51
|
Abstract
Over the past decade, interest in caveolae biology has peaked. These small bulb-shaped plasma membrane invaginations of 50-80nm diameter present in most cell types have been upgraded from simple membrane structures to a more complex bona fide organelle. However, although caveolae are involved in several essential cellular functions and pathologies, the underlying molecular mechanisms remain poorly defined. Following the identification of caveolins and cavins as the main caveolae constituents, recent studies have brought new insight into their structural organization as a coat. In this review, we discuss how these new data on caveolae can be integrated in the context of their role in signaling and pathophysiology.
Collapse
|
52
|
John S, Sivakumar KC, Mishra R. Bacoside A Induces Tumor Cell Death in Human Glioblastoma Cell Lines through Catastrophic Macropinocytosis. Front Mol Neurosci 2017; 10:171. [PMID: 28663722 PMCID: PMC5471305 DOI: 10.3389/fnmol.2017.00171] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 05/16/2017] [Indexed: 01/22/2023] Open
Abstract
Glioblastoma multiforme (GBM) is a highly aggressive type of brain tumor with an extremely poor prognosis. Recent evidences have shown that the "biomechanical imbalances" induced in GBM patient-derived glioblastoma cells (GC) and in vivo via the administration of synthetic small molecules, may effectively inhibit disease progression and prolong survival of GBM animal models. This novel concept associated with de novo anti-GBM drug development has however suffered obstacles in adequate clinical utility due to the appearance of unrelated toxicity in the prolonged therapeutic windows. Here, we took a "drug repurposing approach" to trigger similar physico-chemical disturbances in the GBM tumor cells, wherein, the candidate therapeutic agent has been previously well established for its neuro-protective roles, safety, efficacy, prolonged tolerance and excellent brain bioavailability in human subjects and mouse models. In this study, we show that the extracts of an Indian traditional medicinal plant Bacopa monnieri (BM) and its bioactive component Bacoside A can generate dosage associated tumor specific disturbances in the hydrostatic pressure balance of the cell via a mechanism involving excessive phosphorylation of calcium/calmodulin-dependent protein kinase IIA (CaMKIIA/CaMK2A) enzyme that is further involved in the release of calcium from the smooth endoplasmic reticular networks. High intracellular calcium stimulated massive macropinocytotic extracellular fluid intake causing cell hypertrophy in the initial stages, excessive macropinosome enlargement and fluid accumulation associated organellar congestion, cell swelling, cell rounding and membrane rupture of glioblastoma cells; with all these events culminating into a non-apoptotic, physical non-homeostasis associated glioblastoma tumor cell death. These results identify glioblastoma tumor cells to be a specific target of the tested herbal medicine and therefore can be exploited as a safe anti-GBM therapeutic.
Collapse
Affiliation(s)
- Sebastian John
- Disease Biology Program, Department of Neurobiology and Genetics, Rajiv Gandhi Centre for BiotechnologyThiruvananthapuram, India
| | - K C Sivakumar
- Distributed Information Sub-Centre, Rajiv Gandhi Centre for BiotechnologyThiruvananthapuram, India
| | - Rashmi Mishra
- Disease Biology Program, Department of Neurobiology and Genetics, Rajiv Gandhi Centre for BiotechnologyThiruvananthapuram, India
| |
Collapse
|
53
|
Meng F, Saxena S, Liu Y, Joshi B, Wong TH, Shankar J, Foster LJ, Bernatchez P, Nabi IR. The phospho-caveolin-1 scaffolding domain dampens force fluctuations in focal adhesions and promotes cancer cell migration. Mol Biol Cell 2017; 28:2190-2201. [PMID: 28592633 PMCID: PMC5531735 DOI: 10.1091/mbc.e17-05-0278] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 06/02/2017] [Indexed: 12/15/2022] Open
Abstract
Caveolin-1 (Cav1), a major Src kinase substrate phosphorylated on tyrosine-14 (Y14), contains the highly conserved membrane-proximal caveolin scaffolding domain (CSD; amino acids 82-101). Here we show, using CSD mutants (F92A/V94A) and membrane-permeable CSD-competing peptides, that Src kinase-dependent pY14Cav1 regulation of focal adhesion protein stabilization, focal adhesion tension, and cancer cell migration is CSD dependent. Quantitative proteomic analysis of Cav1-GST (amino acids 1-101) pull downs showed sixfold-increased binding of vinculin and, to a lesser extent, α-actinin, talin, and filamin, to phosphomimetic Cav1Y14D relative to nonphosphorylatable Cav1Y14F. Consistently, pY14Cav1 enhanced CSD-dependent vinculin tension in focal adhesions, dampening force fluctuation and synchronously stabilizing cellular focal adhesions in a high-tension mode, paralleling effects of actin stabilization. This identifies pY14Cav1 as a molecular regulator of focal adhesion tension and suggests that functional interaction between Cav1 Y14 phosphorylation and the CSD promotes focal adhesion traction and, thereby, cancer cell motility.
Collapse
Affiliation(s)
- Fanrui Meng
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Sandeep Saxena
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Youtao Liu
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Bharat Joshi
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Timothy H Wong
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Jay Shankar
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Leonard J Foster
- Department of Biochemistry and Molecular Biology and Michael Smith Labs, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Pascal Bernatchez
- James Hogg Research Centre, Institute for Heart + Lung Health, St Paul's Hospital, Vancouver, BC V6Z 1Y6, Canada.,Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Ivan R Nabi
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
54
|
Zhu B, Rippe C, Thi Hien T, Zeng J, Albinsson S, Stenkula KG, Uvelius B, Swärd K. Similar regulatory mechanisms of caveolins and cavins by myocardin family coactivators in arterial and bladder smooth muscle. PLoS One 2017; 12:e0176759. [PMID: 28542204 PMCID: PMC5444588 DOI: 10.1371/journal.pone.0176759] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 04/17/2017] [Indexed: 12/22/2022] Open
Abstract
Caveolae are membrane invaginations present at high densities in muscle and fat. Recent work has demonstrated that myocardin family coactivators (MYOCD, MKL1), which are important for contractile differentiation and cell motility, increase caveolin (CAV1, CAV2, CAV3) and cavin (CAVIN1, CAVIN2, CAVIN3) transcription, but several aspects of this control mechanism remain to be investigated. Here, using promoter reporter assays we found that both MKL1/MRTF-A and MKL2/MRTF-B control caveolins and cavins via their proximal promoter sequences. Silencing of MKL1 and MKL2 in smooth muscle cells moreover reduced CAV1 and CAVIN1 mRNA levels by well over 50%, as did treatment with second generation inhibitors of MKL activity. GATA6, which modulates expression of smooth muscle-specific genes, reduced CAV1 and CAV2, whereas the cavins were unaffected or increased. Viral overexpression of MKL1 and myocardin induced caveolin and cavin expression in bladder smooth muscle cells from rats and humans and MYOCD correlated tightly with CAV1 and CAVIN1 in human bladder specimens. A recently described activator of MKL-driven transcription (ISX) failed to induce CAV1/CAVIN1 which may be due to an unusual transactivation mechanism. In all, these findings further support the view that myocardin family coactivators are important transcriptional drivers of caveolins and cavins in smooth muscle.
Collapse
Affiliation(s)
- Baoyi Zhu
- Department of Experimental Medical Science, Lund University, Lund, Sweden
- Department of Urology, the Sixth Affiliated Hospital of Guangzhou Medical University, Guangdong, China
| | - Catarina Rippe
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Tran Thi Hien
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Jianwen Zeng
- Department of Urology, the Sixth Affiliated Hospital of Guangzhou Medical University, Guangdong, China
| | | | - Karin G. Stenkula
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Bengt Uvelius
- Department of Urology, Clinical Sciences, Lund University, Lund, Sweden
| | - Karl Swärd
- Department of Experimental Medical Science, Lund University, Lund, Sweden
- * E-mail:
| |
Collapse
|
55
|
Nguyen KCT, Cho KA. Versatile Functions of Caveolin-1 in Aging-related Diseases. Chonnam Med J 2017; 53:28-36. [PMID: 28184336 PMCID: PMC5299127 DOI: 10.4068/cmj.2017.53.1.28] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 10/10/2016] [Accepted: 10/11/2016] [Indexed: 12/24/2022] Open
Abstract
Caveolin-1 (Cav-1) is a trans-membrane protein that is a major component of the caveolae structure on the plasma membrane. Cav-1 is involved in the regulation of various cellular processes, including cell growth, differentiation, endocytosis, and in particular it has been implied in cellular senescence. Here we review current knowledge about Cav-1 in cellular signaling and discuss the role of Cav-1 in aging-related diseases.
Collapse
Affiliation(s)
- Kim Cuc Thi Nguyen
- Deparment of Life Science, ThaiNguyen University of Science, TanThinh Ward, ThaiNguyen, VietNam
| | - Kyung A Cho
- Department of Biochemistry, Chonnam National University Medical School, Gwangju, Korea
| |
Collapse
|
56
|
Pesce M, Messina E, Chimenti I, Beltrami AP. Cardiac Mechanoperception: A Life-Long Story from Early Beats to Aging and Failure. Stem Cells Dev 2016; 26:77-90. [PMID: 27736363 DOI: 10.1089/scd.2016.0206] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The life-long story of the heart starts concomitantly with primary differentiation events occurring in multipotent progenitors located in the so-called heart tube. This initially tubular structure starts a looping process, which leads to formation of the final four-chambered heart with a primary contribution of geometric and position-associated cell sensing. While this establishes the correct patterning of the final cardiac structure, it also provides feedbacks to fundamental cellular machineries controlling proliferation and differentiation, thus ensuring a coordinated restriction of cell growth and a myocyte terminal differentiation. Novel evidences provided by embryological and cell engineering studies have clarified the relevance of mechanics-supported position sensing for the correct recognition of cell fate inside developing embryos and multicellular aggregates. One of the main components of this pathway, the Hippo-dependent signal transduction machinery, is responsible for cell mechanics intracellular transduction with important consequences for gene transcription and cell growth control. Being the Hippo pathway also directly connected to stress responses and altered metabolism, it is tempting to speculate that permanent alterations of mechanosensing may account for modifying self-renewal control in tissue homeostasis. In the present contribution, we translate these concepts to the aging process and the failing of the human heart, two pathophysiologic conditions that are strongly affected by stress responses and altered metabolism.
Collapse
Affiliation(s)
- Maurizio Pesce
- 1 Tissue Engineering Research Unit, Centro Cardiologico Monzino, IRCCS , Milan, Italy
| | - Elisa Messina
- 2 Department of Pediatric Cardiology, "Sapienza" University , Rome, Italy
| | - Isotta Chimenti
- 3 Department of Medical Surgical Science and Biotechnology, "Sapienza" University , Rome, Italy
| | | |
Collapse
|
57
|
Caveolin-1 modulates intraocular pressure: implications for caveolae mechanoprotection in glaucoma. Sci Rep 2016; 6:37127. [PMID: 27841369 PMCID: PMC5107904 DOI: 10.1038/srep37127] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 10/25/2016] [Indexed: 12/11/2022] Open
Abstract
Polymorphisms in the CAV1/2 genes that encode signature proteins of caveolae are associated with glaucoma, the second leading cause of blindness worldwide, and with its major risk factor, intraocular pressure (IOP). We hypothesized that caveolin-1 (Cav-1) participates in IOP maintenance via modulation of aqueous humor drainage from the eye. We localize caveolae proteins to human and murine conventional drainage tissues and show that caveolae respond to mechanical stimulation. We show that Cav-1-deficient (Cav-1−/−) mice display ocular hypertension explained by reduced pressure-dependent drainage of aqueous humor. Cav-1 deficiency results in loss of caveolae in the Schlemm’s canal (SC) and trabecular meshwork. However, their absence did not appear to impact development nor adult form of the conventional outflow tissues according to rigorous quantitative ultrastructural analyses, but did affect cell and tissue behavior. Thus, when IOP is experimentally elevated, cells of the Cav-1−/− outflow tissues are more susceptible to plasma membrane rupture indicating that caveolae play a role in mechanoprotection. Additionally, aqueous drainage from Cav-1−/− eyes was more sensitive to nitric oxide (NO) synthase inhibition than controls, suggesting that excess NO partially compensates for outflow pathway dysfunction. These results provide a functional link between a glaucoma risk gene and glaucoma-relevant pathophysiology.
Collapse
|
58
|
Gu X, Reagan AM, McClellan ME, Elliott MH. Caveolins and caveolae in ocular physiology and pathophysiology. Prog Retin Eye Res 2016; 56:84-106. [PMID: 27664379 DOI: 10.1016/j.preteyeres.2016.09.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 09/15/2016] [Accepted: 09/20/2016] [Indexed: 12/14/2022]
Abstract
Caveolae are specialized, invaginated plasma membrane domains that are defined morphologically and by the expression of signature proteins called, caveolins. Caveolae and caveolins are abundant in a variety of cell types including vascular endothelium, glia, and fibroblasts where they play critical roles in transcellular transport, endocytosis, mechanotransduction, cell proliferation, membrane lipid homeostasis, and signal transduction. Given these critical cellular functions, it is surprising that ablation of the caveolae organelle does not result in lethality suggesting instead that caveolae and caveolins play modulatory roles in cellular homeostasis. Caveolar components are also expressed in ocular cell types including retinal vascular cells, Müller glia, retinal pigment epithelium (RPE), conventional aqueous humor outflow cells, the corneal epithelium and endothelium, and the lens epithelium. In the eye, studies of caveolae and other membrane microdomains (i.e., "lipid rafts") have lagged behind what is a substantial body of literature outside vision science. However, interest in caveolae and their molecular components has increased with accumulating evidence of important roles in vision-related functions such as blood-retinal barrier homeostasis, ocular inflammatory signaling, pathogen entry at the ocular surface, and aqueous humor drainage. The recent association of CAV1/2 gene loci with primary open angle glaucoma and intraocular pressure has further enhanced the need to better understand caveolar functions in the context of ocular physiology and disease. Herein, we provide the first comprehensive review of literature on caveolae, caveolins, and other membrane domains in the context of visual system function. This review highlights the importance of caveolae domains and their components in ocular physiology and pathophysiology and emphasizes the need to better understand these important modulators of cellular function.
Collapse
Affiliation(s)
- Xiaowu Gu
- Department of Ophthalmology/Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Alaina M Reagan
- Department of Ophthalmology/Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Mark E McClellan
- Department of Ophthalmology/Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Michael H Elliott
- Department of Ophthalmology/Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| |
Collapse
|
59
|
Zimnicka AM, Husain YS, Shajahan AN, Sverdlov M, Chaga O, Chen Z, Toth PT, Klomp J, Karginov AV, Tiruppathi C, Malik AB, Minshall RD. Src-dependent phosphorylation of caveolin-1 Tyr-14 promotes swelling and release of caveolae. Mol Biol Cell 2016; 27:2090-106. [PMID: 27170175 PMCID: PMC4927282 DOI: 10.1091/mbc.e15-11-0756] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 05/05/2016] [Indexed: 11/18/2022] Open
Abstract
Src-induced phosphorylation of Cav-1 is analyzed using live TIRF and FRET microscopy, as well as by biochemical analysis. Cav1 phosphorylation destabilizes plasma membrane–associated Cav-1 oligomers and thereby is crucial for regulating the fission of caveolae from the plasma membrane in vascular endothelial cells. Caveolin 1 (Cav1) is a required structural component of caveolae, and its phosphorylation by Src is associated with an increase in caveolae-mediated endocytosis. Here we demonstrate, using quantitative live-cell 4D, TIRF, and FRET imaging, that endocytosis and trafficking of caveolae are associated with a Cav1 Tyr-14 phosphorylation-dependent conformational change, which spatially separates, or loosens, Cav1 molecules within the oligomeric caveolar coat. When tracked by TIRF and spinning-disk microscopy, cells expressing phosphomimicking Cav1 (Y14D) mutant formed vesicles that were greater in number and volume than with Y14F-Cav1-GFP. Furthermore, we observed in HEK cells cotransfected with wild-type, Y14D, or Y14F Cav1-CFP and -YFP constructs that FRET efficiency was greater with Y14F pairs than with Y14D, indicating that pY14-Cav1 regulates the spatial organization of Cav1 molecules within the oligomer. In addition, albumin-induced Src activation or direct activation of Src using a rapamycin-inducible Src construct (RapR-Src) led to an increase in monomeric Cav1 in Western blots, as well as a simultaneous increase in vesicle number and decrease in FRET intensity, indicative of a Src-mediated conformational change in CFP/YFP-tagged WT-Cav1 pairs. We conclude that phosphorylation of Cav1 leads to separation or “spreading” of neighboring negatively charged N-terminal phosphotyrosine residues, promoting swelling of caveolae, followed by their release from the plasma membrane.
Collapse
Affiliation(s)
- Adriana M Zimnicka
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL 60612
| | - Yawer S Husain
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL 60612
| | - Ayesha N Shajahan
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL 60612
| | - Maria Sverdlov
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL 60612
| | - Oleg Chaga
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL 60612
| | - Zhenlong Chen
- Department of Anesthesiology, University of Illinois at Chicago, Chicago, IL 60612
| | - Peter T Toth
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL 60612
| | - Jennifer Klomp
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL 60612
| | - Andrei V Karginov
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL 60612
| | | | - Asrar B Malik
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL 60612 Center for Lung and Vascular Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612
| | - Richard D Minshall
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL 60612 Department of Anesthesiology, University of Illinois at Chicago, Chicago, IL 60612 Center for Lung and Vascular Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612
| |
Collapse
|
60
|
Hashimoto T, Tsuneki M, Foster TR, Santana JM, Bai H, Wang M, Hu H, Hanisch JJ, Dardik A. Membrane-mediated regulation of vascular identity. BIRTH DEFECTS RESEARCH. PART C, EMBRYO TODAY : REVIEWS 2016; 108:65-84. [PMID: 26992081 PMCID: PMC5310768 DOI: 10.1002/bdrc.21123] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 02/22/2016] [Indexed: 02/06/2023]
Abstract
Vascular diseases span diverse pathology, but frequently arise from aberrant signaling attributed to specific membrane-associated molecules, particularly the Eph-ephrin family. Originally recognized as markers of embryonic vessel identity, Eph receptors and their membrane-associated ligands, ephrins, are now known to have a range of vital functions in vascular physiology. Interactions of Ephs with ephrins at cell-to-cell interfaces promote a variety of cellular responses such as repulsion, adhesion, attraction, and migration, and frequently occur during organ development, including vessel formation. Elaborate coordination of Eph- and ephrin-related signaling among different cell populations is required for proper formation of the embryonic vessel network. There is growing evidence supporting the idea that Eph and ephrin proteins also have postnatal interactions with a number of other membrane-associated signal transduction pathways, coordinating translation of environmental signals into cells. This article provides an overview of membrane-bound signaling mechanisms that define vascular identity in both the embryo and the adult, focusing on Eph- and ephrin-related signaling. We also discuss the role and clinical significance of this signaling system in normal organ development, neoplasms, and vascular pathologies.
Collapse
Affiliation(s)
- Takuya Hashimoto
- The Department of Surgery and the Vascular Biology and Therapeutics Program, Yale University, New Haven, Connecticut
- Department of Surgery, VA Connecticut Healthcare Systems, West Haven, Connecticut
- Department of Vascular Surgery, The University of Tokyo, Tokyo, Japan
| | - Masayuki Tsuneki
- Division of Cancer Biology, National Cancer Center Research Institute, Tokyo, Japan
| | - Trenton R. Foster
- The Department of Surgery and the Vascular Biology and Therapeutics Program, Yale University, New Haven, Connecticut
| | - Jeans M. Santana
- The Department of Surgery and the Vascular Biology and Therapeutics Program, Yale University, New Haven, Connecticut
| | - Hualong Bai
- The Department of Surgery and the Vascular Biology and Therapeutics Program, Yale University, New Haven, Connecticut
- Department of Vascular Surgery, The 1st Affiliated Hospital of Zhengzhou University, Henan, China
| | - Mo Wang
- The Department of Surgery and the Vascular Biology and Therapeutics Program, Yale University, New Haven, Connecticut
| | - Haidi Hu
- The Department of Surgery and the Vascular Biology and Therapeutics Program, Yale University, New Haven, Connecticut
| | - Jesse J. Hanisch
- The Department of Surgery and the Vascular Biology and Therapeutics Program, Yale University, New Haven, Connecticut
| | - Alan Dardik
- The Department of Surgery and the Vascular Biology and Therapeutics Program, Yale University, New Haven, Connecticut
- Department of Surgery, VA Connecticut Healthcare Systems, West Haven, Connecticut
| |
Collapse
|
61
|
Lin Y, Wang P, Liu YH, Shang XL, Chen LY, Xue YX. DT(270-326) , a Truncated Diphtheria Toxin, Increases Blood-Tumor Barrier Permeability by Upregulating the Expression of Caveolin-1. CNS Neurosci Ther 2016; 22:477-87. [PMID: 26861687 DOI: 10.1111/cns.12519] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 01/07/2016] [Accepted: 01/07/2016] [Indexed: 01/13/2023] Open
Abstract
AIM The nontoxic mutant of diphtheria toxin (DT) has been demonstrated to act as a receptor-specific carrier protein to delivery drug into brain. Recent research showed that the truncated "receptorless" DT was still capable of being internalized into cells. This study investigated the effects and potential mechanisms of DT(270-326) , a truncated "receptorless" DT, on the permeability of the blood-tumor barrier (BTB). METHODS BTB and GECs were subjected to DT(270-326) treatment. HRP flux assays, immunofluorescent, co-immunoprecipitation, Western blot, CCK-8, and Flow cytometry analysis were used to evaluate the effects of DT(270-326) administration. RESULTS Our results revealed that 5 μM of DT(270-326) significantly increased the permeability of BTBin vitro, which reached its peak at 6 h. The permeability was reduced by pretreatment with filipinIII. DT(270-326) co-localized and interacted with caveolin-1 via its caveolin-binding motif. The mRNA and protein expression levels of caveolin-1 were identical with the changes of BTB permeability. The upregulated expression of caveolin-1 was associated with Src kinase-dependent tyrosine phosphorylation of caveolin-1, which subsequently induced phosphorylation and inactivation of the transcription factor Egr-1. The combination of DT(270-326) with doxorubicin significantly enhanced the loss of cell viability and apoptosis of U87 glioma cells in contrast to doxorubicin alone. CONCLUSIONS DT(270-326) might provide a novel strategy to increase the delivery of macromolecular therapeutic agents across the BTB.
Collapse
Affiliation(s)
- Yang Lin
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang, China.,Institute of Pathology and Pathophysiology, China Medical University, Shenyang, China
| | - Ping Wang
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang, China.,Institute of Pathology and Pathophysiology, China Medical University, Shenyang, China
| | - Yun-Hui Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiu-Li Shang
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Liang-Yu Chen
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yi-Xue Xue
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang, China.,Institute of Pathology and Pathophysiology, China Medical University, Shenyang, China
| |
Collapse
|
62
|
Cheng JPX, Mendoza-Topaz C, Howard G, Chadwick J, Shvets E, Cowburn AS, Dunmore BJ, Crosby A, Morrell NW, Nichols BJ. Caveolae protect endothelial cells from membrane rupture during increased cardiac output. J Cell Biol 2016; 211:53-61. [PMID: 26459598 PMCID: PMC4602045 DOI: 10.1083/jcb.201504042] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
This study provides direct in vivo evidence that endothelial cell caveolae disassemble and hence flatten out under increased mechanical stress and that the presence of caveolae protects endothelial cell plasma membranes from damage. Caveolae are strikingly abundant in endothelial cells, yet the physiological functions of caveolae in endothelium and other tissues remain incompletely understood. Previous studies suggest a mechanoprotective role, but whether this is relevant under the mechanical forces experienced by endothelial cells in vivo is unclear. In this study we have sought to determine whether endothelial caveolae disassemble under increased hemodynamic forces, and whether caveolae help prevent acute rupture of the plasma membrane under these conditions. Experiments in cultured cells established biochemical assays for disassembly of caveolar protein complexes, and assays for acute loss of plasma membrane integrity. In vivo, we demonstrate that caveolae in endothelial cells of the lung and cardiac muscle disassemble in response to acute increases in cardiac output. Electron microscopy and two-photon imaging reveal that the plasma membrane of microvascular endothelial cells in caveolin 1−/− mice is much more susceptible to acute rupture when cardiac output is increased. These data imply that mechanoprotection through disassembly of caveolae is important for endothelial function in vivo.
Collapse
Affiliation(s)
- Jade P X Cheng
- Medical Research Council, Laboratory of Molecular Biology, University of Cambridge, Cambridge CB2 1TN, UK
| | - Carolina Mendoza-Topaz
- Medical Research Council, Laboratory of Molecular Biology, University of Cambridge, Cambridge CB2 1TN, UK
| | - Gillian Howard
- Medical Research Council, Laboratory of Molecular Biology, University of Cambridge, Cambridge CB2 1TN, UK
| | - Jessica Chadwick
- Medical Research Council, Laboratory of Molecular Biology, University of Cambridge, Cambridge CB2 1TN, UK
| | - Elena Shvets
- Medical Research Council, Laboratory of Molecular Biology, University of Cambridge, Cambridge CB2 1TN, UK
| | - Andrew S Cowburn
- Department of Physiology, University of Cambridge, Cambridge CB2 1TN, UK
| | | | - Alexi Crosby
- Department of Medicine, University of Cambridge, Cambridge CB2 1TN, UK
| | | | - Benjamin J Nichols
- Medical Research Council, Laboratory of Molecular Biology, University of Cambridge, Cambridge CB2 1TN, UK
| |
Collapse
|
63
|
Piegeler T, Schläpfer M, Dull RO, Schwartz DE, Borgeat A, Minshall RD, Beck-Schimmer B. Clinically relevant concentrations of lidocaine and ropivacaine inhibit TNFα-induced invasion of lung adenocarcinoma cells in vitro by blocking the activation of Akt and focal adhesion kinase. Br J Anaesth 2016; 115:784-91. [PMID: 26475807 DOI: 10.1093/bja/aev341] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Matrix-metalloproteinases (MMP) and cancer cell invasion are crucial for solid tumour metastasis. Important signalling events triggered by inflammatory cytokines, such as tumour necrosis factor α (TNFα), include Src-kinase-dependent activation of Akt and focal adhesion kinase (FAK) and phosphorylation of caveolin-1. Based on previous studies where we demonstrated amide-type local anaesthetics block TNFα-induced Src activation in malignant cells, we hypothesized that local anaesthetics might also inhibit the activation and/or phosphorylation of Akt, FAK and caveolin-1, thus attenuating MMP release and invasion of malignant cells. METHODS NCI-H838 lung adenocarcinoma cells were incubated with ropivacaine or lidocaine (1 nM-100 µM) in absence/presence of TNFα (20 ng ml(-1)) for 20 min or 4 h, respectively. Activation/phosphorylation of Akt, FAK and caveolin-1 were evaluated by Western blot, and MMP-9 secretion was determined by enzyme-linked immunosorbent assay. Tumour cell migration (electrical wound-healing assay) and invasion were also assessed. RESULTS Ropivacaine (1 nM-100 μM) and lidocaine (1-100 µM) significantly reduced TNFα-induced activation/phosphorylation of Akt, FAK and caveolin-1 in NCI-H838 cells. MMP-9 secretion triggered by TNFα was significantly attenuated by both lidocaine and ropivacaine (half-maximal inhibitory concentration [IC50]=3.29×10(-6) M for lidocaine; IC50=1.52×10(-10) M for ropivacaine). The TNFα-induced increase in invasion was completely blocked by both lidocaine (10 µM) and ropivacaine (1 µM). CONCLUSIONS At clinically relevant concentrations both ropivacaine and lidocaine blocked tumour cell invasion and MMP-9 secretion by attenuating Src-dependent inflammatory signalling events. Although determined entirely in vitro, these findings provide significant insight into the potential mechanism by which local anaesthetics might diminish metastasis.
Collapse
Affiliation(s)
- T Piegeler
- Institute of Anaesthesiology, University Hospital Zurich, Raemistrasse 100, 8091 Zurich, Switzerland Department of Anaesthesiology, University of Illinois at Chicago, 835 S. Wolcott Ave., Chicago, IL 60612, USA
| | - M Schläpfer
- Institute of Anaesthesiology, University Hospital Zurich, Raemistrasse 100, 8091 Zurich, Switzerland Institute of Physiology, Zurich Center for Integrative Human Physiology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - R O Dull
- Department of Anaesthesiology, University of Illinois at Chicago, 835 S. Wolcott Ave., Chicago, IL 60612, USA Department of Bioengineering, University of Illinois at Chicago, 835 S. Wolcott Ave., Chicago, IL 60612, USA
| | - D E Schwartz
- Department of Anaesthesiology, University of Illinois at Chicago, 835 S. Wolcott Ave., Chicago, IL 60612, USA
| | - A Borgeat
- Department of Anaesthesiology, Balgrist Orthopaedic University Hospital Zurich, Forchstrasse 340, 8008 Zurich, Switzerland
| | - R D Minshall
- Department of Anaesthesiology, University of Illinois at Chicago, 835 S. Wolcott Ave., Chicago, IL 60612, USA Department of Pharmacology, University of Illinois at Chicago, 835 S. Wolcott Ave., Chicago, IL 60612, USA Department of Bioengineering, University of Illinois at Chicago, 835 S. Wolcott Ave., Chicago, IL 60612, USA
| | - B Beck-Schimmer
- Institute of Anaesthesiology, University Hospital Zurich, Raemistrasse 100, 8091 Zurich, Switzerland Department of Anaesthesiology, University of Illinois at Chicago, 835 S. Wolcott Ave., Chicago, IL 60612, USA Institute of Physiology, Zurich Center for Integrative Human Physiology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| |
Collapse
|
64
|
Singh S, Liu S, Rockey DC. Caveolin-1 is upregulated in hepatic stellate cells but not sinusoidal endothelial cells after liver injury. Tissue Cell 2016; 48:126-32. [PMID: 26847875 DOI: 10.1016/j.tice.2015.12.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 12/30/2015] [Accepted: 12/30/2015] [Indexed: 01/03/2023]
Abstract
Sinusoidal endothelial cells (SEC) and hepatic stellate cells (HSC) are closely associated specialized vascular cells residing in the hepatic sinusoid. These cells have been shown to play important roles in many different pathophysiologic processes, in particular in liver fibrosis/cirrhosis and portal hypertension. Caveolin-1 functions as a scaffolding protein, and has a variety of functions including in many disease states, such as liver cirrhosis. Although previous studies have shown that in the injured rat liver, caveolin-1 is upregulated, the precise cells in which remains unclear. Therefore, the purpose of this study was to clarify the cell type (or types) in which caveolin-1 is expressed in normal and injured rat liver. We have utilized both detailed immunohistochemical labeling with cell specific markers as well as cell isolation techniques (isolating sinusoidal endothelial cells, HSCs, and hepatocytes) in normal and injured (bile duct ligation) rat liver. We show here that in the normal liver caveolin-1 is expressed predominantly in HSCs and SECs but after liver injury there is upregulation of caveolin-1 in HSCs, but not in SECs. These data have functional implications for the cells in which caveolin-1 is regulated.
Collapse
Affiliation(s)
- Shweta Singh
- Medical University of South Carolina, Department of Medicine, Charleston, SC 29425, United States
| | - Songling Liu
- Medical University of South Carolina, Department of Medicine, Charleston, SC 29425, United States
| | - Don C Rockey
- Medical University of South Carolina, Department of Medicine, Charleston, SC 29425, United States.
| |
Collapse
|
65
|
Cheng JPX, Nichols BJ. Caveolae: One Function or Many? Trends Cell Biol 2015; 26:177-189. [PMID: 26653791 DOI: 10.1016/j.tcb.2015.10.010] [Citation(s) in RCA: 176] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 10/16/2015] [Accepted: 10/22/2015] [Indexed: 02/07/2023]
Abstract
Caveolae are small, bulb-shaped plasma membrane invaginations. Mutations that ablate caveolae lead to diverse phenotypes in mice and humans, making it challenging to uncover their molecular mechanisms. Caveolae have been described to function in endocytosis and transcytosis (a specialized form of endocytosis) and in maintaining membrane lipid composition, as well as acting as signaling platforms. New data also support a model in which the central function of caveolae could be related to the protection of cells from mechanical stress within the plasma membrane. We present evidence for these diverse roles and consider in vitro and in vivo experiments confirming a mechanoprotective role. We conclude by highlighting current gaps in our knowledge of how mechanical signals may be transduced by caveolae.
Collapse
Affiliation(s)
- Jade P X Cheng
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| | - Benjamin J Nichols
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| |
Collapse
|
66
|
Abstract
Spatial organization of the plasma membrane is an essential feature of the cellular response to external stimuli. Receptor organization at the cell surface mediates transmission of extracellular stimuli to intracellular signalling molecules and effectors that impact various cellular processes including cell differentiation, metabolism, growth, migration and apoptosis. Membrane domains include morphologically distinct plasma membrane invaginations such as clathrin-coated pits and caveolae, but also less well-defined domains such as lipid rafts and the galectin lattice. In the present chapter, we will discuss interaction between caveolae, lipid rafts and the galectin lattice in the control of cancer cell signalling.
Collapse
|
67
|
Cerecedo D, Martínez‐Vieyra I, Maldonado‐García D, Hernández‐González E, Winder SJ. Association of Membrane/Lipid Rafts With the Platelet Cytoskeleton and the Caveolin PY14: Participation in the Adhesion Process. J Cell Biochem 2015; 116:2528-40. [DOI: 10.1002/jcb.25197] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 04/14/2015] [Indexed: 11/11/2022]
Affiliation(s)
- Doris Cerecedo
- Laboratorio de HematobiologíaEscuela Nacional de Medicina y Homeopatía (ENMH)Instituto Politécnico Nacional (IPN)Mexico CityMexico
| | - Ivette Martínez‐Vieyra
- Laboratorio de HematobiologíaEscuela Nacional de Medicina y Homeopatía (ENMH)Instituto Politécnico Nacional (IPN)Mexico CityMexico
| | - Deneb Maldonado‐García
- Departamento de Biología CelularCentro de Investigación y de Estudios Avanzados del IPN (Cinvestav‐IPN)Mexico CityMexico
| | - Enrique Hernández‐González
- Departamento de Biología CelularCentro de Investigación y de Estudios Avanzados del IPN (Cinvestav‐IPN)Mexico CityMexico
| | - Steve J. Winder
- Department of Biomedical ScienceUniversity of SheffieldSheffieldUK
| |
Collapse
|
68
|
Tillu VA, Kovtun O, McMahon KA, Collins BM, Parton RG. A phosphoinositide-binding cluster in cavin1 acts as a molecular sensor for cavin1 degradation. Mol Biol Cell 2015; 26:3561-9. [PMID: 26269585 PMCID: PMC4603927 DOI: 10.1091/mbc.e15-06-0359] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 08/06/2015] [Indexed: 11/30/2022] Open
Abstract
Cavin1 degradation is primarily mediated by the ubiquitin proteasome system. The phosphoinositide-binding region in cavin1 acts as a molecular switch for cavin1 degradation upon release of cavins in cytosol. This mechanism may help to maintain low levels of free cytosolic cavins at steady state. Caveolae are abundant surface organelles implicated in a range of cellular processes. Two classes of proteins work together to generate caveolae: integral membrane proteins termed caveolins and cytoplasmic coat proteins called cavins. Caveolae respond to membrane stress by releasing cavins into the cytosol. A crucial aspect of this model is tight regulation of cytosolic pools of cavin under resting conditions. We now show that a recently identified region of cavin1 that can bind phosphoinositide (PI) lipids is also a major site of ubiquitylation. Ubiquitylation of lysines within this site leads to rapid proteasomal degradation. In cells that lack caveolins and caveolae, cavin1 is cytosolic and rapidly degraded as compared with cells in which cavin1 is associated with caveolae. Membrane stretching causes caveolar disassembly, release of cavin complexes into the cytosol, and increased proteasomal degradation of wild-type cavin1 but not mutant cavin1 lacking the major ubiquitylation site. Release of cavin1 from caveolae thus leads to exposure of key lysine residues in the PI-binding region, acting as a trigger for cavin1 ubiquitylation and down-regulation. This mutually exclusive PI-binding/ubiquitylation mechanism may help maintain low levels of cytosolic cavin1 in resting cells, a prerequisite for cavins acting as signaling modules following release from caveolae.
Collapse
Affiliation(s)
- Vikas A Tillu
- Institute for Molecular Bioscience, University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Oleksiy Kovtun
- Institute for Molecular Bioscience, University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Kerrie-Ann McMahon
- Institute for Molecular Bioscience, University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Brett M Collins
- Institute for Molecular Bioscience, University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Robert G Parton
- Institute for Molecular Bioscience, University of Queensland, St. Lucia, Queensland 4072, Australia Centre for Microscopy and Microanalysis, University of Queensland, St. Lucia, Queensland 4072, Australia
| |
Collapse
|
69
|
Abstract
Caveolae are membrane organelles that play roles in glucose and lipid metabolism and in vascular function. Formation of caveolae requires caveolins and cavins. The make-up of caveolae and their density is considered to reflect cell-specific transcriptional control mechanisms for caveolins and cavins, but knowledge regarding regulation of caveolae genes is incomplete. Myocardin (MYOCD) and its relative MRTF-A (MKL1) are transcriptional coactivators that control genes which promote smooth muscle differentiation. MRTF-A communicates changes in actin polymerization to nuclear gene transcription. Here we tested if myocardin family proteins control biogenesis of caveolae via activation of caveolin and cavin transcription. Using human coronary artery smooth muscle cells we found that jasplakinolide and latrunculin B (LatB), substances that promote and inhibit actin polymerization, increased and decreased protein levels of caveolins and cavins, respectively. The effect of LatB was associated with reduced mRNA levels for these genes and this was replicated by the MRTF inhibitor CCG-1423 which was non-additive with LatB. Overexpression of myocardin and MRTF-A caused 5-10-fold induction of caveolins whereas cavin-1 and cavin-2 were induced 2-3-fold. PACSIN2 also increased, establishing positive regulation of caveolae genes from three families. Full regulation of CAV1 was retained in its proximal promoter. Knock down of the serum response factor (SRF), which mediates many of the effects of myocardin, decreased cavin-1 but increased caveolin-1 and -2 mRNAs. Viral transduction of myocardin increased the density of caveolae 5-fold in vitro. A decrease of CAV1 was observed concomitant with a decrease of the smooth muscle marker calponin in aortic aneurysms from mice (C57Bl/6) infused with angiotensin II. Human expression data disclosed correlations of MYOCD with CAV1 in a majority of human tissues and in the heart, correlation with MKL2 (MRTF-B) was observed. The myocardin family of transcriptional coactivators therefore drives formation of caveolae and this effect is largely independent of SRF.
Collapse
|
70
|
Nassar ZD, Hill MM, Parton RG, Francois M, Parat MO. Non-caveolar caveolin-1 expression in prostate cancer cells promotes lymphangiogenesis. Oncoscience 2015; 2:635-45. [PMID: 26328273 PMCID: PMC4549361 DOI: 10.18632/oncoscience.180] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 07/30/2015] [Indexed: 12/31/2022] Open
Abstract
Lymphangiogenesis allows prostate cancer (PCa) lymphatic metastasis, which is associated with poor prognosis and short survival rates. Caveolin-1 (Cav-1) is a membrane protein localized in caveolae, but also exists in non-caveolar, cellular or extracellular forms. Cav-1 is overexpressed in PCa, promotes prostate tumour progression and metastasis. We investigated the effect of caveolar and non-caveolar Cav-1 on PCa lymphangiogenic potential. Cav-1 was down-regulated in PC3 and DU145, and ectopically expressed in LNCaP cells. The effect of PCa cell conditioned media on lymphatic endothelial cell (LEC) viability, chemotaxis, chemokinesis and differentiation was assessed. The effect of Cav-1 on PCa cell expression of lymphangiogenesis-modulators VEGF-A and VEGF-C was assessed using qPCR and ELISA of the conditioned medium. Non-caveolar Cav-1, whether exogenous or endogenous (in LNCaP and PC3 cells, respectively) enhanced LEC proliferation, migration and differentiation. In contrast, caveolar Cav-1 (in DU145 cells) did not significantly affect PCa cell lymphangiogenic potential. The effect of non-caveolar Cav-1 on LECs was mediated by increased expression of VEGF-A as demonstrated by neutralization by anti-VEGF-A antibody. This study unveils for the first time a crucial role for non-caveolar Cav-1 in modulating PCa cell expression of VEGF-A and subsequent LEC proliferation, migration and tube formation.
Collapse
Affiliation(s)
- Zeyad D Nassar
- The University of Queensland, School of Pharmacy, QLD, Australia
| | - Michelle M Hill
- The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, QLD, Australia
| | - Robert G Parton
- The University of Queensland, Institute for Molecular Bioscience, QLD, Australia
| | - Mathias Francois
- The University of Queensland, Institute for Molecular Bioscience, QLD, Australia
| | | |
Collapse
|
71
|
Echarri A, Del Pozo MA. Caveolae - mechanosensitive membrane invaginations linked to actin filaments. J Cell Sci 2015; 128:2747-58. [PMID: 26159735 DOI: 10.1242/jcs.153940] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
An essential property of the plasma membrane of mammalian cells is its plasticity, which is required for sensing and transmitting of signals, and for accommodating the tensional changes imposed by its environment or its own biomechanics. Caveolae are unique invaginated membrane nanodomains that play a major role in organizing signaling, lipid homeostasis and adaptation to membrane tension. Caveolae are frequently associated with stress fibers, a major regulator of membrane tension and cell shape. In this Commentary, we discuss recent studies that have provided new insights into the function of caveolae and have shown that trafficking and organization of caveolae are tightly regulated by stress-fiber regulators, providing a functional link between caveolae and stress fibers. Furthermore, the tension in the plasma membrane determines the curvature of caveolae because they flatten at high tension and invaginate at low tension, thus providing a tension-buffering system. Caveolae also regulate multiple cellular pathways, including RhoA-driven actomyosin contractility and other mechanosensitive pathways, suggesting that caveolae could couple mechanotransduction pathways to actin-controlled changes in tension through their association with stress fibers. Therefore, we argue here that the association of caveolae with stress fibers could provide an important strategy for cells to deal with mechanical stress.
Collapse
Affiliation(s)
- Asier Echarri
- Integrin Signaling Laboratory, Cell Biology & Physiology Program, Cell & Developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Melchor Fernández Almagro, 3, Madrid 28029, Spain
| | - Miguel A Del Pozo
- Integrin Signaling Laboratory, Cell Biology & Physiology Program, Cell & Developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Melchor Fernández Almagro, 3, Madrid 28029, Spain
| |
Collapse
|
72
|
Dasgupta N, Kumar Thakur B, Ta A, Das S. Caveolin-1 is transcribed from a hypermethylated promoter to mediate colonocyte differentiation and apoptosis. Exp Cell Res 2015; 334:323-36. [DOI: 10.1016/j.yexcr.2015.03.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 03/23/2015] [Accepted: 03/24/2015] [Indexed: 11/28/2022]
|
73
|
The miR-199a/Brm/EGR1 axis is a determinant of anchorage-independent growth in epithelial tumor cell lines. Sci Rep 2015; 5:8428. [PMID: 25673149 PMCID: PMC4325331 DOI: 10.1038/srep08428] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 01/15/2015] [Indexed: 11/08/2022] Open
Abstract
In epithelial cells, miRNA-199a-5p/-3p and Brm, a catalytic subunit of the SWI/SNF complex were previously shown to form a double-negative feedback loop through EGR1, by which human cancer cell lines tend to fall into either of the steady states, types 1 [miR-199a(−)/Brm(+)/EGR1(−)] and 2 [miR-199a(+)/Brm (−)/EGR1(+)]. We show here, that type 2 cells, unlike type 1, failed to form colonies in soft agar, and that CD44, MET, CAV1 and CAV2 (miR-199a targets), all of which function as plasma membrane sensors and can co-localize in caveolae, are expressed specifically in type 1 cells. Single knockdown of any of them suppressed anchorage-independent growth of type 1 cells, indicating that the miR-199a/Brm/EGR1 axis is a determinant of anchorage-independent growth. Importantly, two coherent feedforward loops are integrated into this axis, supporting the robustness of type 1-specific gene expression and exemplifying how the miRNA-target gene relationship can be stably sustained in a variety of epithelial tumors.
Collapse
|
74
|
|
75
|
Bian F, Yang X, Zhou F, Wu PH, Xing S, Xu G, Li W, Chi J, Ouyang C, Zhang Y, Xiong B, Li Y, Zheng T, Wu D, Chen X, Jin S. C-reactive protein promotes atherosclerosis by increasing LDL transcytosis across endothelial cells. Br J Pharmacol 2014; 171:2671-84. [PMID: 24517733 DOI: 10.1111/bph.12616] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 09/30/2013] [Accepted: 10/01/2013] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND AND PURPOSE The retention of plasma low-density lipoprotein (LDL) particles in subendothelial space following transcytosis across the endothelium is the initial step of atherosclerosis. Whether or not C-reactive protein (CRP) can directly affect the transcytosis of LDL is not clear. Here we have examined the effect of CRP on transcytosis of LDL across endothelial cells and have explored the underlying mechanisms. EXPERIMENTAL APPROACH Effects of CRP on transcytosis of FITC-labelled LDL were examined with human umbilical vein endothelial cells and venous rings in vitro and, in vivo, ApoE(-/-) mice. Laser scanning confocal microscopy, immunohistochemistry and Oil Red O staining were used to assay LDL. KEY RESULTS CRP increased transcytosis of LDL. An NADPH oxidase inhibitor, diphenylene iodonium, and the reducing agent, dithiothreitol partly or completely blocked CRP-stimulated increase of LDL transcytosis. The PKC inhibitor, bisindolylmaleimide I and the Src kinase inhibitor, PP2, blocked the trafficking of the molecules responsible for transcytosis. Confocal imaging analysis revealed that CRP stimulated LDL uptake by endothelial cells and vessel walls. In ApoE(-/-) mice, CRP significantly promoted early changes of atherosclerosis, which were blocked by inhibitors of transcytosis. CONCLUSIONS AND IMPLICATIONS CRP promoted atherosclerosis by directly increasing the transcytosis of LDL across endothelial cells and increasing LDL retention in vascular walls. These actions of CRP were associated with generation of reactive oxygen species, activation of PKC and Src, and translocation of caveolar or soluble forms of the N-ethylmaleimide-sensitive factor attachment protein.
Collapse
Affiliation(s)
- Fang Bian
- Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology, The Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, Wuhan, Hubei, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Nassar ZD, Moon H, Duong T, Neo L, Hill MM, Francois M, Parton RG, Parat MO. PTRF/Cavin-1 decreases prostate cancer angiogenesis and lymphangiogenesis. Oncotarget 2014; 4:1844-55. [PMID: 24123650 PMCID: PMC3858569 DOI: 10.18632/oncotarget.1300] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Caveolae are specialized plasma membrane subdomains implicated in cellular functions such as migration, signalling and trafficking. Caveolin-1 and polymerase I and transcript release factor (PTRF)/cavin-1 are essential for caveola formation. Caveolin-1 is overexpressed and secreted in prostate tumors and promotes aggressiveness and angiogenesis. In contrast, a lack of PTRF expression is reported in prostate cancer, and ectopic PTRF expression in prostate cancer cells inhibits tumor growth and metastasis. We experimentally manipulated PTRF expression in three prostate cancer cell lines, namely the caveolin-1 positive cells PC3 and DU145 and the caveolin-1-negative LNCaP cells, to evaluate angiogenesis- and lymphangiogenesis-regulating functions of PTRF. We show that the conditioned medium of PTRF-expressing prostate cancer cells decreases ECs proliferation, migration and differentiation in vitro and ex vivo. This can occur independently from caveolin-1 expression and secretion or caveola formation, since the anti-angiogenic effects of PTRF were detected in caveolin-1-negative LNCaP cells. Additionally, PTRF expression in PC3 cells significantly decreased blood and lymphatic vessel densities in orthotopic tumors in mice. Our results suggest that the absence of PTRF in prostate cancer cells contributes significantly to tumour progression and metastasis by promoting the angiogenesis and lymphangiogenesis potential of the cancer cells, and this could be exploited for therapy.
Collapse
Affiliation(s)
- Zeyad D Nassar
- The University of Queensland, School of Pharmacy, QLD, Australia
| | | | | | | | | | | | | | | |
Collapse
|
77
|
Shvets E, Ludwig A, Nichols BJ. News from the caves: update on the structure and function of caveolae. Curr Opin Cell Biol 2014; 29:99-106. [PMID: 24908346 DOI: 10.1016/j.ceb.2014.04.011] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 04/03/2014] [Accepted: 04/24/2014] [Indexed: 10/25/2022]
Abstract
Recent data from the study of the cell biology of caveolae have provided insights both into how these flask-shaped invaginations of the plasma membrane are formed and how they may function in different contexts. This review discusses experiments that analyse the composition and ultrastructural distribution of protein complexes responsible for generating caveolae, that suggest functions for caveolae in response to mechanical stress or damage to the plasma membrane, that show that caveolae may have an important role during the signalling events for regulation of metabolism, and that imply that caveolae can act as endocytic vesicles at the plasma membrane. We also highlight unexpected roles for caveolar proteins in regulating circadian rhythms and new insights into the way in which caveolae may be involved in fatty acid uptake in the intestine. Current outstanding questions in the field are emphasised.
Collapse
Affiliation(s)
| | - Alexander Ludwig
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | | |
Collapse
|
78
|
Yeh YC, Tang MJ, Parekh AB. Caveolin-1 alters the pattern of cytoplasmic Ca2+ oscillations and Ca2+-dependent gene expression by enhancing leukotriene receptor desensitization. J Biol Chem 2014; 289:17843-53. [PMID: 24755228 PMCID: PMC4067216 DOI: 10.1074/jbc.m114.553453] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Cytoplasmic Ca2+ oscillations constitute a widespread signaling mode and are often generated in response to stimulation of G protein-coupled receptors that activate phospholipase C. In mast cells, repetitive Ca2+ oscillations can be evoked by modest activation of cysteinyl leukotriene type I receptors by the physiological trigger, leukotriene C4. The Ca2+ oscillations arise from regenerative Ca2+ release from inositol 1,4,5-trisphosphate-sensitive stores followed by Ca2+ entry through store-operated Ca2+ channels, and the latter selectively activate the Ca2+-dependent transcription factor NFAT. The cysteinyl leukotriene type I receptors desensitize through negative feedback by protein kinase C, which terminates the oscillatory Ca2+ response. Here, we show that the scaffolding protein caveolin-1 has a profound effect on receptor-driven Ca2+ signals and downstream gene expression. Overexpression of caveolin-1 increased receptor-phospholipase C coupling, resulting in initially larger Ca2+ release transients of longer duration but which then ran down quickly. NFAT-activated gene expression, triggered in response to the Ca2+ signal, was also reduced by caveolin-1. Mutagenesis studies revealed that these effects required a functional scaffolding domain within caveolin-1. Mechanistically, the increase in Ca2+ release in the presence of caveolin-1 activated protein kinase C, which accelerated homologous desensitization of the leukotriene receptor and thereby terminated the oscillatory Ca2+ response. Our results reveal that caveolin-1 is a bimodal regulator of receptor-dependent Ca2+ signaling, which fine-tunes the spatial and temporal profile of the Ca2+ rise and thereby its ability to activate the NFAT pathway.
Collapse
Affiliation(s)
- Yi-Chun Yeh
- From the Department of Physiology, Anatomy, and Genetics, University of Oxford, Parks Road, Oxford OX1 3PT, United Kingdom and
| | - Ming-Jer Tang
- the Department of Physiology, National Cheng Kung University Medical College, Tainan and Department of Life Science, Tunghai University, Taichung 40704, Taiwan
| | - Anant B Parekh
- From the Department of Physiology, Anatomy, and Genetics, University of Oxford, Parks Road, Oxford OX1 3PT, United Kingdom and
| |
Collapse
|
79
|
Faggi F, Mitola S, Sorci G, Riuzzi F, Donato R, Codenotti S, Poliani PL, Cominelli M, Vescovi R, Rossi S, Calza S, Colombi M, Penna F, Costelli P, Perini I, Sampaolesi M, Monti E, Fanzani A. Phosphocaveolin-1 enforces tumor growth and chemoresistance in rhabdomyosarcoma. PLoS One 2014; 9:e84618. [PMID: 24427291 PMCID: PMC3888403 DOI: 10.1371/journal.pone.0084618] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 11/15/2013] [Indexed: 12/24/2022] Open
Abstract
Caveolin-1 (Cav-1) can ambiguously behave as either tumor suppressor or oncogene depending on its phosphorylation state and the type of cancer. In this study we show that Cav-1 was phosphorylated on tyrosine 14 (pCav-1) by Src-kinase family members in various human cell lines and primary mouse cultures of rhabdomyosarcoma (RMS), the most frequent soft-tissue sarcoma affecting childhood. Cav-1 overexpression in the human embryonal RD or alveolar RH30 cells yielded increased pCav-1 levels and reinforced the phosphorylation state of either ERK or AKT kinase, respectively, in turn enhancing in vitro cell proliferation, migration, invasiveness and chemoresistance. In contrast, reducing the pCav-1 levels by administration of a Src-kinase inhibitor or through targeted Cav-1 silencing counteracted the malignant in vitro phenotype of RMS cells. Consistent with these results, xenotransplantation of Cav-1 overexpressing RD cells into nude mice resulted in substantial tumor growth in comparison to control cells. Taken together, these data point to pCav-1 as an important and therapeutically valuable target for overcoming the progression and multidrug resistance of RMS.
Collapse
Affiliation(s)
- Fiorella Faggi
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
- Interuniversity Institute of Myology (IIM), Italy
| | - Stefania Mitola
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Guglielmo Sorci
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Perugia, Italy
- Interuniversity Institute of Myology (IIM), Italy
| | - Francesca Riuzzi
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Perugia, Italy
- Interuniversity Institute of Myology (IIM), Italy
| | - Rosario Donato
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Perugia, Italy
- Interuniversity Institute of Myology (IIM), Italy
| | - Silvia Codenotti
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
- Interuniversity Institute of Myology (IIM), Italy
| | - Pietro Luigi Poliani
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Manuela Cominelli
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Raffaella Vescovi
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Stefania Rossi
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Stefano Calza
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Marina Colombi
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Fabio Penna
- Department of Experimental Medicine and Oncology, University of Torino, Torino, Italy
- Interuniversity Institute of Myology (IIM), Italy
| | - Paola Costelli
- Department of Experimental Medicine and Oncology, University of Torino, Torino, Italy
- Interuniversity Institute of Myology (IIM), Italy
| | - Ilaria Perini
- Stem Cell Research Institute, University Hospital Gasthuisberg, Leuven, Belgium
| | - Maurilio Sampaolesi
- Stem Cell Research Institute, University Hospital Gasthuisberg, Leuven, Belgium
- Human Anatomy Section, University of Pavia, Pavia, Italy
- Interuniversity Institute of Myology (IIM), Italy
| | - Eugenio Monti
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Alessandro Fanzani
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
- Interuniversity Institute of Myology (IIM), Italy
- * E-mail:
| |
Collapse
|
80
|
Hernandez VJ, Weng J, Ly P, Pompey S, Dong H, Mishra L, Schwarz M, Anderson RGW, Michaely P. Cavin-3 dictates the balance between ERK and Akt signaling. eLife 2013; 2:e00905. [PMID: 24069528 PMCID: PMC3780650 DOI: 10.7554/elife.00905] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2013] [Accepted: 08/14/2013] [Indexed: 12/22/2022] Open
Abstract
Cavin-3 is a tumor suppressor protein of unknown function. Using both in vivo and in vitro approaches, we show that cavin-3 dictates the balance between ERK and Akt signaling. Loss of cavin-3 increases Akt signaling at the expense of ERK, while gain of cavin-3 increases ERK signaling at the expense Akt. Cavin-3 facilitates signal transduction to ERK by anchoring caveolae to the membrane skeleton of the plasma membrane via myosin-1c. Caveolae are lipid raft specializations that contain an ERK activation module and loss of the cavin-3 linkage reduces the abundance of caveolae, thereby separating this ERK activation module from signaling receptors. Loss of cavin-3 promotes Akt signaling through suppression of EGR1 and PTEN. The in vitro consequences of the loss of cavin-3 include induction of Warburg metabolism (aerobic glycolysis), accelerated cell proliferation, and resistance to apoptosis. The in vivo consequences of cavin-3 knockout are increased lactate production and cachexia. DOI:http://dx.doi.org/10.7554/eLife.00905.001.
Collapse
Affiliation(s)
- Victor J Hernandez
- Department of Cell Biology , University of Texas Southwestern Medical Center , Dallas , United States
| | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Nassar ZD, Hill MM, Parton RG, Parat MO. Caveola-forming proteins caveolin-1 and PTRF in prostate cancer. Nat Rev Urol 2013; 10:529-36. [PMID: 23938946 DOI: 10.1038/nrurol.2013.168] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The expression of caveola-forming proteins is dysregulated in prostate cancer. Caveolae are flask-shaped invaginations of the plasma membrane that have roles in membrane trafficking and cell signalling. Members of two families of proteins--caveolins and cavins--are known to be required for the formation and functions of caveolae. Caveolin-1, the major structural protein of caveolae, is overexpresssed in prostate cancer and has been demonstrated to be involved in prostate cancer angiogenesis, growth and metastasis. Polymerase I and transcript release factor (PTRF) is the only cavin family member necessary for caveola formation. When exogenously expressed in prostate cancer cells, PTRF reduces aggressive potential, probably via both caveola-mediated and caveola-independent mechanisms. In addition, stromal PTRF expression decreases with progression of the disease. Evaluation of caveolin-1 antibodies in the clinical setting is underway and it is hoped that future studies will reveal the mechanisms of PTRF action, allowing its targeting for therapeutic purposes.
Collapse
Affiliation(s)
- Zeyad D Nassar
- School of Pharmacy, The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD 4102, Australia
| | | | | | | |
Collapse
|
82
|
Boscher C, Nabi IR. Galectin-3- and phospho-caveolin-1-dependent outside-in integrin signaling mediates the EGF motogenic response in mammary cancer cells. Mol Biol Cell 2013; 24:2134-45. [PMID: 23657817 PMCID: PMC3694797 DOI: 10.1091/mbc.e13-02-0095] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Galectin-3 binding to N-glycans promotes EGF receptor signaling to integrin in mammary cancer cells. This leads to phospho-caveolin-1–, Src-, and ILK-dependent activation of RhoA, resulting in actin reorganization in circular dorsal ruffles, cell migration, and fibronectin remodeling. In murine mammary epithelial cancer cells, galectin-3 binding to β1,6-acetylglucosaminyltransferase V (Mgat5)–modified N-glycans restricts epidermal growth factor (EGF) receptor mobility in the plasma membrane and acts synergistically with phospho-caveolin-1 to promote integrin-dependent matrix remodeling and cell migration. We show that EGF signaling to RhoA is galectin-3 and phospho-caveolin-1 dependent and promotes the formation of transient, actin-rich, circular dorsal ruffles (CDRs), cell migration, and fibronectin fibrillogenesis via Src- and integrin-linked kinase (ILK)–dependent signaling. ILK, Src, and galectin-3 also mediate EGF stimulation of caveolin-1 phosphorylation. Direct activation of integrin with Mn2+ induces galectin-3, ILK, and Src-dependent RhoA activation and caveolin-1 phosphorylation. This suggests that in response to EGF, galectin-3 enables outside-in integrin signaling stimulating phospho-caveolin-1–dependent RhoA activation, actin reorganization in CDRs, cell migration, and fibronectin remodeling. Similarly, caveolin-1/galectin-3–dependent EGF signaling induces motility, peripheral actin ruffling, and RhoA activation in MDA-MB-231 human breast carcinoma cells, but not HeLa cells. These studies define a galectin-3/phospho-caveolin-1/RhoA signaling module that mediates integrin signaling downstream of growth factor activation, leading to actin and matrix remodeling and tumor cell migration in metastatic cancer cells.
Collapse
Affiliation(s)
- Cecile Boscher
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | | |
Collapse
|
83
|
Senetta R, Stella G, Pozzi E, Sturli N, Massi D, Cassoni P. Caveolin-1 as a promoter of tumour spreading: when, how, where and why. J Cell Mol Med 2013; 17:325-36. [PMID: 23521716 PMCID: PMC3823014 DOI: 10.1111/jcmm.12030] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 01/15/2013] [Indexed: 11/29/2022] Open
Abstract
Caveolae are non-clathrin invaginations of the plasma membrane in most cell types; they are involved in signalling functions and molecule trafficking, thus modulating several biological functions, including cell growth, apoptosis and angiogenesis. The major structural protein in caveolae is caveolin-1, which is known to act as a key regulator in cancer onset and progression through its role as a tumour suppressor. Caveolin-1 can also promote cell proliferation, survival and metastasis as well as chemo- and radioresistance. Here, we discuss recent findings and novel concepts that support a role for caveolin-1 in cancer development and its distant spreading. We also address the potential application of caveolin-1 in tumour therapy and diagnosis.
Collapse
Affiliation(s)
- Rebecca Senetta
- Department of Medical Sciences, University of Turin, Turin, Italy
| | | | | | | | | | | |
Collapse
|
84
|
Parton RG, del Pozo MA. Caveolae as plasma membrane sensors, protectors and organizers. Nat Rev Mol Cell Biol 2013; 14:98-112. [PMID: 23340574 DOI: 10.1038/nrm3512] [Citation(s) in RCA: 648] [Impact Index Per Article: 58.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Caveolae are submicroscopic, plasma membrane pits that are abundant in many mammalian cell types. The past few years have seen a quantum leap in our understanding of the formation, dynamics and functions of these enigmatic structures. Caveolae have now emerged as vital plasma membrane sensors that can respond to plasma membrane stresses and remodel the extracellular environment. Caveolae at the plasma membrane can be removed by endocytosis to regulate their surface density or can be disassembled and their structural components degraded. Coat proteins, called cavins, work together with caveolins to regulate the formation of caveolae but also have the potential to dynamically transmit signals that originate in caveolae to various cellular destinations. The importance of caveolae as protective elements in the plasma membrane, and as membrane organizers and sensors, is highlighted by links between caveolae dysfunction and human diseases, including muscular dystrophies and cancer.
Collapse
Affiliation(s)
- Robert G Parton
- Institute for Molecular Bioscience and Centre for Microscopy and Microanalysis, University of Queensland, Brisbane, QLD 4072, Australia.
| | | |
Collapse
|
85
|
Goddard LM, Iruela-Arispe ML. Cellular and molecular regulation of vascular permeability. Thromb Haemost 2013; 109:407-15. [PMID: 23389236 DOI: 10.1160/th12-09-0678] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 01/30/2013] [Indexed: 02/07/2023]
Abstract
Vascular permeability is a highly coordinated process that integrates vesicular trafficking, complex junctional rearrangements, and refined cytoskeletal dynamics. In response to the extracellular environment, these three cellular activities have been previously assumed to work in parallel to regulate the passage of solutes between the blood and tissues. New developments in the area of vascular permeability, however have highlighted the interdependence between trans- and para-cellular pathways, the cross-communication between adherens and tight junctions, and the instructional role of pericytes on endothelial expression of barrier-related genes. Additionally, significant effort has been placed in understanding the molecular underpinings that contribute to barrier restoration following acute permeability events and in clarifying the importance of context-dependent signaling initiated by permeability mediators. Finally, recent findings have uncovered an unpredicted role for transcription factors in the coordination of vascular permeability and clarified how junctional complexes can transmit signals to the nucleus to control barrier function. The goal of this review is to provide a concise and updated view of vascular permeability, discuss the most recent advances in molecular and cellular regulation, and introduce integrated information on the central mechanisms involved in trans-endothelial transport.
Collapse
Affiliation(s)
- Lauren M Goddard
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA 90095, USA
| | | |
Collapse
|