51
|
Wohlgemuth S, Ramirez-Lee Y, Tao S, Monteiro A, Ahmed B, Dahl G. Short communication: Effect of heat stress on markers of autophagy in the mammary gland during the dry period. J Dairy Sci 2016; 99:4875-4880. [DOI: 10.3168/jds.2015-10649] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 02/16/2016] [Indexed: 01/17/2023]
|
52
|
Tasset I, Cuervo AM. Role of chaperone-mediated autophagy in metabolism. FEBS J 2016; 283:2403-13. [PMID: 26854402 DOI: 10.1111/febs.13677] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Revised: 01/27/2016] [Accepted: 02/04/2016] [Indexed: 12/20/2022]
Abstract
Different types of autophagy coexist in most mammalian cells, and each of them fulfills very specific tasks in intracellular degradation. Some of these autophagic pathways contribute to cellular metabolism by directly hydrolyzing intracellular lipid stores and glycogen. Chaperone-mediated autophagy (CMA), in contrast, is a selective form of autophagy that can only target proteins for lysosomal degradation. Consequently, it was expected that the only possible contribution of this pathway to cellular metabolism would be by providing free amino acids resulting from protein breakdown. However, recent studies have demonstrated that disturbance in CMA leads to important alterations in glucose and lipid metabolism and in overall organism energetics. Here, we describe the unique mechanisms by which CMA contributes to the regulation of cellular metabolism and discuss the possible implications of these previously unknown functions of CMA for the pathogenesis of common metabolic diseases.
Collapse
Affiliation(s)
- Inmaculada Tasset
- Department of Developmental and Molecular Biology, Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Ana Maria Cuervo
- Department of Developmental and Molecular Biology, Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
53
|
Wen X, Klionsky DJ. An overview of macroautophagy in yeast. J Mol Biol 2016; 428:1681-99. [PMID: 26908221 DOI: 10.1016/j.jmb.2016.02.021] [Citation(s) in RCA: 185] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 02/15/2016] [Accepted: 02/16/2016] [Indexed: 12/19/2022]
Abstract
Macroautophagy is an evolutionarily conserved dynamic pathway that functions primarily in a degradative manner. A basal level of macroautophagy occurs constitutively, but this process can be further induced in response to various types of stress including starvation, hypoxia and hormonal stimuli. The general principle behind macroautophagy is that cytoplasmic contents can be sequestered within a transient double-membrane organelle, an autophagosome, which subsequently fuses with a lysosome or vacuole (in mammals, or yeast and plants, respectively), allowing for degradation of the cargo followed by recycling of the resulting macromolecules. Through this basic mechanism, macroautophagy has a critical role in cellular homeostasis; however, either insufficient or excessive macroautophagy can seriously compromise cell physiology, and thus, it needs to be properly regulated. In fact, a wide range of diseases are associated with dysregulation of macroautophagy. There has been substantial progress in understanding the regulation and molecular mechanisms of macroautophagy in different organisms; however, many questions concerning some of the most fundamental aspects of macroautophagy remain unresolved. In this review, we summarize current knowledge about macroautophagy mainly in yeast, including the mechanism of autophagosome biogenesis, the function of the core macroautophagic machinery, the regulation of macroautophagy and the process of cargo recognition in selective macroautophagy, with the goal of providing insights into some of the key unanswered questions in this field.
Collapse
Affiliation(s)
- Xin Wen
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Daniel J Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
54
|
Rao Y, Matscheko N, Wollert T. Autophagy in the test tube: In vitro reconstitution of aspects of autophagosome biogenesis. FEBS J 2016; 283:2034-43. [PMID: 26797728 DOI: 10.1111/febs.13661] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 12/30/2015] [Accepted: 01/14/2016] [Indexed: 01/02/2023]
Abstract
Autophagy is a versatile recycling pathway that delivers cytoplasmic contents to lysosomal compartments for degradation. It involves the formation of a cup-shaped membrane that expands to capture cargo. After the cargo has been entirely enclosed, the membrane is sealed to generate a double-membrane-enclosed compartment, termed the autophagosome. Depending on the physiological state of the cell, the cargo is selected either specifically or non-specifically. The process involves a highly conserved set of autophagy-related proteins. Reconstitution of their action on model membranes in vitro has contributed tremendously to our understanding of autophagosome biogenesis. This review will focus on various in vitro techniques that have been employed to decipher the function of the autophagic core machinery.
Collapse
Affiliation(s)
- Yijian Rao
- Molecular Membrane and Organelle Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Nena Matscheko
- Molecular Membrane and Organelle Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Thomas Wollert
- Molecular Membrane and Organelle Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| |
Collapse
|
55
|
Teixeira V, Medeiros TC, Vilaça R, Ferreira J, Moradas-Ferreira P, Costa V. Ceramide signaling targets the PP2A-like protein phosphatase Sit4p to impair vacuolar function, vesicular trafficking and autophagy in Isc1p deficient cells. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1861:21-33. [PMID: 26477382 DOI: 10.1016/j.bbalip.2015.10.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 09/09/2015] [Accepted: 10/14/2015] [Indexed: 02/02/2023]
Abstract
The vacuoles play important roles in cellular homeostasis and their functions include the digestion of cytoplasmic material and organelles derived from autophagy. Conserved nutrient signaling pathways regulate vacuolar function and autophagy, ensuring normal cell and organismal development and aging. Recent evidence implicates sphingolipids in the modulation of these processes, but the impact of ceramide signaling on vacuolar dynamics and autophagy remains largely unknown. Here, we show that yeast cells lacking Isc1p, an orthologue of mammalian neutral sphingomyelinase type 2, exhibit vacuolar fragmentation and dysfunctions, namely decreased Pep4p-mediated proteolysis and V-ATPase activity, which impairs vacuolar acidification. Moreover, these phenotypes are suppressed by downregulation of the ceramide-activated protein phosphatase Sit4p. The isc1Δ cells also exhibit defective Cvt and vesicular trafficking in a Sit4p-dependent manner, ultimately contributing to a reduced autophagic flux. Importantly, these phenotypes are also suppressed by downregulation of the nutrient signaling kinase TORC1, which is known to inhibit Sit4p and autophagy, or Sch9p. These results support a model in which Sit4p functions downstream of Isc1p in a TORC1-independent, ceramide-dependent signaling branch that impairs vacuolar function and vesicular trafficking, leading to autophagic defects in yeast.
Collapse
Affiliation(s)
- Vitor Teixeira
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen s/n, 4200-135 Porto, Portugal; IBMC, Instituto de Biologia Molecular e Celular, Rua do Campo Alegre, 823, 4150-180 Porto, Portugal; ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Departamento de Biologia Molecular, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Tânia C Medeiros
- IBMC, Instituto de Biologia Molecular e Celular, Rua do Campo Alegre, 823, 4150-180 Porto, Portugal
| | - Rita Vilaça
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen s/n, 4200-135 Porto, Portugal; IBMC, Instituto de Biologia Molecular e Celular, Rua do Campo Alegre, 823, 4150-180 Porto, Portugal
| | - João Ferreira
- IBMC, Instituto de Biologia Molecular e Celular, Rua do Campo Alegre, 823, 4150-180 Porto, Portugal
| | - Pedro Moradas-Ferreira
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen s/n, 4200-135 Porto, Portugal; IBMC, Instituto de Biologia Molecular e Celular, Rua do Campo Alegre, 823, 4150-180 Porto, Portugal; ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Departamento de Biologia Molecular, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Vítor Costa
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen s/n, 4200-135 Porto, Portugal; IBMC, Instituto de Biologia Molecular e Celular, Rua do Campo Alegre, 823, 4150-180 Porto, Portugal; ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Departamento de Biologia Molecular, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| |
Collapse
|
56
|
Huang YC, Yu HS, Chai CY. Roles of oxidative stress and the ERK1/2, PTEN and p70S6K signaling pathways in arsenite-induced autophagy. Toxicol Lett 2015; 239:172-81. [PMID: 26432159 DOI: 10.1016/j.toxlet.2015.09.022] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 09/25/2015] [Accepted: 09/27/2015] [Indexed: 12/19/2022]
Abstract
Studies show that arsenite induces oxidative stress and modifies cellular function via phosphorylation of proteins and inhibition of DNA repair enzymes. Autophagy, which has multiple physiological and pathological roles in cellular function, is initiated by oxidative stress and is regulated by the signaling pathways of phosphatidylinositol 3-phosphate kinase (PI3K)/mammalian target of rapamycin (mTOR)/p70S6 kinase (p70S6K) and extracellular signaling-regulated protein kinase 1/2 (ERK1/2) that play important roles in oncogenesis. However, the effects of arsenite-induced oxidative stress on autophagy and on expression of related proteins are not fully understood. This study found that cells treated with sodium arsenite had reduced 8-oxoguanine DNA glycosylase 1 (OGG1) and increased 8-hydroxy-2'-deoxyguanosine (8-OHdG) and activating transcription factor (ATF) 3 in SV-40 immortalized human uroepithelial (SV-HUC-1) cells. Arsenite also increased the number of autophagosomes and increased levels of the autophagy markers Beclin-1 and microtubule-associated protein 1 light chain 3B. Reactive oxygen species scavenger decreased arsenite-induced autophagy in SV-HUC-1 cells. Our previous work showed that arsenite induced phosphorylation of the ERK1/2 signaling pathway. The current study further showed that arsenite decreased phosphatase and tensin homologue (PTEN) levels and increased phospho-p70S6 kinase (p-p70S6K) in SV-HUC-1 cells. However, both kinase inhibitor U0126 and the DNA (cytosine-5-)-methyltransferase 1 (DNMT1) inhibitor 5-aza-deoxycytidine abolished the effect of arsenite on expressions of PTEN and p-p70S6K. These results show that autophagy induced by arsenite exposure is mediated by oxidative stress, which regulates activation of the PTEN, p70S6K and ERK1/2 signaling pathways. Thus, this study clarifies the role of autophagy in arsenite-induced urothelial carcinogenesis.
Collapse
Affiliation(s)
- Ya-Chun Huang
- Department of Pathology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hsin-Su Yu
- Department of Dermatology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Dermatology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chee-Yin Chai
- Department of Pathology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan.
| |
Collapse
|
57
|
Vilimanovich U, Bosnjak M, Bogdanovic A, Markovic I, Isakovic A, Kravic-Stevovic T, Mircic A, Trajkovic V, Bumbasirevic V. Statin-mediated inhibition of cholesterol synthesis induces cytoprotective autophagy in human leukemic cells. Eur J Pharmacol 2015; 765:415-28. [PMID: 26358205 DOI: 10.1016/j.ejphar.2015.09.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 09/02/2015] [Accepted: 09/02/2015] [Indexed: 12/11/2022]
Abstract
Statins exhibit anti-leukemic properties due to suppression of the mevalonate pathway by the inhibition of 3-hydroxy-3-methylglutaryl coenzyme A reductase, and subsequent depletion of cholesterol, farnesylpyrophosphate, and geranylgeranylpyrophosphate. We investigated the role of autophagy, a controlled intracellular self-digestion, in the anti-leukemic action of statins. Treatment with low concentrations (≤6 µM) of statins, cholesterol depletion, and specific inhibition of cholesterol synthesis and protein farnesylation or geranylgeranylation, all inhibited proliferation of leukemic cell lines and primary leukemic cells without inducing overt cell death. Statins and agents that selectively reduce intracellular cholesterol levels, but not the inhibition of protein farnesylation or geranylgeranylation, induced autophagy in leukemic cells. The observed autophagic response was associated with the reduction of phosphorylated Akt levels in the lipid rafts, accompanied by a decrease in the activation of the main autophagy suppressor mammalian target of rapamycin (mTOR) and its substrate ribosomal p70S6 kinase (p70S6K). No significant autophagy induction and downregulation of mTOR/p70S6K activation were observed in normal leukocytes. Autophagy suppression by bafilomycin A1 or RNA interference-mediated knockdown of beclin-1 and microtubule-associated protein 1 light chain 3B induced apoptotic death in statin-treated leukemic cells, an effect attenuated by the addition of mevalonate or squalene, but not farnesylpyrophosphate or geranylgeranylpyrophosphate. Therefore, while the inhibition of cholesterol synthesis, protein farnesylation, and geranylgeranylation all contributed to anti-leukemic effects of statins, the inhibition of cholesterol synthesis was solely responsible for the induction of cytoprotective autophagy. These data indicate that combined treatment with statins and autophagy inhibitors might be potentially useful in anti-leukemic therapy.
Collapse
Affiliation(s)
- Urosh Vilimanovich
- Institute of Histology and Embryology, School of Medicine, University of Belgrade, Visegradska 26, 11000 Belgrade, Serbia
| | - Mihajlo Bosnjak
- Institute of Histology and Embryology, School of Medicine, University of Belgrade, Visegradska 26, 11000 Belgrade, Serbia
| | - Andrija Bogdanovic
- Clinic of Hematology, Clinical Centre of Serbia, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Ivanka Markovic
- Institute of Medical and Clinical Biochemistry, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Aleksandra Isakovic
- Institute of Medical and Clinical Biochemistry, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Tamara Kravic-Stevovic
- Institute of Histology and Embryology, School of Medicine, University of Belgrade, Visegradska 26, 11000 Belgrade, Serbia
| | - Aleksandar Mircic
- Institute of Histology and Embryology, School of Medicine, University of Belgrade, Visegradska 26, 11000 Belgrade, Serbia
| | - Vladimir Trajkovic
- Institute of Microbiology and Immunology, School of Medicine, University of Belgrade, Dr. Subotica 1, 11000 Belgrade, Serbia.
| | - Vladimir Bumbasirevic
- Institute of Histology and Embryology, School of Medicine, University of Belgrade, Visegradska 26, 11000 Belgrade, Serbia.
| |
Collapse
|
58
|
Tsabar M, Eapen VV, Mason JM, Memisoglu G, Waterman DP, Long MJ, Bishop DK, Haber JE. Caffeine impairs resection during DNA break repair by reducing the levels of nucleases Sae2 and Dna2. Nucleic Acids Res 2015; 43:6889-901. [PMID: 26019182 PMCID: PMC4538808 DOI: 10.1093/nar/gkv520] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 05/07/2015] [Indexed: 11/13/2022] Open
Abstract
In response to chromosomal double-strand breaks (DSBs), eukaryotic cells activate the DNA damage checkpoint, which is orchestrated by the PI3 kinase-like protein kinases ATR and ATM (Mec1 and Tel1 in budding yeast). Following DSB formation, Mec1 and Tel1 phosphorylate histone H2A on serine 129 (known as γ-H2AX). We used caffeine to inhibit the checkpoint kinases after DSB induction. We show that prolonged phosphorylation of H2A-S129 does not require continuous Mec1 and Tel1 activity. Unexpectedly, caffeine treatment impaired homologous recombination by inhibiting 5' to 3' end resection, independent of Mec1 and Tel1 inhibition. Caffeine treatment led to the rapid loss, by proteasomal degradation, of both Sae2, a nuclease that plays a role in early steps of resection, and Dna2, a nuclease that facilitates one of two extensive resection pathways. Sae2's instability is evident in the absence of DNA damage. A similar loss is seen when protein synthesis is inhibited by cycloheximide. Caffeine treatment had similar effects on irradiated HeLa cells, blocking the formation of RPA and Rad51 foci that depend on 5' to 3' resection of broken chromosome ends. Our findings provide insight toward the use of caffeine as a DNA damage-sensitizing agent in cancer cells.
Collapse
Affiliation(s)
- Michael Tsabar
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02454, USA
| | - Vinay V Eapen
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02454, USA
| | - Jennifer M Mason
- Department of Radiation and Cellular Oncology and Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | - Gonen Memisoglu
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02454, USA
| | - David P Waterman
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02454, USA
| | - Marcus J Long
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02454, USA
| | - Douglas K Bishop
- Department of Radiation and Cellular Oncology and Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | - James E Haber
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02454, USA
| |
Collapse
|
59
|
Therapeutic antitumor efficacy of B cells loaded with tumor-derived autophagasomes vaccine (DRibbles). J Immunother 2015; 37:383-93. [PMID: 25198526 PMCID: PMC4166015 DOI: 10.1097/cji.0000000000000051] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Supplemental Digital Content is available in the text. Tumor-derived autophagosomes (DRibble) selectively capture tumor-specific antigens and induce a dramatic T-cell activation and expansion when injected into lymph nodes of naive mice. Both dendritic and B cells can efficiently cross-prime antigen-specific T cells. In this report, we demonstrated that a booster vaccination with naive B cells loaded with DRibbles eradicated E.G7-OVA tumors in mice that were previously treated with adoptive transfer naive OT-I T cells and intranodal immunization with DRibbles derived from E.G7 tumors. The antitumor efficacy was accompanied by a heighten number of tumor-specific interferon-γ-producing T cells and antibodies. However, the same treatment in the absence of adoptive T-cell transfer exhibited a limited efficacy. In contrast, when DRibble-loaded B cells were activated with CpG and anti-CD40 antibody before use as booster vaccines, established E.G7 tumors were completely eradicated in the absence of T-cell transfer. Therefore, our results document that B cells could efficiently cross-present tumor-specific antigens captured by DRibbles and suggest that naive B cells can be deployed as an effective and readily accessible source of antigen-presenting cells for cancer immunotherapy clinical trials.
Collapse
|
60
|
Müller AJ, Proikas-Cezanne T. Function of human WIPI proteins in autophagosomal rejuvenation of endomembranes? FEBS Lett 2015; 589:1546-51. [PMID: 25980605 DOI: 10.1016/j.febslet.2015.05.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 04/30/2015] [Accepted: 05/05/2015] [Indexed: 12/28/2022]
Abstract
Despite the availability of a large pool of experimental approaches and hypothetical considerations, the hunt for the enigmatic membrane origin of autophagosomes is still on. In mammalian cells proposed scenarios for the formation of the autophagosomal membrane include both de novo assembly, and rearrangements plus maturation of pre-existing membrane sections from the endoplasmic reticulum (ER), plasma membrane, Golgi or mitochondria. Earlier, we identified the human WD-repeat protein interacting with phosphoinositides (WIPI) family and showed that WIPI proteins function as essential phosphatidylinositol 3-phosphate (PtdIns3P) effectors at the nascent autophagosome. Interestingly, WIPI proteins localize to both pre-existing endomembranes and nascent autophagosomes. In this context, and on the basis of historical records on the formation of autophagosomes, we discuss with appropriate modesty an alternative perspective on the membrane origin of autophagosomes.
Collapse
Affiliation(s)
- Amelie Johanna Müller
- Autophagy Laboratory, Department of Molecular Biology, Interfaculty Institute of Cell Biology, Eberhard Karls University Tuebingen, Auf der Morgenstelle 15, 72076 Tuebingen, Germany
| | - Tassula Proikas-Cezanne
- Autophagy Laboratory, Department of Molecular Biology, Interfaculty Institute of Cell Biology, Eberhard Karls University Tuebingen, Auf der Morgenstelle 15, 72076 Tuebingen, Germany.
| |
Collapse
|
61
|
Müller M, Schmidt O, Angelova M, Faserl K, Weys S, Kremser L, Pfaffenwimmer T, Dalik T, Kraft C, Trajanoski Z, Lindner H, Teis D. The coordinated action of the MVB pathway and autophagy ensures cell survival during starvation. eLife 2015; 4:e07736. [PMID: 25902403 PMCID: PMC4424281 DOI: 10.7554/elife.07736] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 04/19/2015] [Indexed: 01/19/2023] Open
Abstract
The degradation and recycling of cellular components is essential for cell growth and survival. Here we show how selective and non-selective lysosomal protein degradation pathways cooperate to ensure cell survival upon nutrient limitation. A quantitative analysis of starvation-induced proteome remodeling in yeast reveals comprehensive changes already in the first three hours. In this period, many different integral plasma membrane proteins undergo endocytosis and degradation in vacuoles via the multivesicular body (MVB) pathway. Their degradation becomes essential to maintain critical amino acids levels that uphold protein synthesis early during starvation. This promotes cellular adaptation, including the de novo synthesis of vacuolar hydrolases to boost the vacuolar catabolic activity. This order of events primes vacuoles for the efficient degradation of bulk cytoplasm via autophagy. Hence, a catabolic cascade including the coordinated action of the MVB pathway and autophagy is essential to enter quiescence to survive extended periods of nutrient limitation.
Collapse
Affiliation(s)
- Martin Müller
- Division of Cell Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Oliver Schmidt
- Division of Cell Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Mihaela Angelova
- Division of Bioinformatics, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Klaus Faserl
- Division of Clinical Biochemistry, ProteinMicroAnalysis Facility, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Sabine Weys
- Division of Cell Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Leopold Kremser
- Division of Clinical Biochemistry, ProteinMicroAnalysis Facility, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Thomas Dalik
- Department of Chemistry, University of Natural Resources and Applied Biosciences, Vienna, Austria
| | - Claudine Kraft
- Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | - Zlatko Trajanoski
- Division of Bioinformatics, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Herbert Lindner
- Division of Clinical Biochemistry, ProteinMicroAnalysis Facility, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - David Teis
- Division of Cell Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
- Austrian Drug Screening Institute, Innsbruck, Austria
| |
Collapse
|
62
|
Su H, Luo Q, Xie H, Huang X, Ni Y, Mou Y, Hu Q. Therapeutic antitumor efficacy of tumor-derived autophagosome (DRibble) vaccine on head and neck cancer. Int J Nanomedicine 2015; 10:1921-30. [PMID: 25792826 PMCID: PMC4364158 DOI: 10.2147/ijn.s74204] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Purpose Vaccines play important roles in antitumor biotherapy. Autophagy in tumor cells plays a critical role in depredating proteins, including tumor-specific antigens and tumor-associated antigens. We aimed to induce and collect tumor-derived autophagosomes (DRibbles) from tumor cells as a novel antitumor vaccine by inhibiting the functions of proteasomes and lysosomes. Materials and methods DRibbles were prepared and their morphological and autophagic properties characterized. Dendritic cells (DCs) generated from the bone marrow monocytes of mice were cocultured with DRibbles, then surface molecules of DCs and B cells, as well as apoptosis of DCs, were determined by flow cytometry. Meanwhile, functional properties of the DRibble-DCs were examined by mixed lymphocyte reactions and animal experiments. Results The diameter of autophagic nanoparticles with spherical and double-membrane structure was between 200 nm and 500 nm. DRibbles resulted in the upregulation of costimulatory molecules CD40 and CD86 as well as major histocompatibility complex (MHC)-I molecules on DCs, but not MHC-II. The expressions of CD40, CD80, and CD86 and that of MHC-II molecules on B cells were also upregulated. Moreover, suppression of tumor growth and lifetime prolongation was observed in DRibble-DC-vaccinated tumor-bearing mice. Conclusion Our results demonstrate that naïve T cells can be activated effectively by DC cross-presenting antigens on upregulated MHC-I, suggesting that DRibbles be deployed as an effective antitumor vaccine for head and neck cancer immunotherapy in clinical trials.
Collapse
Affiliation(s)
- Hang Su
- Center Laboratory of Stomatology, Stomatological Hospital Affiliated Medical School, Nanjing University, Nanjing, People's Republic of China
| | - Qiong Luo
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, People's Republic of China
| | - Hao Xie
- Institute of Life Sciences, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, People's Republic of China
| | - Xiaofeng Huang
- Center Laboratory of Stomatology, Stomatological Hospital Affiliated Medical School, Nanjing University, Nanjing, People's Republic of China
| | - Yanhong Ni
- Center Laboratory of Stomatology, Stomatological Hospital Affiliated Medical School, Nanjing University, Nanjing, People's Republic of China
| | - Yongbin Mou
- Center Laboratory of Stomatology, Stomatological Hospital Affiliated Medical School, Nanjing University, Nanjing, People's Republic of China
| | - Qingang Hu
- Center Laboratory of Stomatology, Stomatological Hospital Affiliated Medical School, Nanjing University, Nanjing, People's Republic of China ; Leeds Dental Institute, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| |
Collapse
|
63
|
Szalai P, Hagen LK, Sætre F, Luhr M, Sponheim M, Øverbye A, Mills IG, Seglen PO, Engedal N. Autophagic bulk sequestration of cytosolic cargo is independent of LC3, but requires GABARAPs. Exp Cell Res 2015; 333:21-38. [PMID: 25684710 DOI: 10.1016/j.yexcr.2015.02.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 01/09/2015] [Accepted: 02/06/2015] [Indexed: 01/16/2023]
Abstract
LC3, a mammalian homologue of yeast Atg8, is assumed to play an important part in bulk sequestration and degradation of cytoplasm (macroautophagy), and is widely used as an indicator of this process. To critically examine its role, we followed the autophagic flux of LC3 in rat hepatocytes during conditions of maximal macroautophagic activity (amino acid depletion), combined with analyses of macroautophagic cargo sequestration, measured as transfer of the cytosolic protein lactate dehydrogenase (LDH) to sedimentable organelles. To accurately determine LC3 turnover we developed a quantitative immunoblotting procedure that corrects for differential immunoreactivity of cytosolic and membrane-associated LC3 forms, and we included cycloheximide to block influx of newly synthesized LC3. As expected, LC3 was initially degraded by the autophagic-lysosomal pathway, but, surprisingly, autophagic LC3-flux ceased after ~2h. In contrast, macroautophagic cargo flux was well maintained, and density gradient analysis showed that sequestered LDH partly accumulated in LC3-free autophagic vacuoles. Hepatocytic macroautophagy could thus proceed independently of LC3. Silencing of either of the two mammalian Atg8 subfamilies in LNCaP prostate cancer cells exposed to macroautophagy-inducing conditions (starvation or the mTOR-inhibitor Torin1) confirmed that macroautophagic sequestration did not require the LC3 subfamily, but, intriguingly, we found the GABARAP subfamily to be essential.
Collapse
Affiliation(s)
- Paula Szalai
- Prostate Cancer Research Group, Centre for Molecular Medicine Norway, Nordic EMBL Partnership, University of Oslo and Oslo University Hospital, N-0318 Oslo, Norway
| | - Linda Korseberg Hagen
- Cell Biology Section, Institute for Cancer Research, Oslo University Hospital, N-0310 Oslo, Norway
| | - Frank Sætre
- Prostate Cancer Research Group, Centre for Molecular Medicine Norway, Nordic EMBL Partnership, University of Oslo and Oslo University Hospital, N-0318 Oslo, Norway; Cell Biology Section, Institute for Cancer Research, Oslo University Hospital, N-0310 Oslo, Norway
| | - Morten Luhr
- Prostate Cancer Research Group, Centre for Molecular Medicine Norway, Nordic EMBL Partnership, University of Oslo and Oslo University Hospital, N-0318 Oslo, Norway
| | - Marianne Sponheim
- Cell Biology Section, Institute for Cancer Research, Oslo University Hospital, N-0310 Oslo, Norway
| | - Anders Øverbye
- Cell Biology Section, Institute for Cancer Research, Oslo University Hospital, N-0310 Oslo, Norway
| | - Ian G Mills
- Prostate Cancer Research Group, Centre for Molecular Medicine Norway, Nordic EMBL Partnership, University of Oslo and Oslo University Hospital, N-0318 Oslo, Norway; Department of Urology, Oslo University Hospital, N-0310 Oslo, Norway; Department of Cancer Prevention, Institute for Cancer Research, Oslo University Hospital, N-0310 Oslo, Norway
| | - Per O Seglen
- Prostate Cancer Research Group, Centre for Molecular Medicine Norway, Nordic EMBL Partnership, University of Oslo and Oslo University Hospital, N-0318 Oslo, Norway; Cell Biology Section, Institute for Cancer Research, Oslo University Hospital, N-0310 Oslo, Norway.
| | - Nikolai Engedal
- Prostate Cancer Research Group, Centre for Molecular Medicine Norway, Nordic EMBL Partnership, University of Oslo and Oslo University Hospital, N-0318 Oslo, Norway.
| |
Collapse
|
64
|
Heras-Sandoval D, Pérez-Rojas JM, Hernández-Damián J, Pedraza-Chaverri J. The role of PI3K/AKT/mTOR pathway in the modulation of autophagy and the clearance of protein aggregates in neurodegeneration. Cell Signal 2014; 26:2694-701. [DOI: 10.1016/j.cellsig.2014.08.019] [Citation(s) in RCA: 646] [Impact Index Per Article: 58.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 08/18/2014] [Indexed: 12/13/2022]
|
65
|
Akin D, Wang SK, Habibzadegah-Tari P, Law B, Ostrov D, Li M, Yin XM, Kim JS, Horenstein N, Dunn WA. A novel ATG4B antagonist inhibits autophagy and has a negative impact on osteosarcoma tumors. Autophagy 2014; 10:2021-35. [PMID: 25483883 PMCID: PMC4502682 DOI: 10.4161/auto.32229] [Citation(s) in RCA: 174] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Autophagy has been implicated in the progression and chemoresistance of various cancers. In this study, we have shown that osteosarcoma Saos-2 cells lacking ATG4B, a cysteine proteinase that activates LC3B, are defective in autophagy and fail to form tumors in mouse models. By combining in silico docking with in vitro and cell-based assays, we identified small compounds that suppressed starvation-induced protein degradation, LC3B lipidation, and formation of autophagic vacuoles. NSC185058 effectively inhibited ATG4B activity in vitro and in cells while having no effect on MTOR and PtdIns3K activities. In addition, this ATG4B antagonist had a negative impact on the development of Saos-2 osteosarcoma tumors in vivo. We concluded that tumor suppression was due to a reduction in ATG4B activity, since we found autophagy suppressed within treated tumors and the compound had no effects on oncogenic protein kinases. Our findings demonstrate that ATG4B is a suitable anti-autophagy target and a promising therapeutic target to treat osteosarcoma.
Collapse
Key Words
- 3MA, 3-methyladenine
- ACTB, actin, beta
- ATG, autophagy-related
- ATG4B
- ATG4B, autophagy-related 4B, cysteine protease
- AV, autophagic vacuole
- BECN1, beclin 1, autophagy related
- CMPase, cytidine monophosphatase
- DMEM, Dulbecco's modified Eagle medium
- ECL, enhanced chemiluminescence
- FYVE, zinc-finger domain named after 4 cysteine-rich proteins: FAB1, YOTB, VAC1, and EEA1
- GABARAPL2, GABA(A) receptor-associated protein-like 2
- GFP, green fluorescent protein
- GST, glutathione S-transferase
- HRP, horseradish peroxidase
- IC50, half maximal inhibitory concentration
- IP, intraperitoneal
- LC3B
- MAP1LC3B/LC3B, microtubule-associated protein 1 light chain 3beta
- MP, melting point
- MTOR, mechanistic target of rapamycin
- NCI, National Cancer Institute
- NMR, nuclear magnetic resonance
- PLA2, phospholipase A2
- PVDF, polyvinylidene difluoride
- PtdIns3K, phosphatidylinositol 3-kinase class III
- PtdIns3P, phosphatidylinositol 3-phosphate
- RFP, red fluorescent protein
- RLU, relative luciferase units
- RPS6, ribosomal protein S6
- RPS6KB1, ribosomal protein S6 kinase, 70kDa, polypeptide 1
- SEM, standard error of the mean
- ULK1/2, unc-51-like autophagy activating kinase 1/2
- and xenografts
- antiautophagy compounds
- dNGLUC, Gaussia luciferase
- in silico docking
- osteosarcoma
Collapse
Affiliation(s)
- Debra Akin
- a Department of Anatomy and Cell Biology ; University of Florida ; Gainesville , FL USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Mechanism and Regulation of Autophagy and Its Role in Neuronal Diseases. Mol Neurobiol 2014; 52:1190-1209. [DOI: 10.1007/s12035-014-8921-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 09/29/2014] [Indexed: 12/31/2022]
|
67
|
TOR complex 2-Ypk1 signaling is an essential positive regulator of the general amino acid control response and autophagy. Proc Natl Acad Sci U S A 2014; 111:10586-91. [PMID: 25002487 DOI: 10.1073/pnas.1406305111] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The highly conserved Target of Rapamycin (TOR) kinase is a central regulator of cell growth and metabolism in response to nutrient availability. TOR functions in two structurally and functionally distinct complexes, TOR Complex 1 (TORC1) and TOR Complex 2 (TORC2). Through TORC1, TOR negatively regulates autophagy, a conserved process that functions in quality control and cellular homeostasis and, in this capacity, is part of an adaptive nutrient deprivation response. Here we demonstrate that during amino acid starvation TOR also operates independently as a positive regulator of autophagy through the conserved TORC2 and its downstream target protein kinase, Ypk1. Under these conditions, TORC2-Ypk1 signaling negatively regulates the Ca(2+)/calmodulin-dependent phosphatase, calcineurin, to enable the activation of the amino acid-sensing eIF2α kinase, Gcn2, and to promote autophagy. Our work reveals that the TORC2 pathway regulates autophagy in an opposing manner to TORC1 to provide a tunable response to cellular metabolic status.
Collapse
|
68
|
Regulation of autophagy by amino acid availability in S. cerevisiae and mammalian cells. Amino Acids 2014; 47:2165-75. [PMID: 24973972 DOI: 10.1007/s00726-014-1787-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 06/12/2014] [Indexed: 10/25/2022]
Abstract
Autophagy is a catabolic membrane-trafficking process that occurs in all eukaryotic organisms analyzed to date. The study of autophagy has exploded over the last decade or so, branching into numerous aspects of cellular and organismal physiology. From basic functions in starvation and quality control, autophagy has expanded into innate immunity, aging, neurological diseases, redox regulation, and ciliogenesis, to name a few roles. In the present review, I would like to narrow the discussion to the more classical roles of autophagy in supporting viability under nutrient limitation. My aim is to provide a semblance of a historical overview, together with a concise, and perhaps subjective, mechanistic and functional analysis of the central questions in the autophagy field.
Collapse
|
69
|
Pfisterer SG, Bakula D, Frickey T, Cezanne A, Brigger D, Tschan MP, Robenek H, Proikas-Cezanne T. Lipid droplet and early autophagosomal membrane targeting of Atg2A and Atg14L in human tumor cells. J Lipid Res 2014; 55:1267-78. [PMID: 24776541 DOI: 10.1194/jlr.m046359] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Indexed: 12/26/2022] Open
Abstract
Autophagy is a lysosomal bulk degradation pathway for cytoplasmic cargo, such as long-lived proteins, lipids, and organelles. Induced upon nutrient starvation, autophagic degradation is accomplished by the concerted actions of autophagy-related (ATG) proteins. Here we demonstrate that two ATGs, human Atg2A and Atg14L, colocalize at cytoplasmic lipid droplets (LDs) and are functionally involved in controlling the number and size of LDs in human tumor cell lines. We show that Atg2A is targeted to cytoplasmic ADRP-positive LDs that migrate bidirectionally along microtubules. The LD localization of Atg2A was found to be independent of the autophagic status. Further, Atg2A colocalized with Atg14L under nutrient-rich conditions when autophagy was not induced. Upon nutrient starvation and dependent on phosphatidylinositol 3-phosphate [PtdIns(3)P] generation, both Atg2A and Atg14L were also specifically targeted to endoplasmic reticulum-associated early autophagosomal membranes, marked by the PtdIns(3)P effectors double-FYVE containing protein 1 (DFCP1) and WD-repeat protein interacting with phosphoinositides 1 (WIPI-1), both of which function at the onset of autophagy. These data provide evidence for additional roles of Atg2A and Atg14L in the formation of early autophagosomal membranes and also in lipid metabolism.
Collapse
Affiliation(s)
- Simon G Pfisterer
- Autophagy Laboratory, Department of Molecular Biology, Interfaculty Institute for Cell Biology, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Daniela Bakula
- Autophagy Laboratory, Department of Molecular Biology, Interfaculty Institute for Cell Biology, Eberhard Karls University Tuebingen, Tuebingen, Germany International Max Planck Research School 'From Molecules to Organisms', Max Planck Institute for Developmental Biology and Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Tancred Frickey
- Applied Bioinformatics Laboratory, University of Konstanz, Konstanz, Germany
| | - Alice Cezanne
- Autophagy Laboratory, Department of Molecular Biology, Interfaculty Institute for Cell Biology, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Daniel Brigger
- Division of Experimental Pathology, Institute of Pathology, University of Bern, Bern, Switzerland
| | - Mario P Tschan
- Division of Experimental Pathology, Institute of Pathology, University of Bern, Bern, Switzerland
| | - Horst Robenek
- Leibniz Institute for Arteriosklerosis Research, University of Muenster, Muenster, Germany
| | - Tassula Proikas-Cezanne
- Autophagy Laboratory, Department of Molecular Biology, Interfaculty Institute for Cell Biology, Eberhard Karls University Tuebingen, Tuebingen, Germany International Max Planck Research School 'From Molecules to Organisms', Max Planck Institute for Developmental Biology and Eberhard Karls University Tuebingen, Tuebingen, Germany
| |
Collapse
|
70
|
Self-eating to grow and kill: autophagy in filamentous ascomycetes. Appl Microbiol Biotechnol 2014; 97:9277-90. [PMID: 24077722 DOI: 10.1007/s00253-013-5221-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 08/27/2013] [Accepted: 08/28/2013] [Indexed: 10/26/2022]
Abstract
Autophagy is a tightly controlled degradation process in which eukaryotic cells digest their own cytoplasm containing protein complexes and organelles in the vacuole or lysosome. Two types of autophagy have been described: macroautophagy and microautophagy. Both types can be further divided into nonselective and selective processes. Molecular analysis of autophagy over the last two decades has mostly used the unicellular ascomycetes Saccharomyces cerevisiae and Pichia pastoris. Genetic analysis in these yeasts has identified 36 autophagy-related (atg) genes; many are conserved in all eukaryotes, including filamentous ascomycetes. However, the autophagic machinery also evolved significant differences in fungi, as a consequence of adaptation to diverse fungal lifestyles. Intensive studies on autophagy in the last few years have shown that autophagy in filamentous fungi is not only involved in nutrient homeostasis but in other cellular processes such as cell differentiation, pathogenicity and secondary metabolite production. This mini-review focuses on the specific roles of autophagy in filamentous fungi.
Collapse
|
71
|
Chen ZH, Cao JF, Zhou JS, Liu H, Che LQ, Mizumura K, Li W, Choi AMK, Shen HH. Interaction of caveolin-1 with ATG12-ATG5 system suppresses autophagy in lung epithelial cells. Am J Physiol Lung Cell Mol Physiol 2014; 306:L1016-25. [PMID: 24727585 DOI: 10.1152/ajplung.00268.2013] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Autophagy plays a pivotal role in cellular homeostasis and adaptation to adverse environments, although the regulation of this process remains incompletely understood. We have recently observed that caveolin-1 (Cav-1), a major constituent of lipid rafts on plasma membrane, can regulate autophagy in cigarette smoking-induced injury of lung epithelium, although the underlying molecular mechanisms remain incompletely understood. In the present study we found that Cav-1 interacted with and regulated the expression of ATG12-ATG5, an ubiquitin-like conjugation system crucial for autophagosome formation, in lung epithelial Beas-2B cells. Deletion of Cav-1 increased basal and starvation-induced levels of ATG12-ATG5 and autophagy. Biochemical analyses revealed that Cav-1 interacted with ATG5, ATG12, and their active complex ATG12-ATG5. Overexpression of ATG5 or ATG12 increased their interactions with Cav-1, the formation of ATG12-ATG5 conjugate, and the subsequent basal levels of autophagy but resulted in decreased interactions between Cav-1 and another molecule. Knockdown of ATG12 enhanced the ATG5-Cav-1 interaction. Mutation of the Cav-1 binding motif on ATG12 disrupted their interaction and further augmented autophagy. Cav-1 also regulated the expression of ATG16L, another autophagy protein associating with the ATG12-ATG5 conjugate during autophagosome formation. Altogether these studies clearly demonstrate that Cav-1 competitively interacts with the ATG12-ATG5 system to suppress the formation and function of the latter in lung epithelial cells, thereby providing new insights into the molecular mechanisms by which Cav-1 regulates autophagy and suggesting the important function of Cav-1 in certain lung diseases via regulation of autophagy homeostasis.
Collapse
Affiliation(s)
- Zhi-Hua Chen
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | | | - Jie-Sen Zhou
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Hui Liu
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Luan-Qing Che
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Kenji Mizumura
- Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; and
| | - Wen Li
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Augustine M K Choi
- Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; and
| | - Hua-Hao Shen
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China; State Key Laboratory of Respiratory Diseases, Guangzhou, China
| |
Collapse
|
72
|
Cycloheximide inhibits starvation-induced autophagy through mTORC1 activation. Biochem Biophys Res Commun 2014; 445:334-9. [PMID: 24525133 DOI: 10.1016/j.bbrc.2014.01.180] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 01/29/2014] [Indexed: 11/23/2022]
Abstract
Protein synthesis inhibitors such as cycloheximide (CHX) are known to suppress protein degradation including autophagy. The fact that CHX inhibits autophagy has been generally interpreted to indicate that newly synthesized protein is indispensable for autophagy. However, CHX is also known to increase the intracellular level of amino acids and activate mTORC1 activity, a master negative regulator of autophagy. Accordingly, CHX can affect autophagic activity through inhibition of de novo protein synthesis and/or modulation of mTORC1 signaling. In this study, we investigated the effects of CHX on autophagy using specific autophagy markers. We found that CHX inhibited starvation-induced autophagy but not Torin1-induced autophagy. CHX also suppressed starvation-induced puncta formation of GFP-ULK1, an early-step marker of the autophagic process which is regulated by mTORC1. CHX activated mTORC1 even under autophagy-inducible starvation conditions. Finally, the inhibitory effect of CHX on starvation-induced autophagy was cancelled by the mTOR inhibitor Torin1. These results suggest that CHX inhibits starvation-induced autophagy through mTORC1 activation and also that autophagy does not require new protein synthesis at least in the acute phase of starvation.
Collapse
|
73
|
Datan E, Shirazian A, Benjamin S, Matassov D, Tinari A, Malorni W, Lockshin RA, Garcia-Sastre A, Zakeri Z. mTOR/p70S6K signaling distinguishes routine, maintenance-level autophagy from autophagic cell death during influenza A infection. Virology 2014; 452-453:175-190. [PMID: 24606695 DOI: 10.1016/j.virol.2014.01.008] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 11/22/2013] [Accepted: 01/13/2014] [Indexed: 12/17/2022]
Abstract
Autophagy, a stress response activated in influenza A virus infection helps the cell avoid apoptosis. However, in the absence of apoptosis infected cells undergo vastly expanded autophagy and nevertheless die in the presence of necrostatin but not of autophagy inhibitors. Combinations of inhibitors indicate that the controls of protective and lethal autophagy are different. Infection that triggers apoptosis also triggers canonical autophagy signaling exhibiting transient PI3K and mTORC1 activity. In terminal autophagy phospho-mTOR(Ser2448) is suppressed while mTORC1, PI3K and mTORC2 activities increase. mTORC1 substrate p70S6K becomes highly phosphorylated while its activity, now regulated by mTORC2, is required for LC3-II formation. Inhibition of mTORC2/p70S6K, unlike that of PI3K/mTORC1, blocks expanded autophagy in the absence of apoptosis but not moderate autophagy. Inhibitors of expanded autophagy limit virus reproduction. Thus expanded, lethal autophagy is activated by a signaling mechanism different from autophagy that helps cells survive toxic or stressful episodes.
Collapse
Affiliation(s)
- Emmanuel Datan
- Department of Biology, Queens College and Graduate Center of the City University of New York, 65-30 Kissena Boulevard, Flushing, NY 11367, USA
| | - Alireza Shirazian
- Department of Biology, Queens College and Graduate Center of the City University of New York, 65-30 Kissena Boulevard, Flushing, NY 11367, USA
| | - Shawna Benjamin
- Department of Biology, Queens College and Graduate Center of the City University of New York, 65-30 Kissena Boulevard, Flushing, NY 11367, USA
| | - Demetrius Matassov
- Department of Biology, Queens College and Graduate Center of the City University of New York, 65-30 Kissena Boulevard, Flushing, NY 11367, USA
| | - Antonella Tinari
- Department of Technology and Health, Instituto Superiore di Sanita, Viale Regina Elena 299, 00161 Rome, Italy
| | - Walter Malorni
- Department of Drug Research and Evaluation, Instituto Superiore di Sanita, Viale Regina Elena 299, 00161 Rome, Italy.,San Raffaele Institute Sulmona, 67039 L'Aquila, Italy
| | - Richard A Lockshin
- Department of Biology, Queens College and Graduate Center of the City University of New York, 65-30 Kissena Boulevard, Flushing, NY 11367, USA
| | - Adolfo Garcia-Sastre
- Department of Microbiology, Division of Infectious Diseases, Mount Sinai School of Medicine, New York, NY 10029, USA.,Global Health and Emerging Pathogens Institute, Division of Infectious Diseases, Mount Sinai School of Medicine, New York, NY 10029, USA.,Global Health and Emerging Pathogens Institute, Division of Infectious Diseases, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Zahra Zakeri
- Department of Biology, Queens College and Graduate Center of the City University of New York, 65-30 Kissena Boulevard, Flushing, NY 11367, USA
| |
Collapse
|
74
|
Graef M, Friedman JR, Graham C, Babu M, Nunnari J. ER exit sites are physical and functional core autophagosome biogenesis components. Mol Biol Cell 2013; 24:2918-31. [PMID: 23904270 PMCID: PMC3771953 DOI: 10.1091/mbc.e13-07-0381] [Citation(s) in RCA: 292] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
ERES function is required for assembly of the autophagy machinery immediately downstream of the Atg1 kinase complex and is associated with formation of autophagosomes at every stage of the process. ERES are core components of the autophagy machinery for the biogenesis of autophagosomes. Autophagy is a central homeostasis and stress response pathway conserved in all eukaryotes. One hallmark of autophagy is the de novo formation of autophagosomes. These double-membrane vesicular structures form around and deliver cargo for degradation by the vacuole/lysosome. Where and how autophagosomes form are outstanding questions. Here we show, using proteomic, cytological, and functional analyses, that autophagosomes are spatially, physically, and functionally linked to endoplasmic reticulum exit sites (ERES), which are specialized regions of the endoplasmic reticulum where COPII transport vesicles are generated. Our data demonstrate that ERES are core autophagosomal biogenesis components whose function is required for the hierarchical assembly of the autophagy machinery immediately downstream of the Atg1 kinase complex at phagophore assembly sites.
Collapse
Affiliation(s)
- Martin Graef
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616 Department of Biochemistry, University of Regina, Regina, SK S4S 0A2, Canada
| | | | | | | | | |
Collapse
|
75
|
Role of membrane association and Atg14-dependent phosphorylation in beclin-1-mediated autophagy. Mol Cell Biol 2013; 33:3675-88. [PMID: 23878393 DOI: 10.1128/mcb.00079-13] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
During autophagy, a double membrane envelops cellular material for trafficking to the lysosome. Human beclin-1 and its yeast homologue, Atg6/Vps30, are scaffold proteins bound in a lipid kinase complex with multiple cellular functions, including autophagy. Several different Atg6 complexes exist, with an autophagy-specific form containing Atg14. However, the roles of Atg14 and beclin-1 in the activation of this complex remain unclear. We here addressed the mechanism of beclin-1 complex activation and reveal two critical steps in this pathway. First, we identified a unique domain in beclin-1, conserved in the yeast homologue Atg6, which is involved in membrane association and, unexpectedly, controls autophagosome size and number in yeast. Second, we demonstrated that human Atg14 is critical in controlling an autophagy-dependent phosphorylation of beclin-1. We map these novel phosphorylation sites to serines 90 and 93 and demonstrate that phosphorylation at these sites is necessary for maximal autophagy. These results help clarify the mechanism of beclin-1 and Atg14 during autophagy.
Collapse
|
76
|
Atg29 phosphorylation regulates coordination of the Atg17-Atg31-Atg29 complex with the Atg11 scaffold during autophagy initiation. Proc Natl Acad Sci U S A 2013; 110:E2875-84. [PMID: 23858448 DOI: 10.1073/pnas.1300064110] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Macroautophagy (hereafter autophagy) functions in the nonselective clearance of cytoplasm. This process participates in many aspects of cell physiology, and is conserved in all eukaryotes. Autophagy begins with the organization of the phagophore assembly site (PAS), where most of the AuTophaGy-related (Atg) proteins are at least transiently localized. Autophagy occurs at a basal level and can be induced by various types of stress; the process must be tightly regulated because insufficient or excessive autophagy can be deleterious. A complex composed of Atg17-Atg31-Atg29 is vital for PAS organization and autophagy induction, implying a significant role in autophagy regulation. In this study, we demonstrate that Atg29 is a phosphorylated protein and that this modification is critical to its function; alanine substitution at the phosphorylation sites blocks its interaction with the scaffold protein Atg11 and its ability to facilitate assembly of the PAS. Atg29 has the characteristics of an intrinsically disordered protein, suggesting that it undergoes dynamic conformational changes on interaction with a binding partner(s). Finally, single-particle electron microscopy analysis of the Atg17-Atg31-Atg29 complex reveals an elongated structure with Atg29 located at the opposing ends.
Collapse
|
77
|
Betin VM, Singleton BK, Parsons SF, Anstee DJ, Lane JD. Autophagy facilitates organelle clearance during differentiation of human erythroblasts: evidence for a role for ATG4 paralogs during autophagosome maturation. Autophagy 2013; 9:881-93. [PMID: 23508006 PMCID: PMC3672297 DOI: 10.4161/auto.24172] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 02/26/2013] [Accepted: 03/01/2013] [Indexed: 12/19/2022] Open
Abstract
Wholesale depletion of membrane organelles and extrusion of the nucleus are hallmarks of mammalian erythropoiesis. Using quantitative EM and fluorescence imaging we have investigated how autophagy contributes to organelle removal in an ex vivo model of human erythroid differentiation. We found that autophagy is induced at the polychromatic erythroid stage, and that autophagosomes remain abundant until enucleation. This stimulation of autophagy was concomitant with the transcriptional upregulation of many autophagy genes: of note, expression of all ATG8 mammalian paralog family members was stimulated, and increased expression of a subset of ATG4 family members (ATG4A and ATG4D) was also observed. Stable expression of dominant-negative ATG4 cysteine mutants (ATG4B (C74A) ; ATG4D (C144A) ) did not markedly delay or accelerate differentiation of human erythroid cells; however, quantitative EM demonstrated that autophagosomes are assembled less efficiently in ATG4B (C74A) -expressing progenitor cells, and that cells expressing either mutant accumulate enlarged amphisomes that cannot be degraded. The appearance of these hybrid autophagosome/endosome structures correlated with the contraction of the lysosomal compartment, suggesting that the actions of ATG4 family members (particularly ATG4B) are required for the control of autophagosome fusion with late, degradative compartments in differentiating human erythroblasts.
Collapse
Affiliation(s)
- Virginie M.S. Betin
- Cell Biology Laboratories; School of Biochemistry; University of Bristol; Bristol, UK
| | - Belinda K. Singleton
- Bristol Institute for Transfusion Sciences; National Health Service Blood and Transplant; Filton, Bristol UK
| | - Stephen F. Parsons
- Bristol Institute for Transfusion Sciences; National Health Service Blood and Transplant; Filton, Bristol UK
| | - David J. Anstee
- Bristol Institute for Transfusion Sciences; National Health Service Blood and Transplant; Filton, Bristol UK
| | - Jon D. Lane
- Cell Biology Laboratories; School of Biochemistry; University of Bristol; Bristol, UK
| |
Collapse
|
78
|
Smuder AJ, Kavazis AN, Min K, Powers SK. Doxorubicin-induced markers of myocardial autophagic signaling in sedentary and exercise trained animals. J Appl Physiol (1985) 2013; 115:176-85. [PMID: 23703114 DOI: 10.1152/japplphysiol.00924.2012] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Doxorubicin (DOX) is an effective antitumor agent used in cancer treatment. However, its clinical use is limited due to cardiotoxicity. Indeed, the side effects of DOX are irreversible and include the development of cardiomyopathy and ultimately congestive heart failure. Although many studies have investigated the events leading to DOX-induced cardiotoxicity, the mechanisms responsible for DOX-induced cardiotoxicity remain unknown. In general, evidence suggests that DOX-induced cardiotoxicity is associated with an increased generation of reactive oxygen species and oxidative damage, leading to the activation of cellular proteolytic systems. In this regard, the autophagy/lysosomal proteolytic system is a constitutively active catabolic process that is responsible for the degradation of both organelles and cytosolic proteins. We tested the hypothesis that systemic DOX administration results in altered cardiac gene and protein expression of mediators of the autophagy/lysosomal system. Our results support this hypothesis, as DOX treatment increased both the mRNA and protein levels of numerous key autophagy genes. Because exercise training has been shown to be cardioprotective against DOX-induced damage, we also determined whether exercise training before DOX administration alters the expression of important components of the autophagy/lysosomal system in cardiac muscle. Our findings show that exercise training inhibits DOX-induced cardiac increases in autophagy signaling. Collectively, our results reveal that DOX administration promotes activation of the autophagy/lysosomal system pathway in the heart, and that endurance exercise training can be a cardioprotective intervention against myocardial DOX-induced toxicity.
Collapse
Affiliation(s)
- Ashley J Smuder
- Department of Applied Physiology and Kinesiology, Center for Exercise Science, University of Florida, Gainesville, Florida 32611, USA.
| | | | | | | |
Collapse
|
79
|
Puyal J, Ginet V, Clarke PGH. Multiple interacting cell death mechanisms in the mediation of excitotoxicity and ischemic brain damage: a challenge for neuroprotection. Prog Neurobiol 2013; 105:24-48. [PMID: 23567504 DOI: 10.1016/j.pneurobio.2013.03.002] [Citation(s) in RCA: 167] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 03/05/2013] [Accepted: 03/13/2013] [Indexed: 02/09/2023]
Abstract
There is currently no approved neuroprotective pharmacotherapy for acute conditions such as stroke and cerebral asphyxia. One of the reasons for this may be the multiplicity of cell death mechanisms, because inhibition of a particular mechanism leaves the brain vulnerable to alternative ones. It is therefore essential to understand the different cell death mechanisms and their interactions. We here review the multiple signaling pathways underlying each of the three main morphological types of cell death--apoptosis, autophagic cell death and necrosis--emphasizing their importance in the neuronal death that occurs during cerebral ischemia and hypoxia-ischemia, and we analyze the interactions between the different mechanisms. Finally, we discuss the implications of the multiplicity of cell death mechanisms for the design of neuroprotective strategies.
Collapse
Affiliation(s)
- Julien Puyal
- Département des Neurosciences Fondamentales, Université de Lausanne, Rue du Bugnon 9, 1005 Lausanne, Switzerland.
| | | | | |
Collapse
|
80
|
Nutrient availability alters the effect of autophagy on sulindac sulfide-induced colon cancer cell apoptosis. Gastroenterol Res Pract 2013; 2012:897678. [PMID: 23431290 PMCID: PMC3529501 DOI: 10.1155/2012/897678] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 11/13/2012] [Indexed: 12/20/2022] Open
Abstract
Autophagy is a catabolic process by which a cell degrades its intracellular materials to replenish itself. Induction of autophagy under various cellular stress stimuli can lead to either cell survival or cell death via apoptotic and/or autophagic (nonapoptotic) pathways. The NSAID sulindac sulfide induces apoptosis in colon cancer cells. Here, we show that inhibition of autophagy under serum-deprived conditions resulted in significant reductions of sulindac sulfide-induced apoptosis in HT-29 colon cancer cells. In contrast, inhibition of autophagy under conditions where serum is available significantly increased sulindac sulfide-induced apoptosis in HT-29 cells. We previously showed that the apoptosis inhibitor, survivin, plays a role in regulating NSAID-induced apoptosis and autophagic cell death. Here, we show that survivin protein half-life is increased in the presence of autophagy inhibitors under serum-deprived conditions, but not under conditions when serum is available. Thus, the increased levels of survivin may be a factor contributing to inhibition of sulindac sulfide-induced apoptosis under serum-deprived conditions. These results suggest that whether a cell lives or dies due to autophagy induction depends on the balance of factors that regulate both autophagic and apoptotic processes.
Collapse
|
81
|
Zhang Z, Xu X, Ma J, Wu J, Wang Y, Zhou R, Han J. Gene deletion of Gabarap enhances Nlrp3 inflammasome-dependent inflammatory responses. THE JOURNAL OF IMMUNOLOGY 2013; 190:3517-24. [PMID: 23427251 DOI: 10.4049/jimmunol.1202628] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The γ-aminobutyric acid A receptor-associated protein (Gabarap) functions in γ-aminobutyric acid A receptor trafficking and postsynaptic localization in neurons, but its physiological roles in other systems have not been studied. In this study, we report that Gabarap-deficient mice are more susceptible to mortality in two sepsis models. An underlying mechanism of this higher mortality rate in Gabarap(-/-) septic mice is the higher level of proinflammatory cytokine expression in Gabarap(-/-) mice versus wild-type mice. In vitro studies show that Nlrp3 inflammasome activation is enhanced by Gabarap deficiency, as evidenced by more casapse-1 activation, more IL-1β, and more IL-18 secretion in LPS- and ATP-treated Gabarap(-/-) macrophages. The Gabarap deficiency led to inefficient clearance of damaged mitochondria in LPS plus ATP-treated macrophages, resulting in more mitochondrial ROS and the release of mitochondrial DNA into cytosol. Both ROS and mitochondrial DNA are known to promote inflammasome activation. These results demonstrate that Gabarap functions in the immune system. It is involved in mitochondrial quality control in macrophages, and thus it influences Nlrp3 inflammasome-dependent inflammatory responses.
Collapse
Affiliation(s)
- Zhirong Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, 361005 Xiamen, Fujian, China
| | | | | | | | | | | | | |
Collapse
|
82
|
Li W, Zhou M, Ren H, Hu HM, Lu L, Cao M, Wang LX. Tumor-derived autophagosomes (DRibbles) induce B cell activation in a TLR2-MyD88 dependent manner. PLoS One 2013; 8:e53564. [PMID: 23326458 PMCID: PMC3541185 DOI: 10.1371/journal.pone.0053564] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 11/29/2012] [Indexed: 12/30/2022] Open
Abstract
Previously, we have documented that isolated autophagosomes from tumor cells could efficiently cross-prime tumor-reactive naïve T cells and mediate tumor regression in preclinical mouse models. However, the effect of tumor-derived autophagosomes, here we refer as to DRibbles, on B cells has not been studied so far. At present study, we found that DRibbles generated from a murine hepatoma cell line Hep1-6, induced B-cell activation after intravenous injection into mice. B-cell populations were significantly expanded and the production of Hep1-6 tumor-specific antibodies was successfully induced. Moreover, in vitro studies showed that DRibbles could induce more efficient B-cell proliferation and activation, antibody production, and cytokine secretion than whole tumor cell lysates. Notably, we found that B-cell activation required proteins but not DNA in the DRibbles. We further showed that B cells could capture DRibbles and present antigens in the DRibbles to directly induce T cell activation. Furthermore, we found that B-cell activation, antibody production, cytokine secretion and antigen cross-presentation were TLR2-MyD88 pathway dependent. Taken together, the present studies demonstrated that tumor-derived autophagosomes (DRibbles) efficiently induced B cells activation, antibody production, cytokine secretion and antigen cross-presentation mainly depending on their protein component via TLR2/MyD88 dependent manner.
Collapse
Affiliation(s)
- Weixia Li
- Department of Microbiology and Immunology, Medical School of Southeast University, Nanjing, Jiangsu Province, People’s Republic of China
| | - Meng Zhou
- Department of Microbiology and Immunology, Medical School of Southeast University, Nanjing, Jiangsu Province, People’s Republic of China
| | - Hongyan Ren
- Department of Microbiology and Immunology, Medical School of Southeast University, Nanjing, Jiangsu Province, People’s Republic of China
- Cancer Research and Biotherapy Center, the Second Affiliated Hospital of Southeast University, Nanjing, Jiangsu Province, People’s Republic of China
| | - Hong-Ming Hu
- Cancer Research and Biotherapy Center, the Second Affiliated Hospital of Southeast University, Nanjing, Jiangsu Province, People’s Republic of China
- Laboratory of Cancer Immunobiology, Earle A. Chiles Research Institute, Providence Portland Medical Center, Portland, Oregon, United States of America
| | - Liwei Lu
- Department of Pathology and Center of Infection and Immunology, The University of Hong Kong, Hong Kong, Special Administrative Region, People’s Republic of China
| | - Meng Cao
- Department of Microbiology and Immunology, Medical School of Southeast University, Nanjing, Jiangsu Province, People’s Republic of China
- * E-mail: (LxW); (MC)
| | - Li-xin Wang
- Department of Microbiology and Immunology, Medical School of Southeast University, Nanjing, Jiangsu Province, People’s Republic of China
- Cancer Research and Biotherapy Center, the Second Affiliated Hospital of Southeast University, Nanjing, Jiangsu Province, People’s Republic of China
- * E-mail: (LxW); (MC)
| |
Collapse
|
83
|
Therapeutic effects of rapamycin on MPTP-induced Parkinsonism in mice. Neurochem Res 2012; 38:201-7. [PMID: 23117422 DOI: 10.1007/s11064-012-0909-8] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Revised: 10/04/2012] [Accepted: 10/09/2012] [Indexed: 12/20/2022]
Abstract
In neurodegenerative disorders such as Parkinson's disease (PD), autophagy is implicated in the process of dopaminergic neuron cell death. The α-synuclein protein is a major component of Lewy bodies and Lewy neurites, and mutations in α-synuclein have been implicated in the etiology of familial PD. The current work investigates the mechanisms underlying the therapeutic effects of the autophagy-stimulating antibiotic rapamycin in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD. Male C57BL/6 mice were treated with intravenous rapamycin or saline control for 7 days following MPTP administration. Immunohistochemistry and western blotting were used to detect alterations in the expression of PD biomarkers, including tyrosine hydroxylase (TH), and the level of autophagy was evaluated by the detection of both microtubule-associated protein light chain 3 (LC3) and α-Synuclein cleavage. In addition, levels of monoamine neurotransmitters were measured in the striatum using high performance liquid chromatography (HPLC). Immunohistochemistry using antibodies against TH indicated that the number of dopaminergic neurons in the substantia nigra following MPTP treatment was significantly higher in rapamycin-treated mice compared with saline-treated controls (p < 0.01). Levels of TH expression in the striatum were similar between the groups. α-synuclein Immunoreactivity was significantly decreased in rapamycin-treated mice compared with controls (p < 0.01). Immunoreactivity for LC3, however, was significantly higher in the rapamycin-treated animals than controls (p < 0.01). The concentrations of both striatal dopamine, and the dopamine metabolite DOPAC, were significantly decreased in both MPTP-treated groups compared with untreated controls. The loss of DOPAC was less severe in rapamycin-treated mice compared with saline-treated mice (p < 0.01) following MPTP treatment. These results demonstrate that treatment with rapamycin is able to prevent the loss of TH-positive neurons and to ameliorate the loss of DOPAC following MPTP treatment, likely via activation of autophagy/lysosome pathways. Thus, further investigation into the effectiveness of rapamycin administration in the treatment of PD is warranted.
Collapse
|
84
|
Mechanism and functions of membrane binding by the Atg5-Atg12/Atg16 complex during autophagosome formation. EMBO J 2012; 31:4304-17. [PMID: 23064152 DOI: 10.1038/emboj.2012.278] [Citation(s) in RCA: 360] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Accepted: 09/18/2012] [Indexed: 11/09/2022] Open
Abstract
Autophagy is a conserved process for the bulk degradation of cytoplasmic material. Triggering of autophagy results in the formation of double membrane-bound vesicles termed autophagosomes. The conserved Atg5-Atg12/Atg16 complex is essential for autophagosome formation. Here, we show that the yeast Atg5-Atg12/Atg16 complex directly binds membranes. Membrane binding is mediated by Atg5, inhibited by Atg12 and activated by Atg16. In a fully reconstituted system using giant unilamellar vesicles and recombinant proteins, we reveal that all components of the complex are required for efficient promotion of Atg8 conjugation to phosphatidylethanolamine and are able to assign precise functions to all of its components during this process. In addition, we report that in vitro the Atg5-Atg12/Atg16 complex is able to tether membranes independently of Atg8. Furthermore, we show that membrane binding by Atg5 is downstream of its recruitment to the pre-autophagosomal structure but is essential for autophagy and cytoplasm-to-vacuole transport at a stage preceding Atg8 conjugation and vesicle closure. Our findings provide important insights into the mechanism of action of the Atg5-Atg12/Atg16 complex during autophagosome formation.
Collapse
|
85
|
Abstract
Autophagy is a unique membrane trafficking process whereby newly formed membranes, termed phagophores, engulf parts of the cytoplasm leading to the production of double-membraned autophagosomes that get delivered to lysosomes for degradation. This catabolic pathway has been linked to numerous physiological and pathological conditions, such as development, programmed cell death, cancer, pathogen infection, neurodegenerative disorders, and myopathies. In this review, we will focus on recent studies in yeast and mammalian systems that have provided insights into two critical areas of autophagosome biogenesis - the source of the autophagosomal membranes, and the mechanisms regulating the fusion of the edges of the double-membraned phagophores to form autophagosomes.
Collapse
Affiliation(s)
- David C Rubinsztein
- Department of Medical Genetics, Cambridge Institute for Medical Research, Wellcome/MRC Building, Addenbrooke's Hospital, Cambridge CB2 0XY, UK.
| | | | | |
Collapse
|
86
|
|
87
|
Multifunction of autophagy-related genes in filamentous fungi. Microbiol Res 2012; 167:339-45. [DOI: 10.1016/j.micres.2012.01.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 01/11/2012] [Accepted: 01/16/2012] [Indexed: 12/19/2022]
|
88
|
Cho S, Hwang ES. Status of mTOR activity may phenotypically differentiate senescence and quiescence. Mol Cells 2012; 33:597-604. [PMID: 22570149 PMCID: PMC3887751 DOI: 10.1007/s10059-012-0042-1] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Revised: 03/26/2012] [Accepted: 03/26/2012] [Indexed: 10/28/2022] Open
Abstract
SA β-Gal activity is a key marker of cellular senescence. The origin of this activity is the lysosomal β-galactosidase, whose activity has increased high enough to be detected at suboptimal pH. SA β-Gal is also expressed in the cells in quiescence driven by serum-starvation or a high confluency, and it has been hypothesized that SA β-Gal positivity is rather a surrogate marker of high lysosome content or activity. In this study, it was determined how SA β-Gal activity is expressed in quiescence and how lysosome content and activities are differently maintained in senescence and quiescence using DNA damage-induced senescence and serum starvation-induced quiescence as study models. Lysosome content increased to facilitate SA β-Gal expression in both the conditions but with a big difference in the levels of the change. Lipofuscins whose accumulation leads to an increase in residual bodies also increased but with a smaller difference between the two conditions. Meanwhile, lysosome biogenesis was actively ongoing only in senescence progression, indicating that the difference in the lysosome contents may largely be due to lysosome biogenesis. Further, the cells undergoing senescence progression but not the ones in quiescence maintained high mTOR and low autophagy activities. Overall, the results indicate that, although SA β-Gal is expressed due to the elevated lysosome content in both cellular senescence and quiescence, senescence differs from quiescence with high lysosome biogenesis and low autophagy activity, and mTOR activity might be involved in these differences.
Collapse
Affiliation(s)
- Sohee Cho
- Department of Life Science, University of Seoul, Seoul 130-743,
Korea
| | - Eun Seong Hwang
- Department of Life Science, University of Seoul, Seoul 130-743,
Korea
| |
Collapse
|
89
|
Shpilka T, Mizushima N, Elazar Z. Ubiquitin-like proteins and autophagy at a glance. J Cell Sci 2012; 125:2343-8. [DOI: 10.1242/jcs.093757] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Tomer Shpilka
- Department of Biological Chemistry, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Noboru Mizushima
- Department of Physiology and Cell Biology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Zvulun Elazar
- Department of Biological Chemistry, The Weizmann Institute of Science, 76100 Rehovot, Israel
| |
Collapse
|
90
|
Rodríguez-Blanco J, Martín V, García-Santos G, Herrera F, Casado-Zapico S, Antolín I, Rodriguez C. Cooperative action of JNK and AKT/mTOR in 1-methyl-4-phenylpyridinium-induced autophagy of neuronal PC12 cells. J Neurosci Res 2012; 90:1850-60. [PMID: 22513717 DOI: 10.1002/jnr.23066] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 02/29/2012] [Accepted: 03/04/2012] [Indexed: 01/01/2023]
Abstract
Parkinson's disease has been widely related to both apoptosis and oxidative stress. Many publications relate the loss of mitochondrial potential to an apoptosis-mediated cell death in different in vivo and in vitro models of this pathology. The present study used the dopaminegic specific neurotoxin 1-methyl-4-phenylpyridinium (MPP(+) ) on neuron-like PC12 cells, which is a well-accepted model of Parkinson's disease. Results showed an early increase in oxidants, which drives the modulation of c-Jun N-terminal kinase (JNK) and AKT/mammalian target of rapamycin (mTOR) pathways, mimicking peroxide treatment. However, the cell death found in neuronal PC12 cells treated with MPP(+) was not a caspase-associated apoptosis. Electron microscopic images illustrated autophagic cell death, which was confirmed by a Beclin-1 and ATG expression increase, accumulation of acidic vesicles, and rescue by an autophagy inhibitor. In conclusion, the boost in oxidants from MPP(+) treatment in neuronal PC12 is modulating both survival (AKT/mTOR) and death (JNK) pathways, which are the perpetrators of an autophagic cell death.
Collapse
Affiliation(s)
- Jezabel Rodríguez-Blanco
- Departamento de Morfología y Biología Celular, Facultad de Medicina, Universidad de Oviedo, Oviedo, Spain
| | | | | | | | | | | | | |
Collapse
|
91
|
Jia MA, Li Y, Lei L, Di D, Miao H, Fan Z. Alteration of gene expression profile in maize infected with a double-stranded RNA fijivirus associated with symptom development. MOLECULAR PLANT PATHOLOGY 2012; 13:251-62. [PMID: 21955602 PMCID: PMC6638758 DOI: 10.1111/j.1364-3703.2011.00743.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Maize rough dwarf disease caused by Rice black-streaked dwarf virus (RBSDV) is a major viral disease in China. It has been suggested that the viral infection of plants might cause distinct disease symptoms through the inhibition or activation of host gene transcription. We scanned the gene expression profile of RBSDV-infected maize through oligomer-based microarrays to reveal possible expression changes associated with symptom development. Our results demonstrate that various resistance-related maize genes and cell wall- and development-related genes, such as those for cellulose synthesis, are among the genes whose expression is dramatically altered. These results could aid in research into new strategies to protect cereal crops against viruses, and reveal the molecular mechanisms of development of specific symptoms in rough dwarf-related diseases.
Collapse
Affiliation(s)
- Meng-Ao Jia
- State Key Laboratory of Agrobiotechnology and Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | | | | | | | | | | |
Collapse
|
92
|
Abstract
Nutrient sensing and the capacity to respond to starvation is tightly regulated as a means of cell survival. Among the features of the starvation response are induction of both translational repression and autophagy. Despite the fact that intracellular parasite like Toxoplasma gondii within a host cell predicted to be nutrient rich, they encode genes involved in both translational repression and autophagy. We therefore examined the consequence of starvation, a classic trigger of autophagy, on intracellular parasites. As expected, starvation results in the activation of the translational repression system as evidenced by elevation of phosphorylated TgIF2α (TgIF2α-P). Surprisingly, we also observe a rapid and selective fragmentation of the single parasite mitochondrion that leads irreversibly to parasite death. This profound effect was dependent primarily on the limitation of amino acids and involved signalling by the parasite TOR homologue. Notably, the effective blockade of mitochondrial fragmentation by the autophagy inhibitor 3-methyl adenine (3-MA) suggests an autophagic mechanism. In the absence of a documented apoptotic cascade in T. gondii, the data suggest that autophagy is the primary mechanism of programmed cell death in T. gondii and potentially other related parasites.
Collapse
Affiliation(s)
- Debasish Ghosh
- Department of Microbiology, Immunology and Molecular Genetics; University of Kentucky College of Medicine, Lexington KY 40536, USA
| | - Julia L. Walton
- Department of Microbiology, Immunology and Molecular Genetics; University of Kentucky College of Medicine, Lexington KY 40536, USA
| | - Paul D. Roepe
- Departments of Chemistry, Biochemistry and Cellular and Molecular Biology, Georgetown University, Washington DC. 20057, USA
| | - Anthony P. Sinai
- Department of Microbiology, Immunology and Molecular Genetics; University of Kentucky College of Medicine, Lexington KY 40536, USA
| |
Collapse
|
93
|
Dumit VI, Dengjel J. Autophagosomal protein dynamics and influenza virus infection. Front Immunol 2012; 3:43. [PMID: 22566925 PMCID: PMC3342335 DOI: 10.3389/fimmu.2012.00043] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Accepted: 02/23/2012] [Indexed: 01/08/2023] Open
Abstract
Autophagy is a constitutive, catabolic process leading to the lysosomal degradation of cytosolic proteins and organelles. However, it is also induced under stress conditions, remodeling the eukaryotic cell by regulating energy, protein, and lipid homeostasis. It is likely that the autophagosomal/lysosomal pathway evolved primordially to recycle cell components, but further functionally developed as to become part of the immune system to defend against invading pathogens. Likewise, pathogenic, foreign agents developed strategies to fight back and even to employ the autophagy machinery to their own benefit. Hence, the regulation of autophagy has many implications on human health and disease. This review summarizes the molecular dynamics of autophagosome formation, maturation, and target selection. Membrane dynamics, as well as protein–protein and protein–membrane interactions are particularly addressed. In addition, it recapitulates current knowledge of the influences of influenza virus infection on the process.
Collapse
Affiliation(s)
- Verónica I Dumit
- School of Life Sciences - LifeNet, Freiburg Institute for Advanced Studies, University of Freiburg Freiburg, Germany
| | | |
Collapse
|
94
|
Differential degradation of full-length and cleaved ataxin-7 fragments in a novel stable inducible SCA7 model. J Mol Neurosci 2012; 47:219-33. [PMID: 22367614 PMCID: PMC3360856 DOI: 10.1007/s12031-012-9722-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 02/08/2012] [Indexed: 11/21/2022]
Abstract
Spinocerebellar ataxia type 7 (SCA7) is one of nine neurodegenerative disorders caused by expanded polyglutamine repeats, and a common toxic gain-of-function mechanism has been proposed. Proteolytic cleavage of several polyglutamine proteins has been identified and suggested to modulate the polyglutamine toxicity. In this study, we show that full-length and cleaved fragments of the SCA7 disease protein ataxin-7 (ATXN7) are differentially degraded. We found that the ubiquitin–proteosome system (UPS) was essential for the degradation of full-length endogenous ATXN7 or transgenic full-length ATXN7 with a normal or expanded glutamine repeat in both HEK 293T and stable PC12 cells. However, a similar contribution by UPS and autophagy was found for the degradation of proteolytically cleaved ATXN7 fragments. Furthermore, in our novel stable inducible PC12 model, induction of mutant ATXN7 expression resulted in toxicity and this toxicity was worsened by inhibition of either UPS or autophagy. In contrast, pharmacological activation of autophagy could ameliorate the ATXN7-induced toxicity. Based on our findings, we propose that both UPS and autophagy are important for the reduction of mutant ataxin-7-induced toxicity, and enhancing ATXN7 clearance through autophagy could be used as a potential therapeutic strategy in SCA7.
Collapse
|
95
|
The Cytoplasm-to-Vacuole Targeting Pathway: A Historical Perspective. Int J Cell Biol 2012; 2012:142634. [PMID: 22481942 PMCID: PMC3296166 DOI: 10.1155/2012/142634] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Accepted: 12/08/2011] [Indexed: 01/09/2023] Open
Abstract
From today's perspective, it is obvious that macroautophagy (hereafter autophagy) is an important pathway that is connected to a range of developmental and physiological processes. This viewpoint, however, is relatively recent, coinciding with the molecular identification of autophagy-related (Atg) components that function as the protein machinery that drives the dynamic membrane events of autophagy. It may be difficult, especially for scientists new to this area of research, to appreciate that the field of autophagy long existed as a “backwater” topic that attracted little interest or attention. Paralleling the development of the autophagy field was the identification and analysis of the cytoplasm-to-vacuole targeting (Cvt) pathway, the only characterized biosynthetic route that utilizes the Atg proteins. Here, we relate some of the initial history, including some never-before-revealed facts, of the analysis of the Cvt pathway and the convergence of those studies with autophagy.
Collapse
|
96
|
Abstract
Autophagy is a cytoplasmic catabolic process that protects the cell against stressful conditions. Damaged cellular components are funneled by autophagy into the lysosomes, where they are degraded and can be re-used as alternative building blocks for protein synthesis and cellular repair. In contrast, aging is the gradual failure over time of cellular repair mechanisms that leads to the accumulation of molecular and cellular damage and loss of function. The cell's capacity for autophagic degradation also declines with age, and this in itself may contribute to the aging process. Studies in model organisms ranging from yeast to mice have shown that single-gene mutations can extend lifespan in an evolutionarily conserved fashion, and provide evidence that the aging process can be modulated. Interestingly, autophagy is induced in a seemingly beneficial manner by many of the same perturbations that extend lifespan, including mutations in key signaling pathways such as the insulin/IGF-1 and TOR pathways. Here, we review recent progress, primarily derived from genetic studies with model organisms, in understanding the role of autophagy in aging and age-related diseases.
Collapse
Affiliation(s)
- Sara Gelino
- Sanford-Burnham Medical Research Institute, USA ; Graduate School of Biomedical Sciences, Del E. Webb Neuroscience, Aging and Stem Cell Research Center, Program of Development and Aging, La Jolla, CA, USA
| | | |
Collapse
|
97
|
Jotwani A, Richerson DN, Motta I, Julca-Zevallos O, Melia TJ. Approaches to the Study of Atg8-Mediated Membrane Dynamics In Vitro. Methods Cell Biol 2012; 108:93-116. [DOI: 10.1016/b978-0-12-386487-1.00005-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
98
|
Atg14: a key player in orchestrating autophagy. Int J Cell Biol 2011; 2011:713435. [PMID: 22013444 PMCID: PMC3195510 DOI: 10.1155/2011/713435] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Accepted: 07/28/2011] [Indexed: 01/06/2023] Open
Abstract
Phosphorylation of phosphatidylinositol (PtdIns) by a PtdIns 3-kinase is an essential process in autophagy. Atg14, a specific subunit of one of the PtdIns 3-kinase complexes, targets the complex to the probable site of autophagosome formation, thereby, sorting the complex to function specifically in autophagy. The N-terminal half of Atg14, containing coiled-coil domains, is required to form the PtdIns 3-kinase complex and target it to the proper site. The C-terminal half of yeast Atg14 is suggested to be involved in the formation of a normal-sized autophagosome. The C-terminal half of mammalian Atg14 contains the Barkor/Atg14(L) autophagosome-targeting sequence (BATS) domain that preferentially binds to the highly curved membranes containing PtdIns(3)P and is proposed to target the PtdIns 3-kinase complex efficiently to the isolation membrane. Thus, the N- and C-terminal halves of Atg14 are likely to have an essential core function and a regulatory role, respectively.
Collapse
|
99
|
Sun T, Li D, Wang L, Xia L, Ma J, Guan Z, Feng G, Zhu X. c-Jun NH2-terminal kinase activation is essential for up-regulation of LC3 during ceramide-induced autophagy in human nasopharyngeal carcinoma cells. J Transl Med 2011; 9:161. [PMID: 21943220 PMCID: PMC3189397 DOI: 10.1186/1479-5876-9-161] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2010] [Accepted: 09/26/2011] [Indexed: 01/02/2023] Open
Abstract
Background Autophagy is a dynamic catabolic process characterized by the formation of double membrane vacuoles termed autophagosomes. LC3, a homologue of yeast Atg8, takes part in autophagosome formation, but the exact regulation mechanism of LC3 still needs to be elucidated. Methods Ceramide-induced autophagy was determined by detecting LC3 expression with Western blotting and confocal microscopy in human nasopharyngeal carcinoma cell lines CNE2 and SUNE1. The activation of JNK pathway was assessed by Western blotting for phospho-specific forms of JNK and c-Jun. The JNK activity specific inhibitor, SP600125, and siRNA directed against JNK were used to block JNK/c-Jun pathway. ChIP and luciferase reporter analysis were applied to determine whether c-Jun was involved in the regulation of LC3 transcription. Results Ceramide-treated cells exhibited the characteristics of autophagy and JNK pathway activation. Inhibition of JNK pathway could block the ceramide-induced autophagy and the up-regulation of LC3 expression. Transcription factor c-Jun was involved in LC3 transcription regulation in response to ceramide treatment. Conclusions Ceramide could induce autophagy in human nasopharyngeal carcinoma cells, and activation of JNK pathway was involved in ceramide-induced autophagy and LC3 expression.
Collapse
Affiliation(s)
- Ting Sun
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou 510060, China
| | | | | | | | | | | | | | | |
Collapse
|
100
|
Twitty CG, Jensen SM, Hu HM, Fox BA. Tumor-derived autophagosome vaccine: induction of cross-protective immune responses against short-lived proteins through a p62-dependent mechanism. Clin Cancer Res 2011; 17:6467-81. [PMID: 21810919 DOI: 10.1158/1078-0432.ccr-11-0812] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE Tumor-specific antigens of 3-methylcholanthrene (MCA)-induced sarcomas were defined by the narrow immune responses they elicited, which uniquely rejected the homologous tumor, with no cross-reactions between independently derived syngeneic MCA-induced tumors. This study examines whether an autophagosome-enriched vaccine derived from bortezomib-treated sarcomas can elicit an immune response that cross-reacts with other unique sarcomas. EXPERIMENTAL DESIGN Mice were vaccinated with either MCA-induced sarcomas or autophagosomes derived from those tumors and later challenged with either homologous or nonhomologous sarcomas. In addition, 293 cells expressing a model antigen were used to understand the necessity of short-lived proteins (SLiP) in this novel vaccine. These findings were then tested in the sarcoma model. Autophagosomes were characterized by Western blotting and fluorescent microscopy, and their ability to generate immune responses was assessed in vitro by carboxyfluorescein succinimidyl ester dilution of antigen-specific T cells and in vivo by monitoring tumor growth. RESULTS In contrast to a whole-cell tumor vaccine, autophagosomes isolated from MCA-induced sarcomas treated with a proteasome inhibitor prime T cells that cross-react with different sarcomas and protect a significant proportion of vaccinated hosts from a nonhomologous tumor challenge. Ubiquitinated SLiPs, which are stabilized by proteasome blockade and delivered to autophagosomes in a p62/sequestosome-dependent fashion, are a critical component of the autophagosome vaccine, as their depletion limits vaccine efficacy. CONCLUSION This work suggests that common short-lived tumor-specific antigens, not physiologically available for cross-presentation, can be sequestered in autophagosomes by p62 and used as a vaccine to elicit cross-protection against independently derived sarcomas.
Collapse
Affiliation(s)
- Christopher G Twitty
- Robert W. Franz Cancer Research Center, Earle A. Chiles Research Institute, Providence Cancer Center, Providence Portland Medical Center, Portland, Oregon, USA
| | | | | | | |
Collapse
|