51
|
Lee ICJ, Leung T, Tan I. Adaptor protein LRAP25 mediates myotonic dystrophy kinase-related Cdc42-binding kinase (MRCK) regulation of LIMK1 protein in lamellipodial F-actin dynamics. J Biol Chem 2014; 289:26989-27003. [PMID: 25107909 DOI: 10.1074/jbc.m114.588079] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Myotonic dystrophy kinase-related Cdc42-binding kinase (MRCK) has been shown to localize to the lamella of mammalian cells through its interaction with an adaptor protein, leucine repeat adaptor protein 35a (LRAP35a), which links it with myosin 18A (MYO18A) for activation of the lamellar actomyosin network essential for cell migration. Here, we report the identification of another adaptor protein LRAP25 that mediates MRCK association with LIM kinase 1 (LIMK1). The lamellipodium-localized LRAP25-MRCK complex is essential for the regulation of local LIMK1 and its downstream F-actin regulatory factor cofilin. Functionally, inhibition of either MRCK or LRAP25 resulted in a marked suppression of LIMK1 activity and down-regulation of cofilin phosphorylation in response to aluminum fluoride induction in B16-F1 cells, which eventually resulted in deregulation of lamellipodial F-actin and reorganization of cytoskeletal structures causing defects in cell polarization and motility. These biochemical and functional characterizations thus underline the functional relevance of the LRAP25-MRCK complex in LIMK1-cofilin signaling and the importance of LRAP adaptors as key determinants of MRCK cellular localization and downstream specificities.
Collapse
Affiliation(s)
- Irene Cheng Jie Lee
- Institute of Molecular and Cell Biology, A-STAR, 61 Biopolis Drive, Singapore 138673 and; Department of Anatomy, National University of Singapore, Singapore 119260, Singapore
| | - Thomas Leung
- Institute of Molecular and Cell Biology, A-STAR, 61 Biopolis Drive, Singapore 138673 and; Department of Anatomy, National University of Singapore, Singapore 119260, Singapore
| | - Ivan Tan
- Institute of Molecular and Cell Biology, A-STAR, 61 Biopolis Drive, Singapore 138673 and.
| |
Collapse
|
52
|
Wang R, Wang Y, Lin WK, Zhang Y, Liu W, Huang K, Terrar DA, Solaro RJ, Wang X, Ke Y, Lei M. Inhibition of angiotensin II-induced cardiac hypertrophy and associated ventricular arrhythmias by a p21 activated kinase 1 bioactive peptide. PLoS One 2014; 9:e101974. [PMID: 25014109 PMCID: PMC4094434 DOI: 10.1371/journal.pone.0101974] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 06/13/2014] [Indexed: 01/22/2023] Open
Abstract
Cardiac hypertrophy increases the risk of morbidity and mortality of cardiovascular disease and thus inhibiting such hypertrophy is beneficial. In the present study, we explored the effect of a bioactive peptide (PAP) on angiotensin II (Ang II)-induced hypertrophy and associated ventricular arrhythmias in in vitro and in vivo models. PAP enhances p21 activated kinase 1 (Pak1) activity by increasing the level of phosphorylated Pak1 in cultured neonatal rat ventricular myocytes (NRVMs). Such PAP-induced Pak1 activation is associated with a significant reduction of Ang II-induced hypertrophy in NRVMs and C57BL/6 mice, in vitro and in vivo, respectively. Furthermore, PAP antagonizes ventricular arrhythmias associated with Ang II-induced hypertrophy in mice. Its antiarrhythmic effect is likely to be involved in multiple mechanisms to affect both substrate and trigger of ventricular arrhythmogenesis. Thus our results suggest that Pak1 activation achieved by specific bioactive peptide represents a potential novel therapeutic strategy for cardiac hypertrophy and associated ventricular arrhythmias.
Collapse
Affiliation(s)
- Rui Wang
- Institute for Cardiovascular Diseases, Union Hospital, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Yanwen Wang
- Institute of Cardiovascular Sciences, Faculty of Medicine and Human Science, University of Manchester, Manchester, United Kingdom
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Wee K. Lin
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Yanmin Zhang
- Institute of Cardiovascular Sciences, Faculty of Medicine and Human Science, University of Manchester, Manchester, United Kingdom
| | - Wei Liu
- Institute of Cardiovascular Sciences, Faculty of Medicine and Human Science, University of Manchester, Manchester, United Kingdom
| | - Kai Huang
- Institute for Cardiovascular Diseases, Union Hospital, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Derek A. Terrar
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - R. John Solaro
- Department of Physiology and Biophysics, Center for Cardiovascular Research, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Xin Wang
- Faculty of Life Science, University of Manchester, Manchester, United Kingdom
| | - Yunbo Ke
- Department of Physiology and Biophysics, Center for Cardiovascular Research, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Ming Lei
- Institute for Cardiovascular Diseases, Union Hospital, Huazhong University of Science and Technology, Wuhan, P. R. China
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
53
|
Abstract
P-21 activated kinases (PAKs) are effectors of Rac1/Cdc42 which coordinate signals from the cell membrane to the nucleus. Activation of PAKs drive important signalling pathways including mitogen activated protein kinase, phospoinositide 3-kinase (PI3K/AKT), NF-κB and Wnt/β-catenin. Intestinal PAK1 expression increases with inflammation and malignant transformation, although the biological relevance of PAKs in the development and progression of GI disease is only incompletely understood. This review highlights the importance of altered PAK activation within GI inflammation, emphasises its effect on oncogenic signalling and discusses PAKs as therapeutic targets of chemoprevention.
Collapse
Affiliation(s)
- Kyle Dammann
- Department of Medicine III, Division of Gastroenterology and Hepatology and Christian Doppler Laboratory for Molecular Cancer Chemoprevention, Medical University of Vienna, Vienna, Austria
| | - Vineeta Khare
- Department of Medicine III, Division of Gastroenterology and Hepatology and Christian Doppler Laboratory for Molecular Cancer Chemoprevention, Medical University of Vienna, Vienna, Austria
| | - Christoph Gasche
- Department of Medicine III, Division of Gastroenterology and Hepatology and Christian Doppler Laboratory for Molecular Cancer Chemoprevention, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
54
|
Coronin1 proteins dictate rac1 intracellular dynamics and cytoskeletal output. Mol Cell Biol 2014; 34:3388-406. [PMID: 24980436 DOI: 10.1128/mcb.00347-14] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Rac1 regulates lamellipodium formation, myosin II-dependent contractility, and focal adhesions during cell migration. While the spatiotemporal assembly of those processes is well characterized, the signaling mechanisms involved remain obscure. We report here that the cytoskeleton-related Coronin1A and -1B proteins control a myosin II inactivation-dependent step that dictates the intracellular dynamics and cytoskeletal output of active Rac1. This step is signaling-branch specific, since it affects the functional competence of active Rac1 only when forming complexes with downstream ArhGEF7 and Pak proteins in actomyosin-rich structures. The pathway is used by default unless Rac1 is actively rerouted away from the structures by upstream activators and signals from other Rho GTPases. These results indicate that Coronin1 proteins are at the center of a regulatory hub that coordinates Rac1 activation, effector exchange, and the F-actin organization state during cell signaling. Targeting this route could be useful to hamper migration of cancer cells harboring oncogenic RAC1 mutations.
Collapse
|
55
|
Machiyama H, Hirata H, Loh XK, Kanchi MM, Fujita H, Tan SH, Kawauchi K, Sawada Y. Displacement of p130Cas from focal adhesions links actomyosin contraction to cell migration. J Cell Sci 2014; 127:3440-50. [PMID: 24928898 DOI: 10.1242/jcs.143438] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Cell adhesion complexes provide platforms where cell-generated forces are transmitted to the extracellular matrix (ECM). Tyrosine phosphorylation of focal adhesion proteins is crucial for cells to communicate with the extracellular environment. However, the mechanisms that transmit actin cytoskeletal motion to the extracellular environment to drive cell migration are poorly understood. We find that the movement of p130Cas (Cas, also known as BCAR1), a mechanosensor at focal adhesions, correlates with actin retrograde flow and depends upon actomyosin contraction and phosphorylation of the Cas substrate domain (CasSD). This indicates that CasSD phosphorylation underpins the physical link between Cas and the actin cytoskeleton. Fluorescence recovery after photobleaching (FRAP) experiments reveal that CasSD phosphorylation, as opposed to the association of Cas with Src, facilitates Cas displacement from adhesion complexes in migrating cells. Furthermore, the stabilization of Src-Cas binding and inhibition of myosin II, both of which sustain CasSD phosphorylation but mitigate Cas displacement from adhesion sites, retard cell migration. These results indicate that Cas promotes cell migration by linking actomyosin contractions to the adhesion complexes through a dynamic interaction with Src as well as through the phosphorylation-dependent association with the actin cytoskeleton.
Collapse
Affiliation(s)
- Hiroaki Machiyama
- Mechanobiology Institute, National University of Singapore, 117411 Singapore Department of Biological Sciences, National University of Singapore, 117411 Singapore
| | - Hiroaki Hirata
- Mechanobiology Institute, National University of Singapore, 117411 Singapore
| | - Xia Kun Loh
- Mechanobiology Institute, National University of Singapore, 117411 Singapore Department of Biological Sciences, National University of Singapore, 117411 Singapore
| | - Madhu Mathi Kanchi
- Mechanobiology Institute, National University of Singapore, 117411 Singapore
| | - Hideaki Fujita
- Immunology Frontier Research Center, Osaka University, Suita, Osaka, 565-0871 Japan
| | - Song Hui Tan
- Mechanobiology Institute, National University of Singapore, 117411 Singapore
| | - Keiko Kawauchi
- Mechanobiology Institute, National University of Singapore, 117411 Singapore
| | - Yasuhiro Sawada
- Mechanobiology Institute, National University of Singapore, 117411 Singapore Department of Biological Sciences, National University of Singapore, 117411 Singapore Laboratory for Mechanical Medicine, Locomotive Syndrome Research Institute, Nadogaya Hospital, Kashiwa, Chiba, 277-0032 Japan
| |
Collapse
|
56
|
Remarkable reductions of PAKs in the brain tissues of scrapie-infected rodent possibly linked closely with neuron loss. Med Microbiol Immunol 2014; 203:291-302. [PMID: 24870058 DOI: 10.1007/s00430-014-0342-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 05/12/2014] [Indexed: 02/02/2023]
Abstract
Prion diseases are irreversible progressive neurodegenerative diseases characterized in the brain by PrP(Sc) deposits, neuronal degeneration, gliosis and by cognitive, behavioral and physical impairments, leading to severe incapacity and inevitable death. Proteins of the p21-activated kinase (PAK) family are noted for roles in gene transcription, cytoskeletal dynamics, cell cycle progression and survival signaling. In the present study, we aimed to identify the potential roles of PAKs during prion infection, utilizing the brains of scrapie agent-infected hamsters. Western blots and immunohistochemical assays showed that brain levels of PAK3 and PAK1, as well as their upstream activator Rac/cdc42 and downstream substrate Raf1, were remarkably reduced at terminal stage. Double-stained immunofluorescent assay demonstrated that PAK3 was expressed mainly in neurons. Dynamic analyses of the brain samples collected at the different time points during the incubation period illustrated successive decreases of PAK3, PAK1 and Raf1, especially phosphor Raf1, which correlated well with neuron loss. Rac/cdc42 in the brain tissues increased at early stage and reached to the top at mid-late stage, but diminished at final stage. Unlike the alteration of PAKs in vivo, PAK3 and PAK1, as well as Rac/cdc42 and Raf1 in the prion-infected cell line SMB-S15 remained unchanged compared with those of its normal cell line SMB-PS. Our data here indicate that the functions of PAKs and their associated signaling pathways are seriously affected in the brains of prion disease, which appear to associate closely with the extensive neuron loss.
Collapse
|
57
|
Schiefermeier N, Scheffler JM, de Araujo MEG, Stasyk T, Yordanov T, Ebner HL, Offterdinger M, Munck S, Hess MW, Wickström SA, Lange A, Wunderlich W, Fässler R, Teis D, Huber LA. The late endosomal p14-MP1 (LAMTOR2/3) complex regulates focal adhesion dynamics during cell migration. ACTA ACUST UNITED AC 2014; 205:525-40. [PMID: 24841562 PMCID: PMC4033770 DOI: 10.1083/jcb.201310043] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Late endosomes locally regulate cell migration by transporting the p14–MP1 scaffold complex to the vicinity of focal adhesions. Cell migration is mediated by the dynamic remodeling of focal adhesions (FAs). Recently, an important role of endosomal signaling in regulation of cell migration was recognized. Here, we show an essential function for late endosomes carrying the p14–MP1 (LAMTOR2/3) complex in FA dynamics. p14–MP1-positive endosomes move to the cell periphery along microtubules (MTs) in a kinesin1- and Arl8b-dependent manner. There they specifically target FAs to regulate FA turnover, which is required for cell migration. Using genetically modified fibroblasts from p14-deficient mice and Arl8b-depleted cells, we demonstrate that MT plus end–directed traffic of p14–MP1-positive endosomes triggered IQGAP1 disassociation from FAs. The release of IQGAP was required for FA dynamics. Taken together, our results suggest that late endosomes contribute to the regulation of cell migration by transporting the p14–MP1 scaffold complex to the vicinity of FAs.
Collapse
Affiliation(s)
- Natalia Schiefermeier
- Division of Cell Biology and Division of Neurobiochemistry/Biooptics, Biocenter, Department of Physiology and Medical Physics, Division of Physiology, Department of Traumatology, Center of Operative Medicine, and Division of Histology and Embryology, Innsbruck Medical University, 6020 Innsbruck, AustriaDivision of Cell Biology and Division of Neurobiochemistry/Biooptics, Biocenter, Department of Physiology and Medical Physics, Division of Physiology, Department of Traumatology, Center of Operative Medicine, and Division of Histology and Embryology, Innsbruck Medical University, 6020 Innsbruck, Austria
| | - Julia M Scheffler
- Division of Cell Biology and Division of Neurobiochemistry/Biooptics, Biocenter, Department of Physiology and Medical Physics, Division of Physiology, Department of Traumatology, Center of Operative Medicine, and Division of Histology and Embryology, Innsbruck Medical University, 6020 Innsbruck, Austria
| | - Mariana E G de Araujo
- Division of Cell Biology and Division of Neurobiochemistry/Biooptics, Biocenter, Department of Physiology and Medical Physics, Division of Physiology, Department of Traumatology, Center of Operative Medicine, and Division of Histology and Embryology, Innsbruck Medical University, 6020 Innsbruck, Austria
| | - Taras Stasyk
- Division of Cell Biology and Division of Neurobiochemistry/Biooptics, Biocenter, Department of Physiology and Medical Physics, Division of Physiology, Department of Traumatology, Center of Operative Medicine, and Division of Histology and Embryology, Innsbruck Medical University, 6020 Innsbruck, Austria
| | - Teodor Yordanov
- Division of Cell Biology and Division of Neurobiochemistry/Biooptics, Biocenter, Department of Physiology and Medical Physics, Division of Physiology, Department of Traumatology, Center of Operative Medicine, and Division of Histology and Embryology, Innsbruck Medical University, 6020 Innsbruck, Austria
| | - Hannes L Ebner
- Division of Cell Biology and Division of Neurobiochemistry/Biooptics, Biocenter, Department of Physiology and Medical Physics, Division of Physiology, Department of Traumatology, Center of Operative Medicine, and Division of Histology and Embryology, Innsbruck Medical University, 6020 Innsbruck, AustriaDivision of Cell Biology and Division of Neurobiochemistry/Biooptics, Biocenter, Department of Physiology and Medical Physics, Division of Physiology, Department of Traumatology, Center of Operative Medicine, and Division of Histology and Embryology, Innsbruck Medical University, 6020 Innsbruck, Austria
| | - Martin Offterdinger
- Division of Cell Biology and Division of Neurobiochemistry/Biooptics, Biocenter, Department of Physiology and Medical Physics, Division of Physiology, Department of Traumatology, Center of Operative Medicine, and Division of Histology and Embryology, Innsbruck Medical University, 6020 Innsbruck, Austria
| | - Sebastian Munck
- VIB Center for the Biology of Disease, KU Leuven, 3000 Leuven, Belgium
| | - Michael W Hess
- Division of Cell Biology and Division of Neurobiochemistry/Biooptics, Biocenter, Department of Physiology and Medical Physics, Division of Physiology, Department of Traumatology, Center of Operative Medicine, and Division of Histology and Embryology, Innsbruck Medical University, 6020 Innsbruck, Austria
| | - Sara A Wickström
- Paul Gerson Unna group "Skin Homeostasis and Ageing", Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany Department of Molecular Medicine, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Anika Lange
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Winfried Wunderlich
- Division of Cell Biology and Division of Neurobiochemistry/Biooptics, Biocenter, Department of Physiology and Medical Physics, Division of Physiology, Department of Traumatology, Center of Operative Medicine, and Division of Histology and Embryology, Innsbruck Medical University, 6020 Innsbruck, Austria Oncotyrol, 6020 Innsbruck, Austria
| | - Reinhard Fässler
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - David Teis
- Division of Cell Biology and Division of Neurobiochemistry/Biooptics, Biocenter, Department of Physiology and Medical Physics, Division of Physiology, Department of Traumatology, Center of Operative Medicine, and Division of Histology and Embryology, Innsbruck Medical University, 6020 Innsbruck, Austria
| | - Lukas A Huber
- Division of Cell Biology and Division of Neurobiochemistry/Biooptics, Biocenter, Department of Physiology and Medical Physics, Division of Physiology, Department of Traumatology, Center of Operative Medicine, and Division of Histology and Embryology, Innsbruck Medical University, 6020 Innsbruck, Austria
| |
Collapse
|
58
|
Awakening the stalled axon - surprises in CSPG gradients. Exp Neurol 2014; 254:12-7. [PMID: 24424282 DOI: 10.1016/j.expneurol.2013.12.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 12/23/2013] [Accepted: 12/25/2013] [Indexed: 01/11/2023]
Abstract
The remarkably poor regeneration of axons seen after injury of the brain and spinal cord can result in permanent loss of neural function. This failure of meaningful regeneration has been attributed to both a low intrinsic growth potential of CNS neurons and extrinsic factors that actively block axon growth in the adult CNS. Injury exacerbates this situation by increasing the expression of and exposure to proteins that actively block axonal growth in the CNS. Much experimental efforts have been aimed at overcoming the extrinsic growth inhibitory environment of the injured brain and spinal cord. A recent publication in Experimental Neurology from Kuboyama and colleagues shows that activation of protein kinase A signaling is responsible for the stalling of axon growth in gradients of CNS inhibitory molecules. This observation is unexpected given the role of cAMP signaling in supporting intrinsic growth mechanisms, emphasizing the need to consider spatial and temporal aspects of intracellular signaling in future strategies for neural repair.
Collapse
|
59
|
Role of p-21-activated kinases in cancer progression. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 309:347-87. [PMID: 24529727 DOI: 10.1016/b978-0-12-800255-1.00007-7] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The p-21-activated kinases (PAKs) are downstream effectors of Rho GTPases Rac and Cdc42. The PAK family consists of six members which are segregated into two subgroups (Group I and Group II) based on sequence homology. Group I PAKs (PAK1-3) are the most extensively studied but there is increasing interest in the functionality of Group II PAKs (PAK4-6). The PAK family proteins are thought to play an important role in many different cellular processes, some of which have particular significance in the context of cancer progression. This review explores established and more recent data, linking the PAK family kinases to cancer progression including expression profiles, evasion of apoptosis, promotion of cell survival, and regulation of cell invasion. Finally, we discuss attempts to therapeutically target the PAK family and outline the major obstacles that still need to be overcome.
Collapse
|
60
|
Wu T, Kooi CV, Shah P, Charnigo R, Huang C, Smyth SS, Morris AJ. Integrin-mediated cell surface recruitment of autotaxin promotes persistent directional cell migration. FASEB J 2013; 28:861-70. [PMID: 24277575 DOI: 10.1096/fj.13-232868] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Autotaxin (ATX) is a secreted lysophospholipase D (lysoPLD) that binds to integrin adhesion receptors. We dissected the roles of integrin binding and lysoPLD activity in stimulation of human breast cancer and mouse aortic vascular smooth muscle cell migration by ATX. We compared effects of wild-type human ATX, catalytically inactive ATX, an integrin binding-defective ATX variant with wild-type lysoPLD activity, the isolated ATX integrin binding N-terminal domain, and a potent ATX selective lysoPLD inhibitor on cell migration using transwell and single-cell tracking assays. Stimulation of transwell migration was reduced (18 or 27% of control, respectively) but not ablated by inactivation of integrin binding or inhibition of lysoPLD activity. The N-terminal domain increased transwell migration (30% of control). ATX lysoPLD activity and integrin binding were necessary for a 3.8-fold increase in the fraction of migrating breast cancer cell step velocities >0.7 μm/min. ATX increased the persistent directionality of single-cell migration 2-fold. This effect was lysoPLD activity independent and recapitulated by the integrin binding N-terminal domain. Integrin binding enables uptake and intracellular sequestration of ATX, which redistributes to the front of migrating cells. ATX binding to integrins and lysoPLD activity therefore cooperate to promote rapid persistent directional cell migration.
Collapse
Affiliation(s)
- Tao Wu
- 1University of Kentucky, 741 South Limestone St., Lexington KY 40536, USA. A.J.M.,
| | | | | | | | | | | | | |
Collapse
|
61
|
Harrison SMW, Knifley T, Chen M, O'Connor KL. LPA, HGF, and EGF utilize distinct combinations of signaling pathways to promote migration and invasion of MDA-MB-231 breast carcinoma cells. BMC Cancer 2013; 13:501. [PMID: 24160245 PMCID: PMC3819718 DOI: 10.1186/1471-2407-13-501] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 10/19/2013] [Indexed: 11/23/2022] Open
Abstract
Background Various pathways impinge on the actin-myosin pathway to facilitate cell migration and invasion including members of the Rho family of small GTPases and MAPK. However, the signaling components that are considered important for these processes vary substantially within the literature with certain pathways being favored. These distinctions in signaling pathways utilized are often attributed to differences in cell type or physiological conditions; however, these attributes have not been systematically assessed. Methods To address this question, we analyzed the migration and invasion of MDA-MB-231 breast carcinoma cell line in response to various stimuli including lysophosphatidic acid (LPA), hepatocyte growth factor (HGF) and epidermal growth factor (EGF) and determined the involvement of select signaling pathways that impact myosin light chain phosphorylation. Results LPA, a potent stimulator of the Rho-ROCK pathway, surprisingly did not require the Rho-ROCK pathway to stimulate migration but instead utilized Rac and MAPK. In contrast, LPA-stimulated invasion required Rho, Rac, and MAPK. Of these three major pathways, EGF-stimulated MDA-MB-231 migration and invasion required Rho; however, Rac was essential only for invasion and MAPK was dispensable for migration. HGF signaling, interestingly, utilized the same pathways for migration and invasion, requiring Rho but not Rac signaling. Notably, the dependency of HGF-stimulated migration and invasion as well as EGF-stimulated invasion on MAPK was subject to the inhibitors used. As expected, myosin light chain kinase (MLCK), a convergence point for MAPK and Rho family GTPase signaling, was required for all six conditions. Conclusions These observations suggest that, while multiple signaling pathways contribute to cancer cell motility, not all pathways operate under all conditions. Thus, our study highlights the plasticity of cancer cells to adapt to multiple migratory cues.
Collapse
Affiliation(s)
| | | | | | - Kathleen L O'Connor
- Markey Cancer Center, University of Kentucky, 741 S, Limestone Street, Lexington 40506-0509, USA.
| |
Collapse
|
62
|
Welf ES, Johnson HE, Haugh JM. Bidirectional coupling between integrin-mediated signaling and actomyosin mechanics explains matrix-dependent intermittency of leading-edge motility. Mol Biol Cell 2013; 24:3945-55. [PMID: 24152734 PMCID: PMC3861089 DOI: 10.1091/mbc.e13-06-0311] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
A physicochemical model is used to describe the coupling of adhesion, cytoskeletal, and signaling dynamics during cell migration. Analysis of stochastic simulations predicts relationships between measurable quantities that reflect partitioning of stress between F-actin–bound adhesions, which act as a molecular clutch, and retrograde F-actin flow. Animal cell migration is a complex process characterized by the coupling of adhesion, cytoskeletal, and signaling dynamics. Here we model local protrusion of the cell edge as a function of the load-bearing properties of integrin-based adhesions, actin polymerization fostered by adhesion-mediated signaling, and mechanosensitive activation of RhoA that promotes myosin II–generated stress on the lamellipodial F-actin network. Analysis of stochastic model simulations illustrates how these pleiotropic functions of nascent adhesions may be integrated to govern temporal persistence and frequency of protrusions. The simulations give mechanistic insight into the documented effects of extracellular matrix density and myosin abundance, and they show characteristic, nonnormal distributions of protrusion duration times that are similar to those extracted from live-cell imaging experiments. Analysis of the model further predicts relationships between measurable quantities that reflect the partitioning of stress between tension on F-actin–bound adhesions, which act as a molecular clutch, and dissipation by retrograde F-actin flow.
Collapse
Affiliation(s)
- Erik S Welf
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695
| | | | | |
Collapse
|
63
|
Ke Y, Lei M, Wang X, Solaro RJ. Unique catalytic activities and scaffolding of p21 activated kinase-1 in cardiovascular signaling. Front Pharmacol 2013; 4:116. [PMID: 24098283 PMCID: PMC3784770 DOI: 10.3389/fphar.2013.00116] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 08/28/2013] [Indexed: 01/16/2023] Open
Abstract
P21 activated kinase-1 (Pak1) has diverse functions in mammalian cells. Although a large number of phosphoproteins have been designated as Pak1 substrates from in vitro studies, emerging evidence has indicated that Pak1 may function as a signaling molecule through a unique molecular mechanism – scaffolding. By scaffolding, Pak1 delivers signals through an auto-phosphorylation-induced conformational change without transfer of a phosphate group to its immediate downstream effector(s). Here we review evidence for this regulatory mechanism based on structural and functional studies of Pak1 in different cell types and research models as well as in vitro biochemical assays. We also discuss the implications of Pak1 scaffolding in disease-related signaling processes and the potential in cardiovascular drug development.
Collapse
Affiliation(s)
- Yunbo Ke
- Department of Physiology and Biophysics, University of Illinois at Chicago Chicago, IL, USA ; Center for Cardiovascular Research, College of Medicine, University of Illinois at Chicago Chicago, IL, USA
| | | | | | | |
Collapse
|
64
|
Itakura A, Aslan JE, Kusanto BT, Phillips KG, Porter JE, Newton PK, Nan X, Insall RH, Chernoff J, McCarty OJT. p21-Activated kinase (PAK) regulates cytoskeletal reorganization and directional migration in human neutrophils. PLoS One 2013; 8:e73063. [PMID: 24019894 PMCID: PMC3760889 DOI: 10.1371/journal.pone.0073063] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 07/15/2013] [Indexed: 01/11/2023] Open
Abstract
Neutrophils serve as a first line of defense in innate immunity owing in part to their ability to rapidly migrate towards chemotactic factors derived from invading pathogens. As a migratory function, neutrophil chemotaxis is regulated by the Rho family of small GTPases. However, the mechanisms by which Rho GTPases orchestrate cytoskeletal dynamics in migrating neutrophils remain ill-defined. In this study, we characterized the role of p21-activated kinase (PAK) downstream of Rho GTPases in cytoskeletal remodeling and chemotactic processes of human neutrophils. We found that PAK activation occurred upon stimulation of neutrophils with f-Met-Leu-Phe (fMLP), and PAK accumulated at the actin-rich leading edge of stimulated neutrophils, suggesting a role for PAK in Rac-dependent actin remodeling. Treatment with the pharmacological PAK inhibitor, PF3758309, abrogated the integrity of RhoA-mediated actomyosin contractility and surface adhesion. Moreover, inhibition of PAK activity impaired neutrophil morphological polarization and directional migration under a gradient of fMLP, and was associated with dysregulated Ca(2+) signaling. These results suggest that PAK serves as an important effector of Rho-family GTPases in neutrophil cytoskeletal reorganization, and plays a key role in driving efficient directional migration of human neutrophils.
Collapse
Affiliation(s)
- Asako Itakura
- Department of Cell and Developmental Biology, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Joseph E. Aslan
- Department of Cell and Developmental Biology, Oregon Health and Science University, Portland, Oregon, United States of America
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Branden T. Kusanto
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Kevin G. Phillips
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Juliana E. Porter
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, Oregon, United States of America
- Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, California, United States of America
| | - Paul K. Newton
- Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, California, United States of America
| | - Xiaolin Nan
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Robert H. Insall
- CRUK Beatson Institute for Cancer Research, Glasgow, United Kingdom
| | - Jonathan Chernoff
- Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
| | - Owen J. T. McCarty
- Department of Cell and Developmental Biology, Oregon Health and Science University, Portland, Oregon, United States of America
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, Oregon, United States of America
- Division of Hematology and Medical Oncology, School of Medicine, Oregon Health and Science University, Portland, Oregon, United States of America
| |
Collapse
|
65
|
Chaki SP, Rivera GM. Integration of signaling and cytoskeletal remodeling by Nck in directional cell migration. BIOARCHITECTURE 2013; 3:57-63. [PMID: 23887203 PMCID: PMC3782540 DOI: 10.4161/bioa.25744] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Planar and apical-basal cellular polarization of epithelia and endothelia are crucial during morphogenesis. The establishment of these distinct polarity states and their transitions are regulated by signaling networks that include polarity complexes, Rho GTPases, and phosphoinositides. The spatiotemporal coordination of signaling by these molecules modulates cytoskeletal remodeling and vesicle trafficking to specify membrane domains, a prerequisite for the organization of tissues and organs. Here we present an overview of how activation of the WASp/Arp2/3 pathway of actin remodeling by Nck coordinates directional cell migration and speculate on its role as a signaling integrator in the coordination of cellular processes involved in endothelial cell polarity and vascular lumen formation.
Collapse
Affiliation(s)
- Sankar P Chaki
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, USA
| | | |
Collapse
|
66
|
DeSantiago J, Bare DJ, Ke Y, Sheehan KA, Solaro RJ, Banach K. Functional integrity of the T-tubular system in cardiomyocytes depends on p21-activated kinase 1. J Mol Cell Cardiol 2013; 60:121-8. [PMID: 23612118 PMCID: PMC3679655 DOI: 10.1016/j.yjmcc.2013.04.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 03/06/2013] [Accepted: 04/12/2013] [Indexed: 12/30/2022]
Abstract
p21-activated kinase (Pak1), a serine-threonine protein kinase, regulates cytoskeletal dynamics and cell motility. Recent experiments further demonstrate that loss of Pak1 results in exaggerated hypertrophic growth in response to pathophysiological stimuli. Calcium (Ca) signaling plays an important role in the regulation of transcription factors involved in hypertrophic remodeling. Here we aimed to determine the role of Pak1 in cardiac excitation-contraction coupling (ECC). Ca transients were recorded in isolated, ventricular myocytes (VMs) from WT and Pak1(-/-) mice. Pak1(-/-) Ca transients had a decreased amplitude, prolonged rise time and delayed recovery time. Di-8-ANNEPS staining revealed a decreased T-tubular density in Pak1(-/-) VMs that coincided with decreased cell capacitance and increased dis-synchrony of Ca induced Ca release (CICR) at individual release units. These changes were not observed in atrial myocytes of Pak1(-/-) mice where the T-tubular system is only sparsely developed. Experiments in cultured rabbit VMs supported a role of Pak1 in the maintenance of the T-tubular structure. T-tubular density in rabbit VMs significantly decreased within 24h of culture. This was accompanied by a decrease of the Ca transient amplitude and a prolongation of its rise time. However, overexpression of constitutively active Pak1 in VMs attenuated the structural remodeling as well as changes in ECC. The results provide significant support for a prominent role of Pak1 activity not only in the functional regulation of ECC but for the structural maintenance of the T-tubular system whose remodeling is an integral feature of hypertrophic remodeling.
Collapse
Affiliation(s)
- Jaime DeSantiago
- Center for Cardiovascular Research, University of Illinois at Chicago, 840 S. Wood Street, Chicago, IL 60612, USA
- Dept. of Medicine, Section of Cardiology, University of Illinois at Chicago, 840 S. Wood Street, Chicago, IL 60612, USA
| | - Dan J Bare
- Center for Cardiovascular Research, University of Illinois at Chicago, 840 S. Wood Street, Chicago, IL 60612, USA
- Dept. of Medicine, Section of Cardiology, University of Illinois at Chicago, 840 S. Wood Street, Chicago, IL 60612, USA
| | - Yunbo Ke
- Center for Cardiovascular Research, University of Illinois at Chicago, 840 S. Wood Street, Chicago, IL 60612, USA
- Dept. of Physiology and Biophysics, University of Illinois at Chicago, 840 S. Wood Street, Chicago, IL 60612, USA
| | - Katherine A. Sheehan
- Center for Cardiovascular Research, University of Illinois at Chicago, 840 S. Wood Street, Chicago, IL 60612, USA
- Dept. of Physiology and Biophysics, University of Illinois at Chicago, 840 S. Wood Street, Chicago, IL 60612, USA
| | - R. John Solaro
- Center for Cardiovascular Research, University of Illinois at Chicago, 840 S. Wood Street, Chicago, IL 60612, USA
- Dept. of Physiology and Biophysics, University of Illinois at Chicago, 840 S. Wood Street, Chicago, IL 60612, USA
| | - Kathrin Banach
- Center for Cardiovascular Research, University of Illinois at Chicago, 840 S. Wood Street, Chicago, IL 60612, USA
- Dept. of Medicine, Section of Cardiology, University of Illinois at Chicago, 840 S. Wood Street, Chicago, IL 60612, USA
| |
Collapse
|
67
|
Li X, Zhou Q, Sunkara M, Kutys ML, Wu Z, Rychahou P, Morris AJ, Zhu H, Evers BM, Huang C. Ubiquitylation of phosphatidylinositol 4-phosphate 5-kinase type I γ by HECTD1 regulates focal adhesion dynamics and cell migration. J Cell Sci 2013; 126:2617-28. [PMID: 23572508 DOI: 10.1242/jcs.117044] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Phosphatidylinositol 4-phosphate 5-kinase type I γ (PIPKIγ90) binds talin and localizes at focal adhesions (FAs). Phosphatidylinositol (4,5)-bisphosphate (PIP2) generated by PIPKIγ90 is essential for FA formation and cell migration. On the other hand, PIPKIγ90 and the β-integrin tail compete for overlapping binding sites on talin. Enhanced PIPKIγ90-talin interaction suppresses talin binding to the β-integrin. It is unknown how PIPKIγ90 is removed from the PIPKIγ90-talin complex after on-site PIP2 production during cell migration. Here we show that PIPKIγ90 is a substrate for HECTD1, an E3 ubiquitin ligase regulating cell migration. HECTD1 ubiquitinated PIPKIγ90 at lysine 97 and resulted in PIPKIγ90 degradation. Expression of the mutant PIPKIγ90(K97R) enhanced PIP2 and PIP3 production, inhibited FA assembly and disassembly and inhibited cancer cell migration, invasion and metastasis. Interestingly, mutation at tryptophan 647 abolished the inhibition of PIPKIγ90(K97R) on FA dynamics and partially rescued cancer cell migration and invasion. Thus, cycling PIPKIγ90 ubiquitylation by HECTD1 and consequent degradation remove PIPKIγ90 from talin after on-site PIP2 production, providing an essential regulatory mechanism for FA dynamics and cell migration.
Collapse
Affiliation(s)
- Xiang Li
- Markey Cancer Center, University of Kentucky, Lexington, KY 40506, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Conversion of a Signal into Forces for Axon Outgrowth through Pak1-Mediated Shootin1 Phosphorylation. Curr Biol 2013; 23:529-34. [DOI: 10.1016/j.cub.2013.02.017] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 01/07/2013] [Accepted: 02/08/2013] [Indexed: 11/23/2022]
|
69
|
LU WEN, QU JUNJIE, LI BILAN, LU CONG, YAN QIN, WU XIAOMEI, CHEN XIAOYU, WAN XIAOPING. Overexpression of p21-activated kinase 1 promotes endometrial cancer progression. Oncol Rep 2013; 29:1547-55. [DOI: 10.3892/or.2013.2237] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 12/17/2012] [Indexed: 11/05/2022] Open
|
70
|
Ho H, Soto Hopkin A, Kapadia R, Vasudeva P, Schilling J, Ganesan AK. RhoJ modulates melanoma invasion by altering actin cytoskeletal dynamics. Pigment Cell Melanoma Res 2013; 26:218-25. [PMID: 23253891 DOI: 10.1111/pcmr.12058] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Accepted: 12/04/2012] [Indexed: 12/25/2022]
Abstract
Rho family GTPases regulate diverse processes in human melanoma ranging from tumor formation to metastasis and chemoresistance. In this study, a combination of in vitro and in vivo approaches was utilized to determine whether RHOJ, a CDC42 homologue that regulates melanoma chemoresistance, also controls melanoma migration. Depletion or overexpression of RHOJ altered cellular morphology, implicating a role for RHOJ in modulating actin cytoskeletal dynamics. RHOJ depletion inhibited melanoma cell migration and invasion in vitro and melanoma tumor growth and lymphatic spread in mice. Molecular studies revealed that RHOJ alters actin cytoskeletal dynamics by inducing the phosphorylation of LIMK, cofilin, and p41-ARC (ARP2/3 complex subunit) in a PAK1-dependent manner in vitro and in tumor xenografts. Taken together, these observations identify RHOJ as a melanoma linchpin determinant that regulates both actin cytoskeletal dynamics and chemoresistance by activating PAK1.
Collapse
Affiliation(s)
- Hsiang Ho
- Department of Medicine, University of California, Irvine, Irvine, CA, USA
| | | | | | | | | | | |
Collapse
|
71
|
Chaki SP, Barhoumi R, Berginski ME, Sreenivasappa H, Trache A, Gomez SM, Rivera GM. Nck enables directional cell migration through the coordination of polarized membrane protrusion with adhesion dynamics. J Cell Sci 2013; 126:1637-49. [DOI: 10.1242/jcs.119610] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Directional migration requires the coordination of cytoskeletal changes essential for cell polarization and adhesion turnover. Extracellular signals that alter tyrosine phosphorylation drive directional migration by inducing reorganization of the actin cytoskeleton. It is recognized that Nck is an important link between tyrosine phosphorylation and actin dynamics, however, the role of Nck in cytoskeletal remodeling during directional migration and the underlying molecular mechanisms remain largely undetermined. In this study, a combination of molecular genetics and quantitative live cell microscopy was used to show that Nck is essential in the establishment of front-back polarity and directional migration of endothelial cells. Time-lapse differential interference contrast and total internal reflection fluorescence microscopy showed that Nck couples the formation of polarized membrane protrusions with their stabilization through the assembly and maturation of cell-substratum adhesions. Measurements by atomic force microscopy showed that Nck also modulates integrin α5β1-fibronectin adhesion force and cell stiffness. Fluorescence resonance energy transfer imaging revealed that Nck depletion results in delocalized and increased activity of Cdc42 and Rac. In contrast, the activity of RhoA and myosin II phosphorylation were reduced by Nck knockdown. Thus, this study identifies Nck as a key coordinator of cytoskeletal changes that enable cell polarization and directional migration which are critical processes in development and disease.
Collapse
|
72
|
Higuchi M, Kihara R, Okazaki T, Aoki I, Suetsugu S, Gotoh Y. Akt1 promotes focal adhesion disassembly and cell motility through phosphorylation of FAK in growth factor-stimulated cells. J Cell Sci 2012; 126:745-55. [PMID: 23264741 DOI: 10.1242/jcs.112722] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The crosstalk between spatial adhesion signals and temporal soluble signals is key in regulating cellular responses such as cell migration. Here we show that soluble growth factors enhance integrin signaling through Akt phosphorylation of FAK at Ser695 and Thr700. PDGF treatment or overexpression of active Akt1 in fibroblasts increased autophosphorylation of FAK at Tyr397, an essential event for integrin turnover and cell migration. Phosphorylation-defective mutants of FAK (S695A and T700A) underwent autophosphorylation at Tyr397 and promoted cell migration in response to the integrin ligand fibronectin, but importantly, not in response to PDGF. This study has unveiled a novel function of Akt as an 'ignition kinase' of FAK in growth factor signaling and may shed light on the mechanism by which growth factors regulate integrin signaling.
Collapse
Affiliation(s)
- Maiko Higuchi
- Institute of Molecular and Cellular Biosciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan.
| | | | | | | | | | | |
Collapse
|
73
|
Tseng P, Judy JW, Di Carlo D. Magnetic nanoparticle-mediated massively parallel mechanical modulation of single-cell behavior. Nat Methods 2012; 9:1113-9. [PMID: 23064517 PMCID: PMC3501759 DOI: 10.1038/nmeth.2210] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2012] [Accepted: 09/06/2012] [Indexed: 12/31/2022]
Abstract
We report a technique for generating controllable, time-varying and localizable forces on arrays of cells in a massively parallel fashion. To achieve this, we grow magnetic nanoparticle-dosed cells in defined patterns on micromagnetic substrates. By manipulating and coalescing nanoparticles within cells, we apply localized nanoparticle-mediated forces approaching cellular yield tensions on the cortex of HeLa cells. We observed highly coordinated responses in cellular behavior, including the p21-activated kinase-dependent generation of active, leading edge-type filopodia and biasing of the metaphase plate during mitosis. The large sample size and rapid sample generation inherent to this approach allow the analysis of cells at an unprecedented rate: in a single experiment, potentially tens of thousands of cells can be stimulated for high statistical accuracy in measurements. This technique shows promise as a tool for both cell analysis and control.
Collapse
Affiliation(s)
- Peter Tseng
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California
- Department of Electrical Engineering, University of California, Los Angeles, Los Angeles, California
| | - Jack W. Judy
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California
- Department of Electrical Engineering, University of California, Los Angeles, Los Angeles, California
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California
| | - Dino Di Carlo
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California
| |
Collapse
|
74
|
Staser K, Shew MA, Michels EG, Mwanthi MM, Yang FC, Clapp DW, Park SJ. A Pak1-PP2A-ERM signaling axis mediates F-actin rearrangement and degranulation in mast cells. Exp Hematol 2012; 41:56-66.e2. [PMID: 23063725 DOI: 10.1016/j.exphem.2012.10.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 10/01/2012] [Accepted: 10/06/2012] [Indexed: 01/12/2023]
Abstract
Mast cells coordinate allergy and allergic asthma and are crucial cellular targets in therapeutic approaches to inflammatory disease. Allergens cross-link immunoglobulin E bound at high-affinity receptors on the mast cell's surface, causing release of preformed cytoplasmic granules containing inflammatory molecules, including histamine, a principal effector of fatal septic shock. Both p21 activated kinase 1 (Pak1) and protein phosphatase 2A (PP2A) modulate mast cell degranulation, but the molecular mechanisms underpinning these observations and their potential interactions in common or disparate pathways are unknown. In this study, we use genetic and other approaches to show that Pak1's kinase-dependent interaction with PP2A potentiates PP2A's subunit assembly and activation. PP2A then dephosphorylates threonine 567 of Ezrin/Radixin/Moesin (ERM) molecules that have been shown to couple F-actin to the plasma membrane in other cell systems. In our study, the activity of this Pak1-PP2A-ERM axis correlates with impaired systemic histamine release in Pak1(-/-) mice and defective F-actin rearrangement and impaired degranulation in Ezrin disrupted (Mx1Cre(+)Ezrin(flox/flox)) primary mast cells. This heretofore unknown mechanism of mast cell degranulation provides novel therapeutic targets in allergy and asthma and may inform studies of kinase regulation of cytoskeletal dynamics in other cell lineages.
Collapse
Affiliation(s)
- Karl Staser
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | | | | | | | | | | |
Collapse
|
75
|
Ard R, Mulatz K, Abramovici H, Maillet JC, Fottinger A, Foley T, Byham MR, Iqbal TA, Yoneda A, Couchman JR, Parks RJ, Gee SH. Diacylglycerol kinase ζ regulates RhoA activation via a kinase-independent scaffolding mechanism. Mol Biol Cell 2012; 23:4008-19. [PMID: 22918940 PMCID: PMC3469516 DOI: 10.1091/mbc.e12-01-0026] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The dissociation of individual Rho GTPases from RhoGDI ensures appropriate responses to cellular signals. The enzyme diacylglycerol kinase ζ (DGKζ) serves as a scaffold to assemble a signaling complex that functions as a RhoA-specific RhoGDI dissociation factor. DGKζ deficiency impairs RhoA activation and stress fiber formation in fibroblasts. Rho GTPases share a common inhibitor, Rho guanine nucleotide dissociation inhibitor (RhoGDI), which regulates their expression levels, membrane localization, and activation state. The selective dissociation of individual Rho GTPases from RhoGDI ensures appropriate responses to cellular signals, but the underlying mechanisms are unclear. Diacylglycerol kinase ζ (DGKζ), which phosphorylates diacylglycerol to yield phosphatidic acid, selectively dissociates Rac1 by stimulating PAK1-mediated phosphorylation of RhoGDI on Ser-101/174. Similarly, phosphorylation of RhoGDI on Ser-34 by protein kinase Cα (PKCα) selectively releases RhoA. Here we show DGKζ is required for RhoA activation and Ser-34 phosphorylation, which were decreased in DGKζ-deficient fibroblasts and rescued by wild-type DGKζ or a catalytically inactive mutant. DGKζ bound directly to the C-terminus of RhoA and the regulatory arm of RhoGDI and was required for efficient interaction of PKCα and RhoA. DGKζ-null fibroblasts had condensed F-actin bundles and altered focal adhesion distribution, indicative of aberrant RhoA signaling. Two targets of the RhoA effector ROCK showed reduced phosphorylation in DGKζ-null cells. Collectively our findings suggest DGKζ functions as a scaffold to assemble a signaling complex that functions as a RhoA-selective, GDI dissociation factor. As a regulator of Rac1 and RhoA activity, DGKζ is a critical factor linking changes in lipid signaling to actin reorganization.
Collapse
Affiliation(s)
- Ryan Ard
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Wormer D, Deakin NO, Turner CE. CdGAP regulates cell migration and adhesion dynamics in two-and three-dimensional matrix environments. Cytoskeleton (Hoboken) 2012; 69:644-58. [PMID: 22907917 DOI: 10.1002/cm.21057] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 06/18/2012] [Accepted: 07/19/2012] [Indexed: 12/23/2022]
Abstract
CdGAP is a Rac1/Cdc42 specific GTPase activating protein (GAP) that localizes to cell-matrix adhesions through an interaction with the adhesion scaffold α-parvin/actopaxin to regulate lamellipodia formation and cell spreading. Herein, we demonstrate, using a combination of siRNA-mediated silencing and overexpression, that cdGAP negatively regulates directed and random migration by controlling adhesion maturation and dynamics through the regulation of both adhesion assembly and disassembly. Interestingly, cdGAP was also localized to adhesions formed in three-dimensional (3D) matrix environments and cdGAP depletion promoted cancer cell migration and invasion through 3D matrices. These findings highlight the importance of GAP proteins in the regulation of Rho family GTPases and the coordination of the cell migration machinery..
Collapse
Affiliation(s)
- Duncan Wormer
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, New York 13210, USA
| | | | | |
Collapse
|
77
|
Taulet N, Delorme-Walker VD, DerMardirossian C. Reactive oxygen species regulate protrusion efficiency by controlling actin dynamics. PLoS One 2012; 7:e41342. [PMID: 22876286 PMCID: PMC3410878 DOI: 10.1371/journal.pone.0041342] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 06/20/2012] [Indexed: 12/31/2022] Open
Abstract
Productive protrusions allowing motile cells to sense and migrate toward a chemotactic gradient of reactive oxygen species (ROS) require a tight control of the actin cytoskeleton. However, the mechanisms of how ROS affect cell protrusion and actin dynamics are not well elucidated yet. We show here that ROS induce the formation of a persistent protrusion. In migrating epithelial cells, protrusion of the leading edge requires the precise regulation of the lamellipodium and lamella F-actin networks. Using fluorescent speckle microscopy, we showed that, upon ROS stimulation, the F-actin retrograde flow is enhanced in the lamellipodium. This event coincides with an increase of cofilin activity, free barbed ends formation, Arp2/3 recruitment, and ERK activity at the cell edge. In addition, we observed an acceleration of the F-actin flow in the lamella of ROS-stimulated cells, which correlates with an enhancement of the cell contractility. Thus, this study demonstrates that ROS modulate both the lamellipodium and the lamella networks to control protrusion efficiency.
Collapse
Affiliation(s)
- Nicolas Taulet
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States of America
| | - Violaine D. Delorme-Walker
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States of America
| | - Céline DerMardirossian
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
78
|
Heissler SM, Manstein DJ. Nonmuscle myosin-2: mix and match. Cell Mol Life Sci 2012; 70:1-21. [PMID: 22565821 PMCID: PMC3535348 DOI: 10.1007/s00018-012-1002-9] [Citation(s) in RCA: 166] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2012] [Revised: 04/16/2012] [Accepted: 04/17/2012] [Indexed: 12/31/2022]
Abstract
Members of the nonmuscle myosin-2 (NM-2) family of actin-based molecular motors catalyze the conversion of chemical energy into directed movement and force thereby acting as central regulatory components of the eukaryotic cytoskeleton. By cyclically interacting with adenosine triphosphate and F-actin, NM-2 isoforms promote cytoskeletal force generation in established cellular processes like cell migration, shape changes, adhesion dynamics, endo- and exo-cytosis, and cytokinesis. Novel functions of the NM-2 family members in autophagy and viral infection are emerging, making NM-2 isoforms regulators of nearly all cellular processes that require the spatiotemporal organization of cytoskeletal scaffolding. Here, we assess current views about the role of NM-2 isoforms in these activities including the tight regulation of NM-2 assembly and activation through phosphorylation and how NM-2-mediated changes in cytoskeletal dynamics and mechanics affect cell physiological functions in health and disease.
Collapse
Affiliation(s)
- Sarah M. Heissler
- Institute for Biophysical Chemistry, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Dietmar J. Manstein
- Institute for Biophysical Chemistry, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| |
Collapse
|
79
|
Lippert DND, Wilkins JA. Glia maturation factor gamma regulates the migration and adherence of human T lymphocytes. BMC Immunol 2012; 13:21. [PMID: 22510515 PMCID: PMC3447661 DOI: 10.1186/1471-2172-13-21] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 04/04/2012] [Indexed: 11/28/2022] Open
Abstract
Background Lymphocyte migration and chemotaxis are essential for effective immune surveillance. A critical aspect of migration is cell polarization and the extension of pseudopodia in the direction of movement. However, our knowledge of the underlying molecular mechanisms responsible for these events is incomplete. Proteomic analysis of the isolated leading edges of CXCL12 stimulated human T cell lines was used to identify glia maturation factor gamma (GMFG) as a component of the pseudopodia. This protein is predominantly expressed in hematopoietic cells and it has been shown to regulate cytoskeletal branching. The present studies were undertaken to examine the role of GMFG in lymphocyte migration. Results Microscopic analysis of migrating T-cells demonstrated that GMFG was distributed along the axis of movement with enrichment in the leading edge and behind the nucleus of these cells. Inhibition of GMFG expression in T cell lines and IL-2 dependent human peripheral blood T cells with shRNAmir reduced cellular basal and chemokine induced migration responses. The failure of the cells with reduced GMFG to migrate was associated with an apparent inability to detach from the substrates that they were moving on. It was also noted that these cells had an increased adherence to extracellular matrix proteins such as fibronectin. These changes in adherence were associated with altered patterns of β1 integrin expression and increased levels of activated integrins as detected with the activation specific antibody HUTS4. GMFG loss was also shown to increase the expression of the β2 integrin LFA-1 and to increase the adhesion of these cells to ICAM-1. Conclusions The present studies demonstrate that GMFG is a component of human T cell pseudopodia required for migration. The reduction in migration and increased adherence properties associated with inhibition of GMFG expression suggest that GMFG activity influences the regulation of integrin mediated adhesion.
Collapse
Affiliation(s)
- Dustin N D Lippert
- Manitoba Centre for Proteomics and Systems Biology, University of Manitoba, Winnipeg, Canada
| | | |
Collapse
|
80
|
Al Soraj M, He L, Peynshaert K, Cousaert J, Vercauteren D, Braeckmans K, De Smedt SC, Jones AT. siRNA and pharmacological inhibition of endocytic pathways to characterize the differential role of macropinocytosis and the actin cytoskeleton on cellular uptake of dextran and cationic cell penetrating peptides octaarginine (R8) and HIV-Tat. J Control Release 2012; 161:132-41. [PMID: 22465675 DOI: 10.1016/j.jconrel.2012.03.015] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 03/13/2012] [Accepted: 03/18/2012] [Indexed: 11/30/2022]
Abstract
Cell penetrating peptides (CPPs) have been extensively studied as vectors for cellular delivery of therapeutic macromolecules. It is widely accepted that they can enter cells directly across the plasma membrane but also gain access through endocytic pathways that are yet to be fully defined. Here we developed siRNA methods in epithelial cell lines, HeLa and A431, to inhibit endocytic pathways regulated by clathrin heavy chain, flotillin-1, caveolin-1, dynamin-2 and Pak-1. In each case, functional uptake assays were developed to characterize the requirement for these proteins, and the pathways they regulate, in the internalisation of defined endocytic probes and also the CPPs octaarginine and HIV-Tat. Peptide uptake was only inhibited in A431 cells depleted of the macropinocytosis regulator Pak-1, but experimental variables including choice of cell line, pharmacological inhibitor, macropinocytic probe and serum starvation significantly influence our ability to assess and assign this pathway as an important route for CPP uptake. Actin disruption with Cytochalasin D inhibited peptide entry in both cell lines but the effects of this agent on dextran uptake was cell line dependent, reducing uptake in HeLa cells and increasing uptake in A431 cells. This was further supported in experiments inducing actin stabilisation by Jasplakinolide, emphasising that the actin cytoskeleton can both promote and hinder endocytosis. Overall the data identify important aspects regarding the comparative mechanisms of CPP uptake and macropinocytosis, and accentuate the significant methodological challenges of studying this pathway as an endocytic portal and an entry route for drug delivery vectors.
Collapse
Affiliation(s)
- M Al Soraj
- Cardiff School of Pharmacy and Pharmaceutical Sciences, Redwood Building, Cardiff University, Cardiff, Wales CF10 3NB, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
81
|
Fu D, Yang Y, Xiao Y, Lin H, Ye Y, Zhan Z, Liang L, Yang X, Sun L, Xu H. Role of p21-activated kinase 1 in regulating the migration and invasion of fibroblast-like synoviocytes from rheumatoid arthritis patients. Rheumatology (Oxford) 2012; 51:1170-80. [PMID: 22416254 DOI: 10.1093/rheumatology/kes031] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVE To investigate the role of p21-activated kinase 1 (PAK1) in regulating migration, invasion and MMP expression in RA fibroblast-like synoviocytes (FLS). METHODS RA FLS migration and invasion in vitro were measured by the Boyden chamber method. Invasion of RA FLS into cartilage was detected in the severe combined immunodeficiency (SCID) mouse co-implantation model of RA in vivo. PAK1 and MT1-MMP expression were examined by western blotting. ELISA was used to measure the production and activity of MMPs. RESULTS Phosphorylated PAK1 (p-PAK1) protein expression was increased in ex vivo synovial membrane cells from RA patients. Stimulation with IL-1β or TNF-α up-regulated p-PAK1 expression. Inhibition of PAK1 by transfection with dominant negative PAK1 mutant (dnPAK1) reduced in vitro migration and invasion of RA FLS. In the SCID mouse model, RA FLS invasion into cartilage was attenuated by transfection with dnPAK1 in vivo. PAK1 regulated IL-1β-induced production and activity of MMP-13 and MT1-MMP. Inhibition of MMP-13 or MT1-MMP activity also reduced RA FLS invasion. Furthermore, dnPAK1 transfection inhibited c-Jun N-terminal kinase (JNK) activation, but did not affect the activities of extracellular signal-regulated kinases and p38. Inhibition of the JNK activity by chemical inhibitor significantly reduced the migration, invasion and production of MMP-13 and MT1-MMP. CONCLUSION PAK1 plays an important role in regulating the migration, invasion and production and activity of MMPs in RA FLS, which is mediated by the JNK pathway. This suggests a novel strategy targeting PAK1 to prevent joint destruction of RA.
Collapse
Affiliation(s)
- Di Fu
- Department of Rheumatology, The First Affiliated Hospital, Sun Yat-sen University, No. 58 Zhongshan Road 2, Guangzhou, Guangdong 510080, P.R. China
| | | | | | | | | | | | | | | | | | | |
Collapse
|