified the homologue of a key mammalian STRIPAK component STRIP1/2 (striatin-interacting proteins 1 and 2) in F. verticillioides, FvStp1, which interacts with Fsr1 in vivo. Gene deletion analysis indicates that FvStp1 is critical for F. verticillioides stalk rot virulence. In addition, we identified three proteins, designated FvCyp1, FvScp1 and FvSel1, which interact with the Fsr1 CC domain via a yeast two-hybrid screen. Importantly, FvCyp1, FvScp1 and FvSel1 co-localize to endomembrane structures, each having a preferred localization in the cell, and they are all required for F. verticillioides stalk rot virulence. Moreover, these proteins are necessary for the correct localization of Fsr1 to the endoplasmic reticulum (ER) and nuclear envelope. Thus, we identified several novel components in the STRIPAK complex that regulates F. verticillioides virulence, and propose that the correct organization and localization of Fsr1 are critical for STRIPAK complex function.
Collapse
Affiliation(s)
- Huan Zhang
- Department of Plant Pathology & MicrobiologyTexas A&M University, College StationTX 77843‐2132USA
| | - Mala Mukherjee
- Department of Plant Pathology & MicrobiologyTexas A&M University, College StationTX 77843‐2132USA
| | - Jung‐Eun Kim
- Department of Plant Pathology & MicrobiologyTexas A&M University, College StationTX 77843‐2132USA
| | - Wenying Yu
- College of Life Science, Fujian Agricultural and Forestry UniversityFuzhou 350002China
| | - Won‐Bo Shim
- Department of Plant Pathology & MicrobiologyTexas A&M University, College StationTX 77843‐2132USA
| |
Collapse
|
66
|
Zahrl RJ, Mattanovich D, Gasser B. The impact of ERAD on recombinant protein secretion in Pichia pastoris (syn Komagataella spp.). MICROBIOLOGY-SGM 2018. [PMID: 29533745 DOI: 10.1099/mic.0.000630] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The yeast Pichia pastoris (syn. Komagataella spp.) is a popular cell factory for recombinant protein production. Yeasts in general provide a good starting point for cell factory engineering. They are intrinsically robust and easy to manipulate and cultivate. However, their secretory pathway is not evolutionarily adapted to high loads of secretory protein. In particular, more complex proteins, like the antibody fragment (Fab) used in this study, overwhelm the folding and secretion capacity. This triggers cellular stress responses, which may cause excessive intracellular degradation. Previous results have shown that, in fact, about 60 % of the newly synthesized Fab is intracellularly degraded. Endoplasmic reticulum-associated protein degradation (ERAD) is one possible intracellular degradation pathway for proteins aimed for secretion. We therefore targeted ERAD for cell factory engineering and investigated the impact on recombinant protein secretion in P. pastoris. Three components of the ERAD-L complex, which is involved in the degradation of luminal proteins, and a protein involved in proteasomal degradation, were successfully disrupted in Fab-secreting P. pastoris. Contrary to expectation, the effect on secretion was marginal. In the course of more detailed investigation of the impact of ERAD, we took a closer look at the intracellular variants of the recombinant protein. This enabled us to further zero in on the issue of intracellular Fab degradation and exclude an overshooting ER quality control. We propose that a major fraction of the Fab is actually degraded before entering the secretory pathway.
Collapse
Affiliation(s)
- Richard J Zahrl
- Department of Biotechnology, BOKU University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria.,Austrian Centre of Industrial Biotechnology (ACIB GmbH), Muthgasse 18, 1190 Vienna, Austria
| | - Diethard Mattanovich
- Department of Biotechnology, BOKU University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria.,Austrian Centre of Industrial Biotechnology (ACIB GmbH), Muthgasse 18, 1190 Vienna, Austria
| | - Brigitte Gasser
- Austrian Centre of Industrial Biotechnology (ACIB GmbH), Muthgasse 18, 1190 Vienna, Austria.,Department of Biotechnology, BOKU University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| |
Collapse
|
67
|
Berner N, Reutter KR, Wolf DH. Protein Quality Control of the Endoplasmic Reticulum and Ubiquitin-Proteasome-Triggered Degradation of Aberrant Proteins: Yeast Pioneers the Path. Annu Rev Biochem 2018; 87:751-782. [PMID: 29394096 DOI: 10.1146/annurev-biochem-062917-012749] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cells must constantly monitor the integrity of their macromolecular constituents. Proteins are the most versatile class of macromolecules but are sensitive to structural alterations. Misfolded or otherwise aberrant protein structures lead to dysfunction and finally aggregation. Their presence is linked to aging and a plethora of severe human diseases. Thus, misfolded proteins have to be rapidly eliminated. Secretory proteins constitute more than one-third of the eukaryotic proteome. They are imported into the endoplasmic reticulum (ER), where they are folded and modified. A highly elaborated machinery controls their folding, recognizes aberrant folding states, and retrotranslocates permanently misfolded proteins from the ER back to the cytosol. In the cytosol, they are degraded by the highly selective ubiquitin-proteasome system. This process of protein quality control followed by proteasomal elimination of the misfolded protein is termed ER-associated degradation (ERAD), and it depends on an intricate interplay between the ER and the cytosol.
Collapse
Affiliation(s)
- Nicole Berner
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, 70569 Stuttgart, Germany; , ,
| | - Karl-Richard Reutter
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, 70569 Stuttgart, Germany; , ,
| | - Dieter H Wolf
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, 70569 Stuttgart, Germany; , ,
| |
Collapse
|
68
|
Neal S, Jaeger PA, Duttke SH, Benner C, K Glass C, Ideker T, Hampton RY. The Dfm1 Derlin Is Required for ERAD Retrotranslocation of Integral Membrane Proteins. Mol Cell 2018; 69:306-320.e4. [PMID: 29351849 PMCID: PMC6049073 DOI: 10.1016/j.molcel.2017.12.012] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 10/06/2017] [Accepted: 11/15/2017] [Indexed: 12/13/2022]
Abstract
Endoplasmic reticulum (ER)-associated degradation (ERAD) removes misfolded proteins from the ER membrane and lumen by the ubiquitin-proteasome pathway. Retrotranslocation of ubiquitinated substrates to the cytosol is a universal feature of ERAD that requires the Cdc48 AAA-ATPase. Despite intense efforts, the mechanism of ER exit, particularly for integral membrane (ERAD-M) substrates, has remained unclear. Using a self-ubiquitinating substrate (SUS), which undergoes normal retrotranslocation independently of known ERAD factors, and the new SPOCK (single plate orf compendium kit) micro-library to query all yeast genes, we found the rhomboid derlin Dfm1 was required for retrotranslocation of both HRD and DOA ERAD pathway integral membrane substrates. Dfm1 recruited Cdc48 to the ER membrane with its unique SHP motifs, and it catalyzed substrate extraction through its conserved rhomboid motifs. Surprisingly, dfm1Δ can undergo rapid suppression, restoring wild-type ERAD-M. This unexpected suppression explained earlier studies ruling out Dfm1, and it revealed an ancillary ERAD-M retrotranslocation pathway requiring Hrd1.
Collapse
Affiliation(s)
- Sonya Neal
- Division of Biological Sciences, the Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Philipp A Jaeger
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Biocipher(X), Inc., San Diego, CA 92121, USA
| | - Sascha H Duttke
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Christopher Benner
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Christopher K Glass
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Trey Ideker
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Randolph Y Hampton
- Division of Biological Sciences, the Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
69
|
Yoo YS, Han HG, Jeon YJ. Unfolded Protein Response of the Endoplasmic Reticulum in Tumor Progression and Immunogenicity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:2969271. [PMID: 29430279 PMCID: PMC5752989 DOI: 10.1155/2017/2969271] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 11/29/2017] [Indexed: 12/11/2022]
Abstract
The endoplasmic reticulum (ER) is a pivotal regulator of folding, quality control, trafficking, and targeting of secreted and transmembrane proteins, and accordingly, eukaryotic cells have evolved specialized machinery to ensure that the ER enables these proteins to acquire adequate folding and maturation in the presence of intrinsic and extrinsic insults. This adaptive capacity of the ER to intrinsic and extrinsic perturbations is important for maintaining protein homeostasis, which is termed proteostasis. Failure in adaptation to these perturbations leads to accumulation of misfolded or unassembled proteins in the ER, which is termed ER stress, resulting in the activation of unfolded protein response (UPR) of the ER and the execution of ER-associated degradation (ERAD) to restore homeostasis. Furthermore, both of the two axes play key roles in the control of tumor progression, inflammation, immunity, and aging. Therefore, understanding UPR of the ER and subsequent ERAD will provide new insights into the pathogenesis of many human diseases and contribute to therapeutic intervention in these diseases.
Collapse
Affiliation(s)
- Yoon Seon Yoo
- Department of Biochemistry, Chungnam National University School of Medicine, Daejeon 35015, Republic of Korea
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Republic of Korea
| | - Hye Gyeong Han
- Department of Biochemistry, Chungnam National University School of Medicine, Daejeon 35015, Republic of Korea
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Republic of Korea
| | - Young Joo Jeon
- Department of Biochemistry, Chungnam National University School of Medicine, Daejeon 35015, Republic of Korea
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Republic of Korea
| |
Collapse
|
70
|
Multiple regulatory mechanisms of the biological function of NRF3 (NFE2L3) control cancer cell proliferation. Sci Rep 2017; 7:12494. [PMID: 28970512 PMCID: PMC5624902 DOI: 10.1038/s41598-017-12675-y] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 09/18/2017] [Indexed: 12/14/2022] Open
Abstract
Accumulated evidence suggests a physiological relationship between the transcription factor NRF3 (NFE2L3) and cancers. Under physiological conditions, NRF3 is repressed by its endoplasmic reticulum (ER) sequestration. In response to unidentified signals, NRF3 enters the nucleus and modulates gene expression. However, molecular mechanisms underlying the nuclear translocation of NRF3 and its target gene in cancer cells remain poorly understood. We herein report that multiple regulation of NRF3 activities controls cell proliferation. Our analyses reveal that under physiological conditions, NRF3 is rapidly degraded by the ER-associated degradation (ERAD) ubiquitin ligase HRD1 and valosin-containing protein (VCP) in the cytoplasm. Furthermore, NRF3 is also degraded by β-TRCP, an adaptor for the Skp1-Cul1-F-box protein (SCF) ubiquitin ligase in the nucleus. The nuclear translocation of NRF3 from the ER requires the aspartic protease DNA-damage inducible 1 homolog 2 (DDI2) but does not require inhibition of its HRD1-VCP-mediated degradation. Finally, NRF3 mediates gene expression of the cell cycle regulator U2AF homology motif kinase 1 (UHMK1) for cell proliferation. Collectively, our study provides us many insights into the molecular regulation and biological function of NRF3 in cancer cells.
Collapse
|
71
|
Choi SI, Lee E, Akuzum B, Jeong JB, Maeng YS, Kim TI, Kim EK. Melatonin reduces endoplasmic reticulum stress and corneal dystrophy-associated TGFBIp through activation of endoplasmic reticulum-associated protein degradation. J Pineal Res 2017; 63. [PMID: 28580641 DOI: 10.1111/jpi.12426] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 05/31/2017] [Indexed: 02/06/2023]
Abstract
Endoplasmic reticulum (ER) stress is emerging as a factor for the pathogenesis of granular corneal dystrophy type 2 (GCD2). This study was designed to investigate the molecular mechanisms underlying the protective effects of melatonin on ER stress in GCD2. Our results showed that GCD2 corneal fibroblasts were more susceptible to ER stress-induced death than were wild-type cells. Melatonin significantly inhibited GCD2 corneal cell death, caspase-3 activation, and poly (ADP-ribose) polymerase 1 cleavage caused by the ER stress inducer, tunicamycin. Under ER stress, melatonin significantly suppressed the induction of immunoglobulin heavy-chain-binding protein (BiP) and activation of inositol-requiring enzyme 1α (IRE1α), and their downstream target, alternative splicing of X-box binding protein 1(XBP1). Notably, the reduction in BiP and IRE1α by melatonin was suppressed by the ubiquitin-proteasome inhibitor, MG132, but not by the autophagy inhibitor, bafilomycin A1, indicating involvement of the ER-associated protein degradation (ERAD) system. Melatonin treatment reduced the levels of transforming growth factor-β-induced protein (TGFBIp) significantly, and this reduction was suppressed by MG132. We also found reduced mRNA expression of the ERAD system components HRD1 and SEL1L, and a reduced level of SEL1L protein in GCD2 cells. Interestingly, melatonin treatments enhanced SEL1L levels and suppressed the inhibition of SEL1L N-glycosylation caused by tunicamycin. In conclusion, this study provides new insights into the mechanisms by which melatonin confers its protective actions during ER stress. The results also indicate that melatonin might have potential as a therapeutic agent for ER stress-related diseases including GCD2.
Collapse
Affiliation(s)
- Seung-Il Choi
- Department of Ophthalmology, Corneal Dystrophy Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Eunhee Lee
- Department of Ophthalmology, Corneal Dystrophy Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Begum Akuzum
- Department of Ophthalmology, Corneal Dystrophy Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Jang Bin Jeong
- Department of Ophthalmology, Corneal Dystrophy Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Yong-Sun Maeng
- Department of Ophthalmology, Corneal Dystrophy Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Tae-Im Kim
- Department of Ophthalmology, Corneal Dystrophy Research Institute, Yonsei University College of Medicine, Seoul, Korea
- Institute of Vision Research, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Eung Kweon Kim
- Department of Ophthalmology, Corneal Dystrophy Research Institute, Yonsei University College of Medicine, Seoul, Korea
- Institute of Vision Research, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
72
|
Shi G, Somlo DRM, Kim GH, Prescianotto-Baschong C, Sun S, Beuret N, Long Q, Rutishauser J, Arvan P, Spiess M, Qi L. ER-associated degradation is required for vasopressin prohormone processing and systemic water homeostasis. J Clin Invest 2017; 127:3897-3912. [PMID: 28920920 DOI: 10.1172/jci94771] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 07/26/2017] [Indexed: 12/11/2022] Open
Abstract
Peptide hormones are crucial regulators of many aspects of human physiology. Mutations that alter these signaling peptides are associated with physiological imbalances that underlie diseases. However, the conformational maturation of peptide hormone precursors (prohormones) in the ER remains largely unexplored. Here, we report that conformational maturation of proAVP, the precursor for the antidiuretic hormone arginine-vasopressin, within the ER requires the ER-associated degradation (ERAD) activity of the Sel1L-Hrd1 protein complex. Serum hyperosmolality induces expression of both ERAD components and proAVP in AVP-producing neurons. Mice with global or AVP neuron-specific ablation of Se1L-Hrd1 ERAD progressively developed polyuria and polydipsia, characteristics of diabetes insipidus. Mechanistically, we found that ERAD deficiency causes marked ER retention and aggregation of a large proportion of all proAVP protein. Further, we show that proAVP is an endogenous substrate of Sel1L-Hrd1 ERAD. The inability to clear misfolded proAVP with highly reactive cysteine thiols in the absence of Sel1L-Hrd1 ERAD causes proAVP to accumulate and participate in inappropriate intermolecular disulfide-bonded aggregates, promoted by the enzymatic activity of protein disulfide isomerase (PDI). This study highlights a pathway linking ERAD to prohormone conformational maturation in neuroendocrine cells, expanding the role of ERAD in providing a conducive ER environment for nascent proteins to reach proper conformation.
Collapse
Affiliation(s)
- Guojun Shi
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Diane RM Somlo
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, USA
| | - Geun Hyang Kim
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | | | - Shengyi Sun
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, USA
| | | | - Qiaoming Long
- Cam-Su Mouse Genomic Resources Center, Suzhou University, Suzhou, Jiangsu, China
| | | | - Peter Arvan
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA.,Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | | | - Ling Qi
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA.,Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
73
|
Schulz J, Avci D, Queisser MA, Gutschmidt A, Dreher LS, Fenech EJ, Volkmar N, Hayashi Y, Hoppe T, Christianson JC. Conserved cytoplasmic domains promote Hrd1 ubiquitin ligase complex formation for ER-associated degradation (ERAD). J Cell Sci 2017; 130:3322-3335. [PMID: 28827405 DOI: 10.1242/jcs.206847] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 08/16/2017] [Indexed: 12/20/2022] Open
Abstract
The mammalian ubiquitin ligase Hrd1 is the central component of a complex facilitating degradation of misfolded proteins during the ubiquitin-proteasome-dependent process of ER-associated degradation (ERAD). Hrd1 associates with cofactors to execute ERAD, but their roles and how they assemble with Hrd1 are not well understood. Here, we identify crucial cofactor interaction domains within Hrd1 and report a previously unrecognised evolutionarily conserved segment within the intrinsically disordered cytoplasmic domain of Hrd1 (termed the HAF-H domain), which engages complementary segments in the cofactors FAM8A1 and Herp (also known as HERPUD1). This domain is required by Hrd1 to interact with both FAM8A1 and Herp, as well as to assemble higher-order Hrd1 complexes. FAM8A1 enhances binding of Herp to Hrd1, an interaction that is required for ERAD. Our findings support a model of Hrd1 complex formation, where the Hrd1 cytoplasmic domain and FAM8A1 have a central role in the assembly and activity of this ERAD machinery.
Collapse
Affiliation(s)
- Jasmin Schulz
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, UK
| | - Dönem Avci
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, UK
| | - Markus A Queisser
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, UK
| | - Aljona Gutschmidt
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne 50931, Germany
| | - Lena-Sophie Dreher
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne 50931, Germany
| | - Emma J Fenech
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, UK
| | - Norbert Volkmar
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, UK
| | - Yuki Hayashi
- Department of Pharmaceutical Sciences, University of Tokyo, Tokyo 113-0033, Japan
| | - Thorsten Hoppe
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne 50931, Germany
| | - John C Christianson
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, UK
| |
Collapse
|
74
|
Schoebel S, Mi W, Stein A, Ovchinnikov S, Pavlovicz R, DiMaio F, Baker D, Chambers MG, Su H, Li D, Rapoport TA, Liao M. Cryo-EM structure of the protein-conducting ERAD channel Hrd1 in complex with Hrd3. Nature 2017; 548:352-355. [PMID: 28682307 PMCID: PMC5736104 DOI: 10.1038/nature23314] [Citation(s) in RCA: 150] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Accepted: 06/30/2017] [Indexed: 12/16/2022]
Abstract
Misfolded endoplasmic reticulum (ER) proteins are retro-translocated through the membrane into the cytosol, where they are poly-ubiquitinated, extracted from the ER membrane, and degraded by the proteasome 1–4, a pathway termed ER-associated protein degradation (ERAD). Proteins with misfolded domains in the ER lumen or membrane are discarded through the ERAD-L and –M pathways, respectively. In S. cerevisiae, both pathways require the ubiquitin ligase Hrd1, a multi-spanning membrane protein with a cytosolic RING finger domain 5,6. Hrd1 is the crucial membrane component for retro-translocation 7,8, but whether it forms a protein-conducting channel is unclear. Here, we report a cryo-electron microscopy (cryo-EM) structure of S. cerevisiae Hrd1 in complex with its ER luminal binding partner Hrd3. Hrd1 forms a dimer within the membrane with one or two Hrd3 molecules associated at its luminal side. Each Hrd1 molecule has eight trans-membrane segments, five of which form an aqueous cavity extending from the cytosol almost to the ER lumen, while a segment of the neighboring Hrd1 molecule forms a lateral seal. The aqueous cavity and lateral gate are reminiscent of features in protein-conducting conduits that facilitate polypeptide movement in the opposite direction, i.e. from the cytosol into or across membranes 9–11. Our results suggest that Hrd1 forms a retro-translocation channel for the movement of misfolded polypeptides through the ER membrane.
Collapse
Affiliation(s)
- Stefan Schoebel
- Howard Hughes Medical Institute and Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, USA
| | - Wei Mi
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, USA
| | - Alexander Stein
- Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Sergey Ovchinnikov
- Institute for Protein Design, University of Washington, Seattle, Washington, USA
| | - Ryan Pavlovicz
- Institute for Protein Design, University of Washington, Seattle, Washington, USA
| | - Frank DiMaio
- Institute for Protein Design, University of Washington, Seattle, Washington, USA
| | - David Baker
- Institute for Protein Design, University of Washington, Seattle, Washington, USA
| | - Melissa G Chambers
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, USA
| | - Huayou Su
- National Lab for Parallel and Distributed Processing (PDL), School of Computer Science, National University of Defense Technology, Changsha, China
| | - Dongsheng Li
- National Lab for Parallel and Distributed Processing (PDL), School of Computer Science, National University of Defense Technology, Changsha, China
| | - Tom A Rapoport
- Howard Hughes Medical Institute and Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, USA
| | - Maofu Liao
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, USA
| |
Collapse
|
75
|
The evolving role of ubiquitin modification in endoplasmic reticulum-associated degradation. Biochem J 2017; 474:445-469. [PMID: 28159894 DOI: 10.1042/bcj20160582] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 12/12/2016] [Accepted: 12/14/2016] [Indexed: 12/13/2022]
Abstract
The endoplasmic reticulum (ER) serves as a warehouse for factors that augment and control the biogenesis of nascent proteins entering the secretory pathway. In turn, this compartment also harbors the machinery that responds to the presence of misfolded proteins by targeting them for proteolysis via a process known as ER-associated degradation (ERAD). During ERAD, substrates are selected, modified with ubiquitin, removed from the ER, and then degraded by the cytoplasmic 26S proteasome. While integral membrane proteins can directly access the ubiquitination machinery that resides in the cytoplasm or on the cytoplasmic face of the ER membrane, soluble ERAD substrates within the lumen must be retrotranslocated from this compartment. In either case, nearly all ERAD substrates are tagged with a polyubiquitin chain, a modification that represents a commitment step to degrade aberrant proteins. However, increasing evidence indicates that the polyubiquitin chain on ERAD substrates can be further modified, serves to recruit ERAD-requiring factors, and may regulate the ERAD machinery. Amino acid side chains other than lysine on ERAD substrates can also be modified with ubiquitin, and post-translational modifications that affect substrate ubiquitination have been observed. Here, we summarize these data and provide an overview of questions driving this field of research.
Collapse
|
76
|
Hwang J, Walczak CP, Shaler TA, Olzmann JA, Zhang L, Elias JE, Kopito RR. Characterization of protein complexes of the endoplasmic reticulum-associated degradation E3 ubiquitin ligase Hrd1. J Biol Chem 2017; 292:9104-9116. [PMID: 28411238 PMCID: PMC5454095 DOI: 10.1074/jbc.m117.785055] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 04/05/2017] [Indexed: 12/20/2022] Open
Abstract
Hrd1 is the core structural component of a large endoplasmic reticulum membrane-embedded protein complex that coordinates the destruction of folding-defective proteins in the early secretory pathway. Defining the composition, dynamics, and ultimately, the structure of the Hrd1 complex is a crucial step in understanding the molecular basis of glycoprotein quality control but has been hampered by the lack of suitable techniques to interrogate this complex under native conditions. In this study we used genome editing to generate clonal HEK293 (Hrd1.KI) cells harboring a homozygous insertion of a small tandem affinity tag knocked into the endogenous Hrd1 locus. We found that steady-state levels of tagged Hrd1 in these cells are indistinguishable from those of Hrd1 in unmodified cells and that the tagged variant is functional in supporting the degradation of well characterized luminal and membrane substrates. Analysis of detergent-solubilized Hrd1.KI cells indicates that the composition and stoichiometry of Hrd1 complexes are strongly influenced by Hrd1 expression levels. Analysis of affinity-captured Hrd1 complexes from these cells by size-exclusion chromatography, immunodepletion, and absolute quantification mass spectrometry identified two major high-molecular-mass complexes with distinct sets of interacting proteins and variable stoichiometries, suggesting a hitherto unrecognized heterogeneity in the functional units of Hrd1-mediated protein degradation.
Collapse
Affiliation(s)
| | | | | | | | - Lichao Zhang
- Chemical and Systems Biology, Stanford University, Stanford, California 94305 and
| | - Joshua E Elias
- Chemical and Systems Biology, Stanford University, Stanford, California 94305 and
| | | |
Collapse
|
77
|
MacDonald C, Winistorfer S, Pope RM, Wright ME, Piper RC. Enzyme reversal to explore the function of yeast E3 ubiquitin-ligases. Traffic 2017; 18:465-484. [PMID: 28382714 DOI: 10.1111/tra.12485] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 03/31/2017] [Accepted: 03/31/2017] [Indexed: 12/27/2022]
Abstract
The covalent attachment of ubiquitin onto proteins can elicit a variety of downstream consequences. Attachment is mediated by a large array of E3 ubiquitin ligases, each thought be subject to regulatory control and to have a specific repertoire of substrates. Assessing the biological roles of ligases, and in particular, identifying their biologically relevant substrates has been a persistent yet challenging question. In this study, we describe tools that may help achieve both of these goals. We describe a strategy whereby the activity of a ubiquitin ligase has been enzymatically reversed, accomplished by fusing it to a catalytic domain of an exogenous deubiquitinating enzyme. We present a library of 72 "anti-ligases" that appear to work in a dominant-negative fashion to stabilize their cognate substrates against ubiquitin-dependent proteasomal and lysosomal degradation. We then used the ligase-deubiquitinating enzyme (DUb) library to screen for E3 ligases involved in post-Golgi/endosomal trafficking. We identify ligases previously implicated in these pathways (Rsp5 and Tul1), in addition to ligases previously localized to endosomes (Pib1 and Vps8). We also document an optimized workflow for isolating and analyzing the "ubiquitome" of yeast, which can be used with mass spectrometry to identify substrates perturbed by expression of particular ligase-DUb fusions.
Collapse
Affiliation(s)
- Chris MacDonald
- Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa
| | | | - Robert M Pope
- Proteomics Facility, University of Iowa, Iowa City, Iowa
| | - Michael E Wright
- Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa
| | - Robert C Piper
- Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa
| |
Collapse
|
78
|
Ge FX, Li H, Yin X. Upregulation of microRNA-125b-5p is involved in the pathogenesis of osteoarthritis by downregulating SYVN1. Oncol Rep 2017; 37:2490-2496. [PMID: 28260078 DOI: 10.3892/or.2017.5475] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Accepted: 10/31/2016] [Indexed: 11/05/2022] Open
Abstract
Osteoarthritis (OA) is a degenerative disease characterized by deterioration of articular cartilage. The aim of this study was to identify and characterize the expression of microRNA-125b-5p (miR-125b-5p) in normal and OA synovial cells, and to determine its role in OA pathogenesis. First, the levels of miR-125b-5p and synoviolin 1 (SYVN1) were detected among normal, mild OA and severe OA groups with the use of quantitative PCR. Computational analysis was used to search for the target of the miR-125b-5p, and luciferase reporter assay system was used to validate SYVN1 as the target gene of miR-125b-5p. Then the SYVN1 expression level of cells transfected with miR-125b-5p mimics or inhibitors was estimated using quantitative PCR and western blotting. Finally, MTT assay was employed to estimate the effect of miR-125b-5p on apoptosis. We enrolled 36 participants consisting of 12 normal control, 12 mild OA and 12 severe OA, furthermore, we performed quantitative PCR to detect the levels of miR-125b-5p and SYVN1 among those groups, and found that miR-125b-5p was expressed at highest level in severe OA compared with normal control and mild OA groups, while SYVN1 was expressed at the lowest level in severe OA. Additionally, we identified that SYVN1 is a target of miR-125b-5p by using computational analysis and luciferase assay. Transfection with miR-125b-5p mimic or inhibitor was employed to investigate the effect of miR-125b-5p on expression of SYVN1 in synovial cells, and synovial cell viability and apoptosis, and the results showed that miR-125b-5p mimics significant decreased the expression of SYVN1, a substantially promoted apoptosis of synovial cells, while miR-125b-5p inhibitors remarkably increased the level of SYVN1, and substantially suppressed apoptosis of synovial cells. The data suggested that miR-125b-5p promoted apoptosis of synovial cells through targeting SYVN1 gene, with important implication for validating miR-125b-5p as a potential target for OA therapy.
Collapse
Affiliation(s)
- Feng-Xiao Ge
- Department of Orthopedics, The People's Hospital of Linyi, Linyi, Shandong 276000, P.R. China
| | - Haitao Li
- Department of Orthopedics, The People's Hospital of Linyi, Linyi, Shandong 276000, P.R. China
| | - Xin Yin
- Department of Orthopedics, The People's Hospital of Linyi, Linyi, Shandong 276000, P.R. China
| |
Collapse
|
79
|
Qi L, Tsai B, Arvan P. New Insights into the Physiological Role of Endoplasmic Reticulum-Associated Degradation. Trends Cell Biol 2017; 27:430-440. [PMID: 28131647 DOI: 10.1016/j.tcb.2016.12.002] [Citation(s) in RCA: 175] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 12/04/2016] [Accepted: 12/23/2016] [Indexed: 12/13/2022]
Abstract
Many human diseases are associated with mutations causing protein misfolding and aggregation in the endoplasmic reticulum (ER). ER-associated degradation (ERAD) is a principal quality-control mechanism responsible for targeting misfolded ER proteins for cytosolic degradation. However, despite years of effort, the physiological role of ERAD in vivo remains largely unknown. Several recent studies have reported intriguing phenotypes of mice deficient for ERAD function in specific cell types. These studies highlight that mammalian ERAD has been designed to perform a wide-range of cell-type-specific functions in vivo in a substrate-dependent manner.
Collapse
Affiliation(s)
- Ling Qi
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48105, USA; Division of Metabolism, Endocrinology and Diabetes, University of Michigan Medical School, Ann Arbor, MI 48105, USA.
| | - Billy Tsai
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48105, USA
| | - Peter Arvan
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48105, USA; Division of Metabolism, Endocrinology and Diabetes, University of Michigan Medical School, Ann Arbor, MI 48105, USA
| |
Collapse
|
80
|
Frabutt DA, Zheng YH. Arms Race between Enveloped Viruses and the Host ERAD Machinery. Viruses 2016; 8:v8090255. [PMID: 27657106 PMCID: PMC5035969 DOI: 10.3390/v8090255] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 09/12/2016] [Accepted: 09/12/2016] [Indexed: 12/12/2022] Open
Abstract
Enveloped viruses represent a significant category of pathogens that cause serious diseases in animals. These viruses express envelope glycoproteins that are singularly important during the infection of host cells by mediating fusion between the viral envelope and host cell membranes. Despite low homology at protein levels, three classes of viral fusion proteins have, as of yet, been identified based on structural similarities. Their incorporation into viral particles is dependent upon their proper sub-cellular localization after being expressed and folded properly in the endoplasmic reticulum (ER). However, viral protein expression can cause stress in the ER, and host cells respond to alleviate the ER stress in the form of the unfolded protein response (UPR); the effects of which have been observed to potentiate or inhibit viral infection. One important arm of UPR is to elevate the capacity of the ER-associated protein degradation (ERAD) pathway, which is comprised of host quality control machinery that ensures proper protein folding. In this review, we provide relevant details regarding viral envelope glycoproteins, UPR, ERAD, and their interactions in host cells.
Collapse
Affiliation(s)
- Dylan A Frabutt
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA.
| | - Yong-Hui Zheng
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
81
|
How Polyomaviruses Exploit the ERAD Machinery to Cause Infection. Viruses 2016; 8:v8090242. [PMID: 27589785 PMCID: PMC5035956 DOI: 10.3390/v8090242] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 08/18/2016] [Accepted: 08/23/2016] [Indexed: 12/18/2022] Open
Abstract
To infect cells, polyomavirus (PyV) traffics from the cell surface to the endoplasmic reticulum (ER) where it hijacks elements of the ER-associated degradation (ERAD) machinery to penetrate the ER membrane and reach the cytosol. From the cytosol, the virus transports to the nucleus, enabling transcription and replication of the viral genome that leads to lytic infection or cellular transformation. How PyV exploits the ERAD machinery to cross the ER membrane and access the cytosol, a decisive infection step, remains enigmatic. However, recent studies have slowly unraveled many aspects of this process. These emerging insights should advance our efforts to develop more effective therapies against PyV-induced human diseases.
Collapse
|
82
|
Xu Y, Zhao F, Qiu Q, Chen K, Wei J, Kong Q, Gao B, Melo-Cardenas J, Zhang B, Zhang J, Song J, Zhang DD, Zhang J, Fan Y, Li H, Fang D. The ER membrane-anchored ubiquitin ligase Hrd1 is a positive regulator of T-cell immunity. Nat Commun 2016; 7:12073. [PMID: 27417417 PMCID: PMC4947160 DOI: 10.1038/ncomms12073] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 05/25/2016] [Indexed: 01/16/2023] Open
Abstract
Identification of positive regulators of T-cell immunity induced during autoimmune diseases is critical for developing novel therapies. The endoplasmic reticulum resident ubiquitin ligase Hrd1 has recently emerged as a critical regulator of dendritic cell antigen presentation, but its role in T-cell immunity is unknown. Here we show that genetic deletion of Hrd1 in mice inhibits T-cell proliferation, production of IL-2, and differentiation of Th1 and Th17 cells, and consequently protects mice from experimental autoimmune encephalomyelitis. Hrd1 facilitates T-cell proliferation by the destruction of cyclin-dependent kinase inhibitor p27(kip1), and deletion of p27(kip1) in Hrd1-null T-cells rescues proliferative capacity but not the production of cytokines, including IL-2, IFN-γ and IL-17. T-cell expression of Hrd1 is higher in patients with multiple sclerosis than in healthy individuals, and knockdown of Hrd1 in human CD4(+) T cells inhibits activation and differentiation to Th1 and Th17 cells. Our study identifies Hrd1 as a previously unappreciated positive regulator of T cells and implies that Hrd1 is a potential therapeutic target for autoimmune diseases.
Collapse
Affiliation(s)
- Yuanming Xu
- Department of Pathology, Northwestern University Feinberg School of Medicine, 303 E Chicago Avenue, Chicago, Illinois 60611, USA
| | - Fang Zhao
- Department of Pathology, Northwestern University Feinberg School of Medicine, 303 E Chicago Avenue, Chicago, Illinois 60611, USA
| | - Quan Qiu
- Department of Pathology, Northwestern University Feinberg School of Medicine, 303 E Chicago Avenue, Chicago, Illinois 60611, USA
- Allergy Center, Department of Otolaryngology-Head and Neck Surgery, Affiliated Eye and ENT Hospital, Fudan University, Shanghai 200031, China
| | - Kun Chen
- Allergy Center, Department of Otolaryngology-Head and Neck Surgery, Affiliated Eye and ENT Hospital, Fudan University, Shanghai 200031, China
| | - Juncheng Wei
- Department of Pathology, Northwestern University Feinberg School of Medicine, 303 E Chicago Avenue, Chicago, Illinois 60611, USA
| | - Qingfei Kong
- Department of Pathology, Northwestern University Feinberg School of Medicine, 303 E Chicago Avenue, Chicago, Illinois 60611, USA
| | - Beixue Gao
- Department of Pathology, Northwestern University Feinberg School of Medicine, 303 E Chicago Avenue, Chicago, Illinois 60611, USA
| | - Johanna Melo-Cardenas
- Department of Pathology, Northwestern University Feinberg School of Medicine, 303 E Chicago Avenue, Chicago, Illinois 60611, USA
| | - Bin Zhang
- Robert H. Lurie Comprehensive Cancer Center, Department of Medicine-Division of Hematology/Oncology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Jinping Zhang
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu Province 215123, China
| | - Jianxun Song
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA
| | - Donna D. Zhang
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizon 85721, USA
| | - Jianing Zhang
- Department of Biochemistry, School of Life Science and Medicine, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Yunping Fan
- Guangdong Provincial Engineering Research Center for Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Huabin Li
- Allergy Center, Department of Otolaryngology-Head and Neck Surgery, Affiliated Eye and ENT Hospital, Fudan University, Shanghai 200031, China
- Guangdong Provincial Engineering Research Center for Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Deyu Fang
- Department of Pathology, Northwestern University Feinberg School of Medicine, 303 E Chicago Avenue, Chicago, Illinois 60611, USA
| |
Collapse
|
83
|
Zhao Y, Zhang T, Huo H, Ye Y, Liu Y. Lunapark Is a Component of a Ubiquitin Ligase Complex Localized to the Endoplasmic Reticulum Three-way Junctions. J Biol Chem 2016; 291:18252-62. [PMID: 27387505 DOI: 10.1074/jbc.m116.737783] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Indexed: 11/06/2022] Open
Abstract
The endoplasmic reticulum (ER) network comprises sheets and tubules that are connected by dynamic three-way junctions. Lunapark (Lnp) localizes to and stabilizes ER three-way junctions by antagonizing the small GTPase Atlastin, but how Lnp shapes the ER network is unclear. Here, we used an affinity purification approach and mass spectrometry to identify Lnp as an interacting partner of the ER protein quality control ubiquitin ligase gp78. Accordingly, Lnp purified from mammalian cells has a ubiquitin ligase activity in vitro Intriguingly, biochemical analyses show that this activity can be attributed not only to associated ubiquitin ligase, but also to an intrinsic ubiquitin ligase activity borne by Lnp itself. This activity is contained in the N-terminal 45 amino acids of Lnp although this segment does not share homology to any known ubiquitin ligase motifs. Despite its interaction with gp78, Lnp does not seem to have a broad function in degradation of misfolded ER proteins. On the other hand, the N-terminal ubiquitin ligase-bearing motif is required for the ER three-way junction localization of Lnp. Our study identifies a new type of ubiquitin ligase and reveals a potential link between ubiquitin and ER morphology regulation.
Collapse
Affiliation(s)
- Yupeng Zhao
- From the School of Life Science and Technology, ShanghaiTech University, 100 Haike Rd., Shanghai 201210, China and
| | - Ting Zhang
- the Laboratory of Molecular Biology, NIDDK, National Institutes of Health, Bethesda, Maryland 20892
| | - Huanhuan Huo
- From the School of Life Science and Technology, ShanghaiTech University, 100 Haike Rd., Shanghai 201210, China and
| | - Yihong Ye
- the Laboratory of Molecular Biology, NIDDK, National Institutes of Health, Bethesda, Maryland 20892
| | - Yanfen Liu
- From the School of Life Science and Technology, ShanghaiTech University, 100 Haike Rd., Shanghai 201210, China and
| |
Collapse
|
84
|
Chen Q, Zhong Y, Wu Y, Liu L, Wang P, Liu R, Cui F, Li Q, Yang X, Fang S, Xie Q. HRD1-mediated ERAD tuning of ER-bound E2 is conserved between plants and mammals. NATURE PLANTS 2016; 2:16094. [PMID: 27322605 DOI: 10.1038/nplants.2016.94] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 05/20/2016] [Indexed: 06/06/2023]
Abstract
When membrane proteins and secretory proteins are misfolded or incompletely folded, they are retained in the endoplasmic reticulum (ER) for further folding or degradation. The HMG-COA reductase degradation 1 (HRD1) and degradation of alpha2 10 (DOA10) complexes are two major components involved in the ER-associated protein degradation (ERAD) system in eukaryotic organisms(1-4). However, the relationship between these two complexes is largely unknown, especially in higher eukaryotes. Here, we report that the plant ubiquitin-conjugating enzyme 32 (UBC32), an ER-bound E2 working in the DOA10 complex, is maintained at low levels under standard conditions by proteasome-dependent degradation mediated by the HRD1 complex, the other E3 complex involved in ERAD. Loss of this negative regulation under ER stress increases capacity for degradation of misfolded proteins retained in the ER. Consistently, UBE2J1, the homologue of UBC32 in mammals, was also identified to be targeted by HRD1 for degradation. Taken together, these results suggest that the regulation of UBC32 (or UBE2J1) by the HRD1 complex is conserved between plants and mammals.
Collapse
Affiliation(s)
- Qian Chen
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No. 1 West Beichen Road, Beijing 100101, China
- Graduate University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongwang Zhong
- Department of Physiology, Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - Yaorong Wu
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No. 1 West Beichen Road, Beijing 100101, China
| | - Lijing Liu
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No. 1 West Beichen Road, Beijing 100101, China
| | - Pengfei Wang
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No. 1 West Beichen Road, Beijing 100101, China
- Graduate University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruijun Liu
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No. 1 West Beichen Road, Beijing 100101, China
- Graduate University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feng Cui
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No. 1 West Beichen Road, Beijing 100101, China
| | - Qingliang Li
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No. 1 West Beichen Road, Beijing 100101, China
- Graduate University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoyuan Yang
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No. 1 West Beichen Road, Beijing 100101, China
| | - Shengyun Fang
- Department of Physiology, Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - Qi Xie
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No. 1 West Beichen Road, Beijing 100101, China
- Graduate University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
85
|
Baldridge RD, Rapoport TA. Autoubiquitination of the Hrd1 Ligase Triggers Protein Retrotranslocation in ERAD. Cell 2016; 166:394-407. [PMID: 27321670 DOI: 10.1016/j.cell.2016.05.048] [Citation(s) in RCA: 150] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 04/19/2016] [Accepted: 05/13/2016] [Indexed: 12/16/2022]
Abstract
Misfolded proteins of the ER are retrotranslocated to the cytosol, where they are polyubiquitinated, extracted from the membrane, and degraded by the proteasome. To investigate how the ER-associated Degradation (ERAD) machinery can accomplish retrotranslocation of a misfolded luminal protein domain across a lipid bilayer, we have reconstituted retrotranslocation with purified S. cerevisiae proteins, using proteoliposomes containing the multi-spanning ubiquitin ligase Hrd1. Retrotranslocation of the luminal domain of a membrane-spanning substrate is triggered by autoubiquitination of Hrd1. Substrate ubiquitination is a subsequent event, and the Cdc48 ATPase that completes substrate extraction from the membrane is not required for retrotranslocation. Ubiquitination of lysines in Hrd1's RING-finger domain is required for substrate retrotranslocation in vitro and for ERAD in vivo. Our results suggest that Hrd1 forms a ubiquitin-gated protein-conducting channel.
Collapse
Affiliation(s)
- Ryan D Baldridge
- Howard Hughes Medical Institute and Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA.
| | - Tom A Rapoport
- Howard Hughes Medical Institute and Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
86
|
Abstract
The HRD (HMG-CoA reductase degradation) pathway is a conserved route of endoplasmic reticulum-associated degradation (ERAD), by which misfolded ER proteins are ubiquitinated and degraded. ERAD substrates are ubiquitinated by the action of the Hrd1 RING-H2 E3 ligase. Hrd1 is always present in a stoichiometric complex with the ER membrane protein Hrd3, which is also required for HRD-dependent degradation. Despite its conserved presence, unequivocal study of Hrd3 function has been precluded by its central role in Hrd1 stability. Loss of Hrd3 causes unrestricted self-degradation of Hrd1, resulting in significant loss of the core ligase. Accordingly, the degree to which Hrd3 functions independently of Hrd1 stabilization has remained unresolved. By capitalizing on our studies of Usa1 in Hrd1 degradation, we have devised a new approach to evaluate Hrd3 functions in ERAD. We now show that Hrd3 has a direct and critical role in ERAD in addition to Hrd1 stabilization. This direct component of Hrd3 is phenotypically as important as Hrd1 in the native HRD complex. Hrd3 was required the E3 activity of Hrd1, rather than substrate or E2 recruitment to Hrd1. Although Hrd1 can function in some circumstances independent of Hrd3, these studies show an indispensable role for Hrd3 in living cells.
Collapse
|
87
|
Buchanan BW, Lloyd ME, Engle SM, Rubenstein EM. Cycloheximide Chase Analysis of Protein Degradation in Saccharomyces cerevisiae. J Vis Exp 2016. [PMID: 27167179 DOI: 10.3791/53975] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Regulation of protein abundance is crucial to virtually every cellular process. Protein abundance reflects the integration of the rates of protein synthesis and protein degradation. Many assays reporting on protein abundance (e.g., single-time point western blotting, flow cytometry, fluorescence microscopy, or growth-based reporter assays) do not allow discrimination of the relative effects of translation and proteolysis on protein levels. This article describes the use of cycloheximide chase followed by western blotting to specifically analyze protein degradation in the model unicellular eukaryote, Saccharomyces cerevisiae (budding yeast). In this procedure, yeast cells are incubated in the presence of the translational inhibitor cycloheximide. Aliquots of cells are collected immediately after and at specific time points following addition of cycloheximide. Cells are lysed, and the lysates are separated by polyacrylamide gel electrophoresis for western blot analysis of protein abundance at each time point. The cycloheximide chase procedure permits visualization of the degradation kinetics of the steady state population of a variety of cellular proteins. The procedure may be used to investigate the genetic requirements for and environmental influences on protein degradation.
Collapse
Affiliation(s)
| | - Michael E Lloyd
- Department of Biology, Ball State University; Bioproduct Research & Development, Eli Lilly and Company
| | | | | |
Collapse
|
88
|
Xerxa E, Barbisin M, Chieppa MN, Krmac H, Vallino Costassa E, Vatta P, Simmons M, Caramelli M, Casalone C, Corona C, Legname G. Whole Blood Gene Expression Profiling in Preclinical and Clinical Cattle Infected with Atypical Bovine Spongiform Encephalopathy. PLoS One 2016; 11:e0153425. [PMID: 27073865 PMCID: PMC4830546 DOI: 10.1371/journal.pone.0153425] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 03/29/2016] [Indexed: 12/12/2022] Open
Abstract
Prion diseases, such as bovine spongiform encephalopathies (BSE), are transmissible neurodegenerative disorders affecting humans and a wide variety of mammals. Variant Creutzfeldt-Jakob disease (vCJD), a prion disease in humans, has been linked to exposure to BSE prions. This classical BSE (cBSE) is now rapidly disappearing as a result of appropriate measures to control animal feeding. Besides cBSE, two atypical forms (named H- and L-type BSE) have recently been described in Europe, Japan, and North America. Here we describe the first wide-spectrum microarray analysis in whole blood of atypical BSE-infected cattle. Transcriptome changes in infected animals were analyzed prior to and after the onset of clinical signs. The microarray analysis revealed gene expression changes in blood prior to the appearance of the clinical signs and during the progression of the disease. A set of 32 differentially expressed genes was found to be in common between clinical and preclinical stages and showed a very similar expression pattern in the two phases. A 22-gene signature showed an oscillating pattern of expression, being differentially expressed in the preclinical stage and then going back to control levels in the symptomatic phase. One gene, SEL1L3, was downregulated during the progression of the disease. Most of the studies performed up to date utilized various tissues, which are not suitable for a rapid analysis of infected animals and patients. Our findings suggest the intriguing possibility to take advantage of whole blood RNA transcriptional profiling for the preclinical identification of prion infection. Further, this study highlighted several pathways, such as immune response and metabolism that may play an important role in peripheral prion pathogenesis. Finally, the gene expression changes identified in the present study may be further investigated as a fingerprint for monitoring the progression of disease and for developing targeted therapeutic interventions.
Collapse
Affiliation(s)
- Elena Xerxa
- Scuola Internazionale Superiore di Studi Avanzati (SISSA), Functional and Structural Genomics sector, Trieste, Italy
| | - Maura Barbisin
- Scuola Internazionale Superiore di Studi Avanzati (SISSA), Functional and Structural Genomics sector, Trieste, Italy
| | - Maria Novella Chieppa
- Istituto Zooprofilattico Sperimentale del Piemonte Liguria e Valle d'Aosta, Torino, Italy
| | - Helena Krmac
- Scuola Internazionale Superiore di Studi Avanzati (SISSA), Functional and Structural Genomics sector, Trieste, Italy
| | - Elena Vallino Costassa
- Istituto Zooprofilattico Sperimentale del Piemonte Liguria e Valle d'Aosta, Torino, Italy
| | - Paolo Vatta
- Scuola Internazionale Superiore di Studi Avanzati (SISSA), Functional and Structural Genomics sector, Trieste, Italy
| | - Marion Simmons
- Pathology Department, Animal and Plant Health Agency (Weybridge), New Haw, Addlestone, United Kingdom
| | - Maria Caramelli
- Istituto Zooprofilattico Sperimentale del Piemonte Liguria e Valle d'Aosta, Torino, Italy
| | - Cristina Casalone
- Istituto Zooprofilattico Sperimentale del Piemonte Liguria e Valle d'Aosta, Torino, Italy
| | - Cristiano Corona
- Istituto Zooprofilattico Sperimentale del Piemonte Liguria e Valle d'Aosta, Torino, Italy
| | - Giuseppe Legname
- Scuola Internazionale Superiore di Studi Avanzati (SISSA), Functional and Structural Genomics sector, Trieste, Italy
- * E-mail:
| |
Collapse
|
89
|
Jeong H, Sim HJ, Song EK, Lee H, Ha SC, Jun Y, Park TJ, Lee C. Crystal structure of SEL1L: Insight into the roles of SLR motifs in ERAD pathway. Sci Rep 2016; 6:20261. [PMID: 27064360 PMCID: PMC4746701 DOI: 10.1038/srep20261] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 12/31/2015] [Indexed: 11/09/2022] Open
Abstract
Terminally misfolded proteins are selectively recognized and cleared by the endoplasmic reticulum-associated degradation (ERAD) pathway. SEL1L, a component of the ERAD machinery, plays an important role in selecting and transporting ERAD substrates for degradation. We have determined the crystal structure of the mouse SEL1L central domain comprising five Sel1-Like Repeats (SLR motifs 5 to 9; hereafter called SEL1Lcent). Strikingly, SEL1Lcent forms a homodimer with two-fold symmetry in a head-to-tail manner. Particularly, the SLR motif 9 plays an important role in dimer formation by adopting a domain-swapped structure and providing an extensive dimeric interface. We identified that the full-length SEL1L forms a self-oligomer through the SEL1Lcent domain in mammalian cells. Furthermore, we discovered that the SLR-C, comprising SLR motifs 10 and 11, of SEL1L directly interacts with the N-terminus luminal loops of HRD1. Therefore, we propose that certain SLR motifs of SEL1L play a unique role in membrane bound ERAD machinery.
Collapse
Affiliation(s)
- Hanbin Jeong
- Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Hyo Jung Sim
- Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Eun Kyung Song
- Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Hakbong Lee
- Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Sung Chul Ha
- Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang, Kyungbuk 37673, Korea
| | - Youngsoo Jun
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| | - Tae Joo Park
- Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Changwook Lee
- Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Ulsan 44919, Republic of Korea
| |
Collapse
|
90
|
Sun S, Shi G, Sha H, Ji Y, Han X, Shu X, Ma H, Inoue T, Gao B, Kim H, Bu P, Guber RD, Shen X, Lee AH, Iwawaki T, Paton AW, Paton JC, Fang D, Tsai B, Yates JR, Wu H, Kersten S, Long Q, Duhamel GE, Simpson KW, Qi L. IRE1α is an endogenous substrate of endoplasmic-reticulum-associated degradation. Nat Cell Biol 2015; 17:1546-55. [PMID: 26551274 PMCID: PMC4670240 DOI: 10.1038/ncb3266] [Citation(s) in RCA: 185] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 10/05/2015] [Indexed: 12/13/2022]
Abstract
Endoplasmic reticulum (ER)-associated degradation (ERAD) represents a principle quality control mechanism to clear misfolded proteins in the ER; however its physiological significance and the nature of endogenous ERAD substrates remain largely unexplored. Here we discover that IRE1α, the sensor of unfolded protein response (UPR), is a bona fide substrate of the Sel1L-Hrd1 ERAD complex. ERAD-mediated IRE1α degradation occurs under basal conditions in a BiP-dependent manner, requires both intramembrane hydrophilic residues of IRE1α and lectin protein OS9, and is attenuated by ER stress. ERAD deficiency causes IRE1α protein stabilization, accumulation and mild activation both in vitro and in vivo. Although enterocyte-specific Sel1L-knockout mice (Sel1LΔIEC) are viable and appear normal, they are highly susceptible to experimental colitis and inflammation-associated dysbiosis, in an IRE1α-dependent but CHOP-independent manner. Hence, Sel1L-Hrd1 ERAD serves a distinct, essential function in restraint of IRE1α signaling in vivo by managing its protein turnover.
Collapse
Affiliation(s)
- Shengyi Sun
- Graduate Program in Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, New York 14853, USA
| | - Guojun Shi
- Division of Nutritional Sciences, Cornell University, Ithaca, New York 14853, USA
| | - Haibo Sha
- Division of Nutritional Sciences, Cornell University, Ithaca, New York 14853, USA
| | - Yewei Ji
- Division of Nutritional Sciences, Cornell University, Ithaca, New York 14853, USA
| | - Xuemei Han
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Xin Shu
- Division of Nutritional Sciences, Cornell University, Ithaca, New York 14853, USA
| | - Hongming Ma
- Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, Texas 79905, USA
| | - Takamasa Inoue
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | - Beixue Gao
- Department of Pathology, Northwestern University, Chicago, Illinois 60611, USA
| | - Hana Kim
- Division of Nutritional Sciences, Cornell University, Ithaca, New York 14853, USA
| | - Pengcheng Bu
- Department of Electrical and Computer Engineering, Cornell University, Ithaca, New York 14853, USA.,Department of Biomedical Engineering, Cornell University, Ithaca, New York 14853, USA
| | - Robert D Guber
- Division of Nutritional Sciences, Cornell University, Ithaca, New York 14853, USA
| | - Xiling Shen
- Department of Electrical and Computer Engineering, Cornell University, Ithaca, New York 14853, USA.,Department of Biomedical Engineering, Cornell University, Ithaca, New York 14853, USA.,Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, USA
| | - Ann-Hwee Lee
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York 10021, USA
| | - Takao Iwawaki
- Education and Research Support Center, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Adrienne W Paton
- Research Centre for Infectious Diseases, School of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - James C Paton
- Research Centre for Infectious Diseases, School of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Deyu Fang
- Department of Pathology, Northwestern University, Chicago, Illinois 60611, USA
| | - Billy Tsai
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | - John R Yates
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Haoquan Wu
- Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, Texas 79905, USA
| | - Sander Kersten
- Nutrition Metabolism and Genomics group, Wageningen University, Bomenweg 2, 6703HD Wageningen, The Netherlands
| | - Qiaoming Long
- Laboratory Animal Research Center, Medical College of Soochow University, Suzhou 215006, Jiangsu, China
| | - Gerald E Duhamel
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853, USA
| | - Kenneth W Simpson
- Department of Clinical Science, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853, USA
| | - Ling Qi
- Graduate Program in Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, New York 14853, USA.,Division of Nutritional Sciences, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
91
|
Hosokawa N, Wada I. Association of the SEL1L protein transmembrane domain with HRD1 ubiquitin ligase regulates ERAD-L. FEBS J 2015; 283:157-72. [PMID: 26471130 DOI: 10.1111/febs.13564] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Revised: 09/25/2015] [Accepted: 10/13/2015] [Indexed: 11/28/2022]
Abstract
Misfolded proteins in the endoplasmic reticulum (ER) are transported to the cytoplasm for degradation by the ubiquitin-proteasome system, a process otherwise known as ER-associated degradation (ERAD). Mammalian HRD1, an integral membrane ubiquitin ligase that ubiquitinates ERAD substrates, forms a large assembly in the ER membrane including SEL1L, a single-pass membrane protein, and additional components. The mechanism by which these molecules export misfolded proteins through the ER membrane remains unclear. Unlike Hrd3p, the homologue in Saccharomyces cerevisiae, human SEL1L is an unstable protein, which is restored by the association with HRD1. Here we report that the inherently unstable nature of the human SEL1L protein lies in its transmembrane domain, and that association of HRD1 with the SEL1L transmembrane domain restored its stability. On the other hand, we found that the SEL1L luminal domain escaped degradation, and inhibited the degradation of misfolded α1 -antitrypsin variant null Hong Kong by retaining the misfolded cargo in the ER. Overexpression of HRD1 inhibited the degradation of unfolded secretory cargo, which was restored by the interaction of HRD1 with the SEL1L transmembrane domain. Hence, we propose that SEL1L critically regulates HRD1-mediated disposal of misfolded cargo through its short membrane spanning stretch.
Collapse
Affiliation(s)
- Nobuko Hosokawa
- Department of Molecular and Cellular Biology, Institute for Frontier Medical Sciences, Kyoto University, Japan
| | - Ikuo Wada
- Department of Cell Sciences, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Japan
| |
Collapse
|
92
|
Nakatsukasa K, Okumura F, Kamura T. Proteolytic regulation of metabolic enzymes by E3 ubiquitin ligase complexes: lessons from yeast. Crit Rev Biochem Mol Biol 2015; 50:489-502. [PMID: 26362128 DOI: 10.3109/10409238.2015.1081869] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Eukaryotic organisms use diverse mechanisms to control metabolic rates in response to changes in the internal and/or external environment. Fine metabolic control is a highly responsive, energy-saving process that is mediated by allosteric inhibition/activation and/or reversible modification of preexisting metabolic enzymes. In contrast, coarse metabolic control is a relatively long-term and expensive process that involves modulating the level of metabolic enzymes. Coarse metabolic control can be achieved through the degradation of metabolic enzymes by the ubiquitin-proteasome system (UPS), in which substrates are specifically ubiquitinated by an E3 ubiquitin ligase and targeted for proteasomal degradation. Here, we review select multi-protein E3 ligase complexes that directly regulate metabolic enzymes in Saccharomyces cerevisiae. The first part of the review focuses on the endoplasmic reticulum (ER) membrane-associated Hrd1 and Doa10 E3 ligase complexes. In addition to their primary roles in the ER-associated degradation pathway that eliminates misfolded proteins, recent quantitative proteomic analyses identified native substrates of Hrd1 and Doa10 in the sterol synthesis pathway. The second part focuses on the SCF (Skp1-Cul1-F-box protein) complex, an abundant prototypical multi-protein E3 ligase complex. While the best-known roles of the SCF complex are in the regulation of the cell cycle and transcription, accumulating evidence indicates that the SCF complex also modulates carbon metabolism pathways. The increasing number of metabolic enzymes whose stability is directly regulated by the UPS underscores the importance of the proteolytic regulation of metabolic processes for the acclimation of cells to environmental changes.
Collapse
Affiliation(s)
- Kunio Nakatsukasa
- a Division of Biological Sciences , Graduate School of Science, Nagoya University , Nagoya , Aichi , Japan
| | - Fumihiko Okumura
- a Division of Biological Sciences , Graduate School of Science, Nagoya University , Nagoya , Aichi , Japan
| | - Takumi Kamura
- a Division of Biological Sciences , Graduate School of Science, Nagoya University , Nagoya , Aichi , Japan
| |
Collapse
|
93
|
Ohta M, Takaiwa F. OsHrd3 is necessary for maintaining the quality of endoplasmic reticulum-derived protein bodies in rice endosperm. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:4585-93. [PMID: 25977235 PMCID: PMC4507767 DOI: 10.1093/jxb/erv229] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Large amounts of seed storage proteins (SSPs) are produced in the maturing endosperm of rice seeds. Rice SSPs are synthesized as secretory proteins on the rough endoplasmic reticulum (ER), and are transported and deposited into protein complexes called protein bodies (PB-I and PB-II). Due to the high production of SSPs, unfolded SSPs may be generated during this process. However, it was previously unclear how such unfolded proteins are selected among synthesized products and removed from the ER to maintain protein quality in the endosperm. Since Hrd3/SEL1L recognizes unfolded proteins in yeast and mammalian protein quality control systems, the role of OsHrd3 in protein quality control in rice endosperm was investigated. Co-immunoprecipitation experiments demonstrated that OsHrd3 interacts with components of the Hrd1 ubiquitin ligase complex such as OsOS-9 and OsHrd1 in rice protoplasts. Endosperm-specific suppression of OsHrd3 in transgenic rice reduced the levels of polyubiquitinated proteins and resulted in unfolded protein responses (UPRs) in the endosperm, suggesting that OsHrd3-mediated polyubiquitination plays an important role in ER quality control. It was found that a cysteine-rich 13kDa prolamin, RM1, was polyubiquitinated in wild-type (WT) seeds but not in OsHrd3 knockdown (KD) seeds. RM1 formed aberrant aggregates that were deposited abnormally in OsHrd3 KD seeds, resulting in deformed PB-I. Therefore, the quality of protein bodies is maintained by polyubiquitination of unfolded SSPs through the Hrd1 ubiquitin ligase system in rice endosperm.
Collapse
Affiliation(s)
- Masaru Ohta
- Functional Transgenic Crops Research Unit, Genetically Modified Organism Research Center, National Institute of Agrobiological Sciences, Kannondai 2-1-2, Tsukuba, Ibaraki 305-8602, Japan
| | - Fumio Takaiwa
- Functional Transgenic Crops Research Unit, Genetically Modified Organism Research Center, National Institute of Agrobiological Sciences, Kannondai 2-1-2, Tsukuba, Ibaraki 305-8602, Japan
| |
Collapse
|
94
|
Doroudgar S, Völkers M, Thuerauf DJ, Khan M, Mohsin S, Respress JL, Wang W, Gude N, Müller OJ, Wehrens XHT, Sussman MA, Glembotski CC. Hrd1 and ER-Associated Protein Degradation, ERAD, are Critical Elements of the Adaptive ER Stress Response in Cardiac Myocytes. Circ Res 2015; 117:536-46. [PMID: 26137860 DOI: 10.1161/circresaha.115.306993] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 07/01/2015] [Indexed: 11/16/2022]
Abstract
RATIONALE Hydroxymethyl glutaryl-coenzyme A reductase degradation protein 1 (Hrd1) is an endoplasmic reticulum (ER)-transmembrane E3 ubiquitin ligase that has been studied in yeast, where it contributes to ER protein quality control by ER-associated degradation (ERAD) of misfolded proteins that accumulate during ER stress. Neither Hrd1 nor ERAD has been studied in the heart, or in cardiac myocytes, where protein quality control is critical for proper heart function. OBJECTIVE The objective of this study were to elucidate roles for Hrd1 in ER stress, ERAD, and viability in cultured cardiac myocytes and in the mouse heart, in vivo. METHODS AND RESULTS The effects of small interfering RNA-mediated Hrd1 knockdown were examined in cultured neonatal rat ventricular myocytes. The effects of adeno-associated virus-mediated Hrd1 knockdown and overexpression were examined in the hearts of mice subjected to pressure overload-induced pathological cardiac hypertrophy, which challenges protein-folding capacity. In cardiac myocytes, the ER stressors, thapsigargin and tunicamycin increased ERAD, as well as adaptive ER stress proteins, and minimally affected cell death. However, when Hrd1 was knocked down, thapsigargin and tunicamycin dramatically decreased ERAD, while increasing maladaptive ER stress proteins and cell death. In vivo, Hrd1 knockdown exacerbated cardiac dysfunction and increased apoptosis and cardiac hypertrophy, whereas Hrd1 overexpression preserved cardiac function and decreased apoptosis and attenuated cardiac hypertrophy in the hearts of mice subjected to pressure overload. CONCLUSIONS Hrd1 and ERAD are essential components of the adaptive ER stress response in cardiac myocytes. Hrd1 contributes to preserving heart structure and function in a mouse model of pathological cardiac hypertrophy.
Collapse
Affiliation(s)
- Shirin Doroudgar
- From the San Diego State University Heart Institute and the Department of Biology, San Diego State University, CA (S.D., M.V., D.J.T., M.K., S.M., N.G., M.A.S., C.C.G.); Department of Cardiology, University of Heidelberg, Heidelberg, Germany (M.V.); DZKH (German Centre for Cardiovascular Research) Partner Site Heidelberg/Mannheim, Heidelberg, Germany (M.V.); Department of Internal Medicine III (O.J.M.), University of Heidelberg, Heidelberg, Germany; Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (M.K., S.M.); and Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX (J.L.R., W.W., X.H.T.W.)
| | - Mirko Völkers
- From the San Diego State University Heart Institute and the Department of Biology, San Diego State University, CA (S.D., M.V., D.J.T., M.K., S.M., N.G., M.A.S., C.C.G.); Department of Cardiology, University of Heidelberg, Heidelberg, Germany (M.V.); DZKH (German Centre for Cardiovascular Research) Partner Site Heidelberg/Mannheim, Heidelberg, Germany (M.V.); Department of Internal Medicine III (O.J.M.), University of Heidelberg, Heidelberg, Germany; Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (M.K., S.M.); and Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX (J.L.R., W.W., X.H.T.W.)
| | - Donna J Thuerauf
- From the San Diego State University Heart Institute and the Department of Biology, San Diego State University, CA (S.D., M.V., D.J.T., M.K., S.M., N.G., M.A.S., C.C.G.); Department of Cardiology, University of Heidelberg, Heidelberg, Germany (M.V.); DZKH (German Centre for Cardiovascular Research) Partner Site Heidelberg/Mannheim, Heidelberg, Germany (M.V.); Department of Internal Medicine III (O.J.M.), University of Heidelberg, Heidelberg, Germany; Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (M.K., S.M.); and Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX (J.L.R., W.W., X.H.T.W.)
| | - Mohsin Khan
- From the San Diego State University Heart Institute and the Department of Biology, San Diego State University, CA (S.D., M.V., D.J.T., M.K., S.M., N.G., M.A.S., C.C.G.); Department of Cardiology, University of Heidelberg, Heidelberg, Germany (M.V.); DZKH (German Centre for Cardiovascular Research) Partner Site Heidelberg/Mannheim, Heidelberg, Germany (M.V.); Department of Internal Medicine III (O.J.M.), University of Heidelberg, Heidelberg, Germany; Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (M.K., S.M.); and Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX (J.L.R., W.W., X.H.T.W.)
| | - Sadia Mohsin
- From the San Diego State University Heart Institute and the Department of Biology, San Diego State University, CA (S.D., M.V., D.J.T., M.K., S.M., N.G., M.A.S., C.C.G.); Department of Cardiology, University of Heidelberg, Heidelberg, Germany (M.V.); DZKH (German Centre for Cardiovascular Research) Partner Site Heidelberg/Mannheim, Heidelberg, Germany (M.V.); Department of Internal Medicine III (O.J.M.), University of Heidelberg, Heidelberg, Germany; Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (M.K., S.M.); and Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX (J.L.R., W.W., X.H.T.W.)
| | - Jonathan L Respress
- From the San Diego State University Heart Institute and the Department of Biology, San Diego State University, CA (S.D., M.V., D.J.T., M.K., S.M., N.G., M.A.S., C.C.G.); Department of Cardiology, University of Heidelberg, Heidelberg, Germany (M.V.); DZKH (German Centre for Cardiovascular Research) Partner Site Heidelberg/Mannheim, Heidelberg, Germany (M.V.); Department of Internal Medicine III (O.J.M.), University of Heidelberg, Heidelberg, Germany; Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (M.K., S.M.); and Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX (J.L.R., W.W., X.H.T.W.)
| | - Wei Wang
- From the San Diego State University Heart Institute and the Department of Biology, San Diego State University, CA (S.D., M.V., D.J.T., M.K., S.M., N.G., M.A.S., C.C.G.); Department of Cardiology, University of Heidelberg, Heidelberg, Germany (M.V.); DZKH (German Centre for Cardiovascular Research) Partner Site Heidelberg/Mannheim, Heidelberg, Germany (M.V.); Department of Internal Medicine III (O.J.M.), University of Heidelberg, Heidelberg, Germany; Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (M.K., S.M.); and Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX (J.L.R., W.W., X.H.T.W.)
| | - Natalie Gude
- From the San Diego State University Heart Institute and the Department of Biology, San Diego State University, CA (S.D., M.V., D.J.T., M.K., S.M., N.G., M.A.S., C.C.G.); Department of Cardiology, University of Heidelberg, Heidelberg, Germany (M.V.); DZKH (German Centre for Cardiovascular Research) Partner Site Heidelberg/Mannheim, Heidelberg, Germany (M.V.); Department of Internal Medicine III (O.J.M.), University of Heidelberg, Heidelberg, Germany; Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (M.K., S.M.); and Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX (J.L.R., W.W., X.H.T.W.)
| | - Oliver J Müller
- From the San Diego State University Heart Institute and the Department of Biology, San Diego State University, CA (S.D., M.V., D.J.T., M.K., S.M., N.G., M.A.S., C.C.G.); Department of Cardiology, University of Heidelberg, Heidelberg, Germany (M.V.); DZKH (German Centre for Cardiovascular Research) Partner Site Heidelberg/Mannheim, Heidelberg, Germany (M.V.); Department of Internal Medicine III (O.J.M.), University of Heidelberg, Heidelberg, Germany; Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (M.K., S.M.); and Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX (J.L.R., W.W., X.H.T.W.)
| | - Xander H T Wehrens
- From the San Diego State University Heart Institute and the Department of Biology, San Diego State University, CA (S.D., M.V., D.J.T., M.K., S.M., N.G., M.A.S., C.C.G.); Department of Cardiology, University of Heidelberg, Heidelberg, Germany (M.V.); DZKH (German Centre for Cardiovascular Research) Partner Site Heidelberg/Mannheim, Heidelberg, Germany (M.V.); Department of Internal Medicine III (O.J.M.), University of Heidelberg, Heidelberg, Germany; Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (M.K., S.M.); and Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX (J.L.R., W.W., X.H.T.W.)
| | - Mark A Sussman
- From the San Diego State University Heart Institute and the Department of Biology, San Diego State University, CA (S.D., M.V., D.J.T., M.K., S.M., N.G., M.A.S., C.C.G.); Department of Cardiology, University of Heidelberg, Heidelberg, Germany (M.V.); DZKH (German Centre for Cardiovascular Research) Partner Site Heidelberg/Mannheim, Heidelberg, Germany (M.V.); Department of Internal Medicine III (O.J.M.), University of Heidelberg, Heidelberg, Germany; Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (M.K., S.M.); and Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX (J.L.R., W.W., X.H.T.W.)
| | - Christopher C Glembotski
- From the San Diego State University Heart Institute and the Department of Biology, San Diego State University, CA (S.D., M.V., D.J.T., M.K., S.M., N.G., M.A.S., C.C.G.); Department of Cardiology, University of Heidelberg, Heidelberg, Germany (M.V.); DZKH (German Centre for Cardiovascular Research) Partner Site Heidelberg/Mannheim, Heidelberg, Germany (M.V.); Department of Internal Medicine III (O.J.M.), University of Heidelberg, Heidelberg, Germany; Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (M.K., S.M.); and Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX (J.L.R., W.W., X.H.T.W.).
| |
Collapse
|
95
|
The Ubiquitin Ligase SCF(Ucc1) Acts as a Metabolic Switch for the Glyoxylate Cycle. Mol Cell 2015; 59:22-34. [PMID: 25982115 DOI: 10.1016/j.molcel.2015.04.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 03/03/2015] [Accepted: 04/07/2015] [Indexed: 01/14/2023]
Abstract
Despite the crucial role played by the glyoxylate cycle in the virulence of pathogens, seed germination in plants, and sexual development in fungi, we still have much to learn about its regulation. Here, we show that a previously uncharacterized SCF(Ucc1) ubiquitin ligase mediates proteasomal degradation of citrate synthase in the glyoxylate cycle to maintain metabolic homeostasis in glucose-grown cells. Conversely, transcription of the F box subunit Ucc1 is downregulated in C2-compound-grown cells, which require increased metabolic flux for gluconeogenesis. Moreover, in vitro analysis demonstrates that oxaloacetate regenerated through the glyoxylate cycle induces a conformational change in citrate synthase and inhibits its recognition and ubiquitination by SCF(Ucc1), suggesting the existence of an oxaloacetate-dependent positive feedback loop that stabilizes citrate synthase. We propose that SCF(Ucc1)-mediated regulation of citrate synthase acts as a metabolic switch for the glyoxylate cycle in response to changes in carbon source, thereby ensuring metabolic versatility and flexibility.
Collapse
|
96
|
Kim H, Bhattacharya A, Qi L. Endoplasmic reticulum quality control in cancer: Friend or foe. Semin Cancer Biol 2015; 33:25-33. [PMID: 25794824 DOI: 10.1016/j.semcancer.2015.02.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Accepted: 02/25/2015] [Indexed: 12/22/2022]
Abstract
Quality control systems in the endoplasmic reticulum (ER) mediated by unfolded protein response (UPR) and endoplasmic reticulum associated degradation (ERAD) ensure cellular function and organismal survival. Recent studies have suggested that ER quality-control systems in cancer cells may serve as a double-edged sword that aids progression as well as prevention of tumor growth in a context-dependent manner. Here we review recent advances in our understanding of the complex relationship between ER proteostasis and cancer pathology, with a focus on the two most conserved ER quality-control mechanisms--the IRE1α-XBP1 pathway of the UPR and SEL1L-HRD1 complex of the ERAD.
Collapse
Affiliation(s)
- Hana Kim
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, United States
| | - Asmita Bhattacharya
- Graduate Program in Genetics Genomics and Development, Cornell University, Ithaca, NY 14853, United States
| | - Ling Qi
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, United States; Graduate Program in Genetics Genomics and Development, Cornell University, Ithaca, NY 14853, United States.
| |
Collapse
|
97
|
Mehnert M, Sommermeyer F, Berger M, Kumar Lakshmipathy S, Gauss R, Aebi M, Jarosch E, Sommer T. The interplay of Hrd3 and the molecular chaperone system ensures efficient degradation of malfolded secretory proteins. Mol Biol Cell 2014; 26:185-94. [PMID: 25428985 PMCID: PMC4294667 DOI: 10.1091/mbc.e14-07-1202] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
A central ubiquitin ligase involved in endoplasmic reticulum (ER)–associated protein degradation is the HRD-ligase. The ER-luminal subunit Hrd3 cooperates with the cochaperone Scj1 in clearing misfolded proteins from the ER. Misfolded proteins of the secretory pathway are extracted from the endoplasmic reticulum (ER), polyubiquitylated by a protein complex termed the Hmg-CoA reductase degradation ligase (HRD-ligase), and degraded by cytosolic 26S proteasomes. This process is termed ER-associated protein degradation (ERAD). We previously showed that the membrane protein Der1, which is a subunit of the HRD-ligase, is involved in the export of aberrant polypeptides from the ER. Unexpectedly, we also uncovered a close spatial proximity of Der1 and the substrate receptor Hrd3 in the ER lumen. We report here on a mutant Hrd3KR that is selectively defective for ERAD of soluble proteins. Hrd3KR displays subtle structural changes that affect its positioning toward Der1. Furthermore, increased quantities of the ER-resident Hsp70-type chaperone Kar2 and the Hsp40-type cochaperone Scj1 bind to Hrd3KR. Of note, deletion of SCJ1 impairs ERAD of model substrates and causes the accumulation of client proteins at Hrd3. Our data imply a function of Scj1 in the removal of malfolded proteins from the receptor Hrd3, which facilitates their delivery to downstream-acting components like Der1.
Collapse
Affiliation(s)
- Martin Mehnert
- Max-Delbrück-Center for Molecular Medicine, 13125 Berlin, Germany
| | | | - Maren Berger
- Max-Delbrück-Center for Molecular Medicine, 13125 Berlin, Germany
| | | | - Robert Gauss
- Institute of Microbiology, Department of Biology, Swiss Federal Institute of Technology Zurich, 8093 Zurich, Switzerland
| | - Markus Aebi
- Institute of Microbiology, Department of Biology, Swiss Federal Institute of Technology Zurich, 8093 Zurich, Switzerland
| | - Ernst Jarosch
- Max-Delbrück-Center for Molecular Medicine, 13125 Berlin, Germany
| | - Thomas Sommer
- Max-Delbrück-Center for Molecular Medicine, 13125 Berlin, Germany Institute of Biology, Humboldt Universität zu Berlin, 10115 Berlin, Germany
| |
Collapse
|
98
|
Key steps in ERAD of luminal ER proteins reconstituted with purified components. Cell 2014; 158:1375-1388. [PMID: 25215493 PMCID: PMC4163015 DOI: 10.1016/j.cell.2014.07.050] [Citation(s) in RCA: 160] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 06/06/2014] [Accepted: 07/02/2014] [Indexed: 11/20/2022]
Abstract
Misfolded proteins of the endoplasmic reticulum (ER) are retrotranslocated into the cytosol, polyubiquitinated, and degraded by the proteasome, a process called ER-associated protein degradation (ERAD). Here, we use purified components from Saccharomyces cerevisiae to analyze the mechanism of retrotranslocation of luminal substrates (ERAD-L), recapitulating key steps in a basic process in which the ubiquitin ligase Hrd1p is the only required membrane protein. We show that Hrd1p interacts with substrate through its membrane-spanning domain and discriminates misfolded from folded polypeptides. Both Hrd1p and substrate are polyubiquitinated, resulting in the binding of Cdc48p ATPase complex. Subsequently, ATP hydrolysis by Cdc48p releases substrate from Hrd1p. Finally, ubiquitin chains are trimmed by the deubiquitinating enzyme Otu1p, which is recruited and activated by the Cdc48p complex. Cdc48p-dependent membrane extraction of polyubiquitinated proteins can be reproduced with reconstituted proteoliposomes. Our results suggest a model for retrotranslocation in which Hrd1p forms a membrane conduit for misfolded proteins.
Collapse
|
99
|
Zattas D, Hochstrasser M. Ubiquitin-dependent protein degradation at the yeast endoplasmic reticulum and nuclear envelope. Crit Rev Biochem Mol Biol 2014; 50:1-17. [PMID: 25231236 DOI: 10.3109/10409238.2014.959889] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The endoplasmic reticulum (ER) is the primary organelle in eukaryotic cells where membrane and secreted proteins are inserted into or across cell membranes. Its membrane bilayer and luminal compartments provide a favorable environment for the folding and assembly of thousands of newly synthesized proteins. However, protein folding is intrinsically error-prone, and various stress conditions can further increase levels of protein misfolding and damage, particularly in the ER, which can lead to cellular dysfunction and disease. The ubiquitin-proteasome system (UPS) is responsible for the selective destruction of a vast array of protein substrates, either for protein quality control or to allow rapid changes in the levels of specific regulatory proteins. In this review, we will focus on the components and mechanisms of ER-associated protein degradation (ERAD), an important branch of the UPS. ER membranes extend from subcortical regions of the cell to the nuclear envelope, with its continuous outer and inner membranes; the nuclear envelope is a specialized subdomain of the ER. ERAD presents additional challenges to the UPS beyond those faced with soluble substrates of the cytoplasm and nucleus. These include recognition of sugar modifications that occur in the ER, retrotranslocation of proteins across the membrane bilayer, and transfer of substrates from the ER extraction machinery to the proteasome. Here, we review characteristics of ERAD substrate degradation signals (degrons), mechanisms underlying substrate recognition and processing by the ERAD machinery, and ideas on the still unresolved problem of how substrate proteins are moved across and extracted from the ER membrane.
Collapse
Affiliation(s)
- Dimitrios Zattas
- Department of Molecular Biophysics & Biochemistry, Yale University , New Haven, CT , USA
| | | |
Collapse
|
100
|
Sha H, Sun S, Francisco AB, Ehrhardt N, Xue Z, Liu L, Lawrence P, Mattijssen F, Guber RD, Panhwar MS, Brenna JT, Shi H, Xue B, Kersten S, Bensadoun A, Péterfy M, Long Q, Qi L. The ER-associated degradation adaptor protein Sel1L regulates LPL secretion and lipid metabolism. Cell Metab 2014; 20:458-70. [PMID: 25066055 PMCID: PMC4156539 DOI: 10.1016/j.cmet.2014.06.015] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Revised: 03/17/2014] [Accepted: 06/06/2014] [Indexed: 10/25/2022]
Abstract
Sel1L is an essential adaptor protein for the E3 ligase Hrd1 in the endoplasmic reticulum (ER)-associated degradation (ERAD), a universal quality-control system in the cell; but its physiological role remains unclear. Here we show that mice with adipocyte-specific Sel1L deficiency are resistant to diet-induced obesity and exhibit postprandial hypertriglyceridemia. Further analyses reveal that Sel1L is indispensable for the secretion of lipoprotein lipase (LPL), independent of its role in Hrd1-mediated ERAD and ER homeostasis. Sel1L physically interacts with and stabilizes the LPL maturation complex consisting of LPL and lipase maturation factor 1 (LMF1). In the absence of Sel1L, LPL is retained in the ER and forms protein aggregates, which are degraded primarily by autophagy. The Sel1L-mediated control of LPL secretion is also seen in other LPL-expressing cell types including cardiac myocytes and macrophages. Thus, our study reports a role of Sel1L in LPL secretion and systemic lipid metabolism.
Collapse
Affiliation(s)
- Haibo Sha
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Shengyi Sun
- Graduate Program in Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, NY 14853, USA
| | - Adam B Francisco
- Department of Animal Science, Cornell University, Ithaca, NY 14853, USA
| | - Nicole Ehrhardt
- Department of Biomedical Sciences, Medical Genetics Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Zhen Xue
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Lei Liu
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Peter Lawrence
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Frits Mattijssen
- Nutrition Metabolism and Genomics Group, Wageningen University, Wageningen 6703HD, the Netherlands
| | - Robert D Guber
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Muhammad S Panhwar
- Weill Cornell Medical College in Qatar, P.O. Box 24144, Education City, Doha, Qatar
| | - J Thomas Brenna
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Hang Shi
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Bingzhong Xue
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Sander Kersten
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA; Nutrition Metabolism and Genomics Group, Wageningen University, Wageningen 6703HD, the Netherlands
| | - André Bensadoun
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Miklós Péterfy
- Department of Biomedical Sciences, Medical Genetics Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Qiaoming Long
- Laboratory Animal Research Center, Medical College of Soochow University, Suzhou, Jiangsu 215006, China
| | - Ling Qi
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA; Graduate Program in Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|