51
|
Philippe M, Léger T, Desvaux R, Walch L. Discs large 1 (Dlg1) scaffolding protein participates with clathrin and adaptator protein complex 1 (AP-1) in forming Weibel-Palade bodies of endothelial cells. J Biol Chem 2013; 288:13046-56. [PMID: 23532850 DOI: 10.1074/jbc.m112.441261] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Weibel-Palade bodies (WPBs) are specific cigar-shaped granules that store von Willebrand factor (VWF) for its regulated secretion by endothelial cells. The first steps of the formation of these granules at the trans-Golgi network specifically require VWF aggregation and an external scaffolding complex that contains the adaptator protein complex 1 (AP-1) and clathrin. Discs large 1 (Dlg1) is generally considered to be a modular scaffolding protein implicated in the control of cell polarity in a large variety of cells by specific recruiting of receptors, channels, or signaling proteins to specialized zones of the plasma membrane. We propose here that in endothelial cells, Dlg1, in a complex with AP-1 and clathrin, participates in the biogenesis of WPBs. Supporting data show that Dlg1 colocalizes with microtubules, intermediate filaments, and Golgi markers. Tandem mass spectrometry experiments led to the identification of clathrin as an Dlg1-interacting partner. Interaction was confirmed by in situ proximity ligation assays. Furthermore, AP-1 and VWF immunoprecipitate and colocalize with Dlg1 in the juxtanuclear zone. Finally, Dlg1 depletion by siRNA duplexes disrupts trans-Golgi network morphology and WPB formation. Our results provide the first evidence for an unexpected role of Dlg1 in controlling the formation of specific secretory granules involved in VWF exocytosis in endothelial cells.
Collapse
Affiliation(s)
- Monique Philippe
- INSERM U698, Université Paris 7, Hemostasis, Bio-Engineering and Cardiovascular Remodeling, CHU X. Bichat, 75018 Paris, France
| | | | | | | |
Collapse
|
52
|
Niu YS, Cai ZZ, Lu Y, Wang MX, Liang S, Zhou F, Miao YG. Characterization of adaptor protein complex-1 in the silkworm, Bombyx mori. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2013; 82:84-95. [PMID: 23300124 DOI: 10.1002/arch.21077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
To investigate the function of adaptor protein complex-1 (AP-1) in the silkworm, we characterized AP-1 in the silkworm by RNAi technique and co-localization methods. As a result, AP-1 was found to exist as cytosolic form and membrane-bound form distinguished by phosphate status, showing molecular mass difference. There was relatively more cytosolic form of AP-1 than its membrane-bound counterpart in the silkworm. However, AP-1 distributed predominantly as cytosolic form in BmN cells. Interruption of AP-1 expression via DsRNA was more efficient in BmN cells than in the insect larval, which led to a tendency to dissociation between subcellular organelles like the Golgi apparatus and the mitochondria. Environmental condition changes like relatively higher temperature and treatment with dimethyl sulfoxide can lead to expression variance of AP-1 both in mRNA and protein level. In BmN cells, both the heavy chain γ and light chain σ could clearly co-localize with AP-1 β, mostly forming pits in cytoplasm. Two isoforms of AP-1 σ corresponded to distinct subcellular distribution pattern, possibly due to C-terminal amino acids difference.
Collapse
Affiliation(s)
- Yan-shan Niu
- Key Laboratory of Animal Virology of Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou, P. R. China
| | | | | | | | | | | | | |
Collapse
|
53
|
Bonnemaison ML, Eipper BA, Mains RE. Role of adaptor proteins in secretory granule biogenesis and maturation. Front Endocrinol (Lausanne) 2013; 4:101. [PMID: 23966980 PMCID: PMC3743005 DOI: 10.3389/fendo.2013.00101] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 07/31/2013] [Indexed: 12/29/2022] Open
Abstract
In the regulated secretory pathway, secretory granules (SGs) store peptide hormones that are released on demand. SGs are formed at the trans-Golgi network and must undergo a maturation process to become responsive to secretagogues. The production of mature SGs requires concentrating newly synthesized soluble content proteins in granules whose membranes contain the appropriate integral membrane proteins. The mechanisms underlying the sorting of soluble and integral membrane proteins destined for SGs from other proteins are not yet well understood. For soluble proteins, luminal pH and divalent metals can affect aggregation and interaction with surrounding membranes. The trafficking of granule membrane proteins can be controlled by both luminal and cytosolic factors. Cytosolic adaptor proteins (APs), which recognize the cytosolic domains of proteins that span the SG membrane, have been shown to play essential roles in the assembly of functional SGs. Adaptor protein 1A (AP-1A) is known to interact with specific motifs in its cargo proteins and with the clathrin heavy chain, contributing to the formation of a clathrin coat. AP-1A is present in patches on immature SG membranes, where it removes cargo and facilitates SG maturation. AP-1A recruitment to membranes can be modulated by Phosphofurin Acidic Cluster Sorting protein 1 (PACS-1), a cytosolic protein which interacts with both AP-1A and cargo that has been phosphorylated by casein kinase II. A cargo/PACS-1/AP-1A complex is necessary to drive the appropriate transport of several cargo proteins within the regulated secretory pathway. The Golgi-localized, γ-ear containing, ADP-ribosylation factor binding (GGA) family of APs serve a similar role. We review the functions of AP-1A, PACS-1, and GGAs in facilitating the retrieval of proteins from immature SGs and review examples of cargo proteins whose trafficking within the regulated secretory pathway is governed by APs.
Collapse
Affiliation(s)
- Mathilde L. Bonnemaison
- Department of Molecular, Microbial and Structural Biology, University of Connecticut Health Center, Farmington, CT, USA
| | - Betty A. Eipper
- Department of Molecular, Microbial and Structural Biology, University of Connecticut Health Center, Farmington, CT, USA
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT, USA
| | - Richard E. Mains
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT, USA
- *Correspondence: Richard E. Mains, Department of Neuroscience, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030-3401, USA e-mail:
| |
Collapse
|
54
|
Radhakrishnan K, Baltes J, Creemers JWM, Schu P. TGN morphology and sorting regulated by prolyl-oligopeptidase–like protein PREPL and AP-1 μ1A. J Cell Sci 2013; 126:1155-63. [DOI: 10.1242/jcs.116079] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The AP-1 complex recycles between membranes and the cytoplasm and dissociates from membranes during clathrin-coated-vesicle uncoating, but also independent of vesicular transport. The μ1A N-terminal seventy amino acids are involved in regulating AP-1 recycling. In a yeast-2-hybrid library screen we identified the cytoplasmic prolyl-oligopeptidase-like protein PREPL as an interaction partner of this domain. PREPL overexpression leads to reduced AP-1 membrane binding, whereas reduced PREPL expression increases membrane binding and it impairs AP-1 recycling. Altered AP-1 membrane binding in PREPL-deficient cells mirrors the membrane binding of the mutant AP-1* complex, not able to bind PREPL. Colocalisation of PREPL with residual membrane bound AP-1 can be demonstrated. Patient cell lines deficient in PREPL have an expanded TGN, which could be rescued by PREPL expression. These data demonstrate PREPL as an AP-1 effector, which takes part in the regulation of AP-1 membrane binding. PREPL is highly expressed in brain, and at lower levels also in muscle and kidney, and its deficiency causes hypotonia and growth hormone hyposecretion supporting essential PREPL functions in AP-1-dependent secretory pathways
Collapse
|
55
|
Wei AH, Li W. Hermansky-Pudlak syndrome: pigmentary and non-pigmentary defects and their pathogenesis. Pigment Cell Melanoma Res 2012; 26:176-92. [DOI: 10.1111/pcmr.12051] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 11/16/2012] [Indexed: 10/27/2022]
Affiliation(s)
| | - Wei Li
- State Key Laboratory of Molecular Developmental Biology; Institute of Genetics & Developmental Biology; Chinese Academy of Sciences; Beijing; China
| |
Collapse
|
56
|
van Agtmaal EL, Bierings R, Dragt BS, Leyen TA, Fernandez-Borja M, Horrevoets AJG, Voorberg J. The shear stress-induced transcription factor KLF2 affects dynamics and angiopoietin-2 content of Weibel-Palade bodies. PLoS One 2012; 7:e38399. [PMID: 22715381 PMCID: PMC3371018 DOI: 10.1371/journal.pone.0038399] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 05/05/2012] [Indexed: 01/20/2023] Open
Abstract
Background The shear-stress induced transcription factor KLF2 has been shown to induce an atheroprotective phenotype in endothelial cells (EC) that are exposed to prolonged laminar shear. In this study we characterized the effect of the shear stress-induced transcription factor KLF2 on regulation and composition of Weibel-Palade bodies (WPBs) using peripheral blood derived ECs. Methodology and Principal Findings Lentiviral expression of KLF2 resulted in a 4.5 fold increase in the number of WPBs per cell when compared to mock-transduced endothelial cells. Unexpectedly, the average length of WPBs was significantly reduced: in mock-transduced endothelial cells WPBs had an average length of 1.7 µm versus 1.3 µm in KLF2 expressing cells. Expression of KLF2 abolished the perinuclear clustering of WPBs observed following stimulation with cAMP-raising agonists such as epinephrine. Immunocytochemistry revealed that WPBs of KLF2 expressing ECs were positive for IL-6 and IL-8 (after their upregulation with IL-1β) but lacked angiopoietin-2 (Ang2), a regular component of WPBs. Stimulus-induced secretion of Ang2 in KLF2 expressing ECs was greatly reduced and IL-8 secretion was significantly lower. Conclusions and Significance These data suggest that KLF2 expression leads to a change in size and composition of the regulated secretory compartment of endothelial cells and alters its response to physiological stimuli.
Collapse
Affiliation(s)
- Ellen L. van Agtmaal
- Department of Plasma Proteins, Sanquin-AMC Landsteiner Laboratory, University of Amsterdam, Amsterdam, The Netherlands
| | - Ruben Bierings
- Department of Plasma Proteins, Sanquin-AMC Landsteiner Laboratory, University of Amsterdam, Amsterdam, The Netherlands
- Department of Physical Biochemistry, National Institute for Medical Research, London, United Kingdom
| | - Bieuwke S. Dragt
- Department of Plasma Proteins, Sanquin-AMC Landsteiner Laboratory, University of Amsterdam, Amsterdam, The Netherlands
| | - Thomas A. Leyen
- Department of Molecular Cell Biology and Immunology, VU Medical Center, Amsterdam, The Netherlands
| | - Mar Fernandez-Borja
- Department of Molecular Cell Biology, Sanquin-AMC Landsteiner Laboratory, Amsterdam, The Netherlands
| | - Anton J. G. Horrevoets
- Department of Molecular Cell Biology and Immunology, VU Medical Center, Amsterdam, The Netherlands
| | - Jan Voorberg
- Department of Plasma Proteins, Sanquin-AMC Landsteiner Laboratory, University of Amsterdam, Amsterdam, The Netherlands
- * E-mail:
| |
Collapse
|
57
|
Shafaq-Zadah M, Brocard L, Solari F, Michaux G. AP-1 is required for the maintenance of apico-basal polarity in the C. elegans intestine. Development 2012; 139:2061-70. [DOI: 10.1242/dev.076711] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Epithelial tubes perform functions that are essential for the survival of multicellular organisms. Understanding how their polarised features are maintained is therefore crucial. By analysing the function of the clathrin adaptor AP-1 in the C. elegans intestine, we found that AP-1 is required for epithelial polarity maintenance. Depletion of AP-1 subunits does not affect epithelial polarity establishment or the formation of the intestinal lumen. However, the loss of AP-1 affects the polarised distribution of both apical and basolateral transmembrane proteins. Moreover, it triggers de novo formation of ectopic apical lumens between intestinal cells along the lateral membranes later during embryogenesis. We also found that AP-1 is specifically required for the apical localisation of the small GTPase CDC-42 and the polarity determinant PAR-6. Our results demonstrate that AP-1 controls an apical trafficking pathway required for the maintenance of epithelial polarity in vivo in a tubular epithelium.
Collapse
Affiliation(s)
- Massiullah Shafaq-Zadah
- INSERM Avenir group, F-35043 Rennes, France
- CNRS, UMR6061, Institut de Génétique et Développement de Rennes, F-35043 Rennes, France
- Université de Rennes 1, UEB, IFR140, Faculté de Médecine, F-35043 Rennes, France
| | - Lysiane Brocard
- INSERM Avenir group, F-35043 Rennes, France
- CNRS, UMR6061, Institut de Génétique et Développement de Rennes, F-35043 Rennes, France
- Université de Rennes 1, UEB, IFR140, Faculté de Médecine, F-35043 Rennes, France
| | - Florence Solari
- CNRS UMR5534, Centre de Génétique et de Physiologie Moléculaires et Cellulaires, Université Claude Bernard Lyon 1 F-69622 Villeurbanne, France
| | - Grégoire Michaux
- INSERM Avenir group, F-35043 Rennes, France
- CNRS, UMR6061, Institut de Génétique et Développement de Rennes, F-35043 Rennes, France
- Université de Rennes 1, UEB, IFR140, Faculté de Médecine, F-35043 Rennes, France
| |
Collapse
|
58
|
Zhang H, Kim A, Abraham N, Khan LA, Hall DH, Fleming JT, Gobel V. Clathrin and AP-1 regulate apical polarity and lumen formation during C. elegans tubulogenesis. Development 2012; 139:2071-83. [PMID: 22535410 DOI: 10.1242/dev.077347] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Clathrin coats vesicles in all eukaryotic cells and has a well-defined role in endocytosis, moving molecules away from the plasma membrane. Its function on routes towards the plasma membrane was only recently appreciated and is thought to be limited to basolateral transport. Here, an unbiased RNAi-based tubulogenesis screen identifies a role of clathrin (CHC-1) and its AP-1 adaptor in apical polarity during de novo lumenal membrane biogenesis in the C. elegans intestine. We show that CHC-1/AP-1-mediated polarized transport intersects with a sphingolipid-dependent apical sorting process. Depleting each presumed trafficking component mislocalizes the same set of apical membrane molecules basolaterally, including the polarity regulator PAR-6, and generates ectopic lateral lumens. GFP::CHC-1 and BODIPY-ceramide vesicles associate perinuclearly and assemble asymmetrically at polarized plasma membrane domains in a co-dependent and AP-1-dependent manner. Based on these findings, we propose a trafficking pathway for apical membrane polarity and lumen morphogenesis that implies: (1) a clathrin/AP-1 function on an apically directed transport route; and (2) the convergence of this route with a sphingolipid-dependent apical trafficking path.
Collapse
Affiliation(s)
- Hongjie Zhang
- Department of Pediatrics, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | | | | | | | | | | | | |
Collapse
|
59
|
Guo Y, Chang C, Huang R, Liu B, Bao L, Liu W. AP1 is essential for generation of autophagosomes from the trans-Golgi network. J Cell Sci 2012; 125:1706-15. [PMID: 22328508 DOI: 10.1242/jcs.093203] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Despite recent advances in understanding the functions of autophagy in developmental and pathological conditions, the underlying mechanism of where and how autophagosomal structures acquire membrane remains enigmatic. Here, we provide evidence that post-Golgi membrane traffic plays a crucial role in autophagosome formation. Increased secretion of constitutive cargo from the trans-Golgi network (TGN) to the plasma membrane induced the formation of microtubule-associated protein light chain 3 (LC3)-positive structures. At the early phase of autophagy, LC3 associated with and then budded off from a distinct TGN domain without constitutive TGN-to-plasma cargo and TGN-to-endosome proteins. The clathrin adaptor protein AP1 and clathrin localized to starvation- and rapamycin-induced autophagosomes. Dysfunction of the AP1-dependent clathrin coating at the TGN but not at the plasma membrane prevented autophagosome formation. Our results thus suggest an essential role of the TGN in autophagosome biogenesis, providing membrane to autophagosomes through an AP1-dependent pathway.
Collapse
Affiliation(s)
- Yajuan Guo
- Department of Biochemistry and Molecular Biology, Zhejiang University School of Medicine, Hangzhou, China
| | | | | | | | | | | |
Collapse
|
60
|
Rojo Pulido I, Nightingale TD, Darchen F, Seabra MC, Cutler DF, Gerke V. Myosin Va acts in concert with Rab27a and MyRIP to regulate acute von-Willebrand factor release from endothelial cells. Traffic 2011; 12:1371-82. [PMID: 21740491 DOI: 10.1111/j.1600-0854.2011.01248.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Von-Willebrand factor (vWF) is a highly multimerized hemostatic glycoprotein that is stored in endothelial Weibel-Palade bodies (WPB) and secreted upon cell stimulation to act in recruiting platelets to sites of vessel injury. Only fully matured multimeric vWF represents an efficient anchor for platelets, and endothelial cells have developed mechanisms to prevent release of immature vWF. Full maturation of vWF occurs within WPB following their translocation from a perinuclear site of emergence at the trans-Golgi network (TGN) to the cell periphery. The WPB-associated small GTPase Rab27a is involved in restricting immature WPB exocytosis and we searched for links between Rab27a and the actin cytoskeleton that could anchor WPB inside endothelial cells until they are fully matured. We here identify myosin Va as such link. Myosin Va forms a tripartite complex with Rab27a and its effector MyRIP and depletion of or dominant-negative interference with myosin Va leads to an increase in the ratio of perinuclear to more peripheral WPB. Concomitantly, myosin Va depletion results in an elevated secretion of less-oligomeric vWF from histamine-stimulated endothelial cells. These results indicate that a Rab27a/MyRIP/myosin Va complex is involved in linking WPB to the peripheral actin cytoskeleton of endothelial cells to allow full maturation and prevent premature secretion of vWF.
Collapse
Affiliation(s)
- Inés Rojo Pulido
- Institute of Medical Biochemistry, Centre for Molecular Biology of Inflammation, University of Münster, Münster, Germany
| | | | | | | | | | | |
Collapse
|
61
|
Nightingale TD, White IJ, Doyle EL, Turmaine M, Harrison-Lavoie KJ, Webb KF, Cramer LP, Cutler DF. Actomyosin II contractility expels von Willebrand factor from Weibel-Palade bodies during exocytosis. ACTA ACUST UNITED AC 2011; 194:613-29. [PMID: 21844207 PMCID: PMC3160584 DOI: 10.1083/jcb.201011119] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
High-resolution microscopy reveals how discrete actin cytoskeletal functions inhibit or promote specific exocytic steps during regulated secretion. The study of actin in regulated exocytosis has a long history with many different results in numerous systems. A major limitation on identifying precise mechanisms has been the paucity of experimental systems in which actin function has been directly assessed alongside granule content release at distinct steps of exocytosis of a single secretory organelle with sufficient spatiotemporal resolution. Using dual-color confocal microscopy and correlative electron microscopy in human endothelial cells, we visually distinguished two sequential steps of secretagogue-stimulated exocytosis: fusion of individual secretory granules (Weibel–Palade bodies [WPBs]) and subsequent expulsion of von Willebrand factor (VWF) content. Based on our observations, we conclude that for fusion, WPBs are released from cellular sites of actin anchorage. However, once fused, a dynamic ring of actin filaments and myosin II forms around the granule, and actomyosin II contractility squeezes VWF content out into the extracellular environment. This study therefore demonstrates how discrete actin cytoskeleton functions within a single cellular system explain actin filament–based prevention and promotion of specific exocytic steps during regulated secretion.
Collapse
Affiliation(s)
- Thomas D Nightingale
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, England, UK
| | | | | | | | | | | | | | | |
Collapse
|
62
|
Wang JW, Valentijn KM, de Boer HC, Dirven RJ, van Zonneveld AJ, Koster AJ, Voorberg J, Reitsma PH, Eikenboom J. Intracellular storage and regulated secretion of von Willebrand factor in quantitative von Willebrand disease. J Biol Chem 2011; 286:24180-8. [PMID: 21596755 DOI: 10.1074/jbc.m110.215194] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Several missense mutations in the von Willebrand Factor (VWF) gene of von Willebrand disease (VWD) patients have been shown to cause impaired constitutive secretion and intracellular retention of VWF. However, the effects of those mutations on the intracellular storage in Weibel-Palade bodies (WPBs) of endothelial cells and regulated secretion of VWF remain unknown. We demonstrate, by expression of quantitative VWF mutants in HEK293 cells, that four missense mutations in the D3 and CK-domain of VWF diminished the storage in pseudo-WPBs, and led to retention of VWF within the endoplasmic reticulum (ER). Immunofluorescence and electron microscopy data showed that the pseudo-WPBs formed by missense mutant C1060Y are indistinguishable from those formed by normal VWF. C1149R, C2739Y, and C2754W formed relatively few pseudo-WPBs, which were often short and sometimes round rather than cigar-shaped. The regulated secretion of VWF was impaired slightly for C1060Y but severely for C1149R, C2739Y, and C2754W. Upon co-transfection with wild-type VWF, both intracellular storage and regulated secretion of all mutants were (partly) corrected. In conclusion, defects in the intracellular storage and regulated secretion of VWF following ER retention may be a common mechanism underlying VWD with a quantitative deficiency of VWF.
Collapse
Affiliation(s)
- Jiong-Wei Wang
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, 2333ZA Leiden, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Burgess J, Jauregui M, Tan J, Rollins J, Lallet S, Leventis PA, Boulianne GL, Chang HC, Le Borgne R, Krämer H, Brill JA. AP-1 and clathrin are essential for secretory granule biogenesis in Drosophila. Mol Biol Cell 2011; 22:2094-105. [PMID: 21490149 PMCID: PMC3113773 DOI: 10.1091/mbc.e11-01-0054] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Regulated secretion of hormones, digestive enzymes, and other biologically active molecules requires the formation of secretory granules. Clathrin and the clathrin adaptor protein complex 1 (AP-1) are necessary for maturation of exocrine, endocrine, and neuroendocrine secretory granules. However, the initial steps of secretory granule biogenesis are only minimally understood. Powerful genetic approaches available in the fruit fly Drosophila melanogaster were used to investigate the molecular pathway for biogenesis of the mucin-containing "glue granules" that form within epithelial cells of the third-instar larval salivary gland. Clathrin and AP-1 colocalize at the trans-Golgi network (TGN) and clathrin recruitment requires AP-1. Furthermore, clathrin and AP-1 colocalize with secretory cargo at the TGN and on immature granules. Finally, loss of clathrin or AP-1 leads to a profound block in secretory granule formation. These findings establish a novel role for AP-1- and clathrin-dependent trafficking in the biogenesis of mucin-containing secretory granules.
Collapse
Affiliation(s)
- Jason Burgess
- Department of Molecular Genetics, University of Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Kiskin NI, Hellen N, Babich V, Hewlett L, Knipe L, Hannah MJ, Carter T. Protein mobilities and P-selectin storage in Weibel-Palade bodies. J Cell Sci 2011; 123:2964-75. [PMID: 20720153 DOI: 10.1242/jcs.073593] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Using fluorescence recovery after photobleaching (FRAP) we measured the mobilities of EGFP-tagged soluble secretory proteins in the endoplasmic reticulum (ER) and in individual Weibel-Palade bodies (WPBs) at early (immature) and late (mature) stages in their biogenesis. Membrane proteins (P-selectin, CD63, Rab27a) were also studied in individual WPBs. In the ER, soluble secretory proteins were mobile; however, following insertion into immature WPBs larger molecules (VWF, Proregion, tPA) and P-selectin became immobilised, whereas small proteins (ssEGFP, eotaxin-3) became less mobile. WPB maturation led to further decreases in mobility of small proteins and CD63. Acute alkalinisation of mature WPBs selectively increased the mobilities of small soluble proteins without affecting larger molecules and the membrane proteins. Disruption of the Proregion-VWF paracrystalline core by prolonged incubation with NH(4)Cl rendered P-selectin mobile while VWF remained immobile. FRAP of P-selectin mutants revealed that immobilisation most probably involves steric entrapment of the P-selectin extracellular domain by the Proregion-VWF paracrystal. Significantly, immobilisation contributed to the enrichment of P-selectin in WPBs; a mutation of P-selectin preventing immobilisation led to a failure of enrichment. Together these data shed new light on the transitions that occur for soluble and membrane proteins following their entry and storage into post-Golgi-regulated secretory organelles.
Collapse
Affiliation(s)
- Nikolai I Kiskin
- Division of Molecular Neuroendocrinology, MRC National Institute for Medical Research, Mill Hill, London NW7 1AA, UK.
| | | | | | | | | | | | | |
Collapse
|
65
|
Michaux G, Dyer CEF, Nightingale TD, Gallaud E, Nurrish S, Cutler DF. A role for Rab10 in von Willebrand factor release discovered by an AP-1 interactor screen in C. elegans. J Thromb Haemost 2011; 9:392-401. [PMID: 21070595 DOI: 10.1111/j.1538-7836.2010.04138.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Endothelial von Willebrand factor (VWF) mediates platelet adhesion and acts as a protective chaperone to clotting factor VIII. Rapid release of highly multimerized VWF is particularly effective in promoting hemostasis. To produce this protein, an elaborate biogenesis is required, culminating at the trans-Golgi network (TGN) in storage within secretory granules called Weibel-Palade bodies (WPB). Failure to correctly form these organelles can lead to uncontrolled secretion of low-molecular-weight multimers of VWF. The TGN-associated adaptor AP-1 and its interactors clathrin, aftiphilin and γ-synergin are essential to initial WPB formation at the Golgi apparatus, and thus to VWF storage and secretion. OBJECTIVES To identify new proteins implicated in VWF storage and/or secretion. METHODS A genomewide RNA interference (RNAi) screen was performed in the Nematode C. elegans to identify new AP-1 genetic interactors. RESULTS The small GTPase Rab10 was found to genetically interact with a partial loss of function of AP-1 in C. elegans. We investigated Rab10 in human primary umbilical vein endothelial cells (HUVECs). We report that Rab10 is enriched at the Golgi apparatus, where WPB are formed, and that in cells where Rab10 expression has been suppressed by siRNA, VWF secretion is altered: the amount of rapidly released VWF was significantly reduced. We also found that Rab8A has a similar function. CONCLUSION Rab10 and Rab8A are new cytoplasmic factors implicated in WPB biogenesis that play a role in generating granules that can rapidly respond to secretagogue.
Collapse
Affiliation(s)
- G Michaux
- INSERM Avenir team Trafic intracellulaire et polarité chez C. elegans, Rennes, France.
| | | | | | | | | | | |
Collapse
|
66
|
Abstract
Weibel-Palade bodies (WPBs) are elongated secretory organelles specific to endothelial cells that contain von Willebrand factor (VWF) and a variety of other proteins that contribute to inflammation, angiogenesis, and tissue repair. The remarkable architecture of WPBs is because of the unique properties of their major constituent VWF. VWF is stored inside WPBs as tubules, but on its release, forms strikingly long strings that arrest bleeding by recruiting blood platelets to sites of vascular injury. In recent years considerable progress has been made regarding the molecular events that underlie the packaging of VWF multimers into tubules and the processes leading to the formation of elongated WPBs. Mechanisms directing the conversion of tightly packaged VWF tubules into VWF strings on the surface of endothelial cells are starting to be unraveled. Several modes of exocytosis have now been described for WPBs, emphasizing the plasticity of these organelles. WPB exocytosis plays a role in the pathophysiology and treatment of von Willebrand disease and may have impact on common hematologic and cardiovascular disorders. This review summarizes the major advances made on the biogenesis and exocytosis of WPBs and places these recent discoveries in the context of von Willebrand disease.
Collapse
|
67
|
Benhra N, Lallet S, Cotton M, Le Bras S, Dussert A, Le Borgne R. AP-1 controls the trafficking of Notch and Sanpodo toward E-cadherin junctions in sensory organ precursors. Curr Biol 2010; 21:87-95. [PMID: 21194948 DOI: 10.1016/j.cub.2010.12.010] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 11/11/2010] [Accepted: 12/06/2010] [Indexed: 02/01/2023]
Abstract
In Drosophila melanogaster, external sensory organs develop from a single sensory organ precursor (SOP). The SOP divides asymmetrically to generate daughter cells, whose fates are governed by differential Notch activation. Here we show that the clathrin adaptor AP-1 complex, localized at the trans Golgi network and in recycling endosomes, acts as a negative regulator of Notch signaling. Inactivation of AP-1 causes ligand-dependent activation of Notch, leading to a fate transformation within sensory organs. Loss of AP-1 affects neither cell polarity nor the unequal segregation of the cell fate determinants Numb and Neuralized. Instead, it causes apical accumulation of the Notch activator Sanpodo and stabilization of both Sanpodo and Notch at the interface between SOP daughter cells, where DE-cadherin is localized. Endocytosis-recycling assays reveal that AP-1 acts in recycling endosomes to prevent internalized Spdo from recycling toward adherens junctions. Because AP-1 does not prevent endocytosis and recycling of the Notch ligand Delta, our data indicate that the DE-cadherin junctional domain may act as a launching pad through which endocytosed Notch ligand is trafficked for signaling.
Collapse
Affiliation(s)
- Najate Benhra
- CNRS UMR 6061-Institut de Génétique et Développement de Rennes, Université de Rennes 1, 2 avenue du Professeur Bernard, 35000 Rennes, France
| | | | | | | | | | | |
Collapse
|
68
|
Pulido IR, Jahn R, Gerke V. VAMP3 is associated with endothelial weibel-palade bodies and participates in their Ca(2+)-dependent exocytosis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1813:1038-44. [PMID: 21094665 DOI: 10.1016/j.bbamcr.2010.11.007] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2010] [Revised: 10/25/2010] [Accepted: 11/06/2010] [Indexed: 11/27/2022]
Abstract
Weibel-Palade bodies (WPBs) are secretory organelles of endothelial cells that store the thrombogenic glycoprotein von Willebrand factor (vWF). Endothelial activation, e.g. by histamine and thrombin, triggers the Ca(2+)-dependent exocytosis of WPB that releases vWF into the vasculature and thereby initiates platelet capture and thrombus formation. Towards understanding the molecular mechanisms underlying this regulated WPB exocytosis, we here identify components of the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) machinery associated with WPB. We show that vesicle-associated membrane protein (VAMP) 3 and VAMP8 are present on WPB and that VAMP3, but not VAMP8 forms a stable complex with syntaxin 4 and SNAP23, two plasma membrane-associated SNAREs in endothelial cells. By introducing mutant SNARE proteins into permeabilized endothelial cells we also show that soluble VAMP3 but not VAMP8 mutants comprising the cytoplasmic domain interfere with efficient vWF secretion. This indicates that endothelial cells specifically select VAMP 3 over VAMP8 to cooperate with syntaxin 4 and SNAP23 in the Ca(2+)-triggered fusion of WPB with the plasma membrane. This article is part of a Special Issue entitled: 11th European Symposium on Calcium.
Collapse
Affiliation(s)
- Inés Rojo Pulido
- Institute of Medical Biochemistry, Centre for Molecular Biology of Inflammation, University of Münster, D-48149 Münster, Germany
| | | | | |
Collapse
|
69
|
Maritzen T, Schmidt MR, Kukhtina V, Higman VA, Strauss H, Volkmer R, Oschkinat H, Dotti CG, Haucke V. A novel subtype of AP-1-binding motif within the palmitoylated trans-Golgi network/endosomal accessory protein Gadkin/gamma-BAR. J Biol Chem 2009; 285:4074-4086. [PMID: 19965873 DOI: 10.1074/jbc.m109.049197] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Membrane traffic between the trans-Golgi network (TGN) and endosomes is mediated in part by the assembly of clathrin-AP-1 adaptor complex-coated vesicles. This process involves multiple accessory proteins that directly bind to the ear domain of AP-1gamma via degenerate peptide motifs that conform to the consensus sequence diameterG(P/D/E)(diameter/L/M) (with diameter being a large hydrophobic amino acid). Recently, gamma-BAR (hereafter referred to as Gadkin for reasons explained below) has been identified as a novel AP-1 recruitment factor involved in AP-1-dependent endosomal trafficking of lysosomal enzymes. How precisely Gadkin interacts with membranes and with AP-1gamma has remained unclear. Here we show that Gadkin is an S-palmitoylated peripheral membrane protein that lacks stable tertiary structure. S-Palmitoylation is required for the recruitment of Gadkin to TGN/endosomal membranes but not for binding to AP-1. Furthermore, we identify a novel subtype of AP-1-binding motif within Gadkin that specifically associates with the gamma1-adaptin ear domain. Mutational inactivation of this novel type of motif, either alone or in combination with three more conventional AP-1gamma binding peptides, causes Gadkin to mislocalize to the plasma membrane and interferes with its ability to render AP-1 brefeldin A-resistant, indicating its physiological importance. Our studies thus unravel the molecular basis for Gadkin-mediated AP-1 recruitment to TGN/endosomal membranes and identify a novel subtype of the AP-1-binding motif.
Collapse
Affiliation(s)
- Tanja Maritzen
- From the Institute of Chemistry and Biochemistry, Department of Membrane Biochemistry, Freie Universität and Charité-Universitätsmedizin Berlin, Takustrasse 6, 14195 Berlin, Germany
| | - Michael R Schmidt
- From the Institute of Chemistry and Biochemistry, Department of Membrane Biochemistry, Freie Universität and Charité-Universitätsmedizin Berlin, Takustrasse 6, 14195 Berlin, Germany
| | - Viktoria Kukhtina
- From the Institute of Chemistry and Biochemistry, Department of Membrane Biochemistry, Freie Universität and Charité-Universitätsmedizin Berlin, Takustrasse 6, 14195 Berlin, Germany
| | - Victoria A Higman
- the Leibniz-Institut für Molekulare Pharmakologie, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Holger Strauss
- the Leibniz-Institut für Molekulare Pharmakologie, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Rudolf Volkmer
- the Institut für Medizinische Immunologie, Charité-Universitätsmedizin Berlin, Hessische Strasse 3-4, 10115 Berlin, Germany
| | - Hartmut Oschkinat
- the Leibniz-Institut für Molekulare Pharmakologie, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Carlos G Dotti
- the Vlanders Institute for Biotechnology, Molecular & Developmental Genetics Program and Department of Human Genetics, University of Leuven Medical School, Herestraat 49, 3000 Leuven, Belgium, and
| | - Volker Haucke
- From the Institute of Chemistry and Biochemistry, Department of Membrane Biochemistry, Freie Universität and Charité-Universitätsmedizin Berlin, Takustrasse 6, 14195 Berlin, Germany; the Leibniz-Institut für Molekulare Pharmakologie, Robert-Rössle-Strasse 10, 13125 Berlin, Germany.
| |
Collapse
|
70
|
Delevoye C, Hurbain I, Tenza D, Sibarita JB, Uzan-Gafsou S, Ohno H, Geerts WJC, Verkleij AJ, Salamero J, Marks MS, Raposo G. AP-1 and KIF13A coordinate endosomal sorting and positioning during melanosome biogenesis. ACTA ACUST UNITED AC 2009; 187:247-64. [PMID: 19841138 PMCID: PMC2768840 DOI: 10.1083/jcb.200907122] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Specialized cell types exploit endosomal trafficking to deliver protein cargoes to cell type-specific lysosome-related organelles (LROs), but how endosomes are specified for this function is not known. In this study, we show that the clathrin adaptor AP-1 and the kinesin motor KIF13A together create peripheral recycling endosomal subdomains in melanocytes required for cargo delivery to maturing melanosomes. In cells depleted of AP-1 or KIF13A, a subpopulation of recycling endosomes redistributes to pericentriolar clusters, resulting in sequestration of melanosomal enzymes like Tyrp1 in vacuolar endosomes and consequent inhibition of melanin synthesis and melanosome maturation. Immunocytochemistry, live cell imaging, and electron tomography reveal AP-1- and KIF13A-dependent dynamic close appositions and continuities between peripheral endosomal tubules and melanosomes. Our results reveal that LRO protein sorting is coupled to cell type-specific positioning of endosomes that facilitate endosome-LRO contacts and are required for organelle maturation.
Collapse
Affiliation(s)
- Cédric Delevoye
- Structure and Membrane Compartments, Centre Nationale de la Recherche Scientifique, UMR 144 Institut Curie, Centre de Recherche, Paris F-75248, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Zhang Z, Li W. [Formation and function of Weibel-Palade bodies]. YI CHUAN = HEREDITAS 2009; 31:882-8. [PMID: 19819840 DOI: 10.3724/sp.j.1005.2009.00882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Weibel-Palade bodies (WPB) are specialized cigar-shaped secretory organelles in endothelial cells, which contain a variety of biologically active molecules. These contents can be released rapidly by stimulation and involved in hemostasis, inflammation and angiogenesis. The main component of WPB is von Willebrand factor (vWF), whose expression and tubulation are necessary for the formation of the unique rod-like WPBs. Different molecules such as vWF, P-selectin, CD63, Rab27A and Rab3D are recruited into WPB mediated by the AP-1, AP-3 or other transport machinery. The underlying mechanism of the formation of WPB remains further investigation, which will gain insights into its function. The molecular mechanism of WPB formation and its function were discussed in this review.
Collapse
Affiliation(s)
- Zhe Zhang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
| | | |
Collapse
|
72
|
Structural organization of Weibel-Palade bodies revealed by cryo-EM of vitrified endothelial cells. Proc Natl Acad Sci U S A 2009; 106:17407-12. [PMID: 19805028 DOI: 10.1073/pnas.0902977106] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
In endothelial cells, the multifunctional blood glycoprotein von Willebrand Factor (VWF) is stored for rapid exocytic release in specialized secretory granules called Weibel-Palade bodies (WPBs). Electron cryomicroscopy at the thin periphery of whole, vitrified human umbilical vein endothelial cells (HUVECs) is used to directly image WPBs and their interaction with a 3D network of closely apposed membranous organelles, membrane tubules, and filaments. Fourier analysis of images and tomographic reconstruction show that VWF is packaged as a helix in WPBs. The helical signature of VWF tubules is used to identify VWF-containing organelles and characterize their paracrystalline order in low dose images. We build a 3D model of a WPB in which individual VWF helices can bend, but in which the paracrystalline packing of VWF tubules, closely wrapped by the WPB membrane, is associated with the rod-like morphology of the granules.
Collapse
|
73
|
Hol J, Küchler AM, Johansen FE, Dalhus B, Haraldsen G, Oynebråten I. Molecular requirements for sorting of the chemokine interleukin-8/CXCL8 to endothelial Weibel-Palade bodies. J Biol Chem 2009; 284:23532-9. [PMID: 19578117 DOI: 10.1074/jbc.m900874200] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Sorting of proteins to Weibel-Palade bodies (WPB) of endothelial cells allows rapid regulated secretion of leukocyte-recruiting P-selectin and chemokines as well as procoagulant von Willebrand factor (VWF). Here we show by domain swap studies that the exposed aspartic acid in loop 2 (Ser(44)-Asp(45)-Gly(46)) of the CXC chemokine interleukin (IL)-8 is crucial for targeting to WPB. Loop 2 also governs sorting of chemokines to alpha-granules of platelets, but the fingerprint of the loop 2 of these chemokines differs from that of IL-8. On the other hand, loop 2 of IL-8 closely resembles a surface-exposed sequence of the VWF propeptide, the region of VWF that directs sorting of the protein to WPB. We conclude that loop 2 of IL-8 constitutes a critical signal for sorting to WPB and propose a general role for this loop in the sorting of chemokines to compartments of regulated secretion.
Collapse
Affiliation(s)
- Johanna Hol
- Institute and University of Oslo, Rikshospitalet University Hospital, Sognsvannsveien 20, 0027 Oslo, Norway
| | | | | | | | | | | |
Collapse
|
74
|
Nightingale TD, Pattni K, Hume AN, Seabra MC, Cutler DF. Rab27a and MyRIP regulate the amount and multimeric state of VWF released from endothelial cells. Blood 2009; 113:5010-8. [PMID: 19270261 PMCID: PMC2686148 DOI: 10.1182/blood-2008-09-181206] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2008] [Accepted: 02/15/2009] [Indexed: 11/20/2022] Open
Abstract
Endothelial cells contain cigar-shaped secretory organelles called Weibel-Palade bodies (WPBs) that play a crucial role in both hemostasis and the initiation of inflammation. The major cargo protein of WPBs is von Willebrand factor (VWF). In unstimulated cells, this protein is stored in a highly multimerized state coiled into protein tubules, but after secretagogue stimulation and exocytosis it unfurls, under shear force, as long platelet-binding strings. Small GTPases of the Rab family play a key role in organelle function. Using siRNA depletion in primary endothelial cells, we have identified a role for the WPB-associated Rab27a and its effector MyRIP. Both these proteins are present on only mature WPBs, and this rab/effector complex appears to anchor these WPBs to peripheral actin. Depletion of either the Rab or its effector results in a loss of peripheral WPB localization, and this destabilization is coupled with an increase in both basal and stimulated secretion. The VWF released from Rab27a-depleted cells is less multimerized, and the VWF strings seen under flow are shorter. Our results indicate that this Rab/effector complex controls peripheral distribution and prevents release of incompletely processed WPB content.
Collapse
Affiliation(s)
- Thomas D Nightingale
- Medical Research Council Laboratory of Molecular Cell Biology, Cell Biology Unit, Department of Cell and Developmental Biology, University College London, London, United Kingdom. [corrected]
| | | | | | | | | |
Collapse
|
75
|
van den Biggelaar M, Bouwens EAM, Kootstra NA, Hebbel RP, Voorberg J, Mertens K. Storage and regulated secretion of factor VIII in blood outgrowth endothelial cells. Haematologica 2009; 94:670-8. [PMID: 19336741 DOI: 10.3324/haematol.13427] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Gene therapy provides an attractive alternative for protein replacement therapy in hemophilia A patients. Recent studies have shown the potential benefit of directing factor (F)VIII gene delivery to cells that also express its natural carrier protein von Willebrand factor (VWF). In this study, we explored the feasibility of blood outgrowth endothelial cells as a cellular FVIII delivery device with particular reference to long-term production levels, intracellular storage in Weibel-Palade bodies and agonist-induced regulated secretion. DESIGN AND METHODS Human blood outgrowth endothelial cells were isolated from peripheral blood collected from healthy donors, transduced at passage 5 using a lentiviral vector encoding human B-domain deleted FVIII-GFP and characterized by flow cytometry and confocal microscopy. RESULTS Blood outgrowth endothelial cells displayed typical endothelial morphology and expressed the endothelial-specific marker VWF. Following transduction with a lentivirus encoding FVIII-GFP, 80% of transduced blood outgrowth endothelial cells expressed FVIII-GFP. Levels of FVIII-GFP positive cells declined slowly upon prolonged culturing. Transduced blood outgrowth endothelial cells expressed 1.6+/-1.0 pmol/1 x 10(6) cells/24h FVIII. Morphological analysis demonstrated that FVIII-GFP was stored in Weibel-Palade bodies together with VWF and P-selectin. FVIII levels were only slightly increased following agonist-induced stimulation, whereas a 6- to 8-fold increase of VWF levels was observed. Subcellular fractionation revealed that 15-22% of FVIII antigen was present within the dense fraction containing Weibel-Palade bodies. CONCLUSIONS We conclude that blood outgrowth endothelial cells, by virtue of their ability to store a significant portion of synthesized FVIII-GFP in Weibel-Palade bodies, provide an attractive cellular on-demand delivery device for gene therapy of hemophilia A.
Collapse
|
76
|
Lui-Roberts WWY, Ferraro F, Nightingale TD, Cutler DF. Aftiphilin and gamma-synergin are required for secretagogue sensitivity of Weibel-Palade bodies in endothelial cells. Mol Biol Cell 2008; 19:5072-81. [PMID: 18815278 DOI: 10.1091/mbc.e08-03-0301] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Formation of secretory organelles requires the coupling of cargo selection to targeting into the correct exocytic pathway. Although the assembly of regulated secretory granules is driven in part by selective aggregation and retention of content, we recently reported that adaptor protein-1 (AP-1) recruitment of clathrin is essential to the initial formation of Weibel-Palade bodies (WPBs) at the trans-Golgi network. A selective co-aggregation process might include recruitment of components required for targeting to the regulated secretory pathway. However, we find that acquisition of the regulated secretory phenotype by WPBs in endothelial cells is coupled to but can be separated from formation of the distinctive granule core by ablation of the AP-1 effectors aftiphilin and gamma-synergin. Their depletion by small interfering RNA leads to WPBs that fail to respond to secretagogue and release their content in an unregulated manner. We find that these non-responsive WPBs have density, markers of maturation, and highly multimerized von Willebrand factor similar to those of wild-type granules. Thus, by also recruiting aftiphilin/gamma-synergin in addition to clathrin, AP-1 coordinates formation of WPBs with their acquisition of a regulated secretory phenotype.
Collapse
Affiliation(s)
- Winnie W Y Lui-Roberts
- MRC Laboratory of Molecular Cell Biology, Cell Biology Unit and Department of Cell and Developmental Biology, University College London, London WC1E 6BT, United Kingdom
| | | | | | | |
Collapse
|
77
|
Metcalf DJ, Nightingale TD, Zenner HL, Lui-Roberts WW, Cutler DF. Formation and function of Weibel-Palade bodies. J Cell Sci 2008; 121:19-27. [PMID: 18096688 DOI: 10.1242/jcs.03494] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Weibel-Palade bodies (WPBs) are secretory organelles used for post-synthesis storage in endothelial cells that can, very rapidly, be triggered to release their contents. They carry a variety of bioactive molecules that are needed to mount a rapid response to the complex environment of cells that line blood vessels. They store factors that are essential to haemostasis and inflammation, as well as factors that modulate vascular tonicity and angiogenesis. The number of WPBs and their precise content vary between endothelial tissues, reflecting their differing physiological circumstances. The particular functional demands of the highly multimerised haemostatic protein von Willebrand Factor (VWF), which is stored in WPBs as tubules until release, are responsible for the cigar shape of these granules. How VWF tubules drive the formation of these uniquely shaped organelles, and how WPB density increases during maturation, has recently been revealed by EM analysis using high-pressure freezing and freeze substitution. In addition, an AP1/clathrin coat has been found to be essential to WPB formation. Following recruitment of cargo at the TGN, there is a second wave of recruitment that delivers integral and peripheral membrane proteins to WPBs, some of which is AP3 dependent.
Collapse
Affiliation(s)
- Daniel J Metcalf
- MRC Laboratory of Molecular Cell Biology, Cell Biology Unit, University College London, Gower Street, London, WC1E 6BT, UK
| | | | | | | | | |
Collapse
|
78
|
Origins of the regulated secretory pathway. THE GOLGI APPARATUS 2008. [PMCID: PMC7121582 DOI: 10.1007/978-3-211-76310-0_30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Modes of transport of soluble (or luminal) secretory proteins synthesized in the endoplasmic reticulum (ER) could be divided into two groups. The socalled constitutive secretory pathway (CSP) is common to all eukaryotic cells, constantly delivering constitutive soluble secretory proteins (CSSPs) linked to the rate of protein synthesis but largely independent of external stimuli. In regulated secretion, protein is sorted from the Golgi into storage/secretory granules (SGs) whose contents are released when stimuli trigger their final fusion with the plasma membrane (Hannah et al. 1999).
Collapse
|
79
|
Valentijn KM, Valentijn JA, Jansen KA, Koster AJ. A new look at Weibel-Palade body structure in endothelial cells using electron tomography. J Struct Biol 2007; 161:447-58. [PMID: 17888679 DOI: 10.1016/j.jsb.2007.08.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2007] [Revised: 08/01/2007] [Accepted: 08/01/2007] [Indexed: 10/23/2022]
Abstract
Multimers of von Willebrand Factor (vWF), a protein mediating blood clotting in response to vascular injury, are stored as tubular structures by endothelial cells in specific organelles, the Weibel-Palade Bodies (WPBs). To date very little is known about the 3D structure of WPBs in relation to the organization of the tubules. Therefore, we have initiated a thorough electron microscopic study in human umbilical vein endothelial cells (HUVECs) using electron tomography to gain further understanding of the ultrastructure of WPBs. We found that in addition to the well-documented cigar-shape, WPBs adopt irregular forms, which appeared to result from homotypic fusion. In transverse views of WPBs the tubular striations appear evenly spaced, which indicates a high level of organization that is likely to involve an underlying scaffold of structural proteins. Additionally, we found that the tubular striations twisted in an orderly fashion, suggesting that they are stored within the WPBs by a spring-loading mechanism. Altogether these data suggest that WPBs undergo a relatively complex maturation process involving homotypic fusion. Although the mechanism of assembly of vWF multimers into tubules is still unknown, the curled arrangement of the tubules within WPBs suggests a high degree of folding of the protein inside the organelle.
Collapse
Affiliation(s)
- K M Valentijn
- Department of Molecular Cell Biology, Section Electron Microscopy, Leiden University Medical Center, Leiden, The Netherlands.
| | | | | | | |
Collapse
|
80
|
Raposo G, Marks MS, Cutler DF. Lysosome-related organelles: driving post-Golgi compartments into specialisation. Curr Opin Cell Biol 2007; 19:394-401. [PMID: 17628466 PMCID: PMC2782641 DOI: 10.1016/j.ceb.2007.05.001] [Citation(s) in RCA: 161] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2007] [Accepted: 05/02/2007] [Indexed: 11/15/2022]
Abstract
Some cells harbour specialised lysosome-related organelles (LROs) that share features of late endosomes/lysosomes but are functionally, morphologically and/or compositionally distinct. Ubiquitous trafficking machineries cooperate with cell type specific cargoes to produce these organelles. Several genetic diseases are caused by dysfunctional LRO formation and/or motility. Many genes affected by these diseases have been recently identified, revealing new cellular components of the trafficking machinery. Current research reveals how the products of these genes cooperate to generate LROs and how these otherwise diverse organelles are related by the mechanisms through which they form.
Collapse
Affiliation(s)
- Graça Raposo
- Institut Curie, Centre de Recherche, Paris F-75248, France.
| | | | | |
Collapse
|
81
|
Camus G, Segura-Morales C, Molle D, Lopez-Vergès S, Begon-Pescia C, Cazevieille C, Schu P, Bertrand E, Berlioz-Torrent C, Basyuk E. The clathrin adaptor complex AP-1 binds HIV-1 and MLV Gag and facilitates their budding. Mol Biol Cell 2007; 18:3193-203. [PMID: 17538020 PMCID: PMC1949356 DOI: 10.1091/mbc.e06-12-1147] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Retroviral assembly is driven by Gag, and nascent viral particles escape cells by recruiting the machinery that forms intralumenal vesicles of multivesicular bodies. In this study, we show that the clathrin adaptor complex AP-1 is involved in retroviral release. The absence of AP-1mu obtained by genetic knock-out or by RNA interference reduces budding of murine leukemia virus (MLV) and HIV-1, leading to a delay of viral propagation in cell culture. In contrast, overexpression of AP-1mu enhances release of HIV-1 Gag. We show that the AP-1 complex facilitates retroviral budding through a direct interaction between the matrix and AP-1mu. Less MLV Gag is found associated with late endosomes in cells lacking AP-1, and our results suggest that AP-1 and AP-3 could function on the same pathway that leads to Gag release. In addition, we find that AP-1 interacts with Tsg101 and Nedd4.1, two cellular proteins known to be involved in HIV-1 and MLV budding. We propose that AP-1 promotes Gag release by transporting it to intracellular sites of active budding, and/or by facilitating its interactions with other cellular partners.
Collapse
Affiliation(s)
- Grégory Camus
- *Institut Cochin, Université Paris Descartes, Centre National de la Recherche Scientifique (UMR 8104), Paris, France; and
- Institut National de la Santé et de la recherche Médicale, U567, Paris, France
| | - Carolina Segura-Morales
- Institut de Génétique Moléculaire de Montpellier-Centre National de la Recherché Scientifique Unité Mixte de Recherché 5535, 34293 Montpellier, France
| | - Dorothee Molle
- Institut de Génétique Moléculaire de Montpellier-Centre National de la Recherché Scientifique Unité Mixte de Recherché 5535, 34293 Montpellier, France
| | - Sandra Lopez-Vergès
- *Institut Cochin, Université Paris Descartes, Centre National de la Recherche Scientifique (UMR 8104), Paris, France; and
- Institut National de la Santé et de la recherche Médicale, U567, Paris, France
| | - Christina Begon-Pescia
- Institut de Génétique Moléculaire de Montpellier-Centre National de la Recherché Scientifique Unité Mixte de Recherché 5535, 34293 Montpellier, France
| | - Chantal Cazevieille
- Centre Régional d'Imagerie Cellulaire/Institut Universitaire de Recherché Clinique, 34093 Montpellier, France; and
| | - Peter Schu
- University of Göttingen, Center for Biochemistry and Molecular Cell Biology, Biochemistry II, 37073 Göttingen, Germany
| | - Edouard Bertrand
- Institut de Génétique Moléculaire de Montpellier-Centre National de la Recherché Scientifique Unité Mixte de Recherché 5535, 34293 Montpellier, France
| | - Clarisse Berlioz-Torrent
- *Institut Cochin, Université Paris Descartes, Centre National de la Recherche Scientifique (UMR 8104), Paris, France; and
- Institut National de la Santé et de la recherche Médicale, U567, Paris, France
| | - Eugenia Basyuk
- Institut de Génétique Moléculaire de Montpellier-Centre National de la Recherché Scientifique Unité Mixte de Recherché 5535, 34293 Montpellier, France
| |
Collapse
|
82
|
Zenner HL, Collinson LM, Michaux G, Cutler DF. High-pressure freezing provides insights into Weibel-Palade body biogenesis. J Cell Sci 2007; 120:2117-25. [PMID: 17535847 DOI: 10.1242/jcs.007781] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Weibel-Palade bodies (WPBs) of endothelial cells play an important role in haemostasis and the initiation of inflammation, yet their biogenesis is poorly understood. Tubulation of their major content protein, von Willebrand factor (VWF), is crucial to WPB function, and so we investigated further the relationship between VWF tubule formation and WPB formation in human umbilical vein endothelial cells (HUVECs). By using high-pressure freezing and freeze substitution before electron microscopy, we visualised VWF tubules in the trans-Golgi network (TGN), as well as VWF subunits in vesicular structures. Tubules were also seen in WPBs that were connected to the TGN by membranous stalks. Tubules are disorganised in the immature WPBs but during maturation we found a dramatic increase in the spatial organisation of the tubules and in organelle electron density. We also found coated budding profiles suggestive of the removal of missorted material after initial formation of these granules. Finally, we discovered that these large, seemingly rigid, organelles flex at hinge points and that the VWF tubules are interrupted at these hinges, facilitating organelle movement around the cell. The use of high-pressure freezing was vital in this study and it suggests that this technique might prove essential to any detailed characterisation of organelle biogenesis.
Collapse
Affiliation(s)
- Helen L Zenner
- MRC Laboratory of Molecular Cell Biology, Cell Biology Unit, and Department of Biochemistry and Molecular Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | | | | | | |
Collapse
|
83
|
Byland R, Vance PJ, Hoxie JA, Marsh M. A conserved dileucine motif mediates clathrin and AP-2-dependent endocytosis of the HIV-1 envelope protein. Mol Biol Cell 2006; 18:414-25. [PMID: 17108326 PMCID: PMC1783771 DOI: 10.1091/mbc.e06-06-0535] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
During the assembly of enveloped viruses viral and cellular components essential for infectious particles must colocalize at specific membrane locations. For the human and simian immunodeficiency viruses (HIV and SIV), sorting of the viral envelope proteins (Env) to assembly sites is directed by trafficking signals located in the cytoplasmic domain of the transmembrane protein gp41 (TM). A membrane proximal conserved GYxxØ motif mediates endocytosis through interaction with the clathrin adaptor AP-2. However, experiments with SIV(mac239) Env indicate the presence of additional signals. Here we show that a conserved C-terminal dileucine in HIV(HxB2) also mediates endocytosis. Biochemical and morphological assays demonstrate that the C-terminal dileucine motif mediates internalization as efficiently as the GYxxØ motif and that both must be removed to prevent Env internalization. RNAi experiments show that depletion of the clathrin adaptor AP-2 leads to increased plasma membrane expression of HIV Env and that this adaptor is required for efficient internalization mediated by both signals. The redundancy of conserved endocytosis signals and the role of the SIV(mac239) Env GYxxØ motif in SIV pathogenesis, suggest that these motifs have functions in addition to endocytosis, possibly related to Env delivery to the site of viral assembly and/or incorporation into budding virions.
Collapse
Affiliation(s)
- Rahel Byland
- *Cell Biology Unit, MRC-Laboratory for Molecular Cell Biology and Department of Biochemistry and Molecular Biology, University College London, London WC1E 6BT, United Kingdom; and
| | - Patricia J. Vance
- Hematology-Oncology Division, Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - James A. Hoxie
- Hematology-Oncology Division, Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Mark Marsh
- *Cell Biology Unit, MRC-Laboratory for Molecular Cell Biology and Department of Biochemistry and Molecular Biology, University College London, London WC1E 6BT, United Kingdom; and
| |
Collapse
|
84
|
Harrison-Lavoie KJ, Michaux G, Hewlett L, Kaur J, Hannah MJ, Lui-Roberts WWY, Norman KE, Cutler DF. P-Selectin and CD63 Use Different Mechanisms for Delivery to Weibel-Palade Bodies. Traffic 2006; 7:647-62. [PMID: 16683915 DOI: 10.1111/j.1600-0854.2006.00415.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The biogenesis of endothelial-specific Weibel-Palade bodies (WPB) is poorly understood, despite their key role in both haemostasis and inflammation. Biogenesis of specialized organelles of haemopoietic cells is often adaptor protein complex 3-dependent (AP-3-dependent), and AP-3 has previously been shown to play a role in the trafficking of both WPB membrane proteins, P-selectin and CD63. However, WPB are thought to form at the trans Golgi network (TGN), which is inconsistent with a role for AP-3, which operates in post-Golgi trafficking. We have therefore investigated in detail the mechanisms of delivery of these two membrane proteins to WPB. We find that P-selectin is recruited to forming WPB in the trans-Golgi by AP-3-independent mechanisms that use sorting information within both the cytoplasmic tail and the lumenal domain of the receptor. In contrast, CD63 is recruited to already-budded WPB by an AP-3-dependent route. These different mechanisms of recruitment lead to the presence of distinct immature and mature populations of WPB in human umbilical vein endothelial cells (HUVEC).
Collapse
MESH Headings
- Adaptor Protein Complex 3
- Amino Acid Sequence
- Animals
- Antigens, CD/metabolism
- Base Sequence
- Cells, Cultured
- DNA-Binding Proteins/metabolism
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/ultrastructure
- Humans
- Leukocyte Rolling/physiology
- Mice
- Mice, Inbred C57BL
- Mice, Mutant Strains
- Microscopy, Electron
- Models, Biological
- P-Selectin/chemistry
- P-Selectin/genetics
- P-Selectin/metabolism
- Platelet Membrane Glycoproteins/metabolism
- Protein Sorting Signals/genetics
- Protein Structure, Tertiary
- Protein Transport
- RNA, Small Interfering/genetics
- Recombinant Fusion Proteins/chemistry
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Tetraspanin 30
- Transcription Factors/metabolism
- Weibel-Palade Bodies/metabolism
- Weibel-Palade Bodies/ultrastructure
- trans-Golgi Network/metabolism
Collapse
Affiliation(s)
- Kimberly J Harrison-Lavoie
- MRC Laboratory of Molecular Cell Biology, Cell Biology Unit, University College London, Gower Street, London WC1E 6BT, UK
| | | | | | | | | | | | | | | |
Collapse
|
85
|
Rondaij MG, Bierings R, Kragt A, van Mourik JA, Voorberg J. Dynamics and plasticity of Weibel-Palade bodies in endothelial cells. Arterioscler Thromb Vasc Biol 2006; 26:1002-7. [PMID: 16469951 DOI: 10.1161/01.atv.0000209501.56852.6c] [Citation(s) in RCA: 253] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Agonist-induced release of endothelial cell specific storage granules, designated Weibel-Palade bodies (WPBs), provides the endothelium with the ability to rapidly respond to changes in its micro-environment. Originally being defined as an intracellular storage pool for von Willebrand factor (VWF), it has recently been shown that an increasing number of other components, including P-selectin, interleukin (IL)-8, eotaxin-3, endothelin-1, and angiopoietin-2, is present within this subcellular organelle, implicating a role for WPB exocytosis in inflammation, hemostasis, regulation of vascular tone and angiogenesis. Recent studies emphasize that WPBs provide a dynamic storage compartment whose contents can be regulated depending on the presence of inflammatory mediators in the vascular micro-environment. Additionally, release of WPBs is tightly regulated and feedback mechanisms have been identified that prevent excessive release of bioactive components from this subcellular organelle. The ability to regulate both contents and exocytosis of WPBs endows these endothelial cell specific organelles with a remarkable plasticity. This is most likely needed to allow for controlled delivery of bioactive components into the circulation on vascular perturbation.
Collapse
Affiliation(s)
- Mariska G Rondaij
- Department of Plasma Proteins, AMC, University of Amsterdam, Amsterdam
| | | | | | | | | |
Collapse
|
86
|
Michaux G, Abbitt KB, Collinson LM, Haberichter SL, Norman KE, Cutler DF. The Physiological Function of von Willebrand's Factor Depends on Its Tubular Storage in Endothelial Weibel-Palade Bodies. Dev Cell 2006; 10:223-32. [PMID: 16459301 DOI: 10.1016/j.devcel.2005.12.012] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2005] [Revised: 10/25/2005] [Accepted: 12/08/2005] [Indexed: 11/18/2022]
Abstract
Weibel-Palade bodies are the 1-5 microm long rod-shaped storage organelles of endothelial cells. We have investigated the determinants and functional significance of this shape. We find that the folding of the hemostatic protein von Willebrand's factor (VWF) into tubules underpins the rod-like shape of Weibel-Palade bodies. Further, while the propeptide and the N-terminal domains of mature VWF are sufficient to form tubules, their maintenance relies on a pH-dependent interaction between the two. We show that the tubular conformation of VWF is essential for a rapid unfurling of 100 microm long, platelet-catching VWF filaments when exposed to neutral pH after exocytosis in cell culture and in living blood vessels. If tubules are disassembled prior to exocytosis, then short or tangled filaments are released and platelet recruitment is reduced. Thus, a 100-fold compaction of VWF into tubules determines the unique shape of Weibel-Palade bodies and is critical to this protein's hemostatic function.
Collapse
Affiliation(s)
- Grégoire Michaux
- Department of Biochemistry, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | | | | | | | | | | |
Collapse
|
87
|
Theos AC, Tenza D, Martina JA, Hurbain I, Peden AA, Sviderskaya EV, Stewart A, Robinson MS, Bennett DC, Cutler DF, Bonifacino JS, Marks MS, Raposo G. Functions of adaptor protein (AP)-3 and AP-1 in tyrosinase sorting from endosomes to melanosomes. Mol Biol Cell 2005; 16:5356-72. [PMID: 16162817 PMCID: PMC1266432 DOI: 10.1091/mbc.e05-07-0626] [Citation(s) in RCA: 194] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Specialized cells exploit adaptor protein complexes for unique post-Golgi sorting events, providing a unique model system to specify adaptor function. Here, we show that AP-3 and AP-1 function independently in sorting of the melanocyte-specific protein tyrosinase from endosomes to the melanosome, a specialized lysosome-related organelle distinguishable from lysosomes. AP-3 and AP-1 localize in melanocytes primarily to clathrin-coated buds on tubular early endosomes near melanosomes. Both adaptors recognize the tyrosinase dileucine-based melanosome sorting signal, and tyrosinase largely colocalizes with each adaptor on endosomes. In AP-3-deficient melanocytes, tyrosinase accumulates inappropriately in vacuolar and multivesicular endosomes. Nevertheless, a substantial fraction still accumulates on melanosomes, concomitant with increased association with endosomal AP-1. Our data indicate that AP-3 and AP-1 function in partially redundant pathways to transfer tyrosinase from distinct endosomal subdomains to melanosomes and that the AP-3 pathway ensures that tyrosinase averts entrapment on internal membranes of forming multivesicular bodies.
Collapse
Affiliation(s)
- Alexander C Theos
- Cambridge Institute for Medical Research, University of Cambridge, Wellcome Trust, Cambridge CB2 2XY, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|