51
|
Torvund-Jensen J, Steengaard J, Askebjerg LB, Kjaer-Sorensen K, Laursen LS. The 3'UTRs of Myelin Basic Protein mRNAs Regulate Transport, Local Translation and Sensitivity to Neuronal Activity in Zebrafish. Front Mol Neurosci 2018; 11:185. [PMID: 29946237 PMCID: PMC6006989 DOI: 10.3389/fnmol.2018.00185] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 05/14/2018] [Indexed: 02/04/2023] Open
Abstract
Formation of functional myelin sheaths within the central nervous system depends on expression of myelin basic protein (MBP). Following process extension and wrapping around axonal segments, this highly basic protein is required for compaction of the multi-layered membrane sheath produced by oligodendrocytes. MBP is hypothesized to be targeted to the membrane sheath by mRNA transport and local translation, which ensures that its expression is temporally and spatially restricted. The mechanistic details of how this might be regulated are still largely unknown, in particular because a model system that allows this process to be studied in vivo is lacking. We here show that the expression of the zebrafish MBP orthologs, mbpa and mbpb, is developmentally regulated, and that expression of specific mbpa isoforms is restricted to the peripheral nervous system. By analysis of transgenic zebrafish, which express a fluorescent reporter protein specifically in myelinating oligodendrocytes, we demonstrate that both mbpa and mbpb include a 3’UTR sequence, by which mRNA transport and translation is regulated in vivo. Further functional analysis suggests that: (1) the 3’UTRs delay the onset of protein expression; and that (2) several regulatory elements contribute to targeting of the mbp mRNA to the myelin sheath. Finally, we show that a pharmacological compound known to enhance neuronal activity stimulates the translation of Mbp in zebrafish in a 3’UTR-dependent manner. A similar effect was obtained following stimulation with a TrkB receptor agonist, and cell-based assays further confirmed that the receptor ligand, BDNF, in combination with other signals reversed the inhibitory effect of the 3’UTR on translation.
Collapse
Affiliation(s)
- Julie Torvund-Jensen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Jes Steengaard
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | | | | | - Lisbeth S Laursen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| |
Collapse
|
52
|
Hammann J, Bassetti D, White R, Luhmann HJ, Kirischuk S. α2 isoform of Na +,K +-ATPase via Na +,Ca 2+ exchanger modulates myelin basic protein synthesis in oligodendrocyte lineage cells in vitro. Cell Calcium 2018; 73:1-10. [PMID: 29880193 DOI: 10.1016/j.ceca.2018.03.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/05/2018] [Accepted: 03/25/2018] [Indexed: 11/26/2022]
Abstract
Oligodendrocytes in the CNS myelinate neuronal axons, facilitating rapid propagation of action potentials. Myelin basic protein (MBP) is an essential component of myelin and its absence results in severe hypomyelination. In oligodendrocyte lineage cell (OLC) monocultures MBP synthesis starts at DIV4. Ouabain (10 nM), a Na+,K+-ATPase (NKA) blocker, stimulates MBP synthesis. As OLCs express the α2 isoform of NKA (α2-NKA) that has a high affinity for ouabain, we hypothesized that α2-NKA mediates this effect. Knockdown of α2-NKA with small interfering (si)RNA (α2-siRNA) significantly potentiated MBP synthesis at DIV4 and 5. This effect was completely blocked by KB-R7943 (1 μM), a Na+,Ca2+ exchanger (NCX) antagonist. α2-NKA ablation increased the frequency of NCX-mediated spontaneous Ca2+ transients ([Ca2+]t) at DIV4, whereas in control OLC cultures comparable frequency of [Ca2+]t was observed at DIV5. At DIV6 almost no [Ca2+]t were observed either in control or in α2-siRNA-treated cultures. Immunocytochemical analyses showed that α2-NKA co-localizes with MBP in proximal processes of immature OLCs but is only weakly present in MBP-enriched membrane sheets. Knockdown of α2-NKA in cortical slice cultures did not change MBP levels but reduced co-localization of neurofilament- and MBP-positive compartments. We conclude that α2-NKA activity in OLCs affects NCX-mediated [Ca2+]t and the onset of MBP synthesis. We suggest therefore that neuronal activity, presumably in form of local extracellular [K+] changes, might locally influence NCX-mediated [Ca2+]t in OLC processes thus triggering local MBP synthesis in the vicinity of an active axon.
Collapse
Affiliation(s)
- Jens Hammann
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, D-55128 Mainz, Germany
| | - Davide Bassetti
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, D-55128 Mainz, Germany
| | - Robin White
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, D-55128 Mainz, Germany
| | - Heiko J Luhmann
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, D-55128 Mainz, Germany
| | - Sergei Kirischuk
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, D-55128 Mainz, Germany.
| |
Collapse
|
53
|
Ryan VH, Dignon GL, Zerze GH, Chabata CV, Silva R, Conicella AE, Amaya J, Burke KA, Mittal J, Fawzi NL. Mechanistic View of hnRNPA2 Low-Complexity Domain Structure, Interactions, and Phase Separation Altered by Mutation and Arginine Methylation. Mol Cell 2018; 69:465-479.e7. [PMID: 29358076 DOI: 10.1016/j.molcel.2017.12.022] [Citation(s) in RCA: 274] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 11/10/2017] [Accepted: 12/22/2017] [Indexed: 01/21/2023]
Abstract
hnRNPA2, a component of RNA-processing membraneless organelles, forms inclusions when mutated in a syndrome characterized by the degeneration of neurons (bearing features of amyotrophic lateral sclerosis [ALS] and frontotemporal dementia), muscle, and bone. Here we provide a unified structural view of hnRNPA2 self-assembly, aggregation, and interaction and the distinct effects of small chemical changes-disease mutations and arginine methylation-on these assemblies. The hnRNPA2 low-complexity (LC) domain is compact and intrinsically disordered as a monomer, retaining predominant disorder in a liquid-liquid phase-separated form. Disease mutations D290V and P298L induce aggregation by enhancing and extending, respectively, the aggregation-prone region. Co-aggregating in disease inclusions, hnRNPA2 LC directly interacts with and induces phase separation of TDP-43. Conversely, arginine methylation reduces hnRNPA2 phase separation, disrupting arginine-mediated contacts. These results highlight the mechanistic role of specific LC domain interactions and modifications conserved across many hnRNP family members but altered by aggregation-causing pathological mutations.
Collapse
Affiliation(s)
- Veronica H Ryan
- Neuroscience Graduate Program, Brown University, Providence, RI 02912, USA
| | - Gregory L Dignon
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA 18015, USA
| | - Gül H Zerze
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA 18015, USA
| | - Charlene V Chabata
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, RI 02912, USA
| | - Rute Silva
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, RI 02912, USA
| | - Alexander E Conicella
- Graduate Program in Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI 02912, USA
| | - Joshua Amaya
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, RI 02912, USA
| | - Kathleen A Burke
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, RI 02912, USA
| | - Jeetain Mittal
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA 18015, USA
| | - Nicolas L Fawzi
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, RI 02912, USA.
| |
Collapse
|
54
|
Yang F, Feng X, Rolfs A, Luo J. Lovastatin promotes myelin formation in NPC1 mutant oligodendrocytes. J Neurol Sci 2018; 386:56-63. [PMID: 29406968 DOI: 10.1016/j.jns.2018.01.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 12/21/2017] [Accepted: 01/11/2018] [Indexed: 01/09/2023]
Abstract
Niemann-Pick Type C (NPC) disease is a rare neurovisceral disorder caused by mutations of either NPC1 or NPC2 gene and characterized by defective intracellular transport of cholesterol and glycosphingolipids, leading to neuron loss and myelin aberration in the central nervous system. In this study, by comparing protein expression in the cortical white matter tracts from mice at different postnatal days, we identified that in the NPC1 mutant (NPC1-/-) mice, the onset of myelination is delayed and the amount of the major myelin protein MBP and PLP, and oligodendrocyte regulatory factor Olig1 and Olig2, but not NG2 and Sox10, decreased significantly, suggesting a disruption of oligodendrocyte differentiation. Furthermore, in in vitro oligodendrocyte cultivation, NPC1-/- oligodendrocytes showed less response to the stimulation of neuron-conditioned medium (CdM), indicating a defect of oligodendrocyte per se. Interestingly, lovastatin restores the number of mature myelin-forming oligodendrocytes by increasing Olig1 and Olig2 expressions. Our data suggest a potential strategy for improving myelination using lovastatin in NPC disease.
Collapse
Affiliation(s)
- Fan Yang
- Albrecht-Kossel-Institute for Neuroregeneration, School of Medicine University of Rostock, Gehlsheimer Strasse 20, 18147 Rostock, Germany
| | - Xiao Feng
- Albrecht-Kossel-Institute for Neuroregeneration, School of Medicine University of Rostock, Gehlsheimer Strasse 20, 18147 Rostock, Germany
| | - Arndt Rolfs
- Albrecht-Kossel-Institute for Neuroregeneration, School of Medicine University of Rostock, Gehlsheimer Strasse 20, 18147 Rostock, Germany
| | - Jiankai Luo
- Albrecht-Kossel-Institute for Neuroregeneration, School of Medicine University of Rostock, Gehlsheimer Strasse 20, 18147 Rostock, Germany; Centre for Transdisciplinary Neuroscience Rostock, School of Medicine University of Rostock, Gehlsheimer Strasse 20, 18147 Rostock, Germany.
| |
Collapse
|
55
|
Tréfier A, Pellissier LP, Musnier A, Reiter E, Guillou F, Crépieux P. G Protein-Coupled Receptors As Regulators of Localized Translation: The Forgotten Pathway? Front Endocrinol (Lausanne) 2018; 9:17. [PMID: 29456523 PMCID: PMC5801404 DOI: 10.3389/fendo.2018.00017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 01/15/2018] [Indexed: 12/31/2022] Open
Abstract
G protein-coupled receptors (GPCRs) exert their physiological function by transducing a complex signaling network that coordinates gene expression and dictates the phenotype of highly differentiated cells. Much is known about the gene networks they transcriptionally regulate upon ligand exposure in a process that takes hours before a new protein is synthesized. However, far less is known about GPCR impact on the translational machinery and subsequent mRNA translation, although this gene regulation level alters the cell phenotype in a strikingly different timescale. In fact, mRNA translation is an early response kinetically connected to signaling events, hence it leads to the synthesis of a new protein within minutes following receptor activation. By these means, mRNA translation is responsive to subtle variations of the extracellular environment. In addition, when restricted to cell subcellular compartments, local mRNA translation contributes to cell micro-specialization, as observed in synaptic plasticity or in cell migration. The mechanisms that control where in the cell an mRNA is translated are starting to be deciphered. But how an extracellular signal triggers such local translation still deserves extensive investigations. With the advent of high-throughput data acquisition, it now becomes possible to review the current knowledge on the translatome that some GPCRs regulate, and how this information can be used to explore GPCR-controlled local translation of mRNAs.
Collapse
Affiliation(s)
- Aurélie Tréfier
- Biologie et Bioinformatique des Systèmes de Signalisation, INRA, UMR85, Physiologie de la Reproduction et des Comportements, Nouzilly, France
- CNRS, UMR7247, Nouzilly, France
- Université François Rabelais, Tours, France
- IFCE, Nouzilly, France
| | - Lucie P. Pellissier
- Déficit de Récompense, GPCR et sociabilité, INRA, UMR85, Physiologie de la Reproduction et des Comportements, Nouzilly, France
- CNRS, UMR7247, Nouzilly, France
- Université François Rabelais, Tours, France
- IFCE, Nouzilly, France
| | - Astrid Musnier
- Biologie et Bioinformatique des Systèmes de Signalisation, INRA, UMR85, Physiologie de la Reproduction et des Comportements, Nouzilly, France
- CNRS, UMR7247, Nouzilly, France
- Université François Rabelais, Tours, France
- IFCE, Nouzilly, France
| | - Eric Reiter
- Biologie et Bioinformatique des Systèmes de Signalisation, INRA, UMR85, Physiologie de la Reproduction et des Comportements, Nouzilly, France
- CNRS, UMR7247, Nouzilly, France
- Université François Rabelais, Tours, France
- IFCE, Nouzilly, France
| | - Florian Guillou
- Plasticité Génomique et Expression Phénotypique, INRA, UMR85, Physiologie de la Reproduction et des Comportements, Nouzilly, France
- CNRS, UMR7247, Nouzilly, France
- Université François Rabelais, Tours, France
- IFCE, Nouzilly, France
| | - Pascale Crépieux
- Biologie et Bioinformatique des Systèmes de Signalisation, INRA, UMR85, Physiologie de la Reproduction et des Comportements, Nouzilly, France
- CNRS, UMR7247, Nouzilly, France
- Université François Rabelais, Tours, France
- IFCE, Nouzilly, France
- *Correspondence: Pascale Crépieux,
| |
Collapse
|
56
|
Hoch-Kraft P, White R, Tenzer S, Krämer-Albers EM, Trotter J, Gonsior C. Dual role of the RNA helicase DDX5 in post-transcriptional regulation of Myelin Basic Protein in oligodendrocytes. J Cell Sci 2018; 131:jcs.204750. [DOI: 10.1242/jcs.204750] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 03/28/2018] [Indexed: 01/11/2023] Open
Abstract
In the central nervous system, oligodendroglial expression of Myelin Basic Protein (MBP) is crucial for the assembly and structure of the myelin sheath. MBP synthesis is tightly regulated in space and time, particularly on the post-transcriptional level. We have identified the DEAD-box RNA helicase DDX5 (alias p68) in a complex with Mbp mRNA in oligodendroglial cells. Expression of DDX5 is highest in progenitor cells and immature oligodendrocytes, where it localizes to heterogeneous populations of cytoplasmic ribonucleoprotein (RNP) complexes associated with Mbp mRNA in the cell body and processes. Manipulation of DDX5 protein amounts inversely affects levels of MBP protein. We present evidence that DDX5 is involved in post-transcriptional regulation of MBP protein synthesis, with implications for oligodendroglial development. In addition, DDX5 knockdown results in an increased abundance of MBP exon 2-positive isoforms in immature oligodendrocytes, most likely by regulating alternative splicing of Mbp. Our findings contribute to the understanding of the complex nature of MBP post-transcriptional control in immature oligodendrocytes where DDX5 appears to affect the abundance of MBP proteins via distinct but converging mechanisms.
Collapse
Affiliation(s)
- Peter Hoch-Kraft
- Molecular Cell Biology, Institute for Developmental Biology and Neurobiology, Johannes Gutenberg-University of Mainz, Anselm-Franz-von-Bentzelweg 3, 55128 Mainz, Germany
| | - Robin White
- Molecular Cell Biology, Institute for Developmental Biology and Neurobiology, Johannes Gutenberg-University of Mainz, Anselm-Franz-von-Bentzelweg 3, 55128 Mainz, Germany
- Institute of Physiology and Pathophysiology, University Medical Center of the Johannes Gutenberg-University, Duesbergweg 6, 55128 Mainz, Germany
| | - Stefan Tenzer
- Institute for Immunology, University Medical Center Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Eva-Maria Krämer-Albers
- Molecular Cell Biology, Institute for Developmental Biology and Neurobiology, Johannes Gutenberg-University of Mainz, Anselm-Franz-von-Bentzelweg 3, 55128 Mainz, Germany
| | - Jacqueline Trotter
- Molecular Cell Biology, Institute for Developmental Biology and Neurobiology, Johannes Gutenberg-University of Mainz, Anselm-Franz-von-Bentzelweg 3, 55128 Mainz, Germany
| | - Constantin Gonsior
- Molecular Cell Biology, Institute for Developmental Biology and Neurobiology, Johannes Gutenberg-University of Mainz, Anselm-Franz-von-Bentzelweg 3, 55128 Mainz, Germany
| |
Collapse
|
57
|
Dynein/dynactin is necessary for anterograde transport of Mbp mRNA in oligodendrocytes and for myelination in vivo. Proc Natl Acad Sci U S A 2017; 114:E9153-E9162. [PMID: 29073112 PMCID: PMC5664533 DOI: 10.1073/pnas.1711088114] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Oligodendrocytes in the brain insulate neuronal axons in layers of fatty myelin to facilitate fast electrical signaling. Myelin basic protein (MBP), an important myelin component, is transported as mRNA away from the cell body before being translated into protein. In zebrafish, the anterograde motor kinesin transports mbp mRNA away from the cell body. We now identify myelination defects in zebrafish caused by a mutation in the retrograde motor complex dynein/dynactin, which normally transports cargos back toward the cell body. However, this mutant displays defects in anterograde mbp mRNA transport. We confirm in mammalian oligodendrocyte cultures that drug inhibition of dynein arrests transport in both directions and decreases MBP protein levels. Thus, dynein/dynactin is paradoxically required for anterograde mbp mRNA transport. Oligodendrocytes in the central nervous system produce myelin, a lipid-rich, multilamellar sheath that surrounds axons and promotes the rapid propagation of action potentials. A critical component of myelin is myelin basic protein (MBP), expression of which requires anterograde mRNA transport followed by local translation at the developing myelin sheath. Although the anterograde motor kinesin KIF1B is involved in mbp mRNA transport in zebrafish, it is not entirely clear how mbp transport is regulated. From a forward genetic screen for myelination defects in zebrafish, we identified a mutation in actr10, which encodes the Arp11 subunit of dynactin, a critical activator of the retrograde motor dynein. Both the actr10 mutation and pharmacological dynein inhibition in zebrafish result in failure to properly distribute mbp mRNA in oligodendrocytes, indicating a paradoxical role for the retrograde dynein/dynactin complex in anterograde mbp mRNA transport. To address the molecular mechanism underlying this observation, we biochemically isolated reporter-tagged Mbp mRNA granules from primary cultured mammalian oligodendrocytes to show that they indeed associate with the retrograde motor complex. Next, we used live-cell imaging to show that acute pharmacological dynein inhibition quickly arrests Mbp mRNA transport in both directions. Chronic pharmacological dynein inhibition also abrogates Mbp mRNA distribution and dramatically decreases MBP protein levels. Thus, these cell culture and whole animal studies demonstrate a role for the retrograde dynein/dynactin motor complex in anterograde mbp mRNA transport and myelination in vivo.
Collapse
|
58
|
Li C, Götz J. Somatodendritic accumulation of Tau in Alzheimer's disease is promoted by Fyn-mediated local protein translation. EMBO J 2017; 36:3120-3138. [PMID: 28864542 DOI: 10.15252/embj.201797724] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 07/25/2017] [Accepted: 08/10/2017] [Indexed: 11/09/2022] Open
Abstract
The cause of protein accumulation in neurodegenerative disease is incompletely understood. In Alzheimer's disease (AD), the axonally enriched protein Tau forms hyperphosphorylated aggregates in the somatodendritic domain. Consequently, a process of subcellular relocalization driven by Tau phosphorylation and detachment from microtubules has been proposed. Here, we reveal an alternative mechanism of de novo protein synthesis of Tau and its hyperphosphorylation in the somatodendritic domain, induced by oligomeric amyloid-β (Aβ) and mediated by the kinase Fyn that activates the ERK/S6 signaling pathway. Activation of this pathway is demonstrated in a range of cellular systems, and in vivo in brains from Aβ-depositing, Aβ-injected, and Fyn-overexpressing mice with Tau accumulation. Both pharmacological inhibition and genetic deletion of Fyn abolish the Aβ-induced Tau overexpression via ERK/S6 suppression. Together, these findings present a more cogent mechanism of Tau aggregation in disease. They identify a prominent role for neuronal Fyn in integrating signal transduction pathways that lead to the somatodendritic accumulation of Tau in AD.
Collapse
Affiliation(s)
- Chuanzhou Li
- Clem Jones Centre for Ageing Dementia Research (CJCADR), Queensland Brain Institute (QBI), The University of Queensland, Brisbane, Qld, Australia
| | - Jürgen Götz
- Clem Jones Centre for Ageing Dementia Research (CJCADR), Queensland Brain Institute (QBI), The University of Queensland, Brisbane, Qld, Australia
| |
Collapse
|
59
|
Golgi trafficking defects in postnatal microcephaly: The evidence for “Golgipathies”. Prog Neurobiol 2017; 153:46-63. [DOI: 10.1016/j.pneurobio.2017.03.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 02/22/2017] [Accepted: 03/29/2017] [Indexed: 12/17/2022]
|
60
|
Bessonov K, Vassall KA, Harauz G. Docking and molecular dynamics simulations of the Fyn-SH3 domain with free and phospholipid bilayer-associated 18.5-kDa myelin basic protein (MBP)-Insights into a noncanonical and fuzzy interaction. Proteins 2017; 85:1336-1350. [PMID: 28380689 DOI: 10.1002/prot.25295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 03/03/2017] [Accepted: 03/27/2017] [Indexed: 01/06/2023]
Abstract
The molecular details of the association between the human Fyn-SH3 domain, and the fragment of 18.5-kDa myelin basic protein (MBP) spanning residues S38-S107 (denoted as xα2-peptide, murine sequence numbering), were studied in silico via docking and molecular dynamics over 50-ns trajectories. The results show that interaction between the two proteins is energetically favorable and heavily dependent on the MBP proline-rich region (P93-P98) in both aqueous and membrane environments. In aqueous conditions, the xα2-peptide/Fyn-SH3 complex adopts a "sandwich""-like structure. In the membrane context, the xα2-peptide interacts with the Fyn-SH3 domain via the proline-rich region and the β-sheets of Fyn-SH3, with the latter wrapping around the proline-rich region in a form of a clip. Moreover, the simulations corroborate prior experimental evidence of the importance of upstream segments beyond the canonical SH3-ligand. This study thus provides a more-detailed glimpse into the context-dependent interaction dynamics and importance of the β-sheets in Fyn-SH3 and proline-rich region of MBP. Proteins 2017; 85:1336-1350. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Kyrylo Bessonov
- Systems and Modeling Unit, Montefiore Institute, Université de Liège, Quartier Polytech 1, Allée de la Découverte 10, Liège, 4000, Belgium
| | - Kenrick A Vassall
- Department of Molecular and Cellular Biology, Biophysics Interdepartmental Group, and Collaborative Program in Neuroscience, University of Guelph, 50 Stone Road East, Guelph, Ontario, N1G 2W1, Canada
| | - George Harauz
- Department of Molecular and Cellular Biology, Biophysics Interdepartmental Group, and Collaborative Program in Neuroscience, University of Guelph, 50 Stone Road East, Guelph, Ontario, N1G 2W1, Canada
| |
Collapse
|
61
|
Snaidero N, Simons M. The logistics of myelin biogenesis in the central nervous system. Glia 2017; 65:1021-1031. [DOI: 10.1002/glia.23116] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 12/06/2016] [Accepted: 12/12/2016] [Indexed: 01/28/2023]
Affiliation(s)
- Nicolas Snaidero
- Institute of Neuronal Cell Biology, Technical University Munich; Munich 80805 Germany
| | - Mikael Simons
- Institute of Neuronal Cell Biology, Technical University Munich; Munich 80805 Germany
- German Center for Neurodegenerative Disease (DZNE); Munich 6250 Germany
- Cellular Neuroscience; Max Planck Institute of Experimental Medicine; Göttingen 37075 Germany
- Munich Cluster for Systems Neurology (SyNergy); Munich 81377 Germany
| |
Collapse
|
62
|
Maggipinto MJ, Ford J, Le KH, Tutolo JW, Furusho M, Wizeman JW, Bansal R, Barbarese E. Conditional knockout of TOG results in CNS hypomyelination. Glia 2017; 65:489-501. [PMID: 28063167 DOI: 10.1002/glia.23106] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 10/29/2016] [Accepted: 11/30/2016] [Indexed: 12/12/2022]
Abstract
The tumor overexpressed gene (TOG) protein is present in RNA granules that transport myelin basic protein (MBP) mRNA in oligodendrocyte processes to the myelin compartment. Its role was investigated by conditionally knocking it out (KO) in myelinating glia in vivo. TOG KO mice have severe motor deficits that are already apparent at the time of weaning. This phenotype correlates with a paucity of myelin in several CNS regions, the most severe being in the spinal cord. In the TOG KO optic nerve <30% of axons are myelinated. The number of oligodendrocytes in the corpus callosum, cerebellum, and cervical spinal cord is normal. In the absence of TOG, the most patent biochemical change is a large reduction in MBP content, yet normal amounts of MBP transcripts are found in the brain of affected animals. MBP transcripts are largely confined to the cell body of the oligodendrocytes in the TOG KO in contrast to the situation in wild type mice where they are found in the processes of the oligodendrocytes and in the myelin compartment. These findings indicate that MBP gene expression involves a post-transcriptional TOG-dependent step. TOG may be necessary for MBP mRNA assembly into translation permissive granules, and/or for transport to preferred sites of translation. GLIA 2017;65:489-501.
Collapse
Affiliation(s)
- Michael J Maggipinto
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, Connecticut
| | - Joshay Ford
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, Connecticut
| | - Kristine H Le
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, Connecticut
| | - Jessica W Tutolo
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, Connecticut
| | - Miki Furusho
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, Connecticut
| | - John W Wizeman
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, Connecticut
| | - Rashmi Bansal
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, Connecticut
| | - Elisa Barbarese
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, Connecticut
| |
Collapse
|
63
|
Lecca D, Marangon D, Coppolino GT, Méndez AM, Finardi A, Costa GD, Martinelli V, Furlan R, Abbracchio MP. MiR-125a-3p timely inhibits oligodendroglial maturation and is pathologically up-regulated in human multiple sclerosis. Sci Rep 2016; 6:34503. [PMID: 27698367 PMCID: PMC5048305 DOI: 10.1038/srep34503] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 09/09/2016] [Indexed: 12/31/2022] Open
Abstract
In the mature central nervous system (CNS), oligodendrocytes provide support and insulation to axons thanks to the production of a myelin sheath. During their maturation to myelinating cells, oligodendroglial precursors (OPCs) follow a very precise differentiation program, which is finely orchestrated by transcription factors, epigenetic factors and microRNAs (miRNAs), a class of small non-coding RNAs involved in post-transcriptional regulation. Any alterations in this program can potentially contribute to dysregulated myelination, impaired remyelination and neurodegenerative conditions, as it happens in multiple sclerosis (MS). Here, we identify miR-125a-3p, a developmentally regulated miRNA, as a new actor of oligodendroglial maturation, that, in the mammalian CNS regulates the expression of myelin genes by simultaneously acting on several of its already validated targets. In cultured OPCs, over-expression of miR-125a-3p by mimic treatment impairs while its inhibition with an antago-miR stimulates oligodendroglial maturation. Moreover, we show that miR-125a-3p levels are abnormally high in the cerebrospinal fluid of MS patients bearing active demyelinating lesions, suggesting that its pathological upregulation may contribute to MS development, at least in part by blockade of OPC differentiation leading to impaired repair of demyelinated lesions.
Collapse
Affiliation(s)
- Davide Lecca
- Laboratory of Molecular and Cellular Pharmacology of the Purinergic Transmission, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, 20133, Italy
| | - Davide Marangon
- Laboratory of Molecular and Cellular Pharmacology of the Purinergic Transmission, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, 20133, Italy
| | - Giusy T Coppolino
- Laboratory of Molecular and Cellular Pharmacology of the Purinergic Transmission, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, 20133, Italy
| | - Aida Menéndez Méndez
- Departamento de Bioquímica y Biología Molecular IV, Universidad Complutense de Madrid, 28040, Spain
| | - Annamaria Finardi
- Institute of Experimental Neurology (INSpe), Division of Neuroscience, San Raffaele Scientific Institute, Milan, 20132, Italy
| | - Gloria Dalla Costa
- Institute of Experimental Neurology (INSpe), Division of Neuroscience, San Raffaele Scientific Institute, Milan, 20132, Italy
| | - Vittorio Martinelli
- Institute of Experimental Neurology (INSpe), Division of Neuroscience, San Raffaele Scientific Institute, Milan, 20132, Italy
| | - Roberto Furlan
- Institute of Experimental Neurology (INSpe), Division of Neuroscience, San Raffaele Scientific Institute, Milan, 20132, Italy
| | - Maria P Abbracchio
- Laboratory of Molecular and Cellular Pharmacology of the Purinergic Transmission, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, 20133, Italy
| |
Collapse
|
64
|
Humphrey ES, Su SP, Nagrial AM, Hochgräfe F, Pajic M, Lehrbach GM, Parton RG, Yap AS, Horvath LG, Chang DK, Biankin AV, Wu J, Daly RJ. Resolution of Novel Pancreatic Ductal Adenocarcinoma Subtypes by Global Phosphotyrosine Profiling. Mol Cell Proteomics 2016; 15:2671-85. [PMID: 27259358 PMCID: PMC4974343 DOI: 10.1074/mcp.m116.058313] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 05/11/2016] [Indexed: 12/20/2022] Open
Abstract
Comprehensive characterization of signaling in pancreatic ductal adenocarcinoma (PDAC) promises to enhance our understanding of the molecular aberrations driving this devastating disease, and may identify novel therapeutic targets as well as biomarkers that enable stratification of patients for optimal therapy. Here, we use immunoaffinity-coupled high-resolution mass spectrometry to characterize global tyrosine phosphorylation patterns across two large panels of human PDAC cell lines: the ATCC series (19 cell lines) and TKCC series (17 cell lines). This resulted in the identification and quantification of over 1800 class 1 tyrosine phosphorylation sites and the consistent segregation of both PDAC cell line series into three subtypes with distinct tyrosine phosphorylation profiles. Subtype-selective signaling networks were characterized by identification of subtype-enriched phosphosites together with pathway and network analyses. This revealed that the three subtypes characteristic of the ATCC series were associated with perturbations in signaling networks associated with cell-cell adhesion and epithelial-mesenchyme transition, mRNA metabolism, and receptor tyrosine kinase (RTK) signaling, respectively. Specifically, the third subtype exhibited enhanced tyrosine phosphorylation of multiple RTKs including the EGFR, ERBB3 and MET. Interestingly, a similar RTK-enriched subtype was identified in the TKCC series, and 'classifier' sites for each series identified using Random Forest models were able to predict the subtypes of the alternate series with high accuracy, highlighting the conservation of the three subtypes across the two series. Finally, RTK-enriched cell lines from both series exhibited enhanced sensitivity to the small molecule EGFR inhibitor erlotinib, indicating that their phosphosignature may provide a predictive biomarker for response to this targeted therapy. These studies highlight how resolution of subtype-selective signaling networks can provide a novel taxonomy for particular cancers, and provide insights into PDAC biology that can be exploited for improved patient management.
Collapse
Affiliation(s)
- Emily S Humphrey
- From the ‡Cancer Division and Kinghorn Cancer Centre, Garvan Institute of Medical Research, 384 Victoria St, Sydney, NSW 2010, Australia; §St Vincent's Hospital Clinical School, Faculty of Medicine, University of New South Wales, NSW 2052, Australia
| | - Shih-Ping Su
- ¶Cancer Program, Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Level 1, Building 77, Monash University, VIC 3800, Australia
| | - Adnan M Nagrial
- From the ‡Cancer Division and Kinghorn Cancer Centre, Garvan Institute of Medical Research, 384 Victoria St, Sydney, NSW 2010, Australia; §St Vincent's Hospital Clinical School, Faculty of Medicine, University of New South Wales, NSW 2052, Australia
| | - Falko Hochgräfe
- ‖Competence Center Functional Genomics, University of Greifswald, F.-L-Jahnstr. 15, 17489 Greifswald, Germany
| | - Marina Pajic
- From the ‡Cancer Division and Kinghorn Cancer Centre, Garvan Institute of Medical Research, 384 Victoria St, Sydney, NSW 2010, Australia; §St Vincent's Hospital Clinical School, Faculty of Medicine, University of New South Wales, NSW 2052, Australia
| | - Gillian M Lehrbach
- From the ‡Cancer Division and Kinghorn Cancer Centre, Garvan Institute of Medical Research, 384 Victoria St, Sydney, NSW 2010, Australia
| | - Robert G Parton
- **Division of Cell Biology and Molecular Medicine, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane QLD 4072, Australia
| | - Alpha S Yap
- **Division of Cell Biology and Molecular Medicine, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane QLD 4072, Australia
| | - Lisa G Horvath
- From the ‡Cancer Division and Kinghorn Cancer Centre, Garvan Institute of Medical Research, 384 Victoria St, Sydney, NSW 2010, Australia; ‡‡Chris O'Brien Lifehouse, Missenden Road, Camperdown, NSW 2050, Australia
| | - David K Chang
- §§Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - Andrew V Biankin
- §§Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK;
| | - Jianmin Wu
- ¶¶Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Center for Cancer Bioinformatics, Peking University Cancer Hospital & Institute, 52 Fu-Cheng Road, Hai-Dian District, Beijing 100142, China From the ‡Cancer Division and Kinghorn Cancer Centre, Garvan Institute of Medical Research, 384 Victoria St, Sydney, NSW 2010, Australia; §St Vincent's Hospital Clinical School, Faculty of Medicine, University of New South Wales, NSW 2052, Australia;
| | - Roger J Daly
- ¶Cancer Program, Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Level 1, Building 77, Monash University, VIC 3800, Australia;
| |
Collapse
|
65
|
Hughes EG, Appel B. The cell biology of CNS myelination. Curr Opin Neurobiol 2016; 39:93-100. [PMID: 27152449 PMCID: PMC4987163 DOI: 10.1016/j.conb.2016.04.013] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Revised: 04/19/2016] [Accepted: 04/20/2016] [Indexed: 11/21/2022]
Abstract
Myelination of axons in the central nervous system results from the remarkable ability of oligodendrocytes to wrap multiple axons with highly specialized membrane. Because myelin membrane grows as it ensheaths axons, cytoskeletal rearrangements that enable ensheathment must be coordinated with myelin production. Because the myelin sheaths of a single oligodendrocyte can differ in thickness and length, mechanisms that coordinate axon ensheathment with myelin growth likely operate within individual oligodendrocyte processes. Recent studies have revealed new information about how assembly and disassembly of actin filaments helps drive the leading edge of nascent myelin membrane around and along axons. Concurrently, other investigations have begun to uncover evidence of communication between axons and oligodendrocytes that can regulate myelin formation.
Collapse
Affiliation(s)
- Ethan G Hughes
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO 80045, United States
| | - Bruce Appel
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO 80045, United States; Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045, United States.
| |
Collapse
|
66
|
Jiang X, Nardelli J. Cellular and molecular introduction to brain development. Neurobiol Dis 2016; 92:3-17. [PMID: 26184894 PMCID: PMC4720585 DOI: 10.1016/j.nbd.2015.07.007] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Revised: 07/07/2015] [Accepted: 07/09/2015] [Indexed: 12/13/2022] Open
Abstract
Advances in the study of brain development over the last decades, especially recent findings regarding the evolutionary expansion of the human neocortex, and large-scale analyses of the proteome/transcriptome in the human brain, have offered novel insights into the molecular mechanisms guiding neural maturation, and the pathophysiology of multiple forms of neurological disorders. As a preamble to reviews of this issue, we provide an overview of the cellular, molecular and genetic bases of brain development with an emphasis on the major mechanisms associated with landmarks of normal neural development in the embryonic stage and early postnatal life, including neural stem/progenitor cell proliferation, cortical neuronal migration, evolution and folding of the cerebral cortex, synaptogenesis and neural circuit development, gliogenesis and myelination. We will only briefly depict developmental disorders that result from perturbations of these cellular or molecular mechanisms, and the most common perinatal brain injuries that could disturb normal brain development.
Collapse
Affiliation(s)
- Xiangning Jiang
- Department of Pediatrics, University of California, San Francisco, CA 94158, USA
| | - Jeannette Nardelli
- Inserm, U1141, Paris 75019, France; Université Paris Diderot, Sorbonne Paris Cité, UMRS 1141, Paris 75019, France.
| |
Collapse
|
67
|
Kuboyama K, Fujikawa A, Suzuki R, Tanga N, Noda M. Role of Chondroitin Sulfate (CS) Modification in the Regulation of Protein-tyrosine Phosphatase Receptor Type Z (PTPRZ) Activity: PLEIOTROPHIN-PTPRZ-A SIGNALING IS INVOLVED IN OLIGODENDROCYTE DIFFERENTIATION. J Biol Chem 2016; 291:18117-28. [PMID: 27445335 DOI: 10.1074/jbc.m116.742536] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Indexed: 11/06/2022] Open
Abstract
Protein-tyrosine phosphatase receptor type Z (PTPRZ) is predominantly expressed in the developing brain as a CS proteoglycan. PTPRZ has long (PTPRZ-A) and short type (PTPRZ-B) receptor forms by alternative splicing. The extracellular CS moiety of PTPRZ is required for high-affinity binding to inhibitory ligands, such as pleiotrophin (PTN), midkine, and interleukin-34; however, its functional significance in regulating PTPRZ activity remains obscure. We herein found that protein expression of CS-modified PTPRZ-A began earlier, peaking at approximately postnatal days 5-10 (P5-P10), and then that of PTN peaked at P10 at the developmental stage corresponding to myelination onset in the mouse brain. Ptn-deficient mice consistently showed a later onset of the expression of myelin basic protein, a major component of the myelin sheath, than wild-type mice. Upon ligand application, PTPRZ-A/B in cultured oligodendrocyte precursor cells exhibited punctate localization on the cell surface instead of diffuse distribution, causing the inactivation of PTPRZ and oligodendrocyte differentiation. The same effect was observed with the removal of CS chains with chondroitinase ABC but not polyclonal antibodies against the extracellular domain of PTPRZ. These results indicate that the negatively charged CS moiety prevents PTPRZ from spontaneously clustering and that the positively charged ligand PTN induces PTPRZ clustering, potentially by neutralizing electrostatic repulsion between CS chains. Taken altogether, these data indicate that PTN-PTPRZ-A signaling controls the timing of oligodendrocyte precursor cell differentiation in vivo, in which the CS moiety of PTPRZ receptors maintains them in a monomeric active state until its ligand binding.
Collapse
Affiliation(s)
- Kazuya Kuboyama
- From the Division of Molecular Neurobiology, National Institute for Basic Biology (NIBB) and
| | - Akihiro Fujikawa
- From the Division of Molecular Neurobiology, National Institute for Basic Biology (NIBB) and
| | - Ryoko Suzuki
- From the Division of Molecular Neurobiology, National Institute for Basic Biology (NIBB) and
| | - Naomi Tanga
- From the Division of Molecular Neurobiology, National Institute for Basic Biology (NIBB) and the School of Life Science, Graduate University for Advanced Studies (SOKENDAI), 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
| | - Masaharu Noda
- From the Division of Molecular Neurobiology, National Institute for Basic Biology (NIBB) and the School of Life Science, Graduate University for Advanced Studies (SOKENDAI), 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
| |
Collapse
|
68
|
Intracellular ion signaling influences myelin basic protein synthesis in oligodendrocyte precursor cells. Cell Calcium 2016; 60:322-330. [PMID: 27417499 DOI: 10.1016/j.ceca.2016.06.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 06/28/2016] [Accepted: 06/28/2016] [Indexed: 11/20/2022]
Abstract
Myelination in the central nervous system depends on axon-oligodendrocyte precursor cell (OPC) interaction. We suggest that myelin synthesis may be influenced by [Na+]i and [Ca2+]i signaling in OPCs. Experiments were performed in mouse cultured OPCs at day in vitro (DIV) 2-6 or acute slices of the corpus callosum at postnatal days (P) 10-30. Synthesis of Myelin Basic Protein (MBP), an "executive molecule of myelin", was used as readout of myelination. Immunohistological data revealed that MBP synthesis in cultured OPCs starts around DIV4. Transient elevations of resting [Ca2+]i and [Na+]i levels were observed in the same temporal window (DIV4-5). At DIV4, but not at DIV2, both extracellular [K+] ([K+]e) elevation (+5mM) and partial Na+,K+-ATPase (NKA) inhibition elicited [Na+]i and [Ca2+]i transients. These responses were blocked with KB-R7943 (1μM), a blocker of Na+-Ca2+ exchanger (NCX), indicating an involvement of NCX which operates in reverse mode. Treatment of OPCs with culture medium containing elevated [K+] (+5mM, 24h) or ouabain (500nM, 24h) increased resting [Ca2+]i and facilitated MBP synthesis. Blockade of NCX with KB-R7943 (1μM, 12h) reduced resting [Ca2+]i and decreased MBP synthesis. Similar to the results obtained in OPC cultures, OPCs in acute callosal slices demonstrated an increase in resting [Ca2+]i and [Na+]i levels during development. NCX blockade induced [Ca2+]i and [Na+]i responses in OPCs at P20-30 but not at P10. We conclude that local [Na+]i and/or membrane potential changes can modulate Ca2+ influx through NCX and in turn MBP synthesis. Thus neuronal activity-induced changes in [K+]e may via NCX and NKA modulate myelination.
Collapse
|
69
|
Rao SNR, Pearse DD. Regulating Axonal Responses to Injury: The Intersection between Signaling Pathways Involved in Axon Myelination and The Inhibition of Axon Regeneration. Front Mol Neurosci 2016; 9:33. [PMID: 27375427 PMCID: PMC4896923 DOI: 10.3389/fnmol.2016.00033] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 05/02/2016] [Indexed: 01/06/2023] Open
Abstract
Following spinal cord injury (SCI), a multitude of intrinsic and extrinsic factors adversely affect the gene programs that govern the expression of regeneration-associated genes (RAGs) and the production of a diversity of extracellular matrix molecules (ECM). Insufficient RAG expression in the injured neuron and the presence of inhibitory ECM at the lesion, leads to structural alterations in the axon that perturb the growth machinery, or form an extraneous barrier to axonal regeneration, respectively. Here, the role of myelin, both intact and debris, in antagonizing axon regeneration has been the focus of numerous investigations. These studies have employed antagonizing antibodies and knockout animals to examine how the growth cone of the re-growing axon responds to the presence of myelin and myelin-associated inhibitors (MAIs) within the lesion environment and caudal spinal cord. However, less attention has been placed on how the myelination of the axon after SCI, whether by endogenous glia or exogenously implanted glia, may alter axon regeneration. Here, we examine the intersection between intracellular signaling pathways in neurons and glia that are involved in axon myelination and axon growth, to provide greater insight into how interrogating this complex network of molecular interactions may lead to new therapeutics targeting SCI.
Collapse
Affiliation(s)
- Sudheendra N R Rao
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine Miami, FL, USA
| | - Damien D Pearse
- The Miami Project to Cure Paralysis, University of Miami Miller School of MedicineMiami, FL, USA; The Department of Neurological Surgery, University of Miami Miller School of MedicineMiami, FL, USA; The Neuroscience Program, University of Miami Miller School of MedicineMiami, FL, USA; The Interdisciplinary Stem Cell Institute, University of Miami Miller School of MedicineMiami, FL, USA; Bruce W. Carter Department of Veterans Affairs Medical CenterMiami, FL, USA
| |
Collapse
|
70
|
Thakurela S, Garding A, Jung RB, Müller C, Goebbels S, White R, Werner HB, Tiwari VK. The transcriptome of mouse central nervous system myelin. Sci Rep 2016; 6:25828. [PMID: 27173133 PMCID: PMC4865983 DOI: 10.1038/srep25828] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 04/21/2016] [Indexed: 01/03/2023] Open
Abstract
Rapid nerve conduction in the CNS is facilitated by insulation of axons with myelin, a specialized oligodendroglial compartment distant from the cell body. Myelin is turned over and adapted throughout life; however, the molecular and cellular basis of myelin dynamics remains elusive. Here we performed a comprehensive transcriptome analysis (RNA-seq) of myelin biochemically purified from mouse brains at various ages and find a surprisingly large pool of transcripts enriched in myelin. Further computational analysis showed that the myelin transcriptome is closely related to the myelin proteome but clearly distinct from the transcriptomes of oligodendrocytes and brain tissues, suggesting a highly selective incorporation of mRNAs into the myelin compartment. The mRNA-pool in myelin displays maturation-dependent dynamic changes of composition, abundance, and functional associations; however ageing-dependent changes after 6 months were minor. We suggest that this transcript pool enables myelin turnover and the local adaptation of individual pre-existing myelin sheaths.
Collapse
Affiliation(s)
| | - Angela Garding
- Institute of Molecular Biology (IMB), 55128 Mainz, Germany
| | - Ramona B. Jung
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| | - Christina Müller
- Institute of Physiology, University Medical Center of the Johannes Gutenberg-University, 55128 Mainz, Germany
| | - Sandra Goebbels
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| | - Robin White
- Institute of Physiology, University Medical Center of the Johannes Gutenberg-University, 55128 Mainz, Germany
| | - Hauke B. Werner
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| | | |
Collapse
|
71
|
A new mechanism of nervous system plasticity: activity-dependent myelination. Nat Rev Neurosci 2016; 16:756-67. [PMID: 26585800 DOI: 10.1038/nrn4023] [Citation(s) in RCA: 441] [Impact Index Per Article: 55.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The synapse is the focus of experimental research and theory on the cellular mechanisms of nervous system plasticity and learning, but recent research is expanding the consideration of plasticity into new mechanisms beyond the synapse, notably including the possibility that conduction velocity could be modifiable through changes in myelin to optimize the timing of information transmission through neural circuits. This concept emerges from a confluence of brain imaging that reveals changes in white matter in the human brain during learning, together with cellular studies showing that the process of myelination can be influenced by action potential firing in axons. This Opinion article summarizes the new research on activity-dependent myelination, explores the possible implications of these studies and outlines the potential for new research.
Collapse
|
72
|
Schäfer I, Müller C, Luhmann HJ, White R. MOBP levels are regulated by Fyn kinase and affect the morphological differentiation of oligodendrocytes. J Cell Sci 2016; 129:930-42. [PMID: 26801084 DOI: 10.1242/jcs.172148] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 01/20/2016] [Indexed: 01/24/2023] Open
Abstract
Oligodendrocytes are the myelinating glial cells of the central nervous system (CNS). Myelin is formed by extensive wrapping of oligodendroglial processes around axonal segments, which ultimately allows a rapid saltatory conduction of action potentials within the CNS and sustains neuronal health. The non-receptor tyrosine kinase Fyn is an important signaling molecule in oligodendrocytes. It controls the morphological differentiation of oligodendrocytes and is an integrator of axon-glial signaling cascades leading to localized synthesis of myelin basic protein (MBP), which is essential for myelin formation. The abundant myelin-associated oligodendrocytic basic protein (MOBP) resembles MBP in several aspects and has also been reported to be localized as mRNA and translated in the peripheral myelin compartment. The signals initiating local MOBP synthesis are so far unknown and the cellular function of MOBP remains elusive. Here, we show, by several approaches in cultured primary oligodendrocytes, that MOBP synthesis is stimulated by Fyn activity. Moreover, we reveal a new function for MOBP in oligodendroglial morphological differentiation.
Collapse
Affiliation(s)
- Isabelle Schäfer
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, Mainz 55128, Germany
| | - Christina Müller
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, Mainz 55128, Germany
| | - Heiko J Luhmann
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, Mainz 55128, Germany
| | - Robin White
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, Mainz 55128, Germany
| |
Collapse
|
73
|
Haines JD, Fulton DL, Richard S, Almazan G. p38 Mitogen-Activated Protein Kinase Pathway Regulates Genes during Proliferation and Differentiation in Oligodendrocytes. PLoS One 2015; 10:e0145843. [PMID: 26714323 PMCID: PMC4699908 DOI: 10.1371/journal.pone.0145843] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Accepted: 12/09/2015] [Indexed: 01/06/2023] Open
Abstract
We have previously shown that p38 mitogen-activated protein kinase (p38 MAPK) is important for oligodendrocyte (OLG) differentiation and myelination. However, the precise cellular mechanisms by which p38 regulates OLG differentiation remain largely unknown. To determine whether p38 functions in part through transcriptional events in regulating OLG identity, we performed microarray analysis on differentiating oligodendrocyte progenitors (OLPs) treated with a p38 inhibitor. Consistent with a role in OLG differentiation, pharmacological inhibition of p38 down-regulated the transcription of genes that are involved in myelin biogenesis, transcriptional control and cell cycle. Proliferation assays showed that OLPs treated with the p38 inhibitor retained a proliferative capacity which could be induced upon application of mitogens demonstrating that after two days of p38-inhibition OLGs remained poised to continue mitosis. Together, our results suggest that the p38 pathway regulates gene transcription which can coordinate OLG differentiation. Our microarray dataset will provide a useful resource for future studies investigating the molecular mechanisms by which p38 regulates oligodendrocyte differentiation and myelination.
Collapse
Affiliation(s)
- Jeffery D. Haines
- Department of Pharmacology and Therapeutics, McGill University, 3655 Sir William Osler Promenade, Montreal, Quebec, Canada, H3G 1Y6
| | - Debra L. Fulton
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, 3801 University St, Montreal, Quebec, Canada, H3A 2B4
| | - Stephane Richard
- Terry Fox Molecular Oncology Group, Bloomfield Center for Research on Aging, Lady Davis Institute for Medical Research, and Departments of Oncology and Medicine, McGill University, Montreal, Quebec, Canada, H3T 1E2
| | - Guillermina Almazan
- Department of Pharmacology and Therapeutics, McGill University, 3655 Sir William Osler Promenade, Montreal, Quebec, Canada, H3G 1Y6
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, 3801 University St, Montreal, Quebec, Canada, H3A 2B4
- * E-mail:
| |
Collapse
|
74
|
MyelStones: the executive roles of myelin basic protein in myelin assembly and destabilization in multiple sclerosis. Biochem J 2015; 472:17-32. [DOI: 10.1042/bj20150710] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The classic isoforms of myelin basic protein (MBP, 14–21.5 kDa) are essential to formation of the multilamellar myelin sheath of the mammalian central nervous system (CNS). The predominant 18.5-kDa isoform links together the cytosolic surfaces of oligodendrocytes, but additionally participates in cytoskeletal turnover and membrane extension, Fyn-mediated signalling pathways, sequestration of phosphoinositides and maintenance of calcium homoeostasis. All MBP isoforms are intrinsically disordered proteins (IDPs) that interact via molecular recognition fragments (MoRFs), which thereby undergo local disorder-to-order transitions. Their conformations and associations are modulated by environment and by a dynamic barcode of post-translational modifications, particularly phosphorylation by mitogen-activated and other protein kinases and deimination [a hallmark of demyelination in multiple sclerosis (MS)]. The MBPs are thus to myelin what basic histones are to chromatin. Originally thought to be merely structural proteins forming an inert spool, histones are now known to be dynamic entities involved in epigenetic regulation and diseases such as cancer. Analogously, the MBPs are not mere adhesives of compact myelin, but active participants in oligodendrocyte proliferation and in membrane process extension and stabilization during myelinogenesis. A central segment of these proteins is pivotal in membrane-anchoring and SH3 domain (Src homology 3) interaction. We discuss in the present review advances in our understanding of conformational conversions of this classic basic protein upon membrane association, including new thermodynamic analyses of transitions into different structural ensembles and how a shift in the pattern of its post-translational modifications is associated with the pathogenesis and potentially onset of demyelination in MS.
Collapse
|
75
|
Müller C, Schäfer I, Luhmann HJ, White R. Oligodendroglial Argonaute protein Ago2 associates with molecules of the Mbp mRNA localization machinery and is a downstream target of Fyn kinase. Front Cell Neurosci 2015; 9:328. [PMID: 26379499 PMCID: PMC4548153 DOI: 10.3389/fncel.2015.00328] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 08/10/2015] [Indexed: 01/10/2023] Open
Abstract
Oligodendrocytes myelinate neuronal axons in the central nervous system (CNS) facilitating rapid transmission of action potentials by saltatory conduction. Myelin basic protein (MBP) is an essential component of myelin and its absence results in severe hypomyelination in the CNS of rodents. Mbp mRNA is not translated immediately after exit from the nucleus in the cytoplasm, but is transported to the plasma membrane in RNA transport granules in a translationally silenced state. We have previously identified the small non-coding RNA 715 (sncRNA715) as an inhibitor of Mbp translation associated with RNA granules. Argonaute (Ago) proteins and small RNAs form the minimal core of the RNA induced silencing complex and together recognize target mRNAs to be translationally inhibited or degraded. Recently, tyrosine phosphorylation of Ago2 was reported to be a regulator of small RNA binding. The oligodendroglial non-receptor tyrosine kinase Fyn is activated by neuronal signals and stimulates the translation of Mbp mRNA at the axon-glial contact site. Here we analyzed the expression of Ago proteins in oligodendrocytes, if they associate with Mbp mRNA transport granules and are tyrosine phosphorylated by Fyn. We show that all Ago proteins (Ago1-4) are expressed by oligodendrocytes and that Ago2 colocalizes with hnRNP A2 in granular cytoplasmic structures. Ago2 associates with hnRNP A2, Mbp mRNA, sncRNA715 and Fyn kinase and is tyrosine phosphorylated in response to Fyn activity. Our findings suggest an involvement of Ago2 in the translational regulation of Mbp. The identification of Ago proteins as Fyn targets will foster further research to understand in more molecular detail how Fyn activity regulates Mbp translation.
Collapse
Affiliation(s)
| | | | | | - Robin White
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University, MainzGermany
| |
Collapse
|
76
|
Czopka T. Insights into mechanisms of central nervous system myelination using zebrafish. Glia 2015; 64:333-49. [PMID: 26250418 DOI: 10.1002/glia.22897] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 07/14/2015] [Accepted: 07/15/2015] [Indexed: 12/12/2022]
Abstract
Myelin is the multi-layered membrane that surrounds most axons and is produced by oligodendrocytes in the central nervous system (CNS). In addition to its important role in enabling rapid nerve conduction, it has become clear in recent years that myelin plays additional vital roles in CNS function. Myelinating oligodendrocytes provide metabolic support to axons and active myelination is even involved in regulating forms of learning and memory formation. However, there are still large gaps in our understanding of how myelination by oligodendrocytes is regulated. The small tropical zebrafish has become an increasingly popular model organism to investigate many aspects of nervous system formation, function, and regeneration. This is mainly due to two approaches for which the zebrafish is an ideally suited vertebrate model--(1) in vivo live cell imaging using vital dyes and genetically encoded reporters, and (2) gene and target discovery using unbiased screens. This review summarizes how the use of zebrafish has helped understand mechanisms of oligodendrocyte behavior and myelination in vivo and discusses the potential use of zebrafish to shed light on important future questions relating to myelination in the context of CNS development, function and repair.
Collapse
Affiliation(s)
- Tim Czopka
- Institute of Neuronal Cell Biology, Technische Universität München, Munich, Germany
| |
Collapse
|
77
|
Translational control of myelin basic protein expression by ERK2 MAP kinase regulates timely remyelination in the adult brain. J Neurosci 2015; 35:7850-65. [PMID: 25995471 DOI: 10.1523/jneurosci.4380-14.2015] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Successful myelin repair in the adult CNS requires the robust and timely production of myelin proteins to generate new myelin sheaths. The underlying regulatory mechanisms and complex molecular basis of myelin regeneration, however, remain poorly understood. Here, we investigate the role of ERK MAP kinase signaling in this process. Conditional deletion of Erk2 from cells of the oligodendrocyte lineage resulted in delayed remyelination following demyelinating injury to the adult mouse corpus callosum. The delayed repair occurred as a result of a specific deficit in the translation of the major myelin protein, MBP. In the absence of ERK2, activation of the ribosomal protein S6 kinase (p70S6K) and its downstream target, ribosomal protein S6 (S6RP), was impaired at a critical time when premyelinating oligodendrocytes were transitioning to mature cells capable of generating new myelin sheaths. Thus, we have described an important link between the ERK MAP kinase signaling cascade and the translational machinery specifically in remyelinating oligodendrocytes in vivo. These results suggest an important role for ERK2 in the translational control of MBP, a myelin protein that appears critical for ensuring the timely generation of new myelin sheaths following demyelinating injury in the adult CNS.
Collapse
|
78
|
Abstract
Myelinated nerve fibers have evolved to enable fast and efficient transduction of electrical signals in the nervous system. To act as an electric insulator, the myelin sheath is formed as a multilamellar membrane structure by the spiral wrapping and subsequent compaction of the oligodendroglial plasma membrane around central nervous system (CNS) axons. Current evidence indicates that the myelin sheath is more than an inert insulating membrane structure. Oligodendrocytes are metabolically active and functionally connected to the subjacent axon via cytoplasmic-rich myelinic channels for movement of macromolecules to and from the internodal periaxonal space under the myelin sheath. This review summarizes our current understanding of how myelin is generated and also the role of oligodendrocytes in supporting the long-term integrity of myelinated axons.
Collapse
Affiliation(s)
- Mikael Simons
- Cellular Neuroscience, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany Department of Neurology, University of Göttingen, 37075 Göttingen, Germany
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| |
Collapse
|
79
|
Abstract
The myelin sheath is a plasma membrane extension that is laid down in regularly spaced segments along axons of the nervous system. This process involves extensive changes in oligodendrocyte cell shape and membrane architecture. In this Cell Science at a Glance article and accompanying poster, we provide a model of how myelin of the central nervous system is wrapped around axons to form a tightly compacted, multilayered membrane structure. This model may not only explain how myelin is generated during brain development, but could also help us to understand myelin remodeling in adult life, which might serve as a form of plasticity for the fine-tuning of neuronal networks.
Collapse
Affiliation(s)
- Nicolas Snaidero
- Max Planck Institute of Experimental Medicine, Cellular Neuroscience, Hermann-Rein-Strasse. 3, 37075, Göttingen, Germany Department of Neurology, University of Göttingen, Robert-Koch-Strasse. 40, 37075, Göttingen, Germany
| | - Mikael Simons
- Max Planck Institute of Experimental Medicine, Cellular Neuroscience, Hermann-Rein-Strasse. 3, 37075, Göttingen, Germany Department of Neurology, University of Göttingen, Robert-Koch-Strasse. 40, 37075, Göttingen, Germany
| |
Collapse
|
80
|
Seiberlich V, Bauer NG, Schwarz L, Ffrench-Constant C, Goldbaum O, Richter-Landsberg C. Downregulation of the microtubule associated protein Tau impairs process outgrowth and myelin basic protein mRNA transport in oligodendrocytes. Glia 2015; 63:1621-35. [DOI: 10.1002/glia.22832] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Accepted: 03/17/2015] [Indexed: 01/06/2023]
Affiliation(s)
- Veronika Seiberlich
- Department for Neuroscience; Molecular Neurobiology; University of Oldenburg; Oldenburg Germany
| | - Nina G. Bauer
- Department for Neuroscience; Molecular Neurobiology; University of Oldenburg; Oldenburg Germany
- MRC Centre for Regenerative Medicine; The University of Edinburgh, Edinburgh BioQuarter; Edinburgh United Kingdom
| | - Lisa Schwarz
- Department for Neuroscience; Molecular Neurobiology; University of Oldenburg; Oldenburg Germany
| | - Charles Ffrench-Constant
- MRC Centre for Regenerative Medicine; The University of Edinburgh, Edinburgh BioQuarter; Edinburgh United Kingdom
| | - Olaf Goldbaum
- Department for Neuroscience; Molecular Neurobiology; University of Oldenburg; Oldenburg Germany
| | | |
Collapse
|
81
|
Saher G, Stumpf SK. Cholesterol in myelin biogenesis and hypomyelinating disorders. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1851:1083-94. [PMID: 25724171 DOI: 10.1016/j.bbalip.2015.02.010] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 02/05/2015] [Accepted: 02/12/2015] [Indexed: 02/05/2023]
Abstract
The largest pool of free cholesterol in mammals resides in myelin membranes. Myelin facilitates rapid saltatory impulse propagation by electrical insulation of axons. This function is achieved by ensheathing axons with a tightly compacted stack of membranes. Cholesterol influences myelination at many steps, from the differentiation of myelinating glial cells, over the process of myelin membrane biogenesis, to the functionality of mature myelin. Cholesterol emerged as the only integral myelin component that is essential and rate-limiting for the development of myelin in the central and peripheral nervous system. Moreover, disorders that interfere with sterol synthesis or intracellular trafficking of cholesterol and other lipids cause hypomyelination and neurodegeneration. This review summarizes recent results on the roles of cholesterol in CNS myelin biogenesis in normal development and under different pathological conditions. This article is part of a Special Issue entitled Brain Lipids.
Collapse
Affiliation(s)
- Gesine Saher
- Neurogenetics, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany.
| | - Sina Kristin Stumpf
- Neurogenetics, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany.
| |
Collapse
|
82
|
Knox R, Jiang X. Fyn in Neurodevelopment and Ischemic Brain Injury. Dev Neurosci 2015; 37:311-20. [PMID: 25720756 DOI: 10.1159/000369995] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 11/18/2014] [Indexed: 12/11/2022] Open
Abstract
The Src family kinases (SFKs) are nonreceptor protein tyrosine kinases that are implicated in many normal and pathological processes in the nervous system. The SFKs Fyn, Src, Yes, Lyn, and Lck are expressed in the brain. This review will focus on Fyn, as Fyn mutant mice have striking phenotypes in the brain and Fyn has been shown to be involved in ischemic brain injury in adult rodents and, with our work, in neonatal animals. An understanding of Fyn's role in neurodevelopment and disease will allow researchers to target pathological pathways while preserving protective ones.
Collapse
Affiliation(s)
- Renatta Knox
- Department of Pediatrics, Weill Cornell Medical College, New York, N.Y., USA
| | | |
Collapse
|
83
|
Transcriptional expression of myelin basic protein in oligodendrocytes depends on functional syntaxin 4: a potential correlation with autocrine signaling. Mol Cell Biol 2014; 35:675-87. [PMID: 25512606 DOI: 10.1128/mcb.01389-14] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Myelination of axons by oligodendrocytes is essential for saltatory nerve conduction. To form myelin membranes, a coordinated synthesis and subsequent polarized transport of myelin components are necessary. Here, we show that as part of the mechanism to establish membrane polarity, oligodendrocytes exploit a polarized distribution of the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) machinery components syntaxins 3 and 4, localizing to the cell body and the myelin membrane, respectively. Our data further reveal that the expression of myelin basic protein (MBP), a myelin-specific protein that is synthesized "on site" after transport of its mRNA, depends on the correct functioning of the SNARE machinery, which is not required for mRNA granule assembly and transport per se. Thus, downregulation and overexpression of syntaxin 4 but not syntaxin 3 in oligodendrocyte progenitor cells but not immature oligodendrocytes impeded MBP mRNA transcription, thereby preventing MBP protein synthesis. The expression and localization of another myelin-specific protein, proteolipid protein (PLP), was unaltered. Strikingly, conditioned medium obtained from developing oligodendrocytes was able to rescue the block of MBP mRNA transcription in syntaxin 4-downregulated cells. These findings indicate that the initiation of the biosynthesis of MBP mRNA relies on a syntaxin 4-dependent mechanism, which likely involves activation of an autocrine signaling pathway.
Collapse
|
84
|
The major myelin-resident protein PLP is transported to myelin membranes via a transcytotic mechanism: involvement of sulfatide. Mol Cell Biol 2014; 35:288-302. [PMID: 25368380 DOI: 10.1128/mcb.00848-14] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Myelin membranes are sheet-like extensions of oligodendrocytes that can be considered membrane domains distinct from the cell's plasma membrane. Consistent with the polarized nature of oligodendrocytes, we demonstrate that transcytotic transport of the major myelin-resident protein proteolipid protein (PLP) is a key element in the mechanism of myelin assembly. Upon biosynthesis, PLP traffics to myelin membranes via syntaxin 3-mediated docking at the apical-surface-like cell body plasma membrane, which is followed by subsequent internalization and transport to the basolateral-surface-like myelin sheet. Pulse-chase experiments, in conjunction with surface biotinylation and organelle fractionation, reveal that following biosynthesis, PLP is transported to the cell body surface in Triton X-100 (TX-100)-resistant microdomains. At the plasma membrane, PLP transiently resides within these microdomains and its lateral dissipation is followed by segregation into 3-[(3-cholamidopropyl)-dimethylammonio]-1-propanesulfonate (CHAPS)-resistant domains, internalization, and subsequent transport toward the myelin membrane. Sulfatide triggers PLP's reallocation from TX-100- into CHAPS-resistant membrane domains, while inhibition of sulfatide biosynthesis inhibits transcytotic PLP transport. Taking these findings together, we propose a model in which PLP transport to the myelin membrane proceeds via a transcytotic mechanism mediated by sulfatide and characterized by a conformational alteration and dynamic, i.e., transient, partitioning of PLP into distinct membrane microdomains involved in biosynthetic and transcytotic transport.
Collapse
|
85
|
Ochs K, Málaga-Trillo E. Common themes in PrP signaling: the Src remains the same. Front Cell Dev Biol 2014; 2:63. [PMID: 25364767 PMCID: PMC4211543 DOI: 10.3389/fcell.2014.00063] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Accepted: 10/02/2014] [Indexed: 01/06/2023] Open
Abstract
The ability of the cellular prion protein (PrPC) to trigger intracellular signals appears central to neurodegeneration pathways, yet the physiological significance of such signals is rather puzzling. For instance, PrPC deregulation disrupts phenomena as diverse as synaptic transmission in mammals and cell adhesion in zebrafish. Although unrelated, the key proteins in these events -the NMDA receptor (NMDAR) and E-cadherin, respectively- are similarly modulated by the Src family kinase (SFK) Fyn. These observations highlight the importance of PrPC-mediated Fyn activation, a finding reported nearly two decades ago. Given their complex functions and regulation, SFKs may hold the key to intriguing aspects of PrP biology such as its seemingly promiscuous functions and the lack of strong phenotypes in knockout mice. Here we provide a mechanistic perspective on how SFKs might contribute to the uncertain molecular basis of neuronal PrP phenotypes affecting ion channel activity, axon myelination and olfactory function. In particular, we discuss SFK target proteins involved in these processes and the role of tyrosine phosphorylation in the regulation of their activity and cell surface expression.
Collapse
Affiliation(s)
- Katharina Ochs
- Department of Biology, University of Konstanz Konstanz, Germany
| | | |
Collapse
|
86
|
Luessi F, Kuhlmann T, Zipp F. Remyelinating strategies in multiple sclerosis. Expert Rev Neurother 2014; 14:1315-34. [DOI: 10.1586/14737175.2014.969241] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
87
|
Leal G, Afonso PM, Duarte CB. Neuronal activity induces synaptic delivery of hnRNP A2/B1 by a BDNF-dependent mechanism in cultured hippocampal neurons. PLoS One 2014; 9:e108175. [PMID: 25286195 PMCID: PMC4186808 DOI: 10.1371/journal.pone.0108175] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 08/26/2014] [Indexed: 12/18/2022] Open
Abstract
Dendritic protein synthesis plays a critical role in several forms of synaptic plasticity, including BDNF (brain-derived neurotrophic factor)-mediated long-term synaptic potentiation (LTP). Dendritic transcripts are typically transported in a repressed state as components of large ribonucleoprotein complexes, and then translated upon stimulation at, or in the vicinity, of activated synapses. Heterogeneous nuclear ribonucleoprotein A2/B1 (hnRNP A2/B1) is a trans-acting factor involved in dendritic mRNA trafficking, but how the distribution of the protein in dendrites is regulated has not been characterized. Here we found that a fraction of hnRNP A2/B1 is present at the synapse under resting conditions in cultured hippocampal neurons. Accordingly, this ribonucleoprotein was detected in free mRNP, monosomal, and polyribosomal fractions obtained from synaptoneurosomes. Neuronal activity and BDNF treatment increased hnRNP A2/B1 protein levels in the cell body and dendritic compartments, and induced the delivery of this protein to synaptic sites. The activity-dependent accumulation of hnRNP A2/B1 at the synapse required, at least in part, the activation of TrkB receptors, presumably by BDNF. This neurotrophin also upregulated the hnRNP A2/B1 mRNA in the soma but was without effect on the abundance of neuritic hnRNP A2/B1 transcripts. These results show that the distribution of hnRNP A2/B1 is regulated by BDNF and by neuronal activity, an effect that may have a role in BDNF-induced synaptic plasticity events.
Collapse
Affiliation(s)
- Graciano Leal
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Pedro M. Afonso
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Carlos B. Duarte
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Department of Life Sciences, University of Coimbra, Coimbra, Portugal
- * E-mail:
| |
Collapse
|
88
|
Smith R, Rathod RJ, Rajkumar S, Kennedy D. Nervous translation, do you get the message? A review of mRNPs, mRNA-protein interactions and translational control within cells of the nervous system. Cell Mol Life Sci 2014; 71:3917-37. [PMID: 24952431 PMCID: PMC11113408 DOI: 10.1007/s00018-014-1660-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 05/22/2014] [Accepted: 05/30/2014] [Indexed: 01/01/2023]
Abstract
In neurons, translation of a message RNA can occur metres away from its transcriptional origin and in normal cells this is orchestrated with perfection. The life of an mRNA will see it pass through multiple steps of processing in the nucleus and the cytoplasm before it reaches its final destination. Processing of mRNA is determined by a myriad of RNA-binding proteins in multi-protein complexes called messenger ribonucleoproteins; however, incorrect processing and delivery of mRNA can cause several human neurological disorders. This review takes us through the life of mRNA from the nucleus to its point of translation in the cytoplasm. The review looks at the various cis and trans factors that act on the mRNA and discusses their roles in different cells of the nervous system and human disorders.
Collapse
Affiliation(s)
- Ross Smith
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia,
| | | | | | | |
Collapse
|
89
|
Progressive disorganization of paranodal junctions and compact myelin due to loss of DCC expression by oligodendrocytes. J Neurosci 2014; 34:9768-78. [PMID: 25031414 DOI: 10.1523/jneurosci.0448-14.2014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Paranodal axoglial junctions are critical for maintaining the segregation of axonal domains along myelinated axons; however, the proteins required to organize and maintain this structure are not fully understood. Netrin-1 and its receptor Deleted in Colorectal Cancer (DCC) are proteins enriched at paranodes that are expressed by neurons and oligodendrocytes. To identify the specific function of DCC expressed by oligodendrocytes in vivo, we selectively eliminated DCC from mature myelinating oligodendrocytes using an inducible cre regulated by the proteolipid protein promoter. We demonstrate that DCC deletion results in progressive disruption of the organization of axonal domains, myelin ultrastructure, and myelin protein composition. Conditional DCC knock-out mice develop balance and coordination deficits and exhibit decreased conduction velocity. We conclude that DCC expression by oligodendrocytes is required for the maintenance and stability of myelin in vivo, which is essential for proper signal conduction in the CNS.
Collapse
|
90
|
Percipalle P. New insights into co-transcriptional sorting of mRNA for cytoplasmic transport during development. Semin Cell Dev Biol 2014; 32:55-62. [DOI: 10.1016/j.semcdb.2014.03.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 03/11/2014] [Indexed: 12/01/2022]
|
91
|
Villarroya-Beltri C, Gutiérrez-Vázquez C, Sánchez-Cabo F, Pérez-Hernández D, Vázquez J, Martin-Cofreces N, Martinez-Herrera DJ, Pascual-Montano A, Mittelbrunn M, Sánchez-Madrid F. Sumoylated hnRNPA2B1 controls the sorting of miRNAs into exosomes through binding to specific motifs. Nat Commun 2014; 4:2980. [PMID: 24356509 PMCID: PMC3905700 DOI: 10.1038/ncomms3980] [Citation(s) in RCA: 1401] [Impact Index Per Article: 140.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 11/21/2013] [Indexed: 12/14/2022] Open
Abstract
Exosomes are released by most cells to the extracellular environment and are involved in cell-to-cell communication. Exosomes contain specific repertoires of mRNAs, microRNAs (miRNAs) and other non-coding RNAs that can be functionally transferred to recipient cells. However, the mechanisms that control the specific loading of RNA species into exosomes remain unknown. Here we describe sequence motifs present in miRNAs that control their localization into exosomes. The protein heterogeneous nuclear ribonucleoprotein A2B1 (hnRNPA2B1) specifically binds exosomal miRNAs through the recognition of these motifs and controls their loading into exosomes. Moreover, hnRNPA2B1 in exosomes is sumoylated, and sumoylation controls the binding of hnRNPA2B1 to miRNAs. The loading of miRNAs into exosomes can be modulated by mutagenesis of the identified motifs or changes in hnRNPA2B1 expression levels. These findings identify hnRNPA2B1 as a key player in miRNA sorting into exosomes and provide potential tools for the packaging of selected regulatory RNAs into exosomes and their use in biomedical applications. Cells secrete micro-RNAs by packaging them into exosomes; however, the mechanisms by which this packaging occurs are unclear. Here, the authors identify a sequence motif that confers exosomal targeting to micro-RNAs and identify a ribonucleoprotein complex that plays a role in this process.
Collapse
Affiliation(s)
- Carolina Villarroya-Beltri
- 1] Department of Vascular Biology and Inflammation, Centro Nacional de Investigaciones Cardiovasculares, Madrid 28029, Spain [2] Servicio de Inmunología, Hospital de la Princesa, Madrid 28006, Spain
| | - Cristina Gutiérrez-Vázquez
- Department of Vascular Biology and Inflammation, Centro Nacional de Investigaciones Cardiovasculares, Madrid 28029, Spain
| | - Fátima Sánchez-Cabo
- Department of Vascular Biology and Inflammation, Centro Nacional de Investigaciones Cardiovasculares, Madrid 28029, Spain
| | - Daniel Pérez-Hernández
- Department of Vascular Biology and Inflammation, Centro Nacional de Investigaciones Cardiovasculares, Madrid 28029, Spain
| | - Jesús Vázquez
- Department of Vascular Biology and Inflammation, Centro Nacional de Investigaciones Cardiovasculares, Madrid 28029, Spain
| | | | | | | | - María Mittelbrunn
- 1] Department of Vascular Biology and Inflammation, Centro Nacional de Investigaciones Cardiovasculares, Madrid 28029, Spain [2]
| | - Francisco Sánchez-Madrid
- 1] Department of Vascular Biology and Inflammation, Centro Nacional de Investigaciones Cardiovasculares, Madrid 28029, Spain [2] Servicio de Inmunología, Hospital de la Princesa, Madrid 28006, Spain [3]
| |
Collapse
|
92
|
Boulanger JJ, Messier C. From precursors to myelinating oligodendrocytes: contribution of intrinsic and extrinsic factors to white matter plasticity in the adult brain. Neuroscience 2014; 269:343-66. [PMID: 24721734 DOI: 10.1016/j.neuroscience.2014.03.063] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 03/28/2014] [Accepted: 03/28/2014] [Indexed: 12/21/2022]
Abstract
Oligodendrocyte precursor cells (OPC) are glial cells that metamorphose into myelinating oligodendrocytes during embryogenesis and early stages of post-natal life. OPCs continue to divide throughout adulthood and some eventually differentiate into oligodendrocytes in response to demyelinating lesions. There is growing evidence that OPCs are also involved in activity-driven de novo myelination of previously unmyelinated axons and myelin remodeling in adulthood. In this review, we summarize the interwoven factors and cascades that promote the activation, recruitment and differentiation of OPCs into myelinating oligodendrocytes in the adult brain based mostly on results found in the study of demyelinating diseases. The goal of the review was to draw a complete picture of the transformation of OPCs into mature oligodendrocytes to facilitate the study of this transformation in both the normal and diseased adult brain.
Collapse
Affiliation(s)
| | - C Messier
- School of Psychology, University of Ottawa, Canada.
| |
Collapse
|
93
|
Bakhti M, Aggarwal S, Simons M. Myelin architecture: zippering membranes tightly together. Cell Mol Life Sci 2014; 71:1265-77. [PMID: 24165921 PMCID: PMC11113231 DOI: 10.1007/s00018-013-1492-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Revised: 09/11/2013] [Accepted: 10/07/2013] [Indexed: 12/12/2022]
Abstract
Rapid nerve conduction requires the coating of axons by a tightly packed multilayered myelin membrane. In the central nervous system, myelin is formed from cellular processes that extend from oligodendrocytes and wrap in a spiral fashion around an axon, resulting in the close apposition of adjacent myelin membrane bilayers. In this review, we discuss the physical principles underlying the zippering of the plasma membrane of oligodendrocytes at the cytoplasmic and extracellular leaflet. We propose that the interaction of the myelin basic protein with the cytoplasmic leaflet of the myelin bilayer triggers its polymerization into a fibrous network that drives membrane zippering and protein extrusion. In contrast, the adhesion of the extracellular surfaces of myelin requires the down-regulation of repulsive components of the glycocalyx, in order to uncover weak and unspecific attractive forces that bring the extracellular surfaces into close contact. Unveiling the mechanisms of myelin membrane assembly at the cytoplasmic and extracelluar sites may help to understand how the myelin bilayers are disrupted and destabilized in the different demyelinating diseases.
Collapse
Affiliation(s)
- Mostafa Bakhti
- Max-Planck-Institute of Experimental Medicine, Hermann-Rein-Str. 3, Göttingen, Germany
- Department of Neurology, University of Göttingen, Robert-Koch-Str. 40, Göttingen, Germany
- Present Address: Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany
| | - Shweta Aggarwal
- Max-Planck-Institute of Experimental Medicine, Hermann-Rein-Str. 3, Göttingen, Germany
- Department of Neurology, University of Göttingen, Robert-Koch-Str. 40, Göttingen, Germany
| | - Mikael Simons
- Max-Planck-Institute of Experimental Medicine, Hermann-Rein-Str. 3, Göttingen, Germany
- Department of Neurology, University of Göttingen, Robert-Koch-Str. 40, Göttingen, Germany
| |
Collapse
|
94
|
Gonsior C, Binamé F, Frühbeis C, Bauer NM, Hoch-Kraft P, Luhmann HJ, Trotter J, White R. Oligodendroglial p130Cas is a target of Fyn kinase involved in process formation, cell migration and survival. PLoS One 2014; 9:e89423. [PMID: 24586768 PMCID: PMC3931761 DOI: 10.1371/journal.pone.0089423] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 01/21/2014] [Indexed: 01/06/2023] Open
Abstract
Oligodendrocytes are the myelinating glial cells of the central nervous system. In the course of brain development, oligodendrocyte precursor cells migrate, scan the environment and differentiate into mature oligodendrocytes with multiple cellular processes which recognize and ensheath neuronal axons. During differentiation, oligodendrocytes undergo dramatic morphological changes requiring cytoskeletal rearrangements which need to be tightly regulated. The non-receptor tyrosine kinase Fyn plays a central role in oligodendrocyte differentiation and myelination. In order to improve our understanding of the role of oligodendroglial Fyn kinase, we have identified Fyn targets in these cells. Purification and mass-spectrometric analysis of tyrosine-phosphorylated proteins in response to overexpressed active Fyn in the oligodendrocyte precursor cell line Oli-neu, yielded the adaptor molecule p130Cas. We analyzed the function of this Fyn target in oligodendroglial cells and observed that reduction of p130Cas levels by siRNA affects process outgrowth, the thickness of cellular processes and migration behavior of Oli-neu cells. Furthermore, long term p130Cas reduction results in decreased cell numbers as a result of increased apoptosis in cultured primary oligodendrocytes. Our data contribute to understanding the molecular events taking place during oligodendrocyte migration and morphological differentiation and have implications for myelin formation.
Collapse
Affiliation(s)
- Constantin Gonsior
- Department of Biology, Molecular Cell Biology, Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Fabien Binamé
- Department of Biology, Molecular Cell Biology, Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Carsten Frühbeis
- Department of Biology, Molecular Cell Biology, Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Nina M. Bauer
- Institute of Physiology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Peter Hoch-Kraft
- Department of Biology, Molecular Cell Biology, Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Heiko J. Luhmann
- Institute of Physiology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Jacqueline Trotter
- Department of Biology, Molecular Cell Biology, Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Robin White
- Institute of Physiology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
- * E-mail:
| |
Collapse
|
95
|
Torvund-Jensen J, Steengaard J, Reimer L, Fihl LB, Laursen LS. Transport and translation of MBP mRNA is regulated differently by distinct hnRNP proteins. J Cell Sci 2014; 127:1550-64. [PMID: 24522184 DOI: 10.1242/jcs.140855] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the developing nervous system, abundant synthesis of myelin basic protein (MBP) in oligodendrocytes is required for the formation of compact myelin sheaths around axons. The MBP mRNA is known to be transported into the processes of oligodendrocytes. However, knowledge of the regulatory mechanisms that ensure the tight temporal and spatial control of MBP translation within these processes is limited. Here, we have identified novel regions within the 3'-UTR of the MBP mRNA that are responsible for the regulation of its translation, and we have demonstrated that each of the mRNA-binding proteins heterogeneous nuclear ribonucleoprotein (hnRNP)-A2, hnRNP-K and hnRNP-E1 serve distinct functions to regulate controlled and localized protein synthesis. hnRNP-A2 is responsible for mRNA transport, not for translational inhibition. By contrast, hnRNP-K and hnRNP-E1 play opposing roles in the translational regulation of MBP mRNA. We have identified shared binding sites within the 3'-UTR, and show that translation is promoted by the exchange of inhibitory hnRNP-E1 for stimulatory hnRNP-K. We further show that this molecular switch in the MBP messenger RNA-ribonucleoprotein (mRNP) complex, which regulates the synthesis of MBP, is important for the normal growth and extension of myelin sheets.
Collapse
Affiliation(s)
- Julie Torvund-Jensen
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10C, 8000 Aarhus C, Denmark
| | | | | | | | | |
Collapse
|
96
|
White R, Krämer-Albers EM. Axon-glia interaction and membrane traffic in myelin formation. Front Cell Neurosci 2014; 7:284. [PMID: 24431989 PMCID: PMC3880936 DOI: 10.3389/fncel.2013.00284] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 12/18/2013] [Indexed: 12/12/2022] Open
Abstract
In vertebrate nervous systems myelination of neuronal axons has evolved to increase conduction velocity of electrical impulses with minimal space and energy requirements. Myelin is formed by specialized glial cells which ensheath axons with a lipid-rich insulating membrane. Myelination is a multi-step process initiated by axon-glia recognition triggering glial polarization followed by targeted myelin membrane expansion and compaction. Thereby, a myelin sheath of complex subdomain structure is established. Continuous communication between neurons and glial cells is essential for myelin maintenance and axonal integrity. A diverse group of diseases, from multiple sclerosis to schizophrenia, have been linked to malfunction of myelinating cells reflecting the physiological importance of the axon-glial unit. This review describes the mechanisms of axonal signal integration by oligodendrocytes emphasizing the central role of the Src-family kinase Fyn during central nervous system (CNS) myelination. Furthermore, we discuss myelin membrane trafficking with particular focus on endocytic recycling and the control of proteolipid protein (PLP) transport by soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins. Finally, PLP mistrafficking is considered in the context of myelin diseases.
Collapse
Affiliation(s)
- Robin White
- Institute of Physiology and Pathophysiology, University Medical Center of the Johannes Gutenberg University Mainz, Germany
| | | |
Collapse
|
97
|
Contactin-1 regulates myelination and nodal/paranodal domain organization in the central nervous system. Proc Natl Acad Sci U S A 2014; 111:E394-403. [PMID: 24385581 DOI: 10.1073/pnas.1313769110] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Myelin, a multilayered membrane sheath formed by oligodendrocytes around axons in the CNS, enables rapid nerve impulse conduction and sustains neuronal health. The signals exchanged between axons and oligodendrocytes in myelin remain to be fully elucidated. Here we provide genetic evidence for multiple and critical functions of Contactin-1 in central myelin. We document dynamic Contactin-1 expression on oligodendrocytes in vivo, and progressive accumulation at nodes of Ranvier and paranodes during postnatal mouse development. Nodal and paranodal expression stabilized in mature myelin, but overall membranous expression diminished. Contactin-1-deficiency disrupted paranodal junction formation as evidenced by loss of Caspr, mislocalized potassium Kv1.2 channels, and abnormal myelin terminal loops. Reduced numbers and impaired maturation of sodium channel clusters accompanied this phenotype. Histological, electron microscopic, and biochemical analyses uncovered significant hypomyelination in Contactin-1-deficient central nerves, with up to 60% myelin loss. Oligodendrocytes were present in normal numbers, albeit a minor population of neuronal/glial antigen 2-positive (NG2(+)) progenitors lagged in maturation by postnatal day 18, when the mouse null mutation was lethal. Major contributing factors to hypomyelination were defects in the generation and organization of myelin membranes, as judged by electron microscopy and quantitative analysis of oligodendrocyte processes labeled by GFP transgenically expressed from the proteolipid protein promoter. These data reveal that Contactin-1 regulates both myelin formation and organization of nodal and paranodal domains in the CNS. These multiple roles distinguish central Contactin-1 functions from its specific role at paranodes in the periphery, and emphasize mechanistic differences in central and peripheral myelination.
Collapse
|
98
|
New insights into the roles of the contactin cell adhesion molecules in neural development. ADVANCES IN NEUROBIOLOGY 2014; 8:165-94. [PMID: 25300137 DOI: 10.1007/978-1-4614-8090-7_8] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In vertebrates, the contactin (CNTN) family of neural cell recognition molecules includes six related cell adhesion molecules that play non-overlapping roles in the formation and maintenance of the nervous system. CNTN1 and CNTN2 are the prototypical members of the family and have been involved, through cis- and trans-interactions with distinct cell adhesion molecules, in neural cell migration, axon guidance, and the organization of myelin subdomains. In contrast, the roles of CNTN3-6 are less well characterized although the generation of null mice and the recent identification of a common extracellular binding partner have considerably advanced our grasp of their physiological roles in particular as they relate to the wiring of sensory tissues. In this review, we aim to present a summary of our current understanding of CNTN functions and give an overview of the challenges that lie ahead in understanding the roles these proteins play in nervous system development and maintenance.
Collapse
|
99
|
Fressinaud C, Eyer J. Neurofilament-tubulin binding site peptide NFL-TBS.40-63 increases the differentiation of oligodendrocytes in vitro and partially prevents them from lysophosphatidyl choline toxiciy. J Neurosci Res 2013; 92:243-53. [PMID: 24327347 DOI: 10.1002/jnr.23308] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 08/30/2013] [Accepted: 09/06/2013] [Indexed: 01/05/2023]
Abstract
During multiple sclerosis (MS), the main axon cystoskeleton proteins, neurofilaments (NF), are altered, and their release into the cerebrospinal fluid correlates with disease severity. The role of NF in the extraaxonal location is unknown. Therefore, we tested whether synthetic peptides corresponding to the tubulin-binding site (TBS) sequence identified on light NF chain (NFL-TBS.40-63) and keratin (KER-TBS.1-24), which could be released during MS, modulate remyelination in vitro. Biotinylated NFL-TBS.40-63, NFL-Scramble2, and KER-TBS.1-54 (1-100 μM, 24 hr) were added to rat oligodendrocyte (OL) and astrocyte (AS) cultures, grown in chemically defined medium. Proliferation and differentiation were characterized by using specific antibodies (A2B5, CNP, MBP, GFAP) and compared with untreated cultures. Lysophosphatidyl choline (LPC; 2 × 10(-5) M) was used to induce OL death and to test the effects of TBS peptides under these conditions. NFL-TBS.40-63 significantly increased OL differentiation and maturation, with more CNP(+) and MBP(+) cells characterized by numerous ramified processes, along with myelin balls. When OL were challenged with LPC, concomitant treatment with NFL-TBS.40-63 rescued more than 50% of OL compared with cultures treated with LPC only. Proliferation of OL progenitors was not affected, nor were AS proliferation and differentiation. NFL-TBS.40-63 peptide induces specific effects in vitro, increasing OL differentiation and maturation without altering AS fate. In addition, it partially protects OL from demyelinating injury. Thus release of NFL-TBS.40-63 caused by axonal damage in vivo could improve repair through increased OL differentiation, which is a prerequisite for remyelination.
Collapse
Affiliation(s)
- Catherine Fressinaud
- LUNAM, Neurology Department, University Hospital, Angers, France; LUNAM, Neurobiology and Transgenesis Laboratory, UPRES EA 3143, University Hospital, Angers, France
| | | |
Collapse
|
100
|
Pérez MJ, Fernandez N, Pasquini JM. Oligodendrocyte differentiation and signaling after transferrin internalization: A mechanism of action. Exp Neurol 2013; 248:262-74. [DOI: 10.1016/j.expneurol.2013.06.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 06/12/2013] [Accepted: 06/14/2013] [Indexed: 01/06/2023]
|