51
|
dos Santos Á, Toseland CP. Regulation of Nuclear Mechanics and the Impact on DNA Damage. Int J Mol Sci 2021; 22:3178. [PMID: 33804722 PMCID: PMC8003950 DOI: 10.3390/ijms22063178] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/15/2021] [Accepted: 03/18/2021] [Indexed: 02/06/2023] Open
Abstract
In eukaryotic cells, the nucleus houses the genomic material of the cell. The physical properties of the nucleus and its ability to sense external mechanical cues are tightly linked to the regulation of cellular events, such as gene expression. Nuclear mechanics and morphology are altered in many diseases such as cancer and premature ageing syndromes. Therefore, it is important to understand how different components contribute to nuclear processes, organisation and mechanics, and how they are misregulated in disease. Although, over the years, studies have focused on the nuclear lamina-a mesh of intermediate filament proteins residing between the chromatin and the nuclear membrane-there is growing evidence that chromatin structure and factors that regulate chromatin organisation are essential contributors to the physical properties of the nucleus. Here, we review the main structural components that contribute to the mechanical properties of the nucleus, with particular emphasis on chromatin structure. We also provide an example of how nuclear stiffness can both impact and be affected by cellular processes such as DNA damage and repair.
Collapse
Affiliation(s)
- Ália dos Santos
- Department of Oncology and Metabolism, University of Sheffield, Sheffield S10 2RX, UK
| | - Christopher P. Toseland
- Department of Oncology and Metabolism, University of Sheffield, Sheffield S10 2RX, UK
- Insigneo Institute for in Silico Medicine, University of Sheffield, Sheffield S10 2RX, UK
| |
Collapse
|
52
|
Ventura JA, Donoghue JF, Nowell CJ, Cann LM, Day LRJ, Smyth LML, Forrester HB, Rogers PAW, Crosbie JC. The γH2AX DSB marker may not be a suitable biodosimeter to measure the biological MRT valley dose. Int J Radiat Biol 2021; 97:642-656. [PMID: 33617395 DOI: 10.1080/09553002.2021.1893854] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 12/31/2020] [Accepted: 02/11/2021] [Indexed: 10/22/2022]
Abstract
PURPOSE γH2AX biodosimetry has been proposed as an alternative dosimetry method for microbeam radiation therapy (MRT) because conventional dosimeters, such as ionization chambers, lack the spatial resolution required to accurately measure the MRT valley dose. Here we investigated whether γH2AX biodosimetry should be used to measure the biological valley dose of MRT-irradiated mammalian cells. MATERIALS AND METHODS We irradiated human skin fibroblasts and mouse skin flaps with synchrotron MRT and broad beam (BB) radiation. BB doses of 1-5 Gy were used to generate a calibration curve in order to estimate the biological MRT valley dose using the γH2AX assay. RESULTS Our key finding was that MRT induced a non-linear dose response compared to BB, where doses 2-3 times greater showed the same level of DNA DSB damage in the valley in cell and tissue studies. This indicates that γH2AX may not be an appropriate biodosimeter to estimate the biological valley doses of MRT-irradiated samples. We also established foci yields of 5.9 ± 0 . 04 and 27.4 ± 2 . 5 foci/cell/Gy in mouse skin tissue and human fibroblasts respectively, induced by BB. Using Monte Carlo simulations, a linear dose response was seen in cell and tissue studies and produced predicted peak-to-valley dose ratios (PVDRs) of ∼30 and ∼107 for human fibroblasts and mouse skin tissue respectively. CONCLUSIONS Our report highlights novel MRT radiobiology, attempts to explain why γH2AX may not be an appropriate biodosimeter and suggests further studies aimed at revealing the biological and cellular communication mechanisms that drive the normal tissue sparing effect, which is characteristic of MRT.
Collapse
Affiliation(s)
- Jessica A Ventura
- Department of Obstetrics and Gynaecology, Royal Women's Hospital, University of Melbourne, Parkville, Australia
| | - Jacqueline F Donoghue
- Department of Obstetrics and Gynaecology, Royal Women's Hospital, University of Melbourne, Parkville, Australia
| | - Cameron J Nowell
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Leonie M Cann
- Department of Obstetrics and Gynaecology, Royal Women's Hospital, University of Melbourne, Parkville, Australia
| | - Liam R J Day
- School of Science, RMIT University, Melbourne, Australia
| | - Lloyd M L Smyth
- Department of Obstetrics and Gynaecology, Royal Women's Hospital, University of Melbourne, Parkville, Australia
| | - Helen B Forrester
- School of Science, RMIT University, Melbourne, Australia
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Monash University, Clayton, Australia
- Department of Molecular and Translational Sciences, Monash University, Clayton, Australia
| | - Peter A W Rogers
- Department of Obstetrics and Gynaecology, Royal Women's Hospital, University of Melbourne, Parkville, Australia
| | | |
Collapse
|
53
|
Soni A, Mladenov E, Iliakis G. Proficiency in homologous recombination repair is prerequisite for activation of G 2-checkpoint at low radiation doses. DNA Repair (Amst) 2021; 101:103076. [PMID: 33640756 DOI: 10.1016/j.dnarep.2021.103076] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 11/30/2020] [Accepted: 02/13/2021] [Indexed: 10/22/2022]
Abstract
Pathways of repair of DNA double strand breaks (DSBs) cooperate with DNA damage cell cycle checkpoints to safeguard genomic stability when cells are exposed to ionizing radiation (IR). It is widely accepted that checkpoints facilitate the function of DSB repair pathways. Whether DSB repair proficiency feeds back into checkpoint activation is less well investigated. Here, we study activation of the G2-checkpoint in cells deficient in homologous recombination repair (HRR) after exposure to low IR doses (∼1 Gy) in the G2-phase. We report that in the absence of functional HRR, activation of the G2-checkpoint is severely impaired. This response is specific for HRR, as cells deficient in classical non-homologous end joining (c-NHEJ) develop a similar or stronger G2-checkpoint than wild-type (WT) cells. Inhibition of ATM or ATR leaves largely unaffected residual G2-checkpoint in HRR-deficient cells, suggesting that the G2-checkpoint engagement of ATM/ATR is coupled to HRR. HRR-deficient cells show in G2-phase reduced DSB-end-resection, as compared to WT-cells or c-NHEJ mutants, confirming the reported link between resection and G2-checkpoint activation. Strikingly, at higher IR doses (≥4 Gy) HRR-deficient cells irradiated in G2-phase activate a weak but readily detectable ATM/ATR-dependent G2-checkpoint, whereas HRR-deficient cells irradiated in S-phase develop a stronger G2-checkpoint than WT-cells. We conclude that HRR and the ATM/ATR-dependent G2-checkpoint are closely intertwined in cells exposed to low IR-doses in G2-phase, where HRR dominates; they uncouple as HRR becomes suppressed at higher IR doses. Notably, this coupling is specific for cells irradiated in G2-phase, and cells irradiated in S-phase utilize a different mechanistic setup.
Collapse
Affiliation(s)
- Aashish Soni
- Institute of Medical Radiation Biology, University of Duisburg-Essen Medical School, 45122, Essen, Germany
| | - Emil Mladenov
- Institute of Medical Radiation Biology, University of Duisburg-Essen Medical School, 45122, Essen, Germany
| | - George Iliakis
- Institute of Medical Radiation Biology, University of Duisburg-Essen Medical School, 45122, Essen, Germany.
| |
Collapse
|
54
|
Stinson BM, Loparo JJ. Repair of DNA Double-Strand Breaks by the Nonhomologous End Joining Pathway. Annu Rev Biochem 2021; 90:137-164. [PMID: 33556282 DOI: 10.1146/annurev-biochem-080320-110356] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
DNA double-strand breaks pose a serious threat to genome stability. In vertebrates, these breaks are predominantly repaired by nonhomologous end joining (NHEJ), which pairs DNA ends in a multiprotein synaptic complex to promote their direct ligation. NHEJ is a highly versatile pathway that uses an array of processing enzymes to modify damaged DNA ends and enable their ligation. The mechanisms of end synapsis and end processing have important implications for genome stability. Rapid and stable synapsis is necessary to limit chromosome translocations that result from the mispairing of DNA ends. Furthermore, end processing must be tightly regulated to minimize mutations at the break site. Here, we review our current mechanistic understanding of vertebrate NHEJ, with a particular focus on end synapsis and processing.
Collapse
Affiliation(s)
- Benjamin M Stinson
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA; ,
| | - Joseph J Loparo
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA; ,
| |
Collapse
|
55
|
Dual RNA 3'-end processing of H2A.X messenger RNA maintains DNA damage repair throughout the cell cycle. Nat Commun 2021; 12:359. [PMID: 33441544 PMCID: PMC7807067 DOI: 10.1038/s41467-020-20520-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 12/04/2020] [Indexed: 12/11/2022] Open
Abstract
Phosphorylated H2A.X is a critical chromatin marker of DNA damage repair (DDR) in higher eukaryotes. However, H2A.X gene expression remains relatively uncharacterised. Replication-dependent (RD) histone genes generate poly(A)- mRNA encoding new histones to package DNA during replication. In contrast, replication-independent (RI) histone genes synthesise poly(A)+ mRNA throughout the cell cycle, translated into histone variants that confer specific epigenetic patterns on chromatin. Remarkably H2AFX, encoding H2A.X, is a hybrid histone gene, generating both poly(A)+ and poly(A)- mRNA isoforms. Here we report that the selective removal of either mRNA isoform reveals different effects in different cell types. In some cells, RD H2A.X poly(A)- mRNA generates sufficient histone for deposition onto DDR associated chromatin. In contrast, cells making predominantly poly(A)+ mRNA require this isoform for de novo H2A.X synthesis, required for efficient DDR. This highlights the importance of differential H2A.X mRNA 3’-end processing in the maintenance of effective DDR. H2A.X histone variant gene encodes poly(A)+ and poly(A)- mRNA isoforms which are differentially expressed depending on cell lines. Here the authors show that upon DNA damage, cells expressing more poly(A)+ isoform require this isoform for de novo H2A.X synthesis while cells with more poly(A)- isoform have sufficient H2A.X present in chromatin.
Collapse
|
56
|
Kaur E, Nair J, Ghorai A, Mishra SV, Achareker A, Ketkar M, Sarkar D, Salunkhe S, Rajendra J, Gardi N, Desai S, Iyer P, Thorat R, Dutt A, Moiyadi A, Dutt S. Inhibition of SETMAR-H3K36me2-NHEJ repair axis in residual disease cells prevents glioblastoma recurrence. Neuro Oncol 2020; 22:1785-1796. [PMID: 32458986 PMCID: PMC7746947 DOI: 10.1093/neuonc/noaa128] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Residual disease of glioblastoma (GBM) causes recurrence. However, targeting residual cells has failed, due to their inaccessibility and our lack of understanding of their survival mechanisms to radiation therapy. Here we deciphered a residual cell-specific survival mechanism essential for GBM relapse. METHODS Therapy resistant residual (RR) cells were captured from primary patient samples and cell line models mimicking clinical scenario of radiation resistance. Molecular signaling of resistance in RR cells was identified using RNA sequencing, genetic and pharmacological perturbations, overexpression systems, and molecular and biochemical assays. Findings were validated in patient samples and an orthotopic mouse model. RESULTS RR cells form more aggressive tumors than the parental cells in an orthotopic mouse model. Upon radiation-induced damage, RR cells preferentially activated a nonhomologous end joining (NHEJ) repair pathway, upregulating Ku80 and Artemis while downregulating meiotic recombination 11 (Mre11) at protein but not RNA levels. Mechanistically, RR cells upregulate the Su(var)3-9/enhancer-of-zeste/trithorax (SET) domain and mariner transposase fusion gene (SETMAR), mediating high levels of H3K36me2 and global euchromatization. High H3K36me2 leads to efficiently recruiting NHEJ proteins. Conditional knockdown of SETMAR in RR cells induced irreversible senescence partly mediated by reduced H3K36me2. RR cells expressing mutant H3K36A could not retain Ku80 at double-strand breaks, thus compromising NHEJ repair, leading to apoptosis and abrogation of tumorigenicity in vitro and in vivo. Pharmacological inhibition of the NHEJ pathway phenocopied H3K36 mutation effect, confirming dependency of RR cells on the NHEJ pathway for their survival. CONCLUSIONS We demonstrate that the SETMAR-NHEJ regulatory axis is essential for the survival of clinically relevant radiation RR cells, abrogation of which prevents recurrence in GBM.
Collapse
Affiliation(s)
- Ekjot Kaur
- Shilpee Dutt Laboratory, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, India
| | - Jyothi Nair
- Shilpee Dutt Laboratory, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, India
| | - Atanu Ghorai
- Shilpee Dutt Laboratory, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, India
| | - Saket V Mishra
- Shilpee Dutt Laboratory, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, India
| | - Anagha Achareker
- Shilpee Dutt Laboratory, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, India
| | - Madhura Ketkar
- Shilpee Dutt Laboratory, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, India
| | - Debashmita Sarkar
- Shilpee Dutt Laboratory, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, India
| | - Sameer Salunkhe
- Shilpee Dutt Laboratory, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, India
| | - Jacinth Rajendra
- Shilpee Dutt Laboratory, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, India
| | - Nilesh Gardi
- Integrated Genomics Laboratory, ACTREC, Kharghar, Navi Mumbai, India
| | - Sanket Desai
- Integrated Genomics Laboratory, ACTREC, Kharghar, Navi Mumbai, India
| | - Prajish Iyer
- Integrated Genomics Laboratory, ACTREC, Kharghar, Navi Mumbai, India
| | - Rahul Thorat
- Laboratory Animal Facility, ACTREC, Tata Memorial Centre, Kharghar, Navi Mumbai, India
| | - Amit Dutt
- Integrated Genomics Laboratory, ACTREC, Kharghar, Navi Mumbai, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, India
| | - Aliasgar Moiyadi
- Department of Neurosurgery, ACTREC, Tata Memorial Centre, Kharghar, Navi Mumbai, India
| | - Shilpee Dutt
- Integrated Genomics Laboratory, ACTREC, Kharghar, Navi Mumbai, India
| |
Collapse
|
57
|
Blessing C, Mandemaker IK, Gonzalez-Leal C, Preisser J, Schomburg A, Ladurner AG. The Oncogenic Helicase ALC1 Regulates PARP Inhibitor Potency by Trapping PARP2 at DNA Breaks. Mol Cell 2020; 80:862-875.e6. [PMID: 33275888 DOI: 10.1016/j.molcel.2020.10.009] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/27/2020] [Accepted: 10/04/2020] [Indexed: 12/16/2022]
Abstract
The anti-tumor potency of poly(ADP-ribose) polymerase (PARP) inhibitors (PARPis) has been linked to trapping of PARP1 on damaged chromatin. However, little is known about their impact on PARP2, an isoform with overlapping functions at DNA lesions. Whether the release of PARP1/2 from DNA lesions is actively catalyzed by molecular machines is also not known. We found that PARPis robustly trap PARP2 and that the helicase ALC1 (CHD1L) is strictly required for PARP2 release. Catalytic inactivation of ALC1 quantitatively traps PARP2 but not PARP1. ALC1 manipulation impacts the response to single-strand DNA breaks through PARP2 trapping, potentiates PARPi-induced cancer cell killing, and mediates synthetic lethality upon BRCA deficiency. The chromatin remodeler ALC1 actively drives PARP2 turnover from DNA lesions, and PARP2 contributes to the cellular responses of PARPi. This suggests that disrupting the ATP-fueled remodeling forces of ALC1 might enable therapies that selectively target the DNA repair functions of PARPs in cancer.
Collapse
Affiliation(s)
- Charlotte Blessing
- Department of Physiological Chemistry, Biomedical Center (BMC), Faculty of Medicine, LMU Munich, 82152 Planegg-Martinsried, Germany; International Max Planck Research School (IMPRS) for Molecular Life Sciences, 82152 Planegg-Martinsried, Germany
| | - Imke Karlijn Mandemaker
- Department of Physiological Chemistry, Biomedical Center (BMC), Faculty of Medicine, LMU Munich, 82152 Planegg-Martinsried, Germany
| | - Claudia Gonzalez-Leal
- Department of Physiological Chemistry, Biomedical Center (BMC), Faculty of Medicine, LMU Munich, 82152 Planegg-Martinsried, Germany; International Max Planck Research School (IMPRS) for Molecular Life Sciences, 82152 Planegg-Martinsried, Germany
| | - Julia Preisser
- Department of Physiological Chemistry, Biomedical Center (BMC), Faculty of Medicine, LMU Munich, 82152 Planegg-Martinsried, Germany
| | - Adrian Schomburg
- Department of Physiological Chemistry, Biomedical Center (BMC), Faculty of Medicine, LMU Munich, 82152 Planegg-Martinsried, Germany; Eisbach Bio GmbH, Am Klopferspitz 19, 82152 Planegg-Martinsried, Germany
| | - Andreas Gerhard Ladurner
- Department of Physiological Chemistry, Biomedical Center (BMC), Faculty of Medicine, LMU Munich, 82152 Planegg-Martinsried, Germany; International Max Planck Research School (IMPRS) for Molecular Life Sciences, 82152 Planegg-Martinsried, Germany; Eisbach Bio GmbH, Am Klopferspitz 19, 82152 Planegg-Martinsried, Germany.
| |
Collapse
|
58
|
Rother MB, Pellegrino S, Smith R, Gatti M, Meisenberg C, Wiegant WW, Luijsterburg MS, Imhof R, Downs JA, Vertegaal ACO, Huet S, Altmeyer M, van Attikum H. CHD7 and 53BP1 regulate distinct pathways for the re-ligation of DNA double-strand breaks. Nat Commun 2020; 11:5775. [PMID: 33188175 PMCID: PMC7666215 DOI: 10.1038/s41467-020-19502-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 10/15/2020] [Indexed: 01/16/2023] Open
Abstract
Chromatin structure is dynamically reorganized at multiple levels in response to DNA double-strand breaks (DSBs). Yet, how the different steps of chromatin reorganization are coordinated in space and time to differentially regulate DNA repair pathways is insufficiently understood. Here, we identify the Chromodomain Helicase DNA Binding Protein 7 (CHD7), which is frequently mutated in CHARGE syndrome, as an integral component of the non-homologous end-joining (NHEJ) DSB repair pathway. Upon recruitment via PARP1-triggered chromatin remodeling, CHD7 stimulates further chromatin relaxation around DNA break sites and brings in HDAC1/2 for localized chromatin de-acetylation. This counteracts the CHD7-induced chromatin expansion, thereby ensuring temporally and spatially controlled 'chromatin breathing' upon DNA damage, which we demonstrate fosters efficient and accurate DSB repair by controlling Ku and LIG4/XRCC4 activities. Loss of CHD7-HDAC1/2-dependent cNHEJ reinforces 53BP1 assembly at the damaged chromatin and shifts DSB repair to mutagenic NHEJ, revealing a backup function of 53BP1 when cNHEJ fails.
Collapse
Grants
- 25715 Cancer Research UK
- 714326 European Research Council
- MR/N02155X/2 Medical Research Council
- MR/N02155X/1 Medical Research Council
- This research was financially supported by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (ERC-StG 714326 to M.A.; ERC-StG 310913 to A.C.O.V.; ERC-CoG 50364 to H.v.A), the Swiss National Science Foundation (grants 150690 and 179057 to M.A.), grants from the Danish Research Council (DFF 1333-00037B and 1331-00732B to M.A.), NWO-VENI (863.11.007) and NWO-VIDI (016.161.320) grants to M.S.L., People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme (FP7/ 2007-2013) under REA grant agreement [(PCOFUND-GA-2013-609102), through the PRESTIGE program coordinated by Campus France (PRESTIGE-2017-2-0042), the Université Bretagne-Loire and the Fondation ARC pour la recherche sur le cancer (PDF20181208405) to R.S., the Ligue contre le Cancer du Grand-Ouest (committees 22 and 35), the Fondation ARC pour la recherche sur le cancer (20161204883), the Agence Nationale de la Recherche (PRC-2018 REPAIRCHROM) and the Institut Universitaire de France to S.H., and the Medical Research Council (MR/N02155X/1) to C.M. and J.A.D..
Collapse
Affiliation(s)
- Magdalena B Rother
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Stefania Pellegrino
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland
| | - Rebecca Smith
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes)-UMR 6290, BIOSIT-UMS3480, F-35000, Rennes, France
| | - Marco Gatti
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland
| | | | - Wouter W Wiegant
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Ralph Imhof
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland
| | - Jessica A Downs
- The Institute of Cancer Research, Royal Cancer Hospital, London, UK
| | - Alfred C O Vertegaal
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Sébastien Huet
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes)-UMR 6290, BIOSIT-UMS3480, F-35000, Rennes, France
- Institut Universitaire de France, Paris, France
| | - Matthias Altmeyer
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland.
| | - Haico van Attikum
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
59
|
Wang WJ, Li LY, Cui JW. Chromosome structural variation in tumorigenesis: mechanisms of formation and carcinogenesis. Epigenetics Chromatin 2020; 13:49. [PMID: 33168103 PMCID: PMC7654176 DOI: 10.1186/s13072-020-00371-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 10/29/2020] [Indexed: 12/23/2022] Open
Abstract
With the rapid development of next-generation sequencing technology, chromosome structural variation has gradually gained increased clinical significance in tumorigenesis. However, the molecular mechanism(s) underlying this structural variation remain poorly understood. A search of the literature shows that a three-dimensional chromatin state plays a vital role in inducing structural variation and in the gene expression profiles in tumorigenesis. Structural variants may result in changes in copy number or deletions of coding sequences, as well as the perturbation of structural chromatin features, especially topological domains, and disruption of interactions between genes and their regulatory elements. This review focuses recent work aiming at elucidating how structural variations develop and misregulate oncogenes and tumor suppressors, to provide general insights into tumor formation mechanisms and to provide potential targets for future anticancer therapies.
Collapse
Affiliation(s)
- Wen-Jun Wang
- Cancer Center, The First Hospital of Jilin University, Jilin University, Changchun, 130021 Jilin China
| | - Ling-Yu Li
- Cancer Center, The First Hospital of Jilin University, Jilin University, Changchun, 130021 Jilin China
| | - Jiu-Wei Cui
- Cancer Center, The First Hospital of Jilin University, Jilin University, Changchun, 130021 Jilin China
| |
Collapse
|
60
|
Ge C, Su F, Fu H, Wang Y, Tian B, Liu B, Zhu J, Ding Y, Zheng X. RNA Profiling Reveals a Common Mechanism of Histone Gene Downregulation and Complementary Effects for Radioprotectants in Response to Ionizing Radiation. Dose Response 2020; 18:1559325820968433. [PMID: 33117095 PMCID: PMC7573744 DOI: 10.1177/1559325820968433] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/14/2020] [Accepted: 05/27/2020] [Indexed: 12/11/2022] Open
Abstract
High-dose ionizing radiation (IR) alters the expression levels of non-coding RNAs (ncRNAs). However, the roles of ncRNAs and mRNAs in mediating radiation protection by radioprotectants remain unknown. Microarrays were used to determine microRNA (miRNA), long ncRNA (lncRNA), and mRNA expression profiles in the bone marrow of irradiated mice pretreated with amifostine, CBLB502, and nilestriol. Differentially expressed mRNAs were functionally annotated by Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses. Some histone cluster genes were validated by real-time PCR, and the effects of radioprotectant combinations were monitored by survival analysis. We found that these radioprotectants increased the induction of lncRNAs and mRNAs. miRNA, lncRNA, and mRNA expression patterns were similar with amifostine and CBLB502, but not nilestriol. The radioprotectants exhibited mostly opposite effects against IR-induced miRNAs, lncRNAs, and mRNAs while inducing a common histone gene downregulation following IR, mainly via nucleosome assembly and related signaling pathways. Notably, the effects of nilestriol significantly complemented those of amisfostine or CBLB502; low-dose drug combinations resulted in better radioprotective effects in pretreated mice. Thus, we present histone gene downregulation by radioprotectants, together with the biological functions of miRNA, lncRNA, and mRNA, to explain the mechanism underlying radioprotection.
Collapse
Affiliation(s)
- Changhui Ge
- Department of Experimental Hematology and Biochemistry, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Fei Su
- Department of Experimental Hematology and Biochemistry, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Hanjiang Fu
- Department of Experimental Hematology and Biochemistry, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Yuan Wang
- Department of Experimental Hematology and Biochemistry, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Baolei Tian
- Department of Experimental Hematology and Biochemistry, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Bin Liu
- Department of Experimental Hematology and Biochemistry, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Jie Zhu
- Department of Experimental Hematology and Biochemistry, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Yong Ding
- 5th Medical Center, The General Hospital of Chinese People's Liberation Army, Beijing, China
| | - Xiaofei Zheng
- Department of Experimental Hematology and Biochemistry, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| |
Collapse
|
61
|
Miné-Hattab J, Chiolo I. Complex Chromatin Motions for DNA Repair. Front Genet 2020; 11:800. [PMID: 33061931 PMCID: PMC7481375 DOI: 10.3389/fgene.2020.00800] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 07/06/2020] [Indexed: 12/26/2022] Open
Abstract
A number of studies across different model systems revealed that chromatin undergoes significant changes in dynamics in response to DNA damage. These include local motion changes at damage sites, increased nuclear exploration of both damaged and undamaged loci, and directed motions to new nuclear locations associated with certain repair pathways. These studies also revealed the need for new analytical methods to identify directed motions in a context of mixed trajectories, and the importance of investigating nuclear dynamics over different time scales to identify diffusion regimes. Here we provide an overview of the current understanding of this field, including imaging and analytical methods developed to investigate nuclear dynamics in different contexts. These dynamics are essential for genome integrity. Identifying the molecular mechanisms responsible for these movements is key to understanding how their misregulation contributes to cancer and other genome instability disorders.
Collapse
Affiliation(s)
- Judith Miné-Hattab
- UMR 3664, CNRS, Institut Curie, PSL Research University, Paris, France
- UMR 3664, CNRS, Institut Curie, Sorbonne Université, Paris, France
| | - Irene Chiolo
- Molecular and Computational Biology Department, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
62
|
Smits VAJ, Alonso-de Vega I, Warmerdam DO. Chromatin regulators and their impact on DNA repair and G2 checkpoint recovery. Cell Cycle 2020; 19:2083-2093. [PMID: 32730133 DOI: 10.1080/15384101.2020.1796037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Chromatin plays a pivotal role in regulating the DNA damage response and during DNA double-strand break repair. Upon the generation of DNA breaks, the chromatin structure is altered by post-translational modifications of histones and chromatin remodeling. How the chromatin structure, and the epigenetic information that it carries, is reestablished after the completion of DNA break repair remains unclear though. Also, how these processes influence recovery of the cell cycle remains poorly understood. We recently performed a reverse genetic screen for novel chromatin regulators that control checkpoint recovery after DNA damage. Here we discuss the implications of PHD finger protein 6 (PHF6) and additional candidates from the NuA4 ATPase-dependent chromatin-remodeling complex and the Cohesin complex, required for sister chromatid cohesion, in DNA repair and checkpoint recovery in more detail. In addition, the potential role of this novel function of PHF6 in cancer development and treatment is reviewed.
Collapse
Affiliation(s)
- Veronique A J Smits
- Unidad de Investigación, Hospital Universitario de Canarias , La Laguna, Spain.,Instituto de Tecnologías Biomédicas, Universidad de La Laguna , Tenerife, Spain.,Universidad Fernando Pessoa Canarias , Las Palmas de Gran Canaria, Spain
| | - Ignacio Alonso-de Vega
- Unidad de Investigación, Hospital Universitario de Canarias , La Laguna, Spain.,Instituto de Tecnologías Biomédicas, Universidad de La Laguna , Tenerife, Spain
| | - Daniël O Warmerdam
- CRISPR Platform, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam , Amsterdam, The Netherlands
| |
Collapse
|
63
|
Karakaidos P, Karagiannis D, Rampias T. Resolving DNA Damage: Epigenetic Regulation of DNA Repair. Molecules 2020; 25:molecules25112496. [PMID: 32471288 PMCID: PMC7321228 DOI: 10.3390/molecules25112496] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/22/2020] [Accepted: 05/25/2020] [Indexed: 12/18/2022] Open
Abstract
Epigenetic research has rapidly evolved into a dynamic field of genome biology. Chromatin regulation has been proved to be an essential aspect for all genomic processes, including DNA repair. Chromatin structure is modified by enzymes and factors that deposit, erase, and interact with epigenetic marks such as DNA and histone modifications, as well as by complexes that remodel nucleosomes. In this review we discuss recent advances on how the chromatin state is modulated during this multi-step process of damage recognition, signaling, and repair. Moreover, we examine how chromatin is regulated when different pathways of DNA repair are utilized. Furthermore, we review additional modes of regulation of DNA repair, such as through the role of global and localized chromatin states in maintaining expression of DNA repair genes, as well as through the activity of epigenetic enzymes on non-nucleosome substrates. Finally, we discuss current and future applications of the mechanistic interplays between chromatin regulation and DNA repair in the context cancer treatment.
Collapse
Affiliation(s)
| | - Dimitris Karagiannis
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA;
| | - Theodoros Rampias
- Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece;
- Correspondence: ; Tel.: +30-210-659-7469
| |
Collapse
|
64
|
Shaban HA, Seeber A. Monitoring global chromatin dynamics in response to DNA damage. Mutat Res 2020; 821:111707. [PMID: 32505939 DOI: 10.1016/j.mrfmmm.2020.111707] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 05/08/2020] [Accepted: 05/16/2020] [Indexed: 02/08/2023]
Abstract
DNA damage induced global chromatin motion has been observed in yeast and mammalian cells. Currently, it is unclear what mechanisms may be driving these changes in whole genome dynamics. Recent advances in live-cell microscopy now enable chromatin motion to be quantified throughout the whole nucleus. In addition, much work has improved quantification of single particle trajectories. This topic is particularly important to the field of DNA repair as there are a large number of unanswered questions that can be tackled by monitoring global chromatin movement. Foremost, is how local DNA repair mechanisms interact and change global chromatin structure and whether this impacts repair pathway choice or efficiency. In this review, we describe methodologies to monitor global chromatin movement putting them into context with the DNA repair field highlighting how these techniques can drive new discoveries.
Collapse
Affiliation(s)
- Haitham A Shaban
- Center for Advanced Imaging, Harvard University, Cambridge, MA, 02138, USA; Spectroscopy Department, Physics Division, National Research Centre, Dokki, 12622 Cairo, Egypt
| | - Andrew Seeber
- Center for Advanced Imaging, Harvard University, Cambridge, MA, 02138, USA.
| |
Collapse
|
65
|
A role of the 53BP1 protein in genome protection: structural and functional characteristics of 53BP1-dependent DNA repair. Aging (Albany NY) 2020; 11:2488-2511. [PMID: 30996128 PMCID: PMC6519998 DOI: 10.18632/aging.101917] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 04/10/2019] [Indexed: 12/13/2022]
Abstract
Nuclear architecture plays a significant role in DNA repair mechanisms. It is evident that proteins involved in DNA repair are compartmentalized in not only spontaneously occurring DNA lesions or ionizing radiation-induced foci (IRIF), but a specific clustering of these proteins can also be observed within the whole cell nucleus. For example, 53BP1-positive and BRCA1-positive DNA repair foci decorate chromocenters and can appear close to nuclear speckles. Both 53BP1 and BRCA1 are well-described factors that play an essential role in double-strand break (DSB) repair. These proteins are members of two protein complexes: 53BP1-RIF1-PTIP and BRCA1-CtIP, which make a “decision” determining whether canonical nonhomologous end joining (NHEJ) or homology-directed repair (HDR) is activated. It is generally accepted that 53BP1 mediates the NHEJ mechanism, while HDR is activated via a BRCA1-dependent signaling pathway. Interestingly, the 53BP1 protein appears relatively quickly at DSB sites, while BRCA1 is functional at later stages of DNA repair, as soon as the Mre11-Rad50-Nbs1 complex is recruited to the DNA lesions. A function of the 53BP1 protein is also linked to a specific histone signature, including phosphorylation of histone H2AX (γH2AX) or methylation of histone H4 at the lysine 20 position (H4K20me); therefore, we also discuss an epigenetic landscape of 53BP1-positive DNA lesions.
Collapse
|
66
|
Kesavan PS, Bohra D, Roy S, Mazumder A. Monitoring global changes in chromatin compaction states upon localized DNA damage with tools of fluorescence anisotropy. Mol Biol Cell 2020; 31:1403-1410. [PMID: 32320322 PMCID: PMC7353139 DOI: 10.1091/mbc.e19-08-0417] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In the eukaryotic nucleus, DNA, packaged in the form of chromatin, is subject to continuous damage. Chromatin has to be remodeled in order to repair such damage efficiently. But compact chromatin may also be more refractory to damage. Chromatin responses during DNA double-strand break (DSB) repair have been studied with biochemistry or as indirect readouts for the physical state of the chromatin at the site of damage. Direct measures of global chromatin compaction upon damage are lacking. We used fluorescence anisotropy imaging of histone H2B-EGFP to interrogate global chromatin compaction changes in response to localized DSBs directly. Anisotropy maps were preserved in fixation and reported on underlying chromatin compaction states. Laser-induced clustered DSBs led to global compaction of even the undamaged chromatin. Live-cell dynamics could be coupled with fixed-cell assays. Repair factors, PARP1 and PCNA, were immediately recruited to the site of damage, though the local enrichment of PCNA persisted longer than that of PARP1. Subsequently, nodes of PCNA that incorporated deoxynucleotide analogs were observed in regions of low-anisotropy open chromatin, even away from the site of damage. Such fluorescence anisotropy–based readout of chromatin compaction may be used in the investigation of different forms of DNA damage.
Collapse
Affiliation(s)
- P S Kesavan
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research Hyderabad, Hyderabad 500046, Telangana, India
| | - Darshika Bohra
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research Hyderabad, Hyderabad 500046, Telangana, India
| | - Sitara Roy
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research Hyderabad, Hyderabad 500046, Telangana, India
| | - Aprotim Mazumder
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research Hyderabad, Hyderabad 500046, Telangana, India
| |
Collapse
|
67
|
Tonnemacher S, Eltsov M, Jakob B. Correlative Light and Electron Microscopy (CLEM) Analysis of Nuclear Reorganization Induced by Clustered DNA Damage Upon Charged Particle Irradiation. Int J Mol Sci 2020; 21:ijms21061911. [PMID: 32168789 PMCID: PMC7139895 DOI: 10.3390/ijms21061911] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/28/2020] [Accepted: 03/09/2020] [Indexed: 01/12/2023] Open
Abstract
Chromatin architecture plays major roles in gene regulation as well as in the repair of DNA damaged by endogenous or exogenous factors, such as after radiation. Opening up the chromatin might provide the necessary accessibility for the recruitment and binding of repair factors, thus facilitating timely and correct repair. The observed formation of ionizing radiation-induced foci (IRIF) of factors, such as 53BP1, upon induction of DNA double-strand breaks have been recently linked to local chromatin decompaction. Using correlative light and electron microscopy (CLEM) in combination with DNA-specific contrasting for transmission electron microscopy or tomography, we are able to show that at the ultrastructural level, these DNA damage domains reveal a chromatin compaction and organization not distinguishable from regular euchromatin upon irradiation with carbon or iron ions. Low Density Areas (LDAs) at sites of particle-induced DNA damage, as observed after unspecific uranyl acetate (UA)-staining, are thus unlikely to represent pure chromatin decompaction. RNA-specific terbium-citrate (Tb) staining suggests rather a reduced RNA density contributing to the LDA phenotype. Our observations are discussed in the view of liquid-like phase separation as one of the mechanisms of regulating DNA repair.
Collapse
|
68
|
Mathematical Model of ATM Activation and Chromatin Relaxation by Ionizing Radiation. Int J Mol Sci 2020; 21:ijms21041214. [PMID: 32059363 PMCID: PMC7072770 DOI: 10.3390/ijms21041214] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/29/2020] [Accepted: 02/09/2020] [Indexed: 12/24/2022] Open
Abstract
We propose a comprehensive mathematical model to study the dynamics of ionizing radiation induced Ataxia-telangiectasia mutated (ATM) activation that consists of ATM activation through dual mechanisms: the initiative activation pathway triggered by the DNA damage-induced local chromatin relaxation and the primary activation pathway consisting of a self-activation loop by interplay with chromatin relaxation. The model is expressed as a series of biochemical reactions, governed by a system of differential equations and analyzed by dynamical systems techniques. Radiation induced double strand breaks (DSBs) cause rapid local chromatin relaxation, which is independent of ATM but initiates ATM activation at damage sites. Key to the model description is how chromatin relaxation follows when active ATM phosphorylates KAP-1, which subsequently spreads throughout the chromatin and induces global chromatin relaxation. Additionally, the model describes how oxidative stress activation of ATM triggers a self-activation loop in which PP2A and ATF2 are released so that ATM can undergo autophosphorylation and acetylation for full activation in relaxed chromatin. In contrast, oxidative stress alone can partially activate ATM because phosphorylated ATM remains as a dimer. The model leads to predictions on ATM mediated responses to DSBs, oxidative stress, or both that can be tested by experiments.
Collapse
|
69
|
Oshidari R, Mekhail K, Seeber A. Mobility and Repair of Damaged DNA: Random or Directed? Trends Cell Biol 2020; 30:144-156. [DOI: 10.1016/j.tcb.2019.11.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/14/2019] [Accepted: 11/15/2019] [Indexed: 12/24/2022]
|
70
|
Klinakis A, Karagiannis D, Rampias T. Targeting DNA repair in cancer: current state and novel approaches. Cell Mol Life Sci 2020; 77:677-703. [PMID: 31612241 PMCID: PMC11105035 DOI: 10.1007/s00018-019-03299-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 08/06/2019] [Accepted: 09/09/2019] [Indexed: 12/12/2022]
Abstract
DNA damage response, DNA repair and genomic instability have been under study for their role in tumor initiation and progression for many years now. More recently, next-generation sequencing on cancer tissue from various patient cohorts have revealed mutations and epigenetic silencing of various genes encoding proteins with roles in these processes. These findings, together with the unequivocal role of DNA repair in therapeutic response, have fueled efforts toward the clinical exploitation of research findings. The successful example of PARP1/2 inhibitors has also supported these efforts and led to numerous preclinical and clinical trials with a large number of small molecules targeting various components involved in DNA repair singularly or in combination with other therapies. In this review, we focus on recent considerations related to DNA damage response and new DNA repair inhibition agents. We then discuss how immunotherapy can collaborate with these new drugs and how epigenetic drugs can rewire the activity of repair pathways and sensitize cancer cells to DNA repair inhibition therapies.
Collapse
Affiliation(s)
- Apostolos Klinakis
- Biomedical Research Foundation of the Academy of Athens, 11527, Athens, Greece.
| | - Dimitris Karagiannis
- Department of Genetics and Development, Columbia University Medical Center, New York, NY, 10032, USA
| | - Theodoros Rampias
- Biomedical Research Foundation of the Academy of Athens, 11527, Athens, Greece.
| |
Collapse
|
71
|
Venit T, Mahmood SR, Endara-Coll M, Percipalle P. Nuclear actin and myosin in chromatin regulation and maintenance of genome integrity. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 355:67-108. [DOI: 10.1016/bs.ircmb.2020.05.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
|
72
|
Duan Y, Zhang X, Yang L, Dong X, Zheng Z, Cheng Y, Chen H, Lan B, Li D, Zhou J, Xuan C. Disruptor of telomeric silencing 1-like (DOT1L) is involved in breast cancer metastasis via transcriptional regulation of MALAT1 and ZEB2. J Genet Genomics 2019; 46:591-594. [PMID: 31952940 DOI: 10.1016/j.jgg.2019.11.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 11/25/2019] [Indexed: 01/11/2023]
Affiliation(s)
- Yang Duan
- Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Tianjin Key Laboratory of Spine and Spinal Cord, Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin, 300070, China; Department of Gynecology, Tianjin Medical University NanKai Hospital, Tianjin 300100, China
| | - Xingyan Zhang
- Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Tianjin Key Laboratory of Spine and Spinal Cord, Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin, 300070, China
| | - Lihong Yang
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xu Dong
- Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Tianjin Key Laboratory of Spine and Spinal Cord, Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin, 300070, China
| | - Zhanye Zheng
- Department of Pharmacology, Tianjin Medical University, Tianjin, 300070, China
| | - Yiming Cheng
- Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Tianjin Key Laboratory of Spine and Spinal Cord, Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin, 300070, China
| | - Hao Chen
- Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Tianjin Key Laboratory of Spine and Spinal Cord, Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin, 300070, China
| | - Bei Lan
- Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Tianjin Key Laboratory of Spine and Spinal Cord, Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin, 300070, China
| | - Dengwen Li
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Jun Zhou
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin 300071, China; Institute of Biomedical Sciences, College of Life Sciences, Shandong Normal University, Shandong 250014, China
| | - Chenghao Xuan
- Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Tianjin Key Laboratory of Spine and Spinal Cord, Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin, 300070, China.
| |
Collapse
|
73
|
Pelicci S, Diaspro A, Lanzanò L. Chromatin nanoscale compaction in live cells visualized by acceptor-to-donor ratio corrected Förster resonance energy transfer between DNA dyes. JOURNAL OF BIOPHOTONICS 2019; 12:e201900164. [PMID: 31365191 PMCID: PMC7065635 DOI: 10.1002/jbio.201900164] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/14/2019] [Accepted: 07/29/2019] [Indexed: 05/04/2023]
Abstract
@Chromatin nanoscale architecture in live cells can be studied by Förster resonance energy transfer (FRET) between fluorescently labeled chromatin components, such as histones. A higher degree of nanoscale compaction is detected as a higher FRET level, since this corresponds to a higher degree of proximity between donor and acceptor molecules. However, in such a system, the stoichiometry of the donors and acceptors engaged in the FRET process is not well defined and, in principle, FRET variations could be caused by variations in the acceptor-to-donor ratio rather than distance. Here, to get a FRET level independent of the acceptor-to-donor ratio, we combine fluorescence lifetime imaging detection of FRET with a normalization of the FRET level to a pixel-wise estimation of the acceptor-to-donor ratio. We use this method to study FRET between two DNA binding dyes staining the nuclei of live cells. We show that this acceptor-to-donor ratio corrected FRET imaging reveals variations of nanoscale compaction in different chromatin environments. As an application, we monitor the rearrangement of chromatin in response to laser-induced microirradiation and reveal that DNA is rapidly decompacted, at the nanoscale, in response to DNA damage induction.
Collapse
Affiliation(s)
- Simone Pelicci
- Nanoscopy and Nikon Imaging Center, Istituto Italiano di TecnologiaGenoaItaly
- Department of PhysicsUniversity of GenoaGenoaItaly
| | - Alberto Diaspro
- Nanoscopy and Nikon Imaging Center, Istituto Italiano di TecnologiaGenoaItaly
- Department of PhysicsUniversity of GenoaGenoaItaly
| | - Luca Lanzanò
- Nanoscopy and Nikon Imaging Center, Istituto Italiano di TecnologiaGenoaItaly
| |
Collapse
|
74
|
Matkarimov BT, Zharkov DO, Saparbaev MK. Mechanistic insight into the role of Poly(ADP-ribosyl)ation in DNA topology modulation and response to DNA damage. Mutagenesis 2019; 35:107-118. [DOI: 10.1093/mutage/gez045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 11/12/2019] [Indexed: 12/31/2022] Open
Abstract
AbstractGenotoxic stress generates single- and double-strand DNA breaks either through direct damage by reactive oxygen species or as intermediates of DNA repair. Failure to detect and repair DNA strand breaks leads to deleterious consequences such as chromosomal aberrations, genomic instability and cell death. DNA strand breaks disrupt the superhelical state of cellular DNA, which further disturbs the chromatin architecture and gene activity regulation. Proteins from the poly(ADP-ribose) polymerase (PARP) family, such as PARP1 and PARP2, use NAD+ as a substrate to catalyse the synthesis of polymeric chains consisting of ADP-ribose units covalently attached to an acceptor molecule. PARP1 and PARP2 are regarded as DNA damage sensors that, upon activation by strand breaks, poly(ADP-ribosyl)ate themselves and nuclear acceptor proteins. Noteworthy, the regularly branched structure of poly(ADP-ribose) polymer suggests that the mechanism of its synthesis may involve circular movement of PARP1 around the DNA helix, with a branching point in PAR corresponding to one complete 360° turn. We propose that PARP1 stays bound to a DNA strand break end, but rotates around the helix displaced by the growing poly(ADP-ribose) chain, and that this rotation could introduce positive supercoils into damaged chromosomal DNA. This topology modulation would enable nucleosome displacement and chromatin decondensation around the lesion site, facilitating the access of DNA repair proteins or transcription factors. PARP1-mediated DNA supercoiling can be transmitted over long distances, resulting in changes in the high-order chromatin structures. The available structures of PARP1 are consistent with the strand break-induced PAR synthesis as a driving force for PARP1 rotation around the DNA axis.
Collapse
Affiliation(s)
| | - Dmitry O Zharkov
- SB RAS Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Murat K Saparbaev
- Groupe «Réparation de l’ADN», Equipe Labellisée par la Ligue Nationale Contre le Cancer, Université Paris-Sud, Gustave Roussy Cancer Campus, Villejuif Cedex, France
| |
Collapse
|
75
|
Yang JL, Chen WY, Mukda S, Yang YR, Sun SF, Chen SD. Oxidative DNA damage is concurrently repaired by base excision repair (BER) and apyrimidinic endonuclease 1 (APE1)-initiated nonhomologous end joining (NHEJ) in cortical neurons. Neuropathol Appl Neurobiol 2019; 46:375-390. [PMID: 31628877 PMCID: PMC7317839 DOI: 10.1111/nan.12584] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 09/13/2019] [Indexed: 12/24/2022]
Abstract
Aims Accumulating studies have suggested that base excision repair (BER) is the major repair pathway of oxidative DNA damage in neurons, and neurons are deficient in other DNA repair pathways, including nucleotide excision repair and homologous recombination repair. However, some studies have demonstrated that neurons could efficiently repair glutamate‐ and menadione‐induced double‐strand breaks (DSBs), suggesting that the DSB repair mechanisms might be implicated in neuronal health. In this study, we hypothesized that BER and nonhomologous end joining (NHEJ) work together to repair oxidative DNA damage in neurons. Methods Immunohistochemistry and confocal microscopy were employed to examine the colocalization of apyrimidinic endonuclease 1 (APE1), histone variant 2AX (γH2AX) and phosphorylated p53‐binding protein (53BP1). APE1 inhibitor and shRNA were respectively applied to suppress APE1 activity and protein expression to determine the correlation of APE1 and DSB formation. The neutral comet assay was used to determine and quantitate the formation of DSB. Results Both γH2AX and 53BP1 were upregulated and colocalized with APE1 in the nuclei of rat cortical neurons subjected to menadione‐induced oxidative insults. Phospho53BP1 foci were efficiently abolished, but γH2AX foci persisted following the suppression of APE1 activity. Comet assays demonstrated that the inhibition of APE1 decreased the DSB formation. Conclusions Our results indicate that APE1 can engage the NHEJ mechanism in the repair of oxidative DNA damage in neurons. These findings provide insights into the mechanisms underlying the efficient repair of oxidative DNA damage in neurons despite the high oxidative burden.
Collapse
Affiliation(s)
- J-L Yang
- Institute for Translation Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - W-Y Chen
- Institute for Translation Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - S Mukda
- Institute for Translation Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.,Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Y-R Yang
- Institute for Translation Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - S-F Sun
- Institute for Translation Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - S-D Chen
- Institute for Translation Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.,Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
76
|
Caridi CP, Plessner M, Grosse R, Chiolo I. Nuclear actin filaments in DNA repair dynamics. Nat Cell Biol 2019; 21:1068-1077. [PMID: 31481797 PMCID: PMC6736642 DOI: 10.1038/s41556-019-0379-1] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 07/24/2019] [Indexed: 02/06/2023]
Abstract
Recent development of innovative tools for live imaging of actin filaments (F-actin) enabled the detection of surprising nuclear structures responding to various stimuli, challenging previous models that actin is substantially monomeric in the nucleus. We review these discoveries, focusing on double-strand break (DSB) repair responses. These studies revealed a remarkable network of nuclear filaments and regulatory mechanisms coordinating chromatin dynamics with repair progression and led to a paradigm shift by uncovering the directed movement of repair sites.
Collapse
Affiliation(s)
| | - Matthias Plessner
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Freiburg, Freiburg im Breisgau, Germany
- CIBSS - Centre for Integrative Biological Signaling Studies, University of Freiburg, Freiburg im Breisgau, Germany
| | - Robert Grosse
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Freiburg, Freiburg im Breisgau, Germany
- CIBSS - Centre for Integrative Biological Signaling Studies, University of Freiburg, Freiburg im Breisgau, Germany
| | - Irene Chiolo
- Molecular and Computational Biology Department, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
77
|
Arnould C, Legube G. The Secret Life of Chromosome Loops upon DNA Double-Strand Break. J Mol Biol 2019; 432:724-736. [PMID: 31401119 PMCID: PMC7057266 DOI: 10.1016/j.jmb.2019.07.036] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 07/24/2019] [Accepted: 07/30/2019] [Indexed: 12/22/2022]
Abstract
DNA double-strand breaks (DSBs) are harmful lesions that severely challenge genomic integrity, and recent evidence suggests that DSBs occur more frequently on the genome than previously thought. These lesions activate a complex and multilayered response called the DNA damage response, which allows to coordinate their repair with the cell cycle progression. While the mechanistic details of repair processes have been narrowed, thanks to several decades of intense studies, our knowledge of the impact of DSB on chromatin composition and chromosome architecture is still very sparse. However, the recent development of various tools to induce DSB at annotated loci, compatible with next-generation sequencing-based approaches, is opening a new framework to tackle these questions. Here we discuss the influence of initial and DSB-induced chromatin conformation and the strong potential of 3C-based technologies to decipher the contribution of chromosome architecture during DSB repair.
Collapse
Affiliation(s)
- Coline Arnould
- LBCMCP, Centre de Biologie Integrative (CBI), CNRS, Université de Toulouse, UT3, Toulouse, France
| | - Gaëlle Legube
- LBCMCP, Centre de Biologie Integrative (CBI), CNRS, Université de Toulouse, UT3, Toulouse, France.
| |
Collapse
|
78
|
Smith R, Sellou H, Chapuis C, Huet S, Timinszky G. CHD3 and CHD4 recruitment and chromatin remodeling activity at DNA breaks is promoted by early poly(ADP-ribose)-dependent chromatin relaxation. Nucleic Acids Res 2019; 46:6087-6098. [PMID: 29733391 PMCID: PMC6158744 DOI: 10.1093/nar/gky334] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 04/23/2018] [Indexed: 12/12/2022] Open
Abstract
One of the first events to occur upon DNA damage is the local opening of the compact chromatin architecture, facilitating access of repair proteins to DNA lesions. This early relaxation is triggered by poly(ADP-ribosyl)ation by PARP1 in addition to ATP-dependent chromatin remodeling. CHD4 recruits to DNA breaks in a PAR-dependent manner, although it lacks any recognizable PAR-binding domain, and has the ability to relax chromatin structure. However, its role in chromatin relaxation at the site of DNA damage has not been explored. Using a live cell fluorescence three-hybrid assay, we demonstrate that the recruitment of CHD4 to DNA damage, while being poly(ADP-ribosyl)ation-dependent, is not through binding poly(ADP-ribose). Additionally, we show that CHD3 is recruited to DNA breaks in the same manner as CHD4 and that both CHD3 and CHD4 play active roles in chromatin remodeling at DNA breaks. Together, our findings reveal a two-step mechanism for DNA damage induced chromatin relaxation in which PARP1 and the PAR-binding remodeler activities of Alc1/CHD1L induce an initial chromatin relaxation phase that promotes the subsequent recruitment of CHD3 and CHD4 via binding to DNA for further chromatin remodeling at DNA breaks.
Collapse
Affiliation(s)
- Rebecca Smith
- Biomedical Center Munich, Physiological Chemistry, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany.,Univ Rennes, CNRS, Structure fédérative de recherche Biosit, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, F- 35000 Rennes, France
| | - Hafida Sellou
- Univ Rennes, CNRS, Structure fédérative de recherche Biosit, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, F- 35000 Rennes, France
| | - Catherine Chapuis
- Univ Rennes, CNRS, Structure fédérative de recherche Biosit, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, F- 35000 Rennes, France
| | - Sébastien Huet
- Univ Rennes, CNRS, Structure fédérative de recherche Biosit, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, F- 35000 Rennes, France
| | - Gyula Timinszky
- Biomedical Center Munich, Physiological Chemistry, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany.,MTA SZBK Lendület DNA damage and nuclear dynamics research group, Biological Research Center of the Hungarian Academy of Sciences, 6276 Szeged, Hungary
| |
Collapse
|
79
|
Abstract
DNA double-strand breaks (DSBs) are particularly challenging to repair in pericentromeric heterochromatin because of the increased risk of aberrant recombination in highly repetitive sequences. Recent studies have identified specialized mechanisms enabling 'safe' homologous recombination (HR) repair in heterochromatin. These include striking nuclear actin filaments (F-actin) and myosins that drive the directed motion of repair sites to the nuclear periphery for 'safe' repair. Here, we summarize our current understanding of the mechanisms involved, and propose how they might operate in the context of a phase-separated environment.
Collapse
|
80
|
Abstract
All organisms must protect their genome from constantly occurring DNA damage. To this end, cells have evolved complex pathways for repairing sites of DNA lesions, and multiple in vitro and in vivo techniques have been developed to study these processes. In this review, we discuss the commonly used laser microirradiation method for monitoring the accumulation of repair proteins at DNA damage sites in cells, and we outline several strategies for deriving kinetic models from such experimental data. We discuss an example of how in vitro measurements and in vivo microirradation experiments complement each other to provide insight into the mechanism of PARP1 recruitment to DNA lesions. We also discuss a strategy to combine data obtained for the recruitment of many different proteins in a move toward fully quantitating the spatiotemporal relationships between various damage responses, and we outline potential venues for future development in the field.
Collapse
|
81
|
Quantitative mechanisms of DNA damage sensing and signaling. Curr Genet 2019; 66:59-62. [PMID: 31227863 PMCID: PMC7021746 DOI: 10.1007/s00294-019-01007-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 06/13/2019] [Accepted: 06/14/2019] [Indexed: 11/13/2022]
Abstract
DNA damage occurs abundantly during normal cellular proliferation. This necessitates that cellular DNA damage response and checkpoint pathways monitor the cellular DNA damage load and that DNA damage signaling is quantitative. Yet, how DNA lesions are counted and converted into a quantitative response remains poorly understood. We have recently obtained insights into this question investigating DNA damage signaling elicited by single-stranded DNA (ssDNA). Intriguingly, our findings suggest that local and global DNA damage signaling react differentially to increasing amounts of DNA damage. In this mini-review, we will discuss these findings and put them into perspective of current knowledge on the DNA damage response.
Collapse
|
82
|
Dabin J, Fortuny A, Piquet S, Polo SE. Live Imaging of Parental Histone Variant Dynamics in UVC-Damaged Chromatin. Methods Mol Biol 2019; 1832:243-253. [PMID: 30073531 DOI: 10.1007/978-1-4939-8663-7_13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In eukaryotic cell nuclei, all DNA transactions, including DNA damage repair, take place on a chromatin substrate, the integrity of which is central to gene expression programs and cell identity. However, substantial chromatin rearrangements accompany the repair response, culminating in the deposition of new histones. How the original epigenetic information conveyed by chromatin may be preserved in this context is a burning question. Elucidating the fate of parental histones, which characterize the pre-damage chromatin state, is a key step forward in deciphering the mechanisms that safeguard epigenome stability. Here, we present an in vivo approach for tracking parental histone H3 variant dynamics in real time after UVC laser-induced damage in human cells.
Collapse
Affiliation(s)
- Juliette Dabin
- Epigenetics and Cell Fate Centre, UMR7216 CNRS/Paris Diderot University, Paris, France
| | - Anna Fortuny
- Epigenetics and Cell Fate Centre, UMR7216 CNRS/Paris Diderot University, Paris, France
| | - Sandra Piquet
- Epigenetics and Cell Fate Centre, UMR7216 CNRS/Paris Diderot University, Paris, France
| | - Sophie E Polo
- Epigenetics and Cell Fate Centre, UMR7216 CNRS/Paris Diderot University, Paris, France.
| |
Collapse
|
83
|
Clouaire T, Legube G. A Snapshot on the Cis Chromatin Response to DNA Double-Strand Breaks. Trends Genet 2019; 35:330-345. [PMID: 30898334 DOI: 10.1016/j.tig.2019.02.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/15/2019] [Accepted: 02/23/2019] [Indexed: 12/11/2022]
Abstract
In eukaryotes, detection and repair of DNA double-strand breaks (DSBs) operate within chromatin, an incredibly complex structure that tightly packages and regulates DNA metabolism. Chromatin participates in the repair of these lesions at multiple steps, from detection to genomic sequence recovery and chromatin is itself extensively modified during the repair process. In recent years, new methodologies and dedicated techniques have expanded the experimental toolbox, opening up a new era granting the high-resolution analysis of chromatin modifications at annotated DSBs in a genome-wide manner. A complex picture is starting to emerge whereby chromatin is altered at various scales around DSBs, in a manner that relates to the repair pathway used, hence defining a 'repair histone code'. Here, we review the recent advances regarding our knowledge of the chromatin landscape induced in cis around DSBs, with an emphasis on histone post-translational modifications and histone variants.
Collapse
Affiliation(s)
- Thomas Clouaire
- LBCMCP, Centre de Biologie Integrative (CBI), CNRS, Université de Toulouse, UT3, Toulouse, France
| | - Gaëlle Legube
- LBCMCP, Centre de Biologie Integrative (CBI), CNRS, Université de Toulouse, UT3, Toulouse, France.
| |
Collapse
|
84
|
Chromatin control in double strand break repair. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2019. [PMID: 30798938 DOI: 10.1016/bs.apcsb.2018.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Abstract
DNA double strand breaks (DSB) are the most deleterious type of damage inflicted on DNA by various environmental factors and as consequences of normal cellular metabolism. The multistep nature of DSB repair and the need to assemble large protein complexes at repair sites necessitate multiple chromatin changes there. This review focuses on the key findings of how chromatin regulators exert temporal and spatial control on DSB repair. These mechanisms coordinate repair with cell cycle progression, lead to DSB repair pathway choice, provide accessibility of repair machinery to damaged sites and move the lesions to nuclear environments permissive for repair.
Collapse
|
85
|
Bordelet H, Dubrana K. Keep moving and stay in a good shape to find your homologous recombination partner. Curr Genet 2019; 65:29-39. [PMID: 30097675 PMCID: PMC6342867 DOI: 10.1007/s00294-018-0873-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 07/31/2018] [Accepted: 08/02/2018] [Indexed: 01/02/2023]
Abstract
Genomic DNA is constantly exposed to damage. Among the lesion in DNA, double-strand breaks (DSB), because they disrupt the two strands of the DNA double helix, are the more dangerous. DSB are repaired through two evolutionary conserved mechanisms: Non-Homologous End Joining (NHEJ) and Homologous Recombination (HR). Whereas NHEJ simply reseals the double helix with no or minimal processing, HR necessitates the formation of a 3'ssDNA through the processing of DSB ends by the resection machinery and relies on the recognition and pairing of this 3'ssDNA tails with an intact homologous sequence. Despite years of active research on HR, the manner by which the two homologous sequences find each other in the crowded nucleus, and how this modulates HR efficiency, only recently emerges. Here, we review recent advances in our understanding of the factors limiting the search of a homologous sequence during HR.
Collapse
Affiliation(s)
- Hélène Bordelet
- Laboratoire Instabilité et Organisation Nucléaire, iRCM, IBFJ, DRF, CEA. 2 INSERM, U967. 3 Université Paris Diderot et Paris Saclay, UMR967, Fontenay-aux-roses, 92265, France
| | - Karine Dubrana
- Laboratoire Instabilité et Organisation Nucléaire, iRCM, IBFJ, DRF, CEA. 2 INSERM, U967. 3 Université Paris Diderot et Paris Saclay, UMR967, Fontenay-aux-roses, 92265, France.
| |
Collapse
|
86
|
Quantifying site-specific chromatin mechanics and DNA damage response. Sci Rep 2018; 8:18084. [PMID: 30591710 PMCID: PMC6308236 DOI: 10.1038/s41598-018-36343-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 11/14/2018] [Indexed: 01/06/2023] Open
Abstract
DNA double-strand breaks pose a direct threat to genomic stability. Studies of DNA damage and chromatin dynamics have yielded opposing results that support either increased or decreased chromatin motion after damage. In this study, we independently measure the dynamics of transcriptionally active or repressed chromatin regions using particle tracking microrheology. We find that the baseline motion of transcriptionally repressed regions of chromatin are significantly less mobile than transcriptionally active chromatin, which is statistically similar to the bulk motion of chromatin within the nucleus. Site specific DNA damage using KillerRed tags induced in loci within repressed chromatin causes an increased motion, while loci within transcriptionally active regions remains unchanged at similar time scales. We also observe a time-dependent response associated with a further increase in chromatin decondensation. Global induction of damage with bleocin displays similar trends of chromatin decondensation and increased mobility only at 53BP1-labeled damage sites but not at non-damaged sites, indicating that chromatin dynamics are tightly regulated locally after damage. These results shed light on the evolution of the local and global DNA damage response associated with chromatin remodeling and dynamics, with direct implications for their role in repair.
Collapse
|
87
|
Abstract
Recent advances in both the technologies used to measure chromatin movement and the biophysical analysis used to model them have yielded a fuller understanding of chromatin dynamics and the polymer structure that underlies it. Changes in nucleosome packing, checkpoint kinase activation, the cell cycle, chromosomal tethers, and external forces acting on nuclei in response to external and internal stimuli can alter the basal mobility of DNA in interphase nuclei of yeast or mammalian cells. Although chromatin movement is assumed to be necessary for many DNA-based processes, including gene activation by distal enhancer–promoter interaction or sequence-based homology searches during double-strand break repair, experimental evidence supporting an essential role in these activities is sparse. Nonetheless, high-resolution tracking of chromatin dynamics has led to instructive models of the higher-order folding and flexibility of the chromatin polymer. Key regulators of chromatin motion in physiological conditions or after damage induction are reviewed here.
Collapse
Affiliation(s)
- Andrew Seeber
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
- Faculty of Natural Sciences, University of Basel, 4056 Basel, Switzerland
- Current affiliation: Harvard Center for Advanced Imaging, Cambridge, MA 02138, USA
| | - Michael H. Hauer
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
- Faculty of Natural Sciences, University of Basel, 4056 Basel, Switzerland
| | - Susan M. Gasser
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
- Faculty of Natural Sciences, University of Basel, 4056 Basel, Switzerland
| |
Collapse
|
88
|
γH2AX prefers late replicating metaphase chromosome regions. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2018; 836:114-121. [PMID: 30442336 DOI: 10.1016/j.mrgentox.2018.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 04/20/2018] [Accepted: 06/01/2018] [Indexed: 11/23/2022]
Abstract
DNA damage response (DDR) constitutes a protein pathway to handle eukaryotic DNA lesions in the context of chromatin. DDR engages the recruitment of signaling, transducer, effector, chromatin modifiers and remodeling proteins, allowing cell cycle delay, DNA repair or induction of senescence or apoptosis. An early DDR-event includes the epigenetic phosphorylation of the histone variant H2AX on serine 139 of the C-termini, so-called gammaH2AX. GammaH2AX foci detected by immunolabeling on interphase nuclei have been largely studied; nonetheless gammaH2AX signals on mitotic chromosomes are less understood. The CHO9 cell line is a subclone of CHO (Chinese hamster ovary) cells with original and rearranged Z chromosomes originated during cell line transformation. As a result, homologous chromosome regions have been relocated in different Z-chromosomes. In a first quantitative analysis of gammaH2AX signals on immunolabeled mitotic chromosomes of cytocentrifuged metaphase spreads, we reported that gammaH2AX139 signals of both control and bleomycin-exposed cultures showed statistically equal distribution between CHO9 homologous chromosome regions, suggesting a possible dependence on the structure/function of chromatin. We have also demonstrated that bleomycin-induced gammaH2AX foci map preferentially to DNA replicating domains in CHO9 interphase nuclei. With the aim of understanding the role of gammaH2AX signals on metaphase chromosomes, the relation between 5-ethynyl-2'-deoxyuridine (EdU) labeled replicating chromosome regions and gammaH2AX signals in immunolabeled cytocentrifuged metaphase spreads from control and bleomycin-treated CHO9 cultures was analyzed in the present work. A quantitative analysis of colocalization between EdU and gammaH2AX signals based on the calculation of the Replication Related Damage Distribution Index (RDDI) on confocal metaphase images was performed. RDDI revealed a colocalization between EdU and gammaH2AX signals both in control and bleomycin-treated CHO9 metaphases, suggesting that replication may be involved in H2AX phosphorylation. The possible mechanisms implicated are discussed.
Collapse
|
89
|
Thapar R. Regulation of DNA Double-Strand Break Repair by Non-Coding RNAs. Molecules 2018; 23:molecules23112789. [PMID: 30373256 PMCID: PMC6278438 DOI: 10.3390/molecules23112789] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 10/25/2018] [Accepted: 10/26/2018] [Indexed: 01/12/2023] Open
Abstract
DNA double-strand breaks (DSBs) are deleterious lesions that are generated in response to ionizing radiation or replication fork collapse that can lead to genomic instability and cancer. Eukaryotes have evolved two major pathways, namely homologous recombination (HR) and non-homologous end joining (NHEJ) to repair DSBs. Whereas the roles of protein-DNA interactions in HR and NHEJ have been fairly well defined, the functions of small and long non-coding RNAs and RNA-DNA hybrids in the DNA damage response is just beginning to be elucidated. This review summarizes recent discoveries on the identification of non-coding RNAs and RNA-mediated regulation of DSB repair.
Collapse
Affiliation(s)
- Roopa Thapar
- Department of Molecular and Cellular Oncology, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
90
|
Sharma AK, Hendzel MJ. The relationship between histone posttranslational modification and DNA damage signaling and repair. Int J Radiat Biol 2018; 95:382-393. [PMID: 30252564 DOI: 10.1080/09553002.2018.1516911] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE The cellular response to DNA damage occurs in the context of an organized chromatin environment in order to maintain genome integrity. Immediately after DNA damage, an array of histone modifications are induced to relieve the physical constraints of the chromatin environment, mark the site as damaged, and function as a platform for the assembly of mediator and effector proteins of DNA damage response signaling pathway. Changes in chromatin structure in the vicinity of the DNA double-strand break (DSB) facilitates the efficient initiation of the DNA damage signaling cascade. Failure of induction of DNA damage responsive histone modifications may lead to genome instability and cancer. Here we will discuss our current understanding of the DNA damage responsive histone modifications and their role in DNA repair as well as their implications for genome stability. We further discuss recent studies which highlight not only how histone modification has involved in the signaling and remodeling at the DSB but also how it influences the DNA repair pathway choice. CONCLUSIONS Histone modifications pattern alter during the induction of DNA DSBs induction as well as during the repair and recovery phase of DNA damage response. It will be interesting to understand more precisely, how DSBs within chromatin are repaired by HR and NHEJ. The emergence of proteomic and genomic technologies in combination with advanced microscopy and imaging methods will help in better understanding the role of chromatin environment in the regulation of genome stability.
Collapse
Affiliation(s)
- Ajit K Sharma
- a Departments of Cell Biology and Oncology, Faculty of Medicine and Dentistry , University of Alberta , Edmonton , Canada
| | - Michael J Hendzel
- a Departments of Cell Biology and Oncology, Faculty of Medicine and Dentistry , University of Alberta , Edmonton , Canada
| |
Collapse
|
91
|
Arifulin EA, Musinova YR, Vassetzky YS, Sheval EV. Mobility of Nuclear Components and Genome Functioning. BIOCHEMISTRY (MOSCOW) 2018; 83:690-700. [PMID: 30195325 DOI: 10.1134/s0006297918060068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cell nucleus is characterized by strong compartmentalization of structural components in its three-dimensional space. Certain genomic functions are accompanied by changes in the localization of chromatin loci and nuclear bodies. Here we review recent data on the mobility of nuclear components and the role of this mobility in genome functioning.
Collapse
Affiliation(s)
- E A Arifulin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
| | - Y R Musinova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.,LIA 1066 LFR2O French-Russian Joint Cancer Research Laboratory, Villejuif, 94805, France.,Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Y S Vassetzky
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.,LIA 1066 LFR2O French-Russian Joint Cancer Research Laboratory, Villejuif, 94805, France.,Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, 119334, Russia.,UMR8126, CNRS, Université Paris-Sud, Institut de Cancérologie Gustave Roussy, Villejuif, 94805, France
| | - E V Sheval
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.,LIA 1066 LFR2O French-Russian Joint Cancer Research Laboratory, Villejuif, 94805, France
| |
Collapse
|
92
|
Kozlowski M, Corujo D, Hothorn M, Guberovic I, Mandemaker IK, Blessing C, Sporn J, Gutierrez-Triana A, Smith R, Portmann T, Treier M, Scheffzek K, Huet S, Timinszky G, Buschbeck M, Ladurner AG. MacroH2A histone variants limit chromatin plasticity through two distinct mechanisms. EMBO Rep 2018; 19:embr.201744445. [PMID: 30177554 DOI: 10.15252/embr.201744445] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 08/01/2018] [Accepted: 08/02/2018] [Indexed: 01/22/2023] Open
Abstract
MacroH2A histone variants suppress tumor progression and act as epigenetic barriers to induced pluripotency. How they impart their influence on chromatin plasticity is not well understood. Here, we analyze how the different domains of macroH2A proteins contribute to chromatin structure and dynamics. By solving the crystal structure of the macrodomain of human macroH2A2 at 1.7 Å, we find that its putative binding pocket exhibits marked structural differences compared with the macroH2A1.1 isoform, rendering macroH2A2 unable to bind ADP-ribose. Quantitative binding assays show that this specificity is conserved among vertebrate macroH2A isoforms. We further find that macroH2A histones reduce the transient, PARP1-dependent chromatin relaxation that occurs in living cells upon DNA damage through two distinct mechanisms. First, macroH2A1.1 mediates an isoform-specific effect through its ability to suppress PARP1 activity. Second, the unstructured linker region exerts an additional repressive effect that is common to all macroH2A proteins. In the absence of DNA damage, the macroH2A linker is also sufficient for rescuing heterochromatin architecture in cells deficient for macroH2A.
Collapse
Affiliation(s)
- Marek Kozlowski
- Biomedical Center, Physiological Chemistry, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - David Corujo
- Josep Carreras Leukaemia Research Institute, Campus ICO-Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain.,PhD Programme of Genetics, Universitat de Barcelona, Barcelona, Spain
| | | | - Iva Guberovic
- Josep Carreras Leukaemia Research Institute, Campus ICO-Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Imke K Mandemaker
- Biomedical Center, Physiological Chemistry, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Charlotte Blessing
- Biomedical Center, Physiological Chemistry, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Judith Sporn
- European Molecular Biology Laboratory, Heidelberg, Germany
| | | | - Rebecca Smith
- Biomedical Center, Physiological Chemistry, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | | | - Mathias Treier
- European Molecular Biology Laboratory, Heidelberg, Germany
| | | | - Sebastien Huet
- Univ Rennes, CNRS, Structure fédérative de recherche Biosit, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, Rennes, France
| | - Gyula Timinszky
- Biomedical Center, Physiological Chemistry, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Marcus Buschbeck
- Josep Carreras Leukaemia Research Institute, Campus ICO-Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain .,Program for Predictive and Personalized Medicine of Cancer, Germans Trias i Pujol Research Institute (PMPPC-IGTP), Badalona, Spain
| | - Andreas G Ladurner
- Biomedical Center, Physiological Chemistry, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany .,Center for Integrated Protein Science Munich (CIPSM), Ludwig-Maximilians-Universität München, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
93
|
Fu Q, Wang J, Huang T. The effect of hyperthermia on the DNA damage response induced by γ-rays, as determined through in situ cell tracking. JOURNAL OF RADIATION RESEARCH 2018; 59:577-582. [PMID: 30085098 PMCID: PMC6151638 DOI: 10.1093/jrr/rry057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 05/29/2018] [Indexed: 06/08/2023]
Abstract
Hyperthermia (HT) acts as a cancer treatment by direct cell killing, radiosensitization, and promotion of tumor reoxygenation. The sensor proteins of the DNA damage response (DDR) are the direct targets of HT. However, the spatiotemporal properties of sensor proteins under HT are still unclear. Therefore, investigating the impact of HT on sensor proteins is of great importance. In the present study, the human fibrosarcoma cell line HT1080 stably transfected with 53BP1-GFP [the DDR protein 53BP1 fused to green fluorescent protein (GFP)] was used to investigate the real-time cellular response to DNA double-strand breaks (DSBs) induced by γ-rays. Using live-cell imaging combined with HT treatment, the spatiotemporal properties of the 53BP1 protein were directly monitored and quantitatively studied. We found that HT could delay and decrease the formation of 53BP1 ionizing radiation-induced foci (IRIF). Moreover, through the in situ tracking of individual IRIF, it was found that HT resulted in more unrepaired IRIF over the period of observation compared with IR alone. Additionally, the unrepaired IRIF had a larger area, higher intensity, and slower repair rate. Indeed, almost every cell treated with HT had unrepaired IRIF, and the majority of these IRIF increased in area individually, while the rest increased in area by the merging of adjacent IRIF. In summary, our study demonstrated that HT could perturb the primary event in the DDR induced by IR, and this may have important implications for cancer treatment and heat radiosensitization.
Collapse
Affiliation(s)
- Qibin Fu
- Sino-French Institute of Nuclear Engineering and Technology, Sun Yat-sen University, Tang Jia Wan, Zhuhai, P. R. China
| | - Jing Wang
- State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing, P. R. China
| | - Tuchen Huang
- Sino-French Institute of Nuclear Engineering and Technology, Sun Yat-sen University, Tang Jia Wan, Zhuhai, P. R. China
| |
Collapse
|
94
|
Abdollahi E, Taucher-Scholz G, Jakob B. Application of fluorescence lifetime imaging microscopy of DNA binding dyes to assess radiation-induced chromatin compaction changes. Int J Mol Sci 2018; 19:E2399. [PMID: 30110966 PMCID: PMC6121443 DOI: 10.3390/ijms19082399] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 08/02/2018] [Accepted: 08/10/2018] [Indexed: 01/19/2023] Open
Abstract
In recent years several approaches have been developed to address the chromatin status and its changes in eukaryotic cells under different conditions-but only few are applicable in living cells. Fluorescence lifetime imaging microscopy (FLIM) is a functional tool that can be used for the inspection of the molecular environment of fluorophores in living cells. Here, we present the use of single organic minor groove DNA binder dyes in FLIM for measuring chromatin changes following modulation of chromatin structure in living cells. Treatment with histone deacetylase inhibitors led to an increased fluorescence lifetime indicating global chromatin decompaction, whereas hyperosmolarity decreased the lifetime of the used dyes, thus reflecting the expected compaction. In addition, we demonstrate that time domain FLIM data based on single photon counting should be optimized using pile-up and counting loss correction, which affect the readout even at moderate average detector count rates in inhomogeneous samples. Using these corrections and utilizing Hoechst 34580 as chromatin compaction probe, we measured a pan nuclear increase in the lifetime following irradiation with X-rays in living NIH/3T3 cells thus providing a method to measure radiation-induced chromatin decompaction.
Collapse
Affiliation(s)
- Elham Abdollahi
- Department of Biophysics, GSI Helmholzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany.
| | - Gisela Taucher-Scholz
- Department of Biophysics, GSI Helmholzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany.
- Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany.
| | - Burkhard Jakob
- Department of Biophysics, GSI Helmholzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany.
| |
Collapse
|
95
|
Wong MM, Belew MD, Kwieraga A, Nhan JD, Michael WM. Programmed DNA Breaks Activate the Germline Genome in Caenorhabditis elegans. Dev Cell 2018; 46:302-315.e5. [PMID: 30086301 DOI: 10.1016/j.devcel.2018.07.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 06/03/2018] [Accepted: 07/01/2018] [Indexed: 12/15/2022]
Abstract
In Caenorhabditis elegans, the primordial germ cells Z2 and Z3 are born during early embryogenesis and then held in a transcriptionally quiescent state where the genome is highly compacted. When hatched L1s feed, the germline genome decompacts, and RNAPII is abruptly and globally activated. A previously documented yet unexplained feature of germline genome activation in the worm is the appearance of numerous DNA breaks coincident with RNAPII transcription. Here, we show that the DNA breaks are induced by topoisomerase II and that they function to recruit the RUVB complex to chromosomes so that RUVB can decompact the chromatin. DNA break- and RUVB-mediated decompaction is required for zygotic genome activation. This work highlights the importance of global chromatin decompaction in the rapid induction of gene expression and shows that one way cells achieve global decompaction is through programmed DNA breaks.
Collapse
Affiliation(s)
- Matthew M Wong
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Mezmur D Belew
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Amanda Kwieraga
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - James D Nhan
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - W Matthew Michael
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
96
|
Hofmann A, Krufczik M, Heermann DW, Hausmann M. Using Persistent Homology as a New Approach for Super-Resolution Localization Microscopy Data Analysis and Classification of γH2AX Foci/Clusters. Int J Mol Sci 2018; 19:E2263. [PMID: 30072594 PMCID: PMC6121565 DOI: 10.3390/ijms19082263] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 07/27/2018] [Accepted: 08/01/2018] [Indexed: 12/18/2022] Open
Abstract
DNA double strand breaks (DSB) are the most severe damages in chromatin induced by ionizing radiation. In response to such environmentally determined stress situations, cells have developed repair mechanisms. Although many investigations have contributed to a detailed understanding of repair processes, e.g., homologous recombination repair or non-homologous end-joining, the question is not sufficiently answered, how a cell decides to apply a certain repair process at a certain damage site, since all different repair pathways could simultaneously occur in the same cell nucleus. One of the first processes after DSB induction is phosphorylation of the histone variant H2AX to γH2AX in the given surroundings of the damaged locus. Since the spatial organization of chromatin is not random, it may be conclusive that the spatial organization of γH2AX foci is also not random, and rather, contributes to accessibility of special repair proteins to the damaged site, and thus, to the following repair pathway at this given site. The aim of this article is to demonstrate a new approach to analyze repair foci by their topology in order to obtain a cell independent method of categorization. During the last decade, novel super-resolution fluorescence light microscopic techniques have enabled new insights into genome structure and spatial organization on the nano-scale in the order of 10 nm. One of these techniques is single molecule localization microscopy (SMLM) with which the spatial coordinates of single fluorescence molecules can precisely be determined and density and distance distributions can be calculated. This method is an appropriate tool to quantify complex changes of chromatin and to describe repair foci on the single molecule level. Based on the pointillist information obtained by SMLM from specifically labeled heterochromatin and γH2AX foci reflecting the chromatin morphology and repair foci topology, we have developed a new analytical methodology of foci or foci cluster characterization, respectively, by means of persistence homology. This method allows, for the first time, a cell independent comparison of two point distributions (here the point distributions of two γH2AX clusters) with each other of a selected ensample and to give a mathematical measure of their similarity. In order to demonstrate the feasibility of this approach, cells were irradiated by low LET (linear energy transfer) radiation with different doses and the heterochromatin and γH2AX foci were fluorescently labeled by antibodies for SMLM. By means of our new analysis method, we were able to show that the topology of clusters of γH2AX foci can be categorized depending on the distance to heterochromatin. This method opens up new possibilities to categorize spatial organization of point patterns by parameterization of topological similarity.
Collapse
Affiliation(s)
- Andreas Hofmann
- Institute for Theoretical Physics, Heidelberg University, Philosophenweg 19, 69120 Heidelberg, Germany.
| | - Matthias Krufczik
- Kirchhoff-Institute for Physics, Heidelberg University, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany.
| | - Dieter W Heermann
- Institute for Theoretical Physics, Heidelberg University, Philosophenweg 19, 69120 Heidelberg, Germany.
| | - Michael Hausmann
- Kirchhoff-Institute for Physics, Heidelberg University, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany.
| |
Collapse
|
97
|
Mata-Garrido J, Tapia O, Casafont I, Berciano MT, Cuadrado A, Lafarga M. Persistent accumulation of unrepaired DNA damage in rat cortical neurons: nuclear organization and ChIP-seq analysis of damaged DNA. Acta Neuropathol Commun 2018; 6:68. [PMID: 30049290 PMCID: PMC6062993 DOI: 10.1186/s40478-018-0573-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 07/19/2018] [Indexed: 01/09/2023] Open
Abstract
Neurons are highly vulnerable to DNA damage induced by genotoxic agents such as topoisomerase activity, oxidative stress, ionizing radiation (IR) and chemotherapeutic drugs. To avert the detrimental effects of DNA lesions in genome stability, transcription and apoptosis, neurons activate robust DNA repair mechanisms. However, defective DNA repair with accumulation of unrepaired DNA are at the basis of brain ageing and several neurodegenerative diseases. Understanding the mechanisms by which neurons tolerate DNA damage accumulation as well as defining the genomic regions that are more vulnerable to DNA damage or refractory to DNA repair and therefore constitute potential targets in neurodegenerative diseases are essential issues in the field. In this work we investigated the nuclear topography and organization together with the genome-wide distribution of unrepaired DNA in rat cortical neurons 15 days upon IR. About 5% of non-irradiated and 55% of irradiated cells accumulate unrepaired DNA within persistent DNA damage foci (PDDF) of chromatin. These PDDF are featured by persistent activation of DNA damage/repair signaling, lack of transcription and localization in repressive nuclear microenvironments. Interestingly, the chromatin insulator CTCF is concentrated at the PDDF boundaries, likely contributing to isolate unrepaired DNA from intact transcriptionally active chromatin. By confining damaged DNA, PDDF would help preserving genomic integrity and preventing the production of aberrant proteins encoded by damaged genes. ChIP-seq analysis of genome-wide γH2AX distribution revealed a number of genomic regions enriched in γH2AX signal in IR-treated cortical neurons. Some of these regions are in close proximity to genes encoding essential proteins for neuronal functions and human neurodegenerative disorders such as epm2a (Lafora disease), serpini1 (familial encephalopathy with neuroserpin inclusion bodies) and il1rpl1 (mental retardation, X-linked 21). Persistent γH2AX signal close to those regions suggests that nearby genes could be either more vulnerable to DNA damage or more refractory to DNA repair.
Collapse
|
98
|
Oshidari R, Strecker J, Chung DKC, Abraham KJ, Chan JNY, Damaren CJ, Mekhail K. Nuclear microtubule filaments mediate non-linear directional motion of chromatin and promote DNA repair. Nat Commun 2018; 9:2567. [PMID: 29967403 PMCID: PMC6028458 DOI: 10.1038/s41467-018-05009-7] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Accepted: 06/07/2018] [Indexed: 12/19/2022] Open
Abstract
Damaged DNA shows increased mobility, which can promote interactions with repair-conducive nuclear pore complexes (NPCs). This apparently random mobility is paradoxically abrogated upon disruption of microtubules or kinesins, factors that typically cooperate to mediate the directional movement of macromolecules. Here, we resolve this paradox by uncovering DNA damage-inducible intranuclear microtubule filaments (DIMs) that mobilize damaged DNA and promote repair. Upon DNA damage, relief of centromeric constraint induces DIMs that cooperate with the Rad9 DNA damage response mediator and Kar3 kinesin motor to capture DNA lesions, which then linearly move along dynamic DIMs. Decreasing and hyper-inducing DIMs respectively abrogates and hyper-activates repair. Accounting for DIM dynamics across cell populations by measuring directional changes of damaged DNA reveals that it exhibits increased non-linear directional behavior in nuclear space. Abrogation of DIM-dependent processes or repair-promoting factors decreases directional behavior. Thus, inducible and dynamic nuclear microtubule filaments directionally mobilize damaged DNA and promote repair. Following DNA damage, different processes come to action to aid repair. The authors here find that microtubule filaments within the cell nucleus capture and non-randomly mobilize damaged chromatin to mediate DNA repair.
Collapse
Affiliation(s)
- Roxanne Oshidari
- Department of Laboratory Medicine and Pathobiology, MaRS Centre, University of Toronto, West Tower, 661 University Avenue, Toronto, ON, M5G 1M1, Canada
| | - Jonathan Strecker
- Department of Molecular Genetics, MaRS Centre, University of Toronto, West Tower, 661 University Avenue, Toronto, ON, M5G 1M1, Canada.,Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON, M5G 1X5, Canada.,Broad Institute of MIT and Harvard, 75 Ames Street, Cambridge, MA, 02142, USA
| | - Daniel K C Chung
- Department of Laboratory Medicine and Pathobiology, MaRS Centre, University of Toronto, West Tower, 661 University Avenue, Toronto, ON, M5G 1M1, Canada
| | - Karan J Abraham
- Department of Laboratory Medicine and Pathobiology, MaRS Centre, University of Toronto, West Tower, 661 University Avenue, Toronto, ON, M5G 1M1, Canada
| | - Janet N Y Chan
- Department of Laboratory Medicine and Pathobiology, MaRS Centre, University of Toronto, West Tower, 661 University Avenue, Toronto, ON, M5G 1M1, Canada
| | - Christopher J Damaren
- Institute for Aerospace Studies, University of Toronto, 4925 Dufferin Street, Toronto, ON, M3H 5T6, Canada
| | - Karim Mekhail
- Department of Laboratory Medicine and Pathobiology, MaRS Centre, University of Toronto, West Tower, 661 University Avenue, Toronto, ON, M5G 1M1, Canada. .,Canada Research Chairs Program, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
99
|
Cleri F, Landuzzi F, Blossey R. Mechanical evolution of DNA double-strand breaks in the nucleosome. PLoS Comput Biol 2018; 14:e1006224. [PMID: 29902181 PMCID: PMC6025874 DOI: 10.1371/journal.pcbi.1006224] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 06/29/2018] [Accepted: 05/22/2018] [Indexed: 01/29/2023] Open
Abstract
Double strand breaks (DSB) in the DNA backbone are the most lethal type of defect induced in the cell nucleus by chemical and radiation treatments of cancer. However, little is known about the outcomes of damage in nucleosomal DNA, and on its effects on damage repair. We performed microsecond-long molecular dynamics computer simulations of nucleosomes including a DSB at various sites, to characterize the early stages of the evolution of this DNA lesion. The damaged structures are studied by the essential dynamics of DNA and histones, and compared to the intact nucleosome, thus exposing key features of the interactions. All DSB configurations tend to remain compact, with only the terminal bases interacting with histone proteins. Umbrella sampling calculations show that broken DNA ends at the DSB must overcome a free-energy barrier to detach from the nucleosome core. Finally, by calculating the covariant mechanical stress, we demonstrate that the coupled bending and torsional stress can force the DSB free ends to open up straight, thus making it accessible to damage signalling proteins.
Collapse
Affiliation(s)
- Fabrizio Cleri
- Institut d’Electronique, Microélectronique et Nanotechnologie (IEMN, UMR Cnrs 8520), 59652 Villeneuve d’Ascq, France
- Departement de Physique, Université de Lille, 59650 Villeneuve d’Ascq, France
| | - Fabio Landuzzi
- Institut d’Electronique, Microélectronique et Nanotechnologie (IEMN, UMR Cnrs 8520), 59652 Villeneuve d’Ascq, France
| | - Ralf Blossey
- Unité de Glycobiologie Structurelle et Fonctionnelle (UGSF, UMR Cnrs 8576), 59000 Lille, France
| |
Collapse
|
100
|
Abstract
The health of an organism is intimately linked to its ability to repair damaged DNA. Importantly, DNA repair processes are highly dynamic. This highlights the necessity of characterizing DNA repair in live cells. Advanced genome editing and imaging approaches allow us to visualize damaged DNA and its associated factors in real time. Here, we summarize both established and recent methods that are used to induce DNA damage and visualize damaged DNA and its repair in live cells.
Collapse
Affiliation(s)
- Roxanne Oshidari
- Department of Laboratory Medicine and Pathobiology, University of Toronto, MaRS Centre, West Tower, 661 University Avenue, Toronto, Ontario M5G 1M1, Canada
| | - Karim Mekhail
- Department of Laboratory Medicine and Pathobiology, University of Toronto, MaRS Centre, West Tower, 661 University Avenue, Toronto, Ontario M5G 1M1, Canada; Canada Research Chairs Program, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada.
| |
Collapse
|