51
|
Breen MJ, Moran DM, Liu W, Huang X, Vary CPH, Bergan RC. Endoglin-mediated suppression of prostate cancer invasion is regulated by activin and bone morphogenetic protein type II receptors. PLoS One 2013; 8:e72407. [PMID: 23967299 PMCID: PMC3742533 DOI: 10.1371/journal.pone.0072407] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 07/15/2013] [Indexed: 12/25/2022] Open
Abstract
Mortality from prostate cancer (PCa) is due to the formation of metastatic disease. Understanding how that process is regulated is therefore critical. We previously demonstrated that endoglin, a type III transforming growth factor β (TGFβ) superfamily receptor, suppresses human PCa cell invasion and metastasis. Endoglin-mediated suppression of invasion was also shown by us to be dependent upon the type I TGFβ receptor, activin receptor-like kinase 2 (ALK2), and the downstream effector, Smad1. In this study we demonstrate for the first time that two type II TGFβ receptors are required for endoglin-mediated suppression of invasion: activin A receptor type IIA (ActRIIA) and bone morphogenetic protein receptor type II (BMPRII). Downstream signaling through these receptors is predominantly mediated by Smad1. ActRIIA stimulates Smad1 activation in a kinase-dependent manner, and this is required for suppression of invasion. In contrast BMPRII regulates Smad1 in a biphasic manner, promoting Smad1 signaling through its kinase domain but suppressing it through its cytoplasmic tail. BMPRII’s Smad1-regulatory effects are dependent upon its expression level. Further, its ability to suppress invasion is independent of either kinase function or tail domain. We demonstrate that ActRIIA and BMPRII physically interact, and that each also interacts with endoglin. The current findings demonstrate that both BMPRII and ActRIIA are necessary for endoglin-mediated suppression of human PCa cell invasion, that they have differential effects on Smad1 signaling, that they make separate contributions to regulation of invasion, and that they functionally and physically interact.
Collapse
Affiliation(s)
- Michael J. Breen
- Department of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Diarmuid M. Moran
- Department of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Wenzhe Liu
- Department of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Xiaoke Huang
- Department of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Calvin P. H. Vary
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine, United States of America
| | - Raymond C. Bergan
- Department of Medicine, Northwestern University, Chicago, Illinois, United States of America
- Robert H. Lurie Cancer Center, Northwestern University, Chicago, Illinois, United States of America
- Center for Molecular Innovation and Drug Discovery, Northwestern University, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
52
|
Geörg M, Maudsdotter L, Tavares R, Jonsson AB. Meningococcal resistance to antimicrobial peptides is mediated by bacterial adhesion and host cell RhoA and Cdc42 signalling. Cell Microbiol 2013; 15:1938-54. [PMID: 23834289 DOI: 10.1111/cmi.12163] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 06/06/2013] [Accepted: 06/28/2013] [Indexed: 11/28/2022]
Abstract
Antimicrobial peptides (AMPs) constitute an essential part of the innate immune defence. Pathogenic bacteria have evolved numerous strategies to withstand AMP-mediated killing. The influence of host epithelia on bacterial AMP resistance is, however, still largely unknown. We found that adhesion to pharyngeal epithelial cells protected Neisseria meningitidis, a leading cause of meningitis and sepsis, from the human cathelicidin LL-37, the cationic model amphipathic peptide (MAP) and the peptaibol alamethicin, but not from polymyxin B. Adhesion to primary airway epithelia resulted in a similar increase in LL-37 resistance. The inhibition of selective host cell signalling mediated by RhoA and Cdc42 was found to abolish the adhesion-induced LL-37 resistance by a mechanism unrelated to the actin cytoskeleton. Moreover, N. meningitidis triggered the formation of cholesterol-rich membrane microdomains in pharyngeal epithelial cells, and host cell cholesterol proved to be essential for adhesion-induced resistance. Our data highlight the importance of Rho GTPase-dependent host cell signalling for meningococcal AMP resistance. These results indicate that N. meningitidis selectively exploits the epithelial microenvironment in order to protect itself from LL-37.
Collapse
Affiliation(s)
- Miriam Geörg
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | | | | | | |
Collapse
|
53
|
Identification of a serine proteinase homolog (Sp-SPH) involved in immune defense in the mud crab Scylla paramamosain. PLoS One 2013; 8:e63787. [PMID: 23724001 PMCID: PMC3665817 DOI: 10.1371/journal.pone.0063787] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 04/05/2013] [Indexed: 11/26/2022] Open
Abstract
Clip domain serine proteinase homologs are involved in many biological processes including immune response. To identify the immune function of a serine proteinase homolog (Sp-SPH), originally isolated from hemocytes of the mud crab, Scylla paramamosain, the Sp-SPH was expressed recombinantly and purified for further studies. It was found that the Sp-SPH protein could bind to a number of bacteria (including Aeromonas hydrophila, Escherichia coli, Staphylococcus aureus, Vibrio fluvialis, Vibrio harveyi and Vibrio parahemolyticus), bacterial cell wall components such as lipopolysaccharide or peptidoglycan (PGN), and β-1, 3-glucan of fungus. But no direct antibacterial activity of Sp-SPH protein was shown by using minimum inhibitory concentration or minimum bactericidal concentration assays. Nevertheless, the Sp-SPH protein was found to significantly enhance the crab hemocyte adhesion activity (paired t-test, P<0.05), and increase phenoloxidase activity if triggered by PGN in vitro (paired t-test, P<0.05). Importantly, the Sp-SPH protein was demonstrated to promote the survival rate of the animals after challenge with A. hydrophila or V. parahemolyticus which were both recognized by Sp-SPH protein, if pre-incubated with Sp-SPH protein, respectively. Whereas, the crabs died much faster when challenged with Vibrio alginolyiicus, a pathogenic bacterium not recognized by Sp-SPH protein, compared to those of crabs challenged with A. hydrophila or V. parahemolyticus when pre-coated with Sp-SPH protein. Taken together, these data suggested that Sp-SPH molecule might play an important role in immune defense against bacterial infection in the mud crab S. paramamosain.
Collapse
|
54
|
Innate recognition by neutrophil granulocytes differs between Neisseria gonorrhoeae strains causing local or disseminating infections. Infect Immun 2013; 81:2358-70. [PMID: 23630956 DOI: 10.1128/iai.00128-13] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Members of the carcinoembryonic antigen-related cell adhesion molecule (CEACAM) family serve as cellular receptors for Neisseria gonorrhoeae. More specifically, neisserial colony opacity (OpaCEA)) proteins bind to epithelial CEACAMs (CEACAM1, CEA, CEACAM6) to promote bacterial colonization of the mucosa. In contrast, recognition by CEACAM3, expressed by human granulocytes, results in uptake and destruction of Opa(CEA)-expressing bacteria. Therefore, CEACAM3-mediated uptake might limit the spread of gonococci. However, some strains can cause disseminating gonococcal infections (DGIs), and it is currently unknown how these strains escape detection by granulocyte CEACAM3. Therefore, the opa gene loci from N. gonorrhoeae strain VP1, which was derived from a patient with disseminated gonococcal disease, were cloned and constitutively expressed in Escherichia coli. Similar to Opa proteins of the nondisseminating strain MS11, the majority of Opa proteins from strain VP1 bound epithelial CEACAMs and promoted CEACAM-initiated responses by epithelial cells. In sharp contrast to the Opa proteins of strain MS11, the Opa proteins of strain VP1 failed to interact with the human granulocyte receptor CEACAM3. Accordingly, bacteria expressing VP1 Opa proteins were not taken up by primary human granulocytes and did not trigger a strong oxidative burst. Analysis of Opa variants from four additional clinical DGI isolates again demonstrated a lack of CEACAM3 binding. In summary, our results reveal that particular N. gonorrhoeae strains express an Opa protein repertoire allowing engagement of epithelial CEACAMs for successful mucosal colonization, while avoiding recognition and elimination via CEACAM3-mediated phagocytosis. A failure of CEACAM3-mediated innate immune detection might be linked to the ability of gonococci to cause disseminated infections.
Collapse
|
55
|
Gilbert NM, Lewis WG, Lewis AL. Clinical features of bacterial vaginosis in a murine model of vaginal infection with Gardnerella vaginalis. PLoS One 2013; 8:e59539. [PMID: 23527214 PMCID: PMC3602284 DOI: 10.1371/journal.pone.0059539] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 02/15/2013] [Indexed: 02/03/2023] Open
Abstract
Bacterial vaginosis (BV) is a dysbiosis of the vaginal flora characterized by a shift from a Lactobacillus-dominant environment to a polymicrobial mixture including Actinobacteria and Gram-negative bacilli. BV is a common vaginal condition in women and is associated with increased risk of sexually transmitted infection and adverse pregnancy outcomes such as preterm birth. Gardnerella vaginalis is one of the most frequently isolated bacterial species in BV. However, there has been much debate in the literature concerning the contribution of G. vaginalis to the etiology of BV, since it is also present in a significant proportion of healthy women. Here we present a new murine vaginal infection model with a clinical isolate of G. vaginalis. Our data demonstrate that this model displays key features used clinically to diagnose BV, including the presence of sialidase activity and exfoliated epithelial cells with adherent bacteria (reminiscent of clue cells). G. vaginalis was capable of ascending uterine infection, which correlated with the degree of vaginal infection and level of vaginal sialidase activity. The host response to G. vaginalis infection was characterized by robust vaginal epithelial cell exfoliation in the absence of histological inflammation. Our analyses of clinical specimens from women with BV revealed a measureable epithelial exfoliation response compared to women with normal flora, a phenotype that, to our knowledge, is measured here for the first time. The results of this study demonstrate that G. vaginalis is sufficient to cause BV phenotypes and suggest that this organism may contribute to BV etiology and associated complications. This is the first time vaginal infection by a BV associated bacterium in an animal has been shown to parallel the human disease with regard to clinical diagnostic features. Future studies with this model should facilitate investigation of important questions regarding BV etiology, pathogenesis and associated complications.
Collapse
Affiliation(s)
- Nicole M. Gilbert
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Warren G. Lewis
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Amanda L. Lewis
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Obstetrics and Gynecology, Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
56
|
Endothelial endoglin is involved in inflammation: role in leukocyte adhesion and transmigration. Blood 2012; 121:403-15. [PMID: 23074273 DOI: 10.1182/blood-2012-06-435347] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Human endoglin is an RGD-containing transmembrane glycoprotein identified in vascular endothelial cells. Although endoglin is essential for angiogenesis and its expression is up-regulated in inflammation and at sites of leukocyte extravasation, its role in leukocyte trafficking is unknown. This function was tested in endoglin heterozygous mice (Eng(+/-)) and their wild-type siblings Eng(+/+) treated with carrageenan or LPS as inflammatory agents. Both stimuli showed that inflammation-induced leukocyte transendothelial migration to peritoneum or lungs was significantly lower in Eng(+/-) than in Eng(+/+) mice. Leukocyte transmigration through cell monolayers of endoglin transfectants was clearly enhanced in the presence of endoglin. Coating transwells with the RGD-containing extracellular domain of endoglin, enhanced leukocyte transmigration, and this increased motility was inhibited by soluble endoglin. Leukocytes stimulated with CXCL12, a chemokine involved in inflammation, strongly adhered to endoglin-coated plates and to endoglin-expressing endothelial cells. This endoglin-dependent adhesion was abolished by soluble endoglin, RGD peptides, the anti-integrin α5β1 inhibitory antibody LIA1/2 and the chemokine receptor inhibitor AMD3100. These results demonstrate for the first time that endothelial endoglin interacts with leukocyte integrin α5β1 via its RGD motif, and this adhesion process is stimulated by the inflammatory chemokine CXCL12, suggesting a regulatory role for endoglin in transendothelial leukocyte trafficking.
Collapse
|
57
|
Abstract
The ferric uptake regulator (Fur) protein has been shown to function as a repressor of transcription in a number of diverse microorganisms. However, recent studies have established that Fur can function at a global level as both an activator and a repressor of transcription through both direct and indirect mechanisms. Fur-mediated indirect activation occurs via the repression of additional repressor proteins, or small regulatory RNAs, thereby activating transcription of a previously silent gene. Fur mediates direct activation through binding of Fur to the promoter regions of genes. Whereas the repressive mechanism of Fur has been thoroughly investigated, emerging studies on direct and indirect Fur-mediated activation mechanisms have revealed novel global regulatory circuits.
Collapse
|
58
|
Hauck CR, Borisova M, Muenzner P. Exploitation of integrin function by pathogenic microbes. Curr Opin Cell Biol 2012; 24:637-44. [PMID: 22884865 DOI: 10.1016/j.ceb.2012.07.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Revised: 07/16/2012] [Accepted: 07/17/2012] [Indexed: 01/26/2023]
Abstract
Numerous pathogens express adhesive proteins to directly or indirectly associate with integrins. It is well established that by targeting integrins, microbes not only establish an intimate contact with host tissues, but also trigger cellular responses including bacterial internalization. This review will summarize current knowledge about the role of these integrin-dependent processes during infection and how bacteria assure that they efficiently connect to integrins for host cell invasion or translocation of effector molecules. Furthermore, we will discuss recent insight demonstrating that bacteria can harness the physiological, matrix-binding function of integrins for promoting host colonization. From these combined studies, it is becoming evident that integrins are a common nexus for the manipulation of cellular functions by bacterial pathogens. Approaches to disrupt this connection might be an appropriate means to obtain broad-acting tools to modulate a spectrum of infectious diseases.
Collapse
Affiliation(s)
- Christof R Hauck
- Lehrstuhl Zellbiologie, Fachbereich Biologie, Universität Konstanz, Germany.
| | | | | |
Collapse
|
59
|
Buntru A, Roth A, Nyffenegger-Jann NJ, Hauck CR. HemITAM signaling by CEACAM3, a human granulocyte receptor recognizing bacterial pathogens. Arch Biochem Biophys 2012; 524:77-83. [DOI: 10.1016/j.abb.2012.03.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Revised: 03/15/2012] [Accepted: 03/16/2012] [Indexed: 10/28/2022]
|
60
|
Voges M, Bachmann V, Naujoks J, Kopp K, Hauck CR. Extracellular IgC2 constant domains of CEACAMs mediate PI3K sensitivity during uptake of pathogens. PLoS One 2012; 7:e39908. [PMID: 22768164 PMCID: PMC3386982 DOI: 10.1371/journal.pone.0039908] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Accepted: 05/29/2012] [Indexed: 11/22/2022] Open
Abstract
Background Several pathogenic bacteria utilize receptors of the CEACAM family to attach to human cells. Binding to different members of this receptor family can result in uptake of the bacteria. Uptake of Neisseria gonorrhoeae, a Gram-negative human pathogen, via CEACAMs found on epithelial cells, such as CEACAM1, CEA or CEACAM6, differs mechanistically from phagocytosis mediated by CEACAM3, a CEACAM family member expressed selectively by human granulocytes. Principal Findings We find that CEACAM1- as well as CEACAM3-mediated bacterial internalization are accompanied by a rapid increase in phosphatidylinositol-3,4,5 phosphate (PI(3,4,5)P) at the site of bacterial entry. However, pharmacological inhibition of phosphatidylinositol-3′ kinase (PI3K) selectively affects CEACAM1-mediated uptake of Neisseria gonorrhoeae. Accordingly, overexpression of the PI(3,4,5)P phosphatase SHIP diminishes and expression of a constitutive active PI3K increases CEACAM1-mediated internalization of gonococci, without influencing uptake by CEACAM3. Furthermore, bacterial uptake by GPI-linked members of the CEACAM family (CEA and CEACAM6) and CEACAM1-mediated internalization of N. meningitidis by endothelial cells require PI3K activity. Sensitivity of CEACAM1-mediated uptake toward PI3K inhibition is independent of receptor localization in cholesterol-rich membrane microdomains and does not require the cytoplasmic or the transmembrane domain of CEACAM1. However, PI3K inhibitor sensitivity requires the IgC2-like domains of CEACAM1, which are also present in CEA and CEACAM6, but which are absent from CEACAM3. Accordingly, overexpression of CEACAM1 IgC2 domains blocks CEACAM1-mediated internalization. Conclusions Our results provide novel mechanistic insight into CEACAM1-mediated endocytosis and suggest that epithelial CEACAMs associate in cis with other membrane receptor(s) via their extracellular domains to trigger bacterial uptake in a PI3K-dependent manner.
Collapse
Affiliation(s)
- Maike Voges
- Lehrstuhl Zellbiologie, Universität Konstanz, Konstanz, Germany
- Konstanz Research School Chemical Biology, Universität Konstanz, Konstanz, Germany
| | - Verena Bachmann
- Lehrstuhl Zellbiologie, Universität Konstanz, Konstanz, Germany
| | - Jan Naujoks
- Lehrstuhl Zellbiologie, Universität Konstanz, Konstanz, Germany
| | - Kathrin Kopp
- Lehrstuhl Zellbiologie, Universität Konstanz, Konstanz, Germany
| | - Christof R. Hauck
- Lehrstuhl Zellbiologie, Universität Konstanz, Konstanz, Germany
- Konstanz Research School Chemical Biology, Universität Konstanz, Konstanz, Germany
- * E-mail:
| |
Collapse
|
61
|
Kasprzak A, Surdacka A, Tomczak M, Konkol M. Role of high endothelial postcapillary venules and selected adhesion molecules in periodontal diseases: a review. J Periodontal Res 2012; 48:1-21. [PMID: 22582923 DOI: 10.1111/j.1600-0765.2012.01492.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Periodontitis is accompanied by the proliferation of small blood vessels in the gingival lamina propria. Specialized postcapillary venules, termed periodontal high endothelial-like venules, are also present, and demonstrate morphological and functional traits similar to those of high endothelial venules (HEVs) in lymphatic organs. The suggested role of HEVs in the pathogenesis of chronic periodontitis involves participation in leukocyte transendothelial migration and therefore proinflammatory effects appear. Recent observations suggest that chronic periodontitis is an independent risk factor for systemic vascular disease and may result in stimulation of the synthesis of acute phase protein by cytokines released by periodontal high endothelial cells (HECs). However, tissue expression of HEV-linked adhesion molecules has not been evaluated in the gingiva of patients with chronic periodontitis. This is significant in relation to potential therapy targeting expression of the adhesion molecules. In this review, current knowledge of HEV structure and the related expression of four surface adhesion molecules of HECs [CD34, platelet endothelial cell adhesion molecule 1, endoglin and intercellular adhesion molecule 1 (ICAM-1)], involved in the key steps of the adhesion cascade in periodontal diseases, are discussed. Most studies on the expression of adhesion molecules in the development and progression of periodontal diseases pertain to ICAM-1 (CD54). Studies by the authors demonstrated quantitatively similar expression of three of four selected surface markers in gingival HEVs of patients with chronic periodontitis and in HEVs of reactive lymph nodes, confirming morphological and functional similarity of HEVs in pathologically altered tissues with those in lymphoid tissues.
Collapse
Affiliation(s)
- A Kasprzak
- Department of Histology and Embryology, Poznan University of Medical Sciences, Poznań, Poland.
| | | | | | | |
Collapse
|
62
|
The adaptor molecule Nck localizes the WAVE complex to promote actin polymerization during CEACAM3-mediated phagocytosis of bacteria. PLoS One 2012; 7:e32808. [PMID: 22448228 PMCID: PMC3308951 DOI: 10.1371/journal.pone.0032808] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Accepted: 02/02/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND CEACAM3 is a granulocyte receptor mediating the opsonin-independent recognition and phagocytosis of human-restricted CEACAM-binding bacteria. CEACAM3 function depends on an intracellular immunoreceptor tyrosine-based activation motif (ITAM)-like sequence that is tyrosine phosphorylated by Src family kinases upon receptor engagement. The phosphorylated ITAM-like sequence triggers GTP-loading of Rac by directly associating with the guanine nucleotide exchange factor (GEF) Vav. Rac stimulation in turn is critical for actin cytoskeleton rearrangements that generate lamellipodial protrusions and lead to bacterial uptake. PRINCIPAL FINDINGS In our present study we provide biochemical and microscopic evidence that the adaptor proteins Nck1 and Nck2, but not CrkL, Grb2 or SLP-76, bind to tyrosine phosphorylated CEACAM3. The association is phosphorylation-dependent and requires the Nck SH2 domain. Overexpression of the isolated Nck1 SH2 domain, RNAi-mediated knock-down of Nck1, or genetic deletion of Nck1 and Nck2 interfere with CEACAM3-mediated bacterial internalization and with the formation of lamellipodial protrusions. Nck is constitutively associated with WAVE2 and directs the actin nucleation promoting WAVE complex to tyrosine phosphorylated CEACAM3. In turn, dominant-negative WAVE2 as well as shRNA-mediated knock-down of WAVE2 or the WAVE-complex component Nap1 reduce internalization of bacteria. CONCLUSIONS Our results provide novel mechanistic insight into CEACAM3-initiated phagocytosis. We suggest that the CEACAM3 ITAM-like sequence is optimized to co-ordinate a minimal set of cellular factors needed to efficiently trigger actin-based lamellipodial protrusions and rapid pathogen engulfment.
Collapse
|
63
|
Jackson LA, Dyer DW. Protocol for gene expression profiling using DNA microarrays in Neisseria gonorrhoeae. Methods Mol Biol 2012; 903:343-57. [PMID: 22782831 DOI: 10.1007/978-1-61779-937-2_24] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Gene expression profiling using DNA microarrays has become commonplace in current molecular biology practices, and has dramatically enhanced our understanding of the biology of Neisseria spp., and the interaction of these organisms with the host. With the choice of microarray platforms offered for gene expression profiling and commercially available arrays, investigators must ask several central questions to make decisions based on their research focus. Are arrays on hand for their organism and if not then would it be cost-effective to design custom arrays. Other important considerations; what types of specialized equipment for array hybridization and signal detection are required and is the specificity and sensitivity of the array adequate for your application. Here, we describe the use of a custom 12K CombiMatrix ElectraSense™ oligonucleotide microarray format for assessing global gene expression profiles in Neisseria spp.
Collapse
Affiliation(s)
- Lydgia A Jackson
- Department of Microbiology and Immunology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| | | |
Collapse
|
64
|
Li G, Jiao H, Yan H, Wang J, Wang X, Ji M. Establishment of a human CEACAM1 transgenic mouse model for the study of gonococcal infections. J Microbiol Methods 2011; 87:350-4. [PMID: 21986029 DOI: 10.1016/j.mimet.2011.09.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Revised: 09/25/2011] [Accepted: 09/26/2011] [Indexed: 12/30/2022]
Abstract
Neisseria gonorrhoeae is the causative microorganism for the sexually transmitted disease (STD) gonorrhea and humans are its only natural host. An animal model would be a useful tool for gonorrhea research, therefore we developed the hCEACAM1 transgenic mice, using an eukaryotic expression vector, pCDPCAM1-GI. This construct was microinjected into the zygotes of C57BL/6 mice and 22 F0 generation transgenic mice were obtained. Four (lines 50, 53, 54, and 59) of the F0 generation were found to carry the transgene by PCR and sequence analysis, respectively. Western blotting and Fluorescence-Activated Cell Sorting Analysis demonstrated that hCEACAM1 was expressed on the cell membrane of various tissues in the line 53 transgenic mouse. To initiate the disease in the animal model, the F2 or F3 transgenic mice were inoculated with N. gonorrhoeae intravaginally. Compared with normal mice, N. gonorrhoeae can successfully infect and cause inflammation in the transgenic mice. These data suggested the feasibility of using hCEACAM1 transgenic mice as an animal model for gonococcal infections.
Collapse
Affiliation(s)
- Guocai Li
- Department of Pathogen Biology and Immunology, Yangzhou University School of Medicine, Yangzhou, China.
| | | | | | | | | | | |
Collapse
|
65
|
Jerse AE, Wu H, Packiam M, Vonck RA, Begum AA, Garvin LE. Estradiol-Treated Female Mice as Surrogate Hosts for Neisseria gonorrhoeae Genital Tract Infections. Front Microbiol 2011; 2:107. [PMID: 21747807 PMCID: PMC3129519 DOI: 10.3389/fmicb.2011.00107] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Accepted: 04/28/2011] [Indexed: 12/16/2022] Open
Abstract
Historically, animal modeling of gonorrhea has been hampered by the exclusive adaptation of Neisseria gonorrhoeae to humans. Genital tract infection can be established in female mice that are treated with 17β-estradiol, however, and many features of experimental murine infection mimic human infection. Here we review the colonization kinetics and host response to experimental murine gonococcal infection, including mouse strain differences and evidence that IL-17 responses, toll-like receptor 4, and T regulatory cells play a role in infection. We also discuss the strengths and limitations of the mouse system and the potential of transgenic mice to circumvent host restrictions. Additionally, we review studies with genetically defined mutants that demonstrated a role for sialyltransferase and the MtrC-MtrD-MtrE active efflux pump in evading innate defenses in vivo, but not for factors hypothesized to protect against the phagocytic respiratory burst and H(2)O(2)-producing lactobacilli. Studies using estradiol-treated mice have also revealed the existence of non-host-restricted iron sources in the female genital tract and the influence of hormonal factors on colonization kinetics and selection for opacity (Opa) protein expression. Recent work by others with estradiol-treated mice that are transgenic for human carcinoembryonic adhesion molecules (CEACAMs) supports a role for Opa proteins in enhancing cellular attachment and thus reduced shedding of N. gonorrhoeae. Finally we discuss the use of the mouse model in product testing and a recently developed gonorrhea chlamydia coinfection model.
Collapse
Affiliation(s)
- Ann E Jerse
- Department of Microbiology and Immunology, F. Edward Hebert School of Medicine, Uniformed Services University Bethesda, MD, USA
| | | | | | | | | | | |
Collapse
|
66
|
CEACAM6 gene variants in inflammatory bowel disease. PLoS One 2011; 6:e19319. [PMID: 21559399 PMCID: PMC3084820 DOI: 10.1371/journal.pone.0019319] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Accepted: 03/31/2011] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The carcinoembryonic antigen-related cell adhesion molecule 6 (CEACAM6) acts as a receptor for adherent-invasive E. coli (AIEC) and its ileal expression is increased in patients with Crohn's disease (CD). Given its contribution to the pathogenesis of CD, we aimed to investigate the role of genetic variants in the CEACAM6 region in patients with inflammatory bowel diseases (IBD). METHODOLOGY In this study, a total of 2,683 genomic DNA samples (including DNA from 858 CD patients, 475 patients with ulcerative colitis (UC), and 1,350 healthy, unrelated controls) was analyzed for eight CEACAM6 SNPs (rs10415946, rs1805223 = p.Pro42Pro, rs4803507, rs4803508, rs11548735 = p.Gly239Val, rs7246116 = pHis260His, rs2701, rs10416839). In addition, a detailed haplotype analysis and genotype-phenotype analysis were performed. Overall, our genotype analysis did not reveal any significant association of the investigated CEACAM6 SNPs and haplotypes with CD or UC susceptibility, although certain CEACAM6 SNPs modulated CEACAM6 expression in intestinal epithelial cell lines. Despite its function as receptor of AIEC in ileal CD, we found no association of the CEACAM6 SNPs with ileal or ileocolonic CD. Moreover, there was no evidence of epistasis between the analyzed CEACAM6 variants and the main CD-associated NOD2, IL23R and ATG16L1 variants. CONCLUSIONS This study represents the first detailed analysis of CEACAM6 variants in IBD patients. Despite its important role in bacterial attachment in ileal CD, we could not demonstrate a role for CEACAM6 variants in IBD susceptibility or regarding an ileal CD phenotype. Further functional studies are required to analyze if these gene variants modulate ileal bacterial attachment.
Collapse
|
67
|
Kim M, Ogawa M, Mimuro H, Sasakawa C. Reinforcement of epithelial cell adhesion to basement membrane by a bacterial pathogen as a new infectious stratagem. Virulence 2011; 1:52-5. [PMID: 21178415 DOI: 10.4161/viru.1.1.10486] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The intestinal epithelium undergoes a rapid turnover in addition to rapid exfoliation in response to bacterial infection, thus acting as an intrinsic defense against microbial intruders. It has long been questioned how mucosal pathogens can circumvent the intestinal defense systems. Our recent discovery of a bacterial ploy used by Shigella provided us with fresh insight. Shigella delivers OspE via the type III secretion system during multiplication within epithelial cells. This effector protein reinforces epithelial adherence to the basement membrane by interacting with integrin-linked kinase (ILK), a unique intracellular Ser/Thr kinase that links the cell-adhesion receptors, integrin, and growth factors to the actin cytoskeleton. The interaction between OspE and ILK increased formation of focal adhesions (FAs) and surface levels of b1-integrin, while suppressing phosphorylation of FAK and paxillin, thus suppressing rapid turnover of FAs, reducing cell motility and promoting cell adhesion to extracellular matrix. The impact of this OspE-ILK interplay was demonstrated both in vitro and in vivo by infecting polarized epithelial cell monolayers and guinea pig colons with Shigella possessing or lacking the ospE gene. The findings thus establish a new class of virulence-associated factors, and provide new insight into the functioning of the intestinal barrier and bacterial strategies for circumventing it.
Collapse
Affiliation(s)
- Minsoo Kim
- Department of Infectious Disease Control, International Research Center for Infectious Diseases, University of Tokyo, Tokyo, Japan
| | | | | | | |
Collapse
|
68
|
Kuespert K, Roth A, Hauck CR. Neisseria meningitidis has two independent modes of recognizing its human receptor CEACAM1. PLoS One 2011; 6:e14609. [PMID: 21298042 PMCID: PMC3029278 DOI: 10.1371/journal.pone.0014609] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Accepted: 12/28/2010] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Several human-restricted gram-negative bacteria exploit carcinoembryonic antigen-related cell adhesion molecules (CEACAMs) for host colonization. For example, Neisseria meningitidis engages these human receptors via outer membrane proteins of the colony opacity-associated (Opa) protein family triggering internalization into non-phagocytic cells. PRINCIPAL FINDINGS We report that a non-opaque strain of N. meningitidis selectively interacts with CEACAM1, but not other CEACAM family members. Using functional assays of bacterial adhesion and internalisation, microscopic analysis, and a panel of CEACAM1 deletion mutants we demonstrate that the engagement of CEACAM1 by non-opaque meningococci occurs in a manner distinct from Opa protein-mediated association. In particular, the amino-terminal domain of CEACAM1 is necessary, but not sufficient for Opa protein-independent binding, which requires multiple extracellular domains of the human receptor in a cellular context. Knock-down of CEACAM1 interferes with binding to lung epithelial cells, whereas chemical or pharmacological disruption of host protein glycosylation does not abrogate CEACAM1 recognition by non-opaque meningococci. The previously characterized meningococcal invasins NadA or Opc do not operate in a CEACAM1-dependent manner. CONCLUSIONS The results demonstrate a mechanistically distinct, Opa protein-independent interaction between N. meningitidis and human CEACAM1. Our functional investigations suggest the presence of a second CEACAM1-binding invasin on the meningococcal surface that associates with the protein backbone and not the carbohydrate structures of CEACAM1. The redundancy in meningococcal CEACAM1-binding factors further highlights the important role of CEACAM recognition in the biology of this human-adapted pathogen.
Collapse
|
69
|
Sadarangani M, Pollard AJ, Gray-Owen SD. Opa proteins and CEACAMs: pathways of immune engagement for pathogenic Neisseria. FEMS Microbiol Rev 2011; 35:498-514. [PMID: 21204865 DOI: 10.1111/j.1574-6976.2010.00260.x] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Neisseria meningitidis and Neisseria gonorrhoeae are globally important pathogens, which in part owe their success to their ability to successfully evade human immune responses over long periods. The phase-variable opacity-associated (Opa) adhesin proteins are a major surface component of these organisms, and are responsible for bacterial adherence and entry into host cells and interactions with the immune system. Most immune interactions are mediated via binding to members of the carcinoembryonic antigen cell adhesion molecule (CEACAM) family. These Opa variants are able to bind to different receptors of the CEACAM family on epithelial cells, neutrophils, and T and B lymphocytes, influencing the innate and adaptive immune responses. Increased epithelial cell adhesion creates the potential for prolonged infection, invasion and dissemination. Furthermore, Opa proteins may inhibit T-lymphocyte activation and proliferation, B-cell antibody production, and innate inflammatory responses by infected epithelia, in addition to conferring increased resistance to antibody-dependent, complement-mediated killing. While vaccines containing Opa proteins could induce adhesion-blocking and bactericidal antibodies, the consequence of CEACAM binding by a candidate Opa-containing vaccine requires further investigation. This review summarizes current knowledge of the immunological consequences of the interaction between meningococcal and gonococcal Opa proteins and human CEACAMs, considering the implications for pathogenesis and vaccine development.
Collapse
Affiliation(s)
- Manish Sadarangani
- Oxford Vaccine Group, Department of Paediatrics, Centre for Clinical Vaccinology and Tropical Medicine, University of Oxford, Churchill Hospital, Oxford, UK.
| | | | | |
Collapse
|
70
|
Buntru A, Kopp K, Voges M, Frank R, Bachmann V, Hauck CR. Phosphatidylinositol 3'-kinase activity is critical for initiating the oxidative burst and bacterial destruction during CEACAM3-mediated phagocytosis. J Biol Chem 2011; 286:9555-66. [PMID: 21216968 DOI: 10.1074/jbc.m110.216085] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Carcinoembryonic antigen-related cell adhesion molecule 3 (CEACAM3) is an immunoglobulin-related receptor expressed on human granulocytes. CEACAM3 functions as a single chain phagocytotic receptor recognizing gram-negative bacteria such as Neisseria gonorrhoeae, which possess CEACAM-binding adhesins on their surface. The cytoplasmic domain of CEACAM3 contains an immunoreceptor tyrosine-based activation motif (ITAM)-like sequence that is phosphorylated upon receptor engagement. Here we show that the SH2 domains of the regulatory subunit of phosphatidylinositol 3'-kinase (PI3K) bind to tyrosine residue 230 of CEACAM3 in a phosphorylation-dependent manner. PI3K is rapidly recruited and directly associates with CEACAM3 upon bacterial binding as shown by FRET analysis. Although PI3K activity is not required for efficient uptake of the bacteria by CEACAM3-transfected cells or primary human granulocytes, it is critical for the stimulated production of reactive oxygen species by infected phagocytes and the intracellular degradation of CEACAM-binding bacteria. Together, our results highlight the ability of CEACAM3 to coordinate signaling events that not only mediate bacterial uptake, but also trigger the killing of internalized pathogens.
Collapse
Affiliation(s)
- Alexander Buntru
- Lehrstuhl für Zellbiologie, Universität Konstanz, 78457 Konstanz, Germany
| | | | | | | | | | | |
Collapse
|
71
|
Real-time impedance analysis of host cell response to meningococcal infection. J Microbiol Methods 2010; 84:101-8. [PMID: 21078346 DOI: 10.1016/j.mimet.2010.11.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Revised: 10/28/2010] [Accepted: 11/07/2010] [Indexed: 11/21/2022]
Abstract
Measuring cell proliferation and cell death during bacterial infection involves performing end-point assays that represent the response at a single time point. A new technology from Roche Applied Science and ACEA Biosciences allows continuous monitoring of cells in real-time using specialized cell culture microplates containing micro-electrodes. The xCELLigence system enables continuous measurement and quantification of cell adhesion, proliferation, spreading, cell death and detachment, thus creating a picture of cell function during bacterial infection. Furthermore, lag and log phases can be determined to estimate optimal times to infect cells. In this study we used this system to provide valuable insights into cell function in response to several virulence factors of the meningitis causing pathogen Neisseria meningitidis, including the lipopolysaccharide (LPS), the polysaccharide capsule and the outer membrane protein Opc. We observed that prolonged time of infection with pathogenic Neisseria strains led to morphological changes including cell rounding and loss of cell-cell contact, thus resulting in changed electrical impedance as monitored in real-time. Furthermore, cell function in response to 14 strains of apathogenic Neisseria spp. (N. lactamica and N. mucosa) was analyzed. In contrast, infection with apathogenic N. lactamica isolates did not change electrical impedance monitored for 48 h. Together our data show that this system can be used as a rapid monitoring tool for cellular function in response to bacterial infection and combines high data acquisition rates with ease of handling.
Collapse
|
72
|
Kim M, Ashida H, Ogawa M, Yoshikawa Y, Mimuro H, Sasakawa C. Bacterial interactions with the host epithelium. Cell Host Microbe 2010; 8:20-35. [PMID: 20638639 DOI: 10.1016/j.chom.2010.06.006] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Revised: 04/03/2010] [Accepted: 04/27/2010] [Indexed: 12/14/2022]
Abstract
The gastrointestinal epithelium deploys multiple innate defense mechanisms to fight microbial intruders, including epithelial integrity, rapid epithelial cell turnover, quick expulsion of infected cells, autophagy, and innate immune responses. Nevertheless, many bacterial pathogens are equipped with highly evolved infectious stratagems that circumvent these defense systems and use the epithelium as a replicative foothold. During replication on and within the gastrointestinal epithelium, gastrointestinal bacterial pathogens secrete various components, toxins, and effectors that can subvert, usurp, and exploit host cellular functions to benefit bacterial survival. In addition, bacterial pathogens use a variety of mechanisms that balance breaching the epithelial barrier with maintaining the epithelium in order to promote bacterial colonization. These complex strategies represent a new paradigm of bacterial pathogenesis.
Collapse
Affiliation(s)
- Minsoo Kim
- Department of Infectious Disease Control, International Research Center for Infectious Diseases, University of Tokyo 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | | | | | | | | | | |
Collapse
|
73
|
Muenzner P, Bachmann V, Zimmermann W, Hentschel J, Hauck CR. Human-restricted bacterial pathogens block shedding of epithelial cells by stimulating integrin activation. Science 2010; 329:1197-201. [PMID: 20813953 DOI: 10.1126/science.1190892] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Colonization of mucosal surfaces is the key initial step in most bacterial infections. One mechanism protecting the mucosa is the rapid shedding of epithelial cells, also termed exfoliation, but it is unclear how pathogens counteract this process. We found that carcinoembryonic antigen (CEA)-binding bacteria colonized the urogenital tract of CEA transgenic mice, but not of wild-type mice, by suppressing exfoliation of mucosal cells. CEA binding triggered de novo expression of the transforming growth factor receptor CD105, changing focal adhesion composition and activating beta1 integrins. This manipulation of integrin inside-out signaling promotes efficient mucosal colonization and represents a potential target to prevent or cure bacterial infections.
Collapse
Affiliation(s)
- Petra Muenzner
- Lehrstuhl Zellbiologie, Fachbereich Biologie, Universität Konstanz, 78457 Konstanz, Germany
| | | | | | | | | |
Collapse
|
74
|
CEACAM1 recognition by bacterial pathogens is species-specific. BMC Microbiol 2010; 10:117. [PMID: 20406467 PMCID: PMC2871271 DOI: 10.1186/1471-2180-10-117] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Accepted: 04/20/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1), an immunoglobulin (Ig)-related glycoprotein, serves as cellular receptor for a variety of Gram-negative bacterial pathogens associated with the human mucosa. In particular, Neisseria gonorrhoeae, N. meningitidis, Moraxella catarrhalis, and Haemophilus influenzae possess well-characterized CEACAM1-binding adhesins. CEACAM1 is typically involved in cell-cell attachment, epithelial differentiation, neovascularisation and regulation of T-cell proliferation, and is one of the few CEACAM family members with homologues in different mammalian lineages. However, it is unknown whether bacterial adhesins of human pathogens can recognize CEACAM1 orthologues from other mammals. RESULTS Sequence comparisons of the amino-terminal Ig-variable-like domain of CEACAM1 reveal that the highest sequence divergence between human, murine, canine and bovine orthologues is found in the beta-strands comprising the bacteria-binding CC'FG-face of the Ig-fold. Using GFP-tagged, soluble amino-terminal domains of CEACAM1, we demonstrate that bacterial pathogens selectively associate with human, but not other mammalian CEACAM1 orthologues. Whereas full-length human CEACAM1 can mediate internalization of Neisseria gonorrhoeae in transfected cells, murine CEACAM1 fails to support bacterial internalization, demonstrating that the sequence divergence of CEACAM1 orthologues has functional consequences with regard to bacterial recognition and cellular invasion. CONCLUSIONS Our results establish the selective interaction of several human-restricted bacterial pathogens with human CEACAM1 and suggest that co-evolution of microbial adhesins with their corresponding receptors on mammalian cells contributes to the limited host range of these highly adapted infectious agents.
Collapse
|
75
|
Abstract
The human species is the only natural host of Neisseria meningitidis, an important cause of bacterial meningitis globally, and, despite its association with devastating diseases, N. meningitidis is a commensal organism found frequently in the respiratory tract of healthy individuals. To date, antibiotic resistance is relatively uncommon in N. meningitidis isolates but, due to the rapid onset of disease in susceptible hosts, the mortality rate remains approx. 10%. Additionally, patients who survive meningococcal disease often endure numerous debilitating sequelae. N. meningitidis strains are classified primarily into serogroups based on the type of polysaccharide capsule expressed. In total, 13 serogroups have been described; however, the majority of disease is caused by strains belonging to one of only five serogroups. Although vaccines have been developed against some of these, a universal meningococcal vaccine remains a challenge due to successful immune evasion strategies of the organism, including mimicry of host structures as well as frequent antigenic variation. N. meningitidis express a range of virulence factors including capsular polysaccharide, lipopolysaccharide and a number of surface-expressed adhesive proteins. Variation of these surface structures is necessary for meningococci to evade killing by host defence mechanisms. Nonetheless, adhesion to host cells and tissues needs to be maintained to enable colonization and ensure bacterial survival in the niche. The aims of the present review are to provide a brief outline of meningococcal carriage, disease and burden to society. With this background, we discuss several bacterial strategies that may enable its survival in the human respiratory tract during colonization and in the blood during infection. We also examine several known meningococcal adhesion mechanisms and conclude with a section on the potential processes that may operate in vivo as meningococci progress from the respiratory niche through the blood to reach the central nervous system.
Collapse
|
76
|
Sasakawa C. A new paradigm of bacteria-gut interplay brought through the study of Shigella. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2010; 86:229-243. [PMID: 20228623 PMCID: PMC3417848 DOI: 10.2183/pjab.86.229] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Accepted: 01/08/2010] [Indexed: 05/28/2023]
Abstract
Bacteria-gut epithelial interplay and the mucosal immune response are the most critical issues in determining the fate of bacterial infection and the severity of diseases. Shigella species (abbreviated here as Shigella), the causative agent of bacillary dysentery (shigellosis), are highly adapted human pathogens that are capable of invading and colonizing the intestinal epithelium, which results in severe inflammatory colitis. Shigella secrete a large and diverse number (more then 50) of effectors via the type III secretion system (TTSS) during infection, some of which are delivered into the surrounding bacterial space and some others into the host cell cytoplasm and nucleus. The delivered effectors mimic and usurp the host cellular functions, and modulate host cell signaling and immune response, thus playing pivotal roles in promoting bacterial infection and circumventing host defense systems. This article overviews the pathogenic characteristics of Shigella, and highlights current topics related to the bacterial infectious stratagem executed by the TTSS-secreted effectors. Though bacterial stratagems and the molecular mechanisms of infection vary greatly among pathogens, the current studies of Shigella provide a paradigm shift in bacterial pathogenesis.
Collapse
Affiliation(s)
- Chihiro Sasakawa
- Department of Microbiology and Immunology, International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo, Japan.
| |
Collapse
|
77
|
Buhimschi CS, Baumbusch MA, Dulay AT, Lee S, Wehrum M, Zhao G, Bahtiyar MO, Pettker CM, Ali UA, Funai EF, Buhimschi IA. The role of urinary soluble endoglin in the diagnosis of pre-eclampsia: comparison with soluble fms-like tyrosine kinase 1 to placental growth factor ratio. BJOG 2009; 117:321-30. [PMID: 19943826 DOI: 10.1111/j.1471-0528.2009.02434.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Endoglin, an anti-angiogenic glycoprotein expressed on endothelial cells, has been proposed recently as a biomarker of pre-eclampsia (PE). Given that PE is characterised by an imbalance of angiogenic factors, we sought to determine the clinical utility of urinary soluble endoglin, relative to the soluble fms-like tyrosine kinase 1 to placental growth factor (PlGF) ratio, in the diagnosis of PE during gestation. DESIGN Prospective observational cohort. SETTING Tertiary referral university hospital. POPULATION Two hundred and thirty-four pregnant women were enrolled prospectively in the following groups: healthy controls, n = 63; gestational age (GA), median (interquartile range), 33 weeks (27-39 weeks); chronic hypertension, n = 27; GA, 33 weeks (30-36 weeks); mild PE, n = 38; GA, 37 weeks (34-40 weeks); severe PE, n = 106; GA, 32 weeks (29-37 weeks). METHODS Free urinary levels of soluble endoglin, soluble fms-like tyrosine kinase 1 and PlGF were measured by sensitive and specific immunoassay. Levels for all urinary analytes were normalised to creatinine. MAIN OUTCOME MEASURES Urinary soluble endoglin, and the soluble fms-like tyrosine kinase 1 to PlGF ratio. RESULTS In healthy controls, urinary soluble endoglin levels were increased significantly at term relative to those earlier in gestation. Severe PE was characterised by an increased urinary level of soluble endoglin, soluble fms-like tyrosine kinase 1, protein to creatinine ratio and soluble fms-like tyrosine kinase 1 to PlGF ratio compared with all other groups. There was a direct correlation between urinary soluble endoglin and proteinuria that remained after GA correction (R = 0.382, P < 0.001). Urinary soluble endoglin could not differentiate mild PE from severe preterm PE. Overall, soluble endoglin had the ability to discriminate PE from chronic hypertension and healthy controls only in women who were evaluated at <37 weeks of GA. The sensitivity, specificity and accuracy of urinary soluble endoglin alone in the diagnosis of PE or in the identification of women with PE requiring a mandated delivery before 37 weeks of gestation were 70%, 86% and 76%, respectively. These values were inferior to those of the soluble fms-like tyrosine kinase 1 to PlGF ratio (P < 0.001). The addition of urinary soluble endoglin did not improve the diagnostic accuracy of the soluble fms-like tyrosine kinase 1 to PlGF ratio alone. CONCLUSIONS We have provided evidence that soluble endoglin is present and elevated in the urine of women who develop preterm PE. Urinary soluble endoglin has only limited ability to determine the severity of PE and to distinguish between PE and chronic hypertension both preterm and at term. Compared with urinary soluble endoglin, the soluble fms-like tyrosine kinase 1 to PlGF ratio remains a better marker of disease presence, severity and outcome.
Collapse
Affiliation(s)
- C S Buhimschi
- Department of Obstetrics, Gynecology and Reproductive Science, Yale University, New Haven, CT 06520, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Romero D, Terzic A, Conley BA, Craft CS, Jovanovic B, Bergan RC, Vary CPH. Endoglin phosphorylation by ALK2 contributes to the regulation of prostate cancer cell migration. Carcinogenesis 2009; 31:359-66. [PMID: 19736306 DOI: 10.1093/carcin/bgp217] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Endoglin, a transmembrane glycoprotein that acts as a transforming growth factor-beta (TGF-beta) coreceptor, is downregulated in PC3-M metastatic prostate cancer cells. When restored, endoglin expression in PC3-M cells inhibits cell migration in vitro and attenuates the tumorigenicity of PC3-M cells in SCID mice, though the mechanism of endoglin regulation of migration in prostate cancer cells is not known. The current study indicates that endoglin is phosphorylated on cytosolic domain threonine residues by the TGF-beta type I receptors ALK2 and ALK5 in prostate cancer cells. Importantly, in the presence of constitutively active ALK2, endoglin did not inhibit cell migration, suggesting that endoglin phosphorylation regulated PC3-M cell migration. Therefore, our results suggest that endoglin phosphorylation is a mechanism with relevant functional consequences in prostate cancer cells. These data demonstrate for the first time that TGF-beta receptor-mediated phosphorylation of endoglin is a Smad-independent mechanism involved in the regulation of prostate cancer cell migration.
Collapse
Affiliation(s)
- Diana Romero
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, ME 04074, USA
| | | | | | | | | | | | | |
Collapse
|
79
|
Abstract
OspE, a Shigella type III effector binds to integrin-like kinase and enhances cell adhesion to better disseminate and colonize the intestinal epithelium. Because of the existence of OspE orthologues in other enteropathogens such as enteropathogenic Escherichia coli or Salmonella sp., maintenance of cell adhesion appears as a widespread strategy for bacteria that interact with the intestinal epithelium.
Collapse
Affiliation(s)
- Guy Tran Van Nhieu
- Inserm U971, Unité de Communications Intercellulaires et Infections Microbiennes, Collège de France, 11, Place Marcelin Berthelot, 75005 Paris Cedex, France
| | | |
Collapse
|
80
|
Kim M, Ogawa M, Fujita Y, Yoshikawa Y, Nagai T, Koyama T, Nagai S, Lange A, Fässler R, Sasakawa C. Bacteria hijack integrin-linked kinase to stabilize focal adhesions and block cell detachment. Nature 2009; 459:578-82. [PMID: 19489119 DOI: 10.1038/nature07952] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The rapid turnover and exfoliation of mucosal epithelial cells provides an innate defence system against bacterial infection. Nevertheless, many pathogenic bacteria, including Shigella, are able to surmount exfoliation and colonize the epithelium efficiently. Here we show that the Shigella flexneri effector OspE (consisting of OspE1 and OspE2 proteins), which is highly conserved among enteropathogenic Escherichia coli, enterohaemorrhagic E. coli, Citrobacter rodentium and Salmonella strains, reinforces host cell adherence to the basement membrane by interacting with integrin-linked kinase (ILK). The number of focal adhesions was augmented along with membrane fraction ILK by ILK-OspE binding. The interaction between ILK and OspE increased cell surface levels of 1 integrin and suppressed phosphorylation of focal adhesion kinase and paxillin, which are required for rapid turnover of focal adhesion in cell motility. Nocodazole-washout-induced focal adhesion disassembly was blocked by expression of OspE. Polarized epithelial cells infected with a Shigella mutant lacking the ospE gene underwent more rapid cell detachment than cells infected with wild-type Shigella. Infection of guinea pig colons with Shigella corroborated the pivotal role of the OspE-ILK interaction in suppressing epithelial detachment, increasing bacterial cell-to-cell spreading, and promoting bacterial colonization. These results indicate that Shigella sustain their infectious foothold by using special tactics to prevent detachment of infected cells.
Collapse
Affiliation(s)
- Minsoo Kim
- Department of Infectious Disease Control, International Research Center for Infectious Diseases, University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Neisseria gonorrhoeae infection protects human endocervical epithelial cells from apoptosis via expression of host antiapoptotic proteins. Infect Immun 2009; 77:3602-10. [PMID: 19546192 DOI: 10.1128/iai.01366-08] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Several microbial pathogens can modulate the host apoptotic response to infection, which may contribute to immune evasion. Various studies have reported that infection with the sexually transmitted disease pathogen Neisseria gonorrhoeae can either inhibit or induce apoptosis. N. gonorrhoeae infection initiates at the mucosal epithelium, and in women, cells from the ectocervix and endocervix are among the first host cells encountered by this pathogen. In this study, we defined the antiapoptotic effect of N. gonorrhoeae infection in human endocervical epithelial cells (End/E6E7 cells). We first established that N. gonorrhoeae strain FA1090B failed to induce cell death in End/E6E7 cells. Subsequently, we demonstrated that stimulation with N. gonorrhoeae protected these cells from staurosporine (STS)-induced apoptosis. Importantly, only End/E6E7 cells incubated with live bacteria and in direct association with N. gonorrhoeae were protected from STS-induced apoptosis, while heat-killed and antibiotic-killed bacteria failed to induce protection. Stimulation of End/E6E7 cells with live N. gonorrhoeae induced NF-kappaB activation and resulted in increased gene expression of the NF-kappaB-regulated antiapoptotic genes bfl-1, cIAP-2, and c-FLIP. Furthermore, cIAP-2 protein levels also increased in End/E6E7 cells incubated with gonococci. Collectively, our results indicate that the antiapoptotic effect of N. gonorrhoeae in human endocervical epithelial cells results from live infection via expression of host antiapoptotic proteins. Securing an intracellular niche through the inhibition of apoptosis may be an important mechanism utilized by N. gonorrhoeae for microbial survival and immune evasion in cervical epithelial cells.
Collapse
|
82
|
Altered gene expression patterns in dendritic cells after severe trauma: implications for systemic inflammation and organ injury. Shock 2008; 30:344-51. [PMID: 18323745 DOI: 10.1097/shk.0b013e3181673eb4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Dendritic cells (DCs) are professional antigen-presenting cells and members of the adoptive immunity. In addition, they play an important role in innate immunity within the systemic inflammatory response to trauma and sepsis. In this study, gene expression patterns of DC in patients with multiple trauma were studied. Total RNA was isolated from highly purified DCs (purity>95%) that were enriched from peripheral blood mononuclear cells and whole blood, respectively. Samples were obtained from 10 multiple trauma patients (injury severity score, 35.4+/-10.6 on day of admission) and 5 healthy volunteers (control). Aliquots of target cDNAs and reference samples (cDNA derived from the monocytic cell line SIGM5) were cohybridized on a thematic medium-density microarray assessing 780 inflammation-related transcripts. Twenty transcripts were up-regulated in DCs of multiple trauma patients compared with healthy volunteers, whereas these differences were missed when RNA from whole blood was subjected to transcriptomic profiling. This cluster included central effector molecules of DC such as transcripts encoding for 5-lipoxygenase and the corresponding leukotriene 4 receptor, which regulate DC migration, adoptive immune responses, and airway inflammation, as well as CD74, CXCL4, or platelet factor 4, a chemokine not implicated as a product of DCs to date. In addition, genes involved in antiapoptosis (BCL2), intracellular signal transduction (mitogen-activated protein kinase), and secretion of mediators (VAMP2) were found to be up-regulated. The up-regulated transcripts suggest that life span and signaling function of DCs are altered by trauma. Furthermore, these data confirm and expand the central role of chemokines and lipid mediators as effector molecules of DC-mediated immune responses in systemic inflammation associated with severe trauma.
Collapse
|
83
|
Escherichia coli DraE adhesin-associated bacterial internalization by epithelial cells is promoted independently by decay-accelerating factor and carcinoembryonic antigen-related cell adhesion molecule binding and does not require the DraD invasin. Infect Immun 2008; 76:3869-80. [PMID: 18559426 DOI: 10.1128/iai.00427-08] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Dr family of Escherichia coli adhesins are virulence factors associated with diarrhea and urinary tract infections. Dr fimbriae are comprised of two subunits. DraE/AfaE represents the major structural, antigenic, and adhesive subunit, which recognizes decay-accelerating factor (DAF) and carcinoembryonic antigen (CEA)-related cell adhesion molecules (CEACAMs) CEA, CEACAM1, CEACAM3, and CEACAM6 as binding receptors. The DraD/AfaD subunit caps fimbriae and has been implicated in the entry of Dr-fimbriated E. coli into host cells. In this study, we demonstrate that DAF or CEACAM receptors independently promote DraE-mediated internalization of E. coli by CHO cell transfectants expressing these receptors. We also found that DraE-positive recombinant bacteria adhere to and are internalized by primary human bladder epithelial cells which express DAF and CEACAMs. DraE-mediated bacterial internalization by bladder cells was inhibited by agents which disrupt lipid rafts, microtubules, and phosphatidylinositol 3-kinase (PI3K) activity. Immunofluorescence confocal microscopic examination of epithelial cells detected considerable recruitment of caveolin, beta(1) integrin, phosphorylated ezrin, phosphorylated PI3K, and tubulin, but not F-actin, by cell-associated bacteria. Finally, we demonstrate that the DraD subunit, previously implicated as an "invasin," is not required for beta(1) integrin recruitment or bacterial internalization.
Collapse
|
84
|
Bernabeu C, Conley BA, Vary CPH. Novel biochemical pathways of endoglin in vascular cell physiology. J Cell Biochem 2008; 102:1375-88. [PMID: 17975795 DOI: 10.1002/jcb.21594] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The broad role of the transforming growth factor beta (TGFbeta) signaling pathway in vascular development, homeostasis, and repair is well appreciated. Endoglin is emerging as a novel, complex, and poorly understood regulatory component of the TGFbeta receptor complex, whose importance is underscored by its recognition as the site of mutations causing hereditary hemorrhagic telangiectasia (HHT) [McAllister et al., 1994]. Extensive analyses of endoglin function in normal developmental mouse models [Bourdeau et al., 1999; Li et al., 1999; Arthur et al., 2000] and in HHT animal models [Bourdeau et al., 2000; Torsney et al., 2003] exemplify the importance of understanding endoglin's biochemical functions. However, novel mechanisms underlying the regulation of these pathways continue to emerge. These mechanisms include modification of TGFbeta receptor signaling at the ligand and receptor activation level, direct effects of endoglin on cell adhesion and migration, and emerging roles for endoglin in the determination of stem cell fate and tissue patterning. The purpose of this review is to highlight the cellular and molecular studies that underscore the central role of endoglin in vascular development and disease.
Collapse
Affiliation(s)
- Carmelo Bernabeu
- Centro de Investigaciones Biologicas, Consejo Superior de Investigaciones Cientificas (CSIC), 28040 Madrid, Spain
| | | | | |
Collapse
|
85
|
Muenzner P, Bachmann V, Kuespert K, Hauck CR. The CEACAM1 transmembrane domain, but not the cytoplasmic domain, directs internalization of human pathogens via membrane microdomains. Cell Microbiol 2007; 10:1074-92. [PMID: 18081725 DOI: 10.1111/j.1462-5822.2007.01106.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Several bacterial pathogens exploit carcinoembryonic antigen-related cell adhesion molecules (CEACAMs) to promote attachment and uptake into eukaryotic host cells. The widely expressed isoform CEACAM1 is involved in cell-cell adhesion, regulation of cell proliferation, insulin homeostasis, and neo-angiogenesis, processes that depend on the cytoplasmic domain of CEACAM1. By analysing the molecular requirements for CEACAM1-mediated internalization of bacteria, we surprisingly find that the CEACAM1 cytoplasmic domain is completely obsolete for bacterial uptake. Accordingly, CEACAM1-4L as well as a CEACAM1 mutant with a complete deletion of the cytoplasmic domain (CEACAM1 DeltaCT) promote equivalent internalization of several human pathogens. CEACAM1-4L- and CEACAM1 DeltaCT-mediated uptake proceeds in the presence of inhibitors of actin microfilament dynamics, which is in contrast to CEACAM3-mediated internalization. Bacteria-engaged CEACAM1-4L and CEACAM1 DeltaCT, but not CEACAM3, localize to a gangliosid GM1- and GPI-anchored protein-containing portion of the plasma membrane. In addition, interference with cholesterol-rich membrane microdomains severely blocks bacterial uptake via CEACAM1-4L and CEACAM1 DeltaCT, but not CEACAM3. Similar to GPI-anchored CEACAM6, both CEACAM1-4L as well as CEACAM1 DeltaCT partition into a low-density, Triton-insoluble membrane fraction upon receptor clustering, whereas CEACAM3 is not detected in this fraction. Bacterial uptake by truncated CEACAM1 or chimeric CEACAM1/CEACAM3 molecules reveals that the transmembrane domain of CEACAM1 is responsible for its association with membrane microdomains. Together, these data argue for a functional role of lipid rafts in CEACAM1-mediated endocytosis that is promoted by the transmembrane domain of the receptor and that might be relevant for CEACAM1 function in physiologic settings.
Collapse
Affiliation(s)
- Petra Muenzner
- Lehrstuhl für Zellbiologie, Universität Konstanz, Postfach X908, D-78457 Konstanz, Germany
| | | | | | | |
Collapse
|
86
|
Schmitter T, Pils S, Weibel S, Agerer F, Peterson L, Buntru A, Kopp K, Hauck CR. Opa proteins of pathogenic neisseriae initiate Src kinase-dependent or lipid raft-mediated uptake via distinct human carcinoembryonic antigen-related cell adhesion molecule isoforms. Infect Immun 2007; 75:4116-26. [PMID: 17517873 PMCID: PMC1952016 DOI: 10.1128/iai.01835-06] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2006] [Revised: 01/24/2007] [Accepted: 05/10/2007] [Indexed: 01/15/2023] Open
Abstract
Several pathogenic bacteria exploit human carcinoembryonic antigen-related cell adhesion molecules (CEACAMs) for adhesion to and invasion into their host cells. CEACAM isoforms have characteristic expression patterns on epithelial, endothelial, or hematopoietic cells, providing bacteria with distinct sets of receptors on particular tissues. For example, while CEACAM1 and CEACAM6 have a wide tissue distribution, CEACAM3, CEACAM4, and CEACAM8 are uniquely expressed on primary human granulocytes, whereas CEA and CEACAM7 are limited to epithelia. By reconstitution of a CEACAM-deficient cell line with individual CEACAMs, we have analyzed the requirements for CEACAM-mediated internalization of Neisseria gonorrhoeae. Our results point to two mechanistically different uptake pathways triggered by either epithelial CEACAMs (CEACAM1, CEA, and CEACAM6) or the granulocyte-specific CEACAM3. In particular, CEACAM3-mediated uptake critically depends on Src family protein tyrosine kinase (PTK) activity, and CEACAM3 associates with the SH2 domains of several Src PTKs. In contrast, epithelial CEACAMs require the integrity of cholesterol-rich membrane microdomains and are affected by cholesterol depletion, whereas CEACAM3-mediated uptake by transfected cells or the opsonin-independent phagocytosis by human granulocytes is not altered in the presence of cholesterol chelators. These results allow the subdivision of all human CEACAMs known to be utilized as pathogen receptors into functional groups and point to important consequences for bacterial engagement of distinct CEACAM isoforms.
Collapse
Affiliation(s)
- Tim Schmitter
- Lehrstuhl für Zellbiologie, Universität Konstanz, Postfach X908, 78457 Konstanz, Germany
| | | | | | | | | | | | | | | |
Collapse
|
87
|
Erwin AL, Smith AL. Nontypeable Haemophilus influenzae: understanding virulence and commensal behavior. Trends Microbiol 2007; 15:355-62. [PMID: 17600718 DOI: 10.1016/j.tim.2007.06.004] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2007] [Revised: 04/11/2007] [Accepted: 06/13/2007] [Indexed: 11/22/2022]
Abstract
Haemophilus influenzae is genetically diverse and exists as a near-ubiquitous human commensal or as a pathogen. Invasive type b disease has been almost eliminated in developed countries; however, unencapsulated strains - nontypeable H. influenzae (NTHi) - remain important as causes of respiratory infections. Respiratory tract disease occurs when NTHi adhere to or invade respiratory epithelial cells, initiating one or more of several proinflammatory pathways. Biofilm formation explains many of the observations seen in chronic otitis media and chronic bronchitis. However, NTHi biofilms seem to lack a biofilm-specific polysaccharide in the extracellular matrix, a source of controversy regarding their relevance. Successful commensalism requires dampening of the inflammatory response and evasion of host defenses, accomplished in part through phase variation.
Collapse
Affiliation(s)
- Alice L Erwin
- Microbial Pathogens Program, Seattle Biomedical Research Institute, 307 Westlake Avenue North, Suite 500, Seattle, WA 98109-5219, USA
| | | |
Collapse
|
88
|
Schmitter T, Pils S, Sakk V, Frank R, Fischer KD, Hauck CR. The granulocyte receptor carcinoembryonic antigen-related cell adhesion molecule 3 (CEACAM3) directly associates with Vav to promote phagocytosis of human pathogens. THE JOURNAL OF IMMUNOLOGY 2007; 178:3797-805. [PMID: 17339478 DOI: 10.4049/jimmunol.178.6.3797] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The human granulocyte-specific receptor carcinoembryonic antigen-related cell adhesion molecule (CEACAM)3 is critically involved in the opsonin-independent recognition of several bacterial pathogens. CEACAM3-mediated phagocytosis depends on the integrity of an ITAM-like sequence within the cytoplasmic domain of CEACAM3 and is characterized by rapid stimulation of the GTPase Rac. By performing a functional screen with CEACAM3-expressing cells, we found that overexpression of a dominant-negative form of the guanine nucleotide exchange factor Vav, but not the dominant-negative versions SWAP70, Dock2, or ELMO1 interfered with CEACAM3-initiated phagocytosis. Moreover, small interfering RNA-mediated silencing of Vav reduced uptake and abrogated the stimulation of Rac in response to bacterial CEACAM3 engagement. In Vav1/Vav2-deficient cells, CEACAM3-mediated internalization was only observed after re-expression of Vav. Vav colocalized with CEACAM3 upon bacterial infection, coimmunoprecipitated in a complex with CEACAM3, and the Vav Src homology 2 domain directly associated with phosphorylated Tyr(230) of CEACAM3. In primary human granulocytes, TAT-mediated transduction of dominant-negative Vav, but not SWAP70, severely impaired the uptake of CEACAM3-binding bacteria. These data support the view that, different from canonical ITAM signaling, the CEACAM3 ITAM-like sequence short-wires bacterial recognition and Rac stimulation via a direct association with Vav to promote rapid phagocytosis and elimination of CEACAM-binding human pathogens.
Collapse
Affiliation(s)
- Tim Schmitter
- Zentrum für Infektionsforschung, Universität Würzburg, Würzburg, Germany
| | | | | | | | | | | |
Collapse
|
89
|
Liu W, Wei W, Winer D, Bamberger AM, Bamberger C, Wagener C, Ezzat S, Asa SL. CEACAM1 impedes thyroid cancer growth but promotes invasiveness: a putative mechanism for early metastases. Oncogene 2007; 26:2747-58. [PMID: 17057731 DOI: 10.1038/sj.onc.1210077] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2006] [Revised: 08/31/2006] [Accepted: 09/14/2006] [Indexed: 01/05/2023]
Abstract
CEACAM1, also known as biliary glycoprotein (BGP), CD66a, pp120 and C-CAM1, is a member of the CEA immunoglobulin superfamily. CEACAM1 is a putative tumor suppressor based on diminished expression in some solid neoplasms such as colorectal carcinoma. However, CEACAM1 is overexpressed in some tumors such as non-small cell lung cancer. To clarify the mechanism of action of this cell adhesion molecule, we studied thyroid carcinoma that has a spectrum of morphologies and variable behavior allowing separation of proliferation from invasion and metastasis. CEACAM1 is expressed in thyroid carcinoma cell lines derived from tumors that exhibit aggressive behavior. Introduction of CEACAM1 into endogenously deficient WRO cells resulted in reduced cell cycle progression associated with p21 upregulation and diminished Rb phosphorylation. Forced CEACAM1 expression enhanced cell-matrix adhesion and migration and promoted tumor invasiveness. Conversely, small interfering RNA (siRNA)-mediated downregulation of CEACAM1 expression in MRO cells accelerated cell cycle progression and significantly enhanced tumor size in xenografted mice. CEACAM1 is not appreciably expressed in normal thyroid tissue or benign thyroid tumors. In a human thyroid tissue array, CEACAM1 reactivity was associated with metastatic spread but not with increased tumor size. These findings identify CEACAM1 as a unique mediator that restricts tumor growth whereas increasing metastatic potential. Our data highlight a complex repertoire of actions providing a putative mechanism underlying the spectrum of biologic behaviors associated with thyroid cancer.
Collapse
Affiliation(s)
- W Liu
- Department of Pathology, University Health Network and Toronto Medical Laboratories, and University Hospital Hamburg Eppendorf, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|
90
|
Kuespert K, Weibel S, Hauck CR. Profiling of bacterial adhesin — host receptor recognition by soluble immunoglobulin superfamily domains. J Microbiol Methods 2007; 68:478-85. [PMID: 17126432 DOI: 10.1016/j.mimet.2006.10.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2006] [Revised: 10/05/2006] [Accepted: 10/11/2006] [Indexed: 01/16/2023]
Abstract
Several gram-negative human pathogens recognize members of the carcinoembryonic antigen-related cell adhesion molecule (CEACAM) family. Pathogenic Neisseriae employ distinct isoforms of the colony opacity-associated proteins (Opa(CEA) proteins) to bind to the amino-terminal domains of CEACAMs. Here we present a novel approach to rapidly determine the CEACAM-binding properties of single bacteria. Expression of the isolated amino-terminal domains of various CEACAMs in eukaryotic cells yields soluble probes that selectively recognize Opa(CEA)-expressing bacteria in a pull-down assay format. Furthermore, by expressing soluble CEACAMs as fusions to green-fluorescent protein (CEACAM-N-GFP), CEACAM-binding bacteria can be decorated with a fluorescent label and analysed by flow cytometry allowing the specific detection of receptor binding events on the level of single bacteria. Besides its potential for rapid and quantitative analysis of pathogen-receptor interactions, this novel approach allows the detection of receptor recognition in heterogeneous bacterial populations and might represent a valuable tool for profiling the host binding capabilities of various microorganisms.
Collapse
Affiliation(s)
- Katharina Kuespert
- Lehrstuhl für Zellbiologie, Fachbereich Biologie X908, Universitätsstr.10, Universität Konstanz, 78457 Konstanz, Germany
| | | | | |
Collapse
|
91
|
David L, Mallet C, Vailhé B, Lamouille S, Feige JJ, Bailly S. Activin receptor-like kinase 1 inhibits human microvascular endothelial cell migration: Potential roles for JNK and ERK. J Cell Physiol 2007; 213:484-9. [PMID: 17620321 DOI: 10.1002/jcp.21126] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Activin receptor-like kinase 1 (ALK1) is an endothelial-specific type I receptor of the TGFbeta receptor family that is implicated in angiogenesis and in the pathogenesis of the vascular disease, hereditary hemorrhagic telangiectasia (HHT). In the absence of a specific ligand, ALK1 cellular functions have been mainly studied through the use of a constitutively active form of this receptor (ALK1ca) and are still debated. We previously reported that ALK1ca inhibits proliferation and migration of human endothelial cells suggesting that ALK1 plays an important role in the maturation phase of angiogenesis (Lamouille et al., 2002, Blood 100: 4495-4501). In the present work, we further analyzed the role of ALK1 in the migration of human dermal microvascular endothelial cell (HMVEC-d) and observed that silencing endogenous ALK1 expression with siRNAs accelerates endothelial cell migration in the wound assay. Further, we demonstrate that ALK1-induced inhibition of migration is Smad-independent. Using a panel of kinase inhibitors, we found that HMVEC-d wound closure was completely inhibited by a JNK inhibitor and to a lower degree by an ERK kinase inhibitor. Further, HMVEC-d wounding induced activation of both JNK and ERK, and these were inhibited by ALK1ca expression. Taken together, these results support a significant role for ALK1 as a negative regulator of endothelial cell migration and suggest the implication of JNK and ERK as mediators of this effect.
Collapse
Affiliation(s)
- Laurent David
- Institut National de la Santé et de la Recherche Médicale, U878, Grenoble, France
| | | | | | | | | | | |
Collapse
|
92
|
Shao L, Allez M, Park MS, Mayer L. Immunomodulatory roles of the carcinoembryonic antigen family of glycoproteins. Ann N Y Acad Sci 2006; 1072:194-209. [PMID: 17057200 DOI: 10.1196/annals.1326.037] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
One of the most remarkable aspects of the immune system is its ability to fashion an immune response most appropriate to the activating stimulus. Although the immune system possesses a number of adaptations to accomplish this, an important theme is local immune regulation by site-specific expression of receptors and ligands. One family of molecules that is gaining attention as modulators of the immune system is the carcinoembryonic antigen cell-adhesion molecule family (CEACAM). Functionally, the carcinoembryonic antigen family can mediate cell-cell contact, host-pathogen interactions, and immune regulation. For example, biliary glycoprotein (CEACAM1) can have direct activity on T cells, leading to the inhibition of helper or cytotoxic T cell function. The expression of carcinoembryonic antigen (CEACAM5) on intestinal epithelial cells is involved in the activation of populations of regulatory CD8(+) T cells, while a distinct subset of regulatory CD8+ T cells is activated by nonspecific cross-reacting antigen (CEACAM6) on placental trophoblasts. Interestingly, the function and phenotype of these cells depend upon the specific member of the carcinoembryonic antigen family expressed, as well as the antigen-presenting molecule with which it associates. Thus, these glycoproteins comprise a family of molecules whose functions can depend on their nature and context.
Collapse
Affiliation(s)
- Ling Shao
- Center for Immunobiology, Mount Sinai School of Medicine, 1 Gustave L. Levy Place, New York, NY 10029, USA.
| | | | | | | |
Collapse
|
93
|
Yoshida D, Teramoto A. Enhancement of pituitary adenoma cell invasion and adhesion is mediated by discoidin domain receptor-1. J Neurooncol 2006; 82:29-40. [PMID: 17001518 DOI: 10.1007/s11060-006-9246-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2006] [Accepted: 08/11/2006] [Indexed: 12/13/2022]
Abstract
The discoidin domain receptor-1 (DDR1) tyrosine kinases are a family of cell surface receptors that bind to several types of collagen and facilitate cell adhesion that is known association with several cancers. However, no previous study has examined the expression and function of DDR1 in pituitary adenoma. Tissue microarray analysis of DDR1 expression levels in 52 pituitary adenoma tissues revealed that DDR1 expression was significantly related to hormonal background (Kruskal-Wallis test; P < 0.0001). To further elucidate the function of DDR1 in pituitary adenoma, we developed DDR1 over- and under-expressing cell lines using DDR1 clone transfection and short interfering ribonucleic acids (siRNA)-based DDR1 gene silencing, respectively, in a human pituitary adenoma cell line (HP-75). Real-time reverse transcription-polymerase chain reaction (RT-PCR) and Western blotting confirmed that expression of both DDR1 isoforms (DDR1a and DDR1b) was elevated by clone transfection and diminished by siRNA. Matrigel invasion assays revealed that cell invasion was increased in HP-75 cells over-expressing DDR1 and decreased in cells under-expressing DDR1. Consistent with this, zymography revealed that the activation levels of matrix metalloproteinase (MMP)-2 and -9 were increased and decreased in cells over- and under-expressing DDR1, respectively. Examination of in vitro cell adhesion to collagen types I, II, III, and IV with respect to MMP-2 and -9 expression revealed that DDR1 regulated cell adhesion to collagen type I, which was responsible for accelerating secretion of MMP-2 and -9 in DDR1 over-expressing cells. Taken together, these results strongly suggest that DDR1 mediates cell invasion-related signaling between collagen type I and MMP-2 and -9 in pituitary adenoma cells.
Collapse
Affiliation(s)
- Daizo Yoshida
- Department of Neurosurgery, Nippon Medical School, 1-1-5, Sendagi, Tokyo, Japan.
| | | |
Collapse
|
94
|
Kuespert K, Pils S, Hauck CR. CEACAMs: their role in physiology and pathophysiology. Curr Opin Cell Biol 2006; 18:565-71. [PMID: 16919437 PMCID: PMC7127089 DOI: 10.1016/j.ceb.2006.08.008] [Citation(s) in RCA: 261] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2006] [Accepted: 08/03/2006] [Indexed: 12/24/2022]
Abstract
Carcinoembryonic antigen-related cell adhesion molecules (CEACAMs) belong to a group of mammalian immunoglobulin-related glycoproteins. They are involved in cell–cell recognition and modulate cellular processes that range from the shaping of tissue architecture and neovascularization to the regulation of insulin homeostasis and T-cell proliferation. CEACAMs have also been identified as receptors for host-specific viruses and bacteria in mice and humans, respectively, making these proteins an interesting example of pathogen–host co-evolution. Forward and reverse genetics in the mouse now provide powerful novel models to elucidate the action of CEACAM family members in vivo.
Collapse
|
95
|
Hossain H, Tchatalbachev S, Chakraborty T. Host gene expression profiling in pathogen–host interactions. Curr Opin Immunol 2006; 18:422-9. [PMID: 16782318 DOI: 10.1016/j.coi.2006.05.018] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2006] [Accepted: 05/31/2006] [Indexed: 01/16/2023]
Abstract
Microarray technology is a powerful high-throughput tool for the analysis of host-pathogen interactions that permits simultaneous interrogation of the transcriptional status of thousands of genes. Emerging topics from microarray-based studies employing diverse pathogens and cell types suggest an initial common host response largely characterised by features of the innate immune response. However, specific host gene expression patterns that reflect differences between bacteria of related genera, different species of a particular genus, as well as strains within a single species can also be discerned. These differences are indicative of virulence determinant functions and suggest adaptive survival strategies. These studies have led to a more comprehensive understanding of the host response and identified new avenues of research for potential control strategies against pathogens.
Collapse
Affiliation(s)
- Hamid Hossain
- Institute for Medical Microbiology, Giessen, Germany
| | | | | |
Collapse
|
96
|
Koleva RI, Conley BA, Romero D, Riley KS, Marto JA, Lux A, Vary CPH. Endoglin structure and function: Determinants of endoglin phosphorylation by transforming growth factor-beta receptors. J Biol Chem 2006; 281:25110-23. [PMID: 16785228 DOI: 10.1074/jbc.m601288200] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Determination of the functional relationship between the transforming growth factor-beta (TGFbeta) receptor proteins endoglin and ALK1 is essential to the understanding of the human vascular disease, hereditary hemorrhagic telangiectasia. TGFbeta1 caused recruitment of ALK1 into a complex with endoglin in human umbilical vein endothelial cells (HUVECs). Therefore, we examined TGFbeta receptor-dependent phosphorylation of endoglin by the constitutively active forms of the TGFbeta type I receptors ALK1, ALK5, and the TGFbeta type II receptor, TbetaRII. Of these receptors, TbetaRII preferentially phosphorylated endoglin on cytosolic domain serine residues Ser(634) and Ser(635). Removal of the carboxyl-terminal tripeptide of endoglin, which comprises a putative PDZ-liganding motif, dramatically increased endoglin serine phosphorylation by all three receptors, suggesting that the PDZ-liganding motif is important for the regulation of endoglin phosphorylation. Constitutively active (ca)ALK1, but not caALK5, phosphorylated endoglin on cytosolic domain threonine residues. caALK1-mediated threonine phosphorylation required prior serine phosphorylation, suggesting a sequential mechanism of endoglin phosphorylation. Wild-type, but not a threonine phosphorylation-defective endoglin mutant blocked cell detachment and the antiproliferative effects of caALK1 expressed in HUVECs. These results suggest that ALK1 is a preferred TGFbeta receptor kinase for endoglin threonine phosphorylation in HUVECs and indicate a role for endoglin phosphorylation in the regulation of endothelial cell adhesion and growth by ALK1.
Collapse
MESH Headings
- Activin Receptors, Type II/metabolism
- Amino Acid Sequence
- Antigens, CD/chemistry
- Antigens, CD/physiology
- Cells, Cultured
- Cytosol/metabolism
- Endoglin
- Endothelium, Vascular/cytology
- Humans
- Molecular Sequence Data
- Phosphorylation
- Protein Structure, Tertiary
- Receptors, Cell Surface/chemistry
- Receptors, Cell Surface/physiology
- Receptors, Transforming Growth Factor beta/metabolism
- Sequence Homology, Amino Acid
- Structure-Activity Relationship
- Umbilical Veins/cytology
Collapse
Affiliation(s)
- Rositsa I Koleva
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine 04074, USA
| | | | | | | | | | | | | |
Collapse
|
97
|
Abstract
The carcinoembryonic-antigen-related cell-adhesion molecule (CEACAM) family of proteins has been implicated in various intercellular-adhesion and intracellular-signalling-mediated effects that govern the growth and differentiation of normal and cancerous cells. Recent studies show that there is an important role for members of the CEACAM family in modulating the immune responses associated with infection, inflammation and cancer. In this Review, we consider the evidence for CEACAM involvement in immunity, with a particular emphasis on CEACAM1, which functions as a regulatory co-receptor for both lymphoid and myeloid cell types.
Collapse
Affiliation(s)
- Scott D Gray-Owen
- Department of Medical Genetics and Microbiology, University of Toronto, Toronto, Ontario, M5S 1A8, Canada.
| | | |
Collapse
|
98
|
Hauck CR, Agerer F, Muenzner P, Schmitter T. Cellular adhesion molecules as targets for bacterial infection. Eur J Cell Biol 2006; 85:235-42. [PMID: 16546567 DOI: 10.1016/j.ejcb.2005.08.002] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
A large number of bacterial pathogens targets cell adhesion molecules to establish an intimate contact with host cells and tissues. Members of the integrin, cadherin and immunoglobulin-related cell adhesion molecule (IgCAM) families are frequently recognized by specific bacterial surface proteins. Binding can trigger bacterial internalization following cytoskeletal rearrangements that are initiated upon receptor clustering. Moreover, signals emanating from the occupied receptors can result in cellular responses such as gene expression events that influence the phenotype of the infected cell. This review will address recent advances in our understanding of bacterial engagement of cellular adhesion molecules by discussing the binding of integrins by Staphylococcus aureus as well as the exploitation of IgCAMs by pathogenic Neisseria species.
Collapse
Affiliation(s)
- Christof R Hauck
- Zentrum für Infektionsforschung, Universität Würzburg, Röntgenring 11, D-97070 Würzburg, Germany.
| | | | | | | |
Collapse
|
99
|
Abstract
Successful establishment of infection by bacterial pathogens requires adhesion to host cells, colonization of tissues, and in certain cases, cellular invasion-followed by intracellular multiplication, dissemination to other tissues, or persistence. Bacteria use monomeric adhesins/invasins or highly sophisticated macromolecular machines such as type III secretion systems and retractile type IV pili to establish a complex host/pathogen molecular crosstalk that leads to subversion of cellular functions and establishment of disease.
Collapse
Affiliation(s)
- Javier Pizarro-Cerdá
- Institut Pasteur, Unité des Interactions Bactéries-Cellules, Paris, F-75015 France.
| | | |
Collapse
|
100
|
Editors' Picks. J Invest Dermatol 2006. [DOI: 10.1038/sj.jid.5700058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|