51
|
Discovery of long-range inhibitory signaling to ensure single axon formation. Nat Commun 2017; 8:33. [PMID: 28652571 PMCID: PMC5484694 DOI: 10.1038/s41467-017-00044-2] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 04/27/2017] [Indexed: 01/12/2023] Open
Abstract
A long-standing question in neurodevelopment is how neurons develop a single axon and multiple dendrites from common immature neurites. Long-range inhibitory signaling from the growing axon is hypothesized to prevent outgrowth of other immature neurites and to differentiate them into dendrites, but the existence and nature of this inhibitory signaling remains unknown. Here, we demonstrate that axonal growth triggered by neurotrophin-3 remotely inhibits neurite outgrowth through long-range Ca2+ waves, which are delivered from the growing axon to the cell body. These Ca2+ waves increase RhoA activity in the cell body through calcium/calmodulin-dependent protein kinase I. Optogenetic control of Rho-kinase combined with computational modeling reveals that active Rho-kinase diffuses to growing other immature neurites and inhibits their outgrowth. Mechanistically, calmodulin-dependent protein kinase I phosphorylates a RhoA-specific GEF, GEF-H1, whose phosphorylation enhances its GEF activity. Thus, our results reveal that long-range inhibitory signaling mediated by Ca2+ wave is responsible for neuronal polarization. Emerging evidence suggests that gut microbiota influences immune function in the brain and may play a role in neurological diseases. Here, the authors offer in vivo evidence from a Drosophila model that supports a role for gut microbiota in modulating the progression of Alzheimer’s disease.
Collapse
|
52
|
Lee WL, Singaravelu P, Wee S, Xue B, Ang KC, Gunaratne J, Grimes JM, Swaminathan K, Robinson RC. Mechanisms of Yersinia YopO kinase substrate specificity. Sci Rep 2017; 7:39998. [PMID: 28051168 PMCID: PMC5209680 DOI: 10.1038/srep39998] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 11/30/2016] [Indexed: 02/06/2023] Open
Abstract
Yersinia bacteria cause a range of human diseases, including yersiniosis, Far East scarlet-like fever and the plague. Yersiniae modulate and evade host immune defences through injection of Yersinia outer proteins (Yops) into phagocytic cells. One of the Yops, YopO (also known as YpkA) obstructs phagocytosis through disrupting actin filament regulation processes - inhibiting polymerization-promoting signaling through sequestration of Rac/Rho family GTPases and by using monomeric actin as bait to recruit and phosphorylate host actin-regulating proteins. Here we set out to identify mechanisms of specificity in protein phosphorylation by YopO that would clarify its effects on cytoskeleton disruption. We report the MgADP structure of Yersinia enterocolitica YopO in complex with actin, which reveals its active site architecture. Using a proteome-wide kinase-interacting substrate screening (KISS) method, we identified that YopO phosphorylates a wide range of actin-modulating proteins and located their phosphorylation sites by mass spectrometry. Using artificial substrates we clarified YopO's substrate length requirements and its phosphorylation consensus sequence. These findings provide fresh insight into the mechanism of the YopO kinase and demonstrate that YopO executes a specific strategy targeting actin-modulating proteins, across multiple functionalities, to compete for control of their native phospho-signaling, thus hampering the cytoskeletal processes required for macrophage phagocytosis.
Collapse
Affiliation(s)
- Wei Lin Lee
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), Singapore
| | - Pavithra Singaravelu
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), Singapore
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Sheena Wee
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), Singapore
| | - Bo Xue
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), Singapore
| | - Khay Chun Ang
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), Singapore
| | - Jayantha Gunaratne
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), Singapore
- Department of Anatomy, National University of Singapore, Singapore
| | - Jonathan M. Grimes
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, UK
- Diamond Light Source Ltd., UK
| | | | - Robert C. Robinson
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), Singapore
- Department of Biochemistry, National University of Singapore, Singapore
- NTU Institute of Structural Biology, Nanyang Technological University, 59 Nanyang Drive, 636921, Singapore
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
- Lee Kong Chan School of Medicine, 50 Nanyang Avenue, 639798, Singapore
| |
Collapse
|
53
|
Abstract
Kinases catalyze protein phosphorylation to regulate cell signaling events. However, identifying kinase substrates is challenging due to the often low abundance and dynamic nature of protein phosphorylation. Development of novel techniques to identify kinase substrates is necessary. Here, we report kinase-catalyzed biotinylation with inactivated lysates for discovery of substrates (K-BILDS) as a tool to identify direct substrates of a kinase. As a proof of concept, K-BILDS was applied to cAMP-dependent protein kinase A (PKA) with HeLa cell lysates. Subsequent enrichment and MS/MS analysis identified 279 candidate PKA substrates, including 56 previously known PKA substrates. Of the candidate substrates, nuclear autoantigenic sperm protein (NASP), BCL2-associated athanogene 3 (BAG3), and 14-3-3 protein Tau (YWHAQ) were validated as novel PKA substrates. K-BILDS provides a valuable tool to identify direct substrates of any protein kinase.
Collapse
Affiliation(s)
- D Maheeka Embogama
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI, 48202, USA
| | - Mary Kay H Pflum
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI, 48202, USA
| |
Collapse
|
54
|
Li C, Imanishi A, Komatsu N, Terai K, Amano M, Kaibuchi K, Matsuda M. A FRET Biosensor for ROCK Based on a Consensus Substrate Sequence Identified by KISS Technology. Cell Struct Funct 2017; 42:1-13. [DOI: 10.1247/csf.16016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Chunjie Li
- Laboratory of Bioimaging and Cell Signaling, Graduate School of Biostudies, Kyoto University
| | - Ayako Imanishi
- Laboratory of Bioimaging and Cell Signaling, Graduate School of Biostudies, Kyoto University
| | - Naoki Komatsu
- Laboratory of Bioimaging and Cell Signaling, Graduate School of Biostudies, Kyoto University
| | - Kenta Terai
- Imaging Platform for Spatio-Temporal Information, Graduate School of Medicine, Kyoto University
| | - Mutsuki Amano
- Department of Cell Pharmacology, Graduate School of Medicine, Nagoya University
| | - Kozo Kaibuchi
- Department of Cell Pharmacology, Graduate School of Medicine, Nagoya University
| | - Michiyuki Matsuda
- Laboratory of Bioimaging and Cell Signaling, Graduate School of Biostudies, Kyoto University
| |
Collapse
|
55
|
Hochheiser J, Haase T, Busker M, Sömmer A, Kreienkamp HJ, Behrends S. Heterodimerization with the β 1 subunit directs the α 2 subunit of nitric oxide-sensitive guanylyl cyclase to calcium-insensitive cell-cell contacts in HEK293 cells: Interaction with Lin7a. Biochem Pharmacol 2016; 122:23-32. [PMID: 27793718 DOI: 10.1016/j.bcp.2016.10.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 10/24/2016] [Indexed: 10/20/2022]
Abstract
Nitric oxide-sensitive guanylyl cyclase is a heterodimeric enzyme consisting of an α and a β subunit. Two different α subunits (α1 and α2) give rise to two heterodimeric enzymes α1/β1 and α2/β1. Both coexist in a wide range of tissues including blood vessels and the lung, but expression of the α2/β1 form is generally much lower and approaches levels similar to the α1/β1 form in the brain only. In the present paper, we show that the α2/β1 form interacts with Lin7a in mouse brain synaptosomes based on co-precipitation analysis. In HEK293 cells, we found that the overexpressed α2/β1 form, but not the α1/β1 form is directed to calcium-insensitive cell-cell contacts. The isolated PDZ binding motif of an amino-terminally truncated α2 subunit was sufficient for cell-cell contact localization. For the full length α2 subunit with the PDZ binding motif this was only the case in the heterodimer configuration with the β1 subunit, but not as isolated α2 subunit. We conclude that the PDZ binding motif of the α2 subunit is only accessible in the heterodimer conformation of the mature nitric oxide-sensitive enzyme. Interaction with Lin7a, a small scaffold protein important for synaptic function and cell polarity, can direct this complex to nectin based cell-cell contacts via MPP3 in HEK293 cells. We conclude that heterodimerization is a prerequisite for further protein-protein interactions that direct the α2/β1 form to strategic sites of the cell membrane with adjacent neighbouring cells. Drugs increasing the nitric oxide-sensitivity of this specific form may be particularly effective.
Collapse
Affiliation(s)
- Julia Hochheiser
- Department of Pharmacology, Toxicology and Clinical Pharmacy, University of Braunschweig - Institute of Technology, Germany.
| | - Tobias Haase
- Department of Pharmacology, Toxicology and Clinical Pharmacy, University of Braunschweig - Institute of Technology, Germany.
| | - Mareike Busker
- Department of Pharmacology, Toxicology and Clinical Pharmacy, University of Braunschweig - Institute of Technology, Germany.
| | - Anne Sömmer
- Department of Pharmacology, Toxicology and Clinical Pharmacy, University of Braunschweig - Institute of Technology, Germany.
| | - Hans-Jürgen Kreienkamp
- Institute for Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Sönke Behrends
- Department of Pharmacology, Toxicology and Clinical Pharmacy, University of Braunschweig - Institute of Technology, Germany.
| |
Collapse
|
56
|
Arrington JV, Hsu CC, Tao WA. Kinase Assay-Linked Phosphoproteomics: Discovery of Direct Kinase Substrates. Methods Enzymol 2016; 586:453-471. [PMID: 28137576 DOI: 10.1016/bs.mie.2016.11.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Dissection of direct kinase-substrate relationships provides invaluable information about phosphorylation pathways and can highlight both pathogenic mechanisms and possible drug targets for diseases in which abnormal kinase activity is linked to onset and progression. Here, we describe a mass spectrometry-based strategy to define the direct substrates of a kinase of interest. The kinase assay-linked phosphoproteomics approach examines putative kinase substrates both in vitro and in vivo to produce a list of highly confident substrates.
Collapse
Affiliation(s)
- J V Arrington
- Purdue University, West Lafayette, IN, United States; Purdue University Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, United States
| | - C-C Hsu
- Purdue University, West Lafayette, IN, United States
| | - W A Tao
- Purdue University, West Lafayette, IN, United States; Purdue University Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, United States; Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN, United States.
| |
Collapse
|
57
|
Li X, Cox JT, Huang W, Kane M, Tang K, Bieberich CJ. Quantifying Kinase-Specific Phosphorylation Stoichiometry Using Stable Isotope Labeling In a Reverse In-Gel Kinase Assay. Anal Chem 2016; 88:11468-11475. [PMID: 27808495 DOI: 10.1021/acs.analchem.6b02599] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Despite recent advancements in large-scale phosphoproteomics, methods to quantify kinase-specific phosphorylation stoichiometry of protein substrates are lacking. We developed a method to quantify kinase-specific phosphorylation stoichiometry by combining the reverse in-gel kinase assay (RIKA) with high-resolution liquid chromatography-mass spectrometry (LC-MS). Beginning with predetermined ratios of phosphorylated to nonphosphorylated protein kinase CK2 (CK2) substrate molecules, we employed 18O-labeled adenosine triphosphate (18O-ATP) as the phosphate donor in a RIKA, then quantified the ratio of 18O- versus 16O-labeled tryptic phosphopeptide using high mass accuracy mass spectrometry (MS). We demonstrate that the phosphorylation stoichiometry determined by this method across a broad percent phosphorylation range correlated extremely well with the predicted value (correlation coefficient = 0.99). This approach provides a quantitative alternative to antibody-based methods of determining the extent of phosphorylation of a substrate pool.
Collapse
Affiliation(s)
- Xiang Li
- Department of Biological Sciences, University of Maryland Baltimore County , Baltimore, Maryland 21250, United States
| | - Jonathan T Cox
- Biological Sciences Division, Pacific Northwest National Laboratory , Richland, Washington 99352, United States
| | - Weiliang Huang
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland , Baltimore, Maryland 21201, United States
| | - Maureen Kane
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland , Baltimore, Maryland 21201, United States
| | - Keqi Tang
- Biological Sciences Division, Pacific Northwest National Laboratory , Richland, Washington 99352, United States
| | - Charles J Bieberich
- Department of Biological Sciences, University of Maryland Baltimore County , Baltimore, Maryland 21250, United States.,Marlene and Stewart Greenebaum Cancer Center, University of Maryland Baltimore , Baltimore, Maryland 21201, United States
| |
Collapse
|
58
|
Zalewski JK, Mo JH, Heber S, Heroux A, Gardner RG, Hildebrand JD, VanDemark AP. Structure of the Shroom-Rho Kinase Complex Reveals a Binding Interface with Monomeric Shroom That Regulates Cell Morphology and Stimulates Kinase Activity. J Biol Chem 2016; 291:25364-25374. [PMID: 27758857 DOI: 10.1074/jbc.m116.738559] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 09/27/2016] [Indexed: 12/21/2022] Open
Abstract
Shroom-mediated remodeling of the actomyosin cytoskeleton is a critical driver of cellular shape and tissue morphology that underlies the development of many tissues including the neural tube, eye, intestines, and vasculature. Shroom uses a conserved SD2 domain to direct the subcellular localization of Rho-associated kinase (Rock), which in turn drives changes in the cytoskeleton and cellular morphology through its ability to phosphorylate and activate non-muscle myosin II. Here, we present the structure of the human Shroom-Rock binding module, revealing an unexpected stoichiometry for Shroom in which two Shroom SD2 domains bind independent surfaces on Rock. Mutation of interfacial residues impaired Shroom-Rock binding in vitro and resulted in altered remodeling of the cytoskeleton and loss of Shroom-mediated changes in cellular morphology. Additionally, we provide the first direct evidence that Shroom can function as a Rock activator. These data provide molecular insight into the Shroom-Rock interface and demonstrate that Shroom directly participates in regulating cytoskeletal dynamics, adding to its known role in Rock localization.
Collapse
Affiliation(s)
- Jenna K Zalewski
- From the Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Joshua H Mo
- From the Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Simone Heber
- From the Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Annie Heroux
- the Department of Biology, Brookhaven National Laboratory, Upton, New York 11973, and
| | - Richard G Gardner
- the Department of Pharmacology, University of Washington, Seattle, Washington 98195
| | - Jeffrey D Hildebrand
- From the Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Andrew P VanDemark
- From the Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260,
| |
Collapse
|
59
|
Nagai T, Yoshimoto J, Kannon T, Kuroda K, Kaibuchi K. Phosphorylation Signals in Striatal Medium Spiny Neurons. Trends Pharmacol Sci 2016; 37:858-871. [DOI: 10.1016/j.tips.2016.07.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 07/18/2016] [Accepted: 07/21/2016] [Indexed: 12/21/2022]
|
60
|
Amano M, Nishioka T, Yura Y, Kaibuchi K. Identification of Protein Kinase Substrates by the Kinase‐Interacting Substrate Screening (KISS) Approach. ACTA ACUST UNITED AC 2016; 72:14.16.1-14.16.12. [DOI: 10.1002/cpcb.8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Mutsuki Amano
- Department of Cell Pharmacology, Graduate School of Medicine, Nagoya University Nagoya Aichi Japan
| | - Tomoki Nishioka
- Department of Cell Pharmacology, Graduate School of Medicine, Nagoya University Nagoya Aichi Japan
| | - Yoshimitsu Yura
- Department of Cell Pharmacology, Graduate School of Medicine, Nagoya University Nagoya Aichi Japan
| | - Kozo Kaibuchi
- Department of Cell Pharmacology, Graduate School of Medicine, Nagoya University Nagoya Aichi Japan
| |
Collapse
|
61
|
Yura Y, Amano M, Takefuji M, Bando T, Suzuki K, Kato K, Hamaguchi T, Hasanuzzaman Shohag M, Takano T, Funahashi Y, Nakamuta S, Kuroda K, Nishioka T, Murohara T, Kaibuchi K. Focused Proteomics Revealed a Novel Rho-kinase Signaling Pathway in the Heart. Cell Struct Funct 2016; 41:105-20. [PMID: 27334702 DOI: 10.1247/csf.16011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Protein phosphorylation plays an important role in the physiological regulation of cardiac function. Myocardial contraction and pathogenesis of cardiac diseases have been reported to be associated with adaptive or maladaptive protein phosphorylation; however, phosphorylation signaling in the heart is not fully elucidated. We recently developed a novel kinase-interacting substrate screening (KISS) method for exhaustive screening of protein kinase substrates, using mass spectrometry and affinity chromatography. First, we examined protein phosphorylation by extracellular signal-regulated kinase (ERK) and protein kinase A (PKA), which has been relatively well studied in cardiomyocytes. The KISS method showed that ERK and PKA mediated the phosphorylation of known cardiac-substrates of each kinase such as Rps6ka1 and cTnI, respectively. Using this method, we found about 330 proteins as Rho-kinase-mediated substrates, whose substrate in cardiomyocytes is unknown. Among them, CARP/Ankrd1, a muscle ankyrin repeat protein, was confirmed as a novel Rho-kinase-mediated substrate. We also found that non-phosphorylatable form of CARP repressed cardiac hypertrophy-related gene Myosin light chain-2v (MLC-2v) promoter activity, and decreased cell size of heart derived H9c2 myoblasts more efficiently than wild type-CARP. Thus, focused proteomics enable us to reveal a novel signaling pathway in the heart.
Collapse
Affiliation(s)
- Yoshimitsu Yura
- Department of Cell Pharmacology, Graduate School of Medicine, Nagoya University
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Takaoka S, Kamioka Y, Takakura K, Baba A, Shime H, Seya T, Matsuda M. Live imaging of transforming growth factor-β activated kinase 1 activation in Lewis lung carcinoma 3LL cells implanted into syngeneic mice and treated with polyinosinic:polycytidylic acid. Cancer Sci 2016; 107:644-52. [PMID: 26931406 PMCID: PMC4970831 DOI: 10.1111/cas.12923] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 02/01/2016] [Accepted: 02/28/2016] [Indexed: 12/15/2022] Open
Abstract
Transforming growth factor‐β activated kinase 1 (TAK1) has been shown to play a crucial role in cell death, differentiation, and inflammation. Here, we live‐imaged robust TAK1 activation in Lewis lung carcinoma 3LL cells implanted into the s.c. tissue of syngeneic C57BL/6 mice and treated with polyinosinic:polycytidylic acid (PolyI:C). First, we developed and characterized a Förster resonance energy transfer‐based biosensor for TAK1 activity. The TAK1 biosensor, named Eevee‐TAK1, responded to stress‐inducing reagents such as anisomycin, tumor necrosis factor‐α, and interleukin1‐β. The anisomycin‐induced increase in Förster resonance energy transfer was abolished by the TAK1 inhibitor (5z)‐7‐oxozeaenol. Activity of TAK1 in 3LL cells was markedly increased by PolyI:C in the presence of macrophages. 3LL cells expressing Eevee‐TAK1 were implanted into mice and observed through imaging window by two‐photon excitation microscopy. During the growth of tumor, the 3LL cells at the periphery of the tumor showed higher TAK1 activity than the 3LL cells located at the center of the tumor, suggesting that cells at the periphery of the tumor mass were under stronger stress. Injection of PolyI:C, which is known to induce regression of the implanted tumors, induced marked and homogenous TAK1 activation within the tumor tissues. The effect of PolyI:C faded within 4 days. These observations suggest that Eevee‐TAK1 is a versatile tool to monitor cellular stress in cancer tissues.
Collapse
Affiliation(s)
- Saori Takaoka
- Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yuji Kamioka
- Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Innovative Techno-Hub for Integrated Medical Bio-Imaging, Kyoto University, Kyoto, Japan
| | - Kanako Takakura
- Imaging Platform for Spatio-Temporal Regulation, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ai Baba
- Laboratory of Bioimaging and Cell Signaling, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Hiroaki Shime
- Department of Microbiology and Immunology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Tsukasa Seya
- Department of Microbiology and Immunology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Michiyuki Matsuda
- Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Laboratory of Bioimaging and Cell Signaling, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| |
Collapse
|
63
|
de Oliveira PSL, Ferraz FAN, Pena DA, Pramio DT, Morais FA, Schechtman D. Revisiting protein kinase-substrate interactions: Toward therapeutic development. Sci Signal 2016; 9:re3. [PMID: 27016527 DOI: 10.1126/scisignal.aad4016] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Despite the efforts of pharmaceutical companies to develop specific kinase modulators, few drugs targeting kinases have been completely successful in the clinic. This is primarily due to the conserved nature of kinases, especially in the catalytic domains. Consequently, many currently available inhibitors lack sufficient selectivity for effective clinical application. Kinases phosphorylate their substrates to modulate their activity. One of the important steps in the catalytic reaction of protein phosphorylation is the correct positioning of the target residue within the catalytic site. This positioning is mediated by several regions in the substrate binding site, which is typically a shallow crevice that has critical subpockets that anchor and orient the substrate. The structural characterization of this protein-protein interaction can aid in the elucidation of the roles of distinct kinases in different cellular processes, the identification of substrates, and the development of specific inhibitors. Because the region of the substrate that is recognized by the kinase can be part of a linear consensus motif or a nonlinear motif, advances in technology beyond simple linear sequence scanning for consensus motifs were needed. Cost-effective bioinformatics tools are already frequently used to predict kinase-substrate interactions for linear consensus motifs, and new tools based on the structural data of these interactions improve the accuracy of these predictions and enable the identification of phosphorylation sites within nonlinear motifs. In this Review, we revisit kinase-substrate interactions and discuss the various approaches that can be used to identify them and analyze their binding structures for targeted drug development.
Collapse
Affiliation(s)
- Paulo Sérgio L de Oliveira
- Laboratório Nacional de Biociências, Centro Nacional de Pesquisa em Energia e Materiais, Campinas 13083-970, Brazil
| | - Felipe Augusto N Ferraz
- Laboratório Nacional de Biociências, Centro Nacional de Pesquisa em Energia e Materiais, Campinas 13083-970, Brazil
| | - Darlene A Pena
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo 05508000, Brazil
| | - Dimitrius T Pramio
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo 05508000, Brazil
| | - Felipe A Morais
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo 05508000, Brazil
| | - Deborah Schechtman
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo 05508000, Brazil.
| |
Collapse
|
64
|
Snider J, Kotlyar M, Saraon P, Yao Z, Jurisica I, Stagljar I. Fundamentals of protein interaction network mapping. Mol Syst Biol 2015; 11:848. [PMID: 26681426 PMCID: PMC4704491 DOI: 10.15252/msb.20156351] [Citation(s) in RCA: 192] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Studying protein interaction networks of all proteins in an organism (“interactomes”) remains one of the major challenges in modern biomedicine. Such information is crucial to understanding cellular pathways and developing effective therapies for the treatment of human diseases. Over the past two decades, diverse biochemical, genetic, and cell biological methods have been developed to map interactomes. In this review, we highlight basic principles of interactome mapping. Specifically, we discuss the strengths and weaknesses of individual assays, how to select a method appropriate for the problem being studied, and provide general guidelines for carrying out the necessary follow‐up analyses. In addition, we discuss computational methods to predict, map, and visualize interactomes, and provide a summary of some of the most important interactome resources. We hope that this review serves as both a useful overview of the field and a guide to help more scientists actively employ these powerful approaches in their research.
Collapse
Affiliation(s)
- Jamie Snider
- Donnelly Centre, Department of Biochemistry, Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Max Kotlyar
- Princess Margaret Cancer Center, IBM Life Sciences Discovery Centre, University Health Network, Ontario, Canada
| | - Punit Saraon
- Donnelly Centre, Department of Biochemistry, Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Zhong Yao
- Donnelly Centre, Department of Biochemistry, Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Igor Jurisica
- Princess Margaret Cancer Center, IBM Life Sciences Discovery Centre, University Health Network, Ontario, Canada
| | - Igor Stagljar
- Donnelly Centre, Department of Biochemistry, Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
65
|
Babuta M, Mansuri MS, Bhattacharya S, Bhattacharya A. The Entamoeba histolytica, Arp2/3 Complex Is Recruited to Phagocytic Cups through an Atypical Kinase EhAK1. PLoS Pathog 2015; 11:e1005310. [PMID: 26646565 PMCID: PMC4672914 DOI: 10.1371/journal.ppat.1005310] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 11/04/2015] [Indexed: 12/11/2022] Open
Abstract
The parasite Entamoeba histolytica is the etiological agent of amoebiasis and phagocytosis plays a key role in virulence of this organism. Signaling pathways involved in activation of cytoskeletal dynamics required for phagocytosis remain to be elucidated. Phagocytosis is initiated with sequential recruitment of EhC2PK, EhCaBP1, EhCaBP3 and an atypical kinase EhAK1 after particle attachment. Here we show that EhARPC1, an essential subunit of the actin branching complex Arp 2/3 is recruited to the phagocytic initiation sites by EhAK1. Imaging, expression knockdown of different molecules and pull down experiments suggest that EhARPC1 interacts with EhAK1 and that it is required during initiation of phagocytosis and phagosome formation. Moreover, recruitment of EhARPC2 at the phagocytosis initiation by EhAK1 is also observed, indicating that the Arp 2/3 complex is recruited. In conclusion, these results suggests a novel mechanism of recruitment of Arp 2/3 complex during phagocytosis in E. histolytica. E. histolytica is the causative agent of amoebiasis and leads to morbidity and mortality in developing countries. It is known to phagocytose immune and non-immune cells, epithelial tissue, erythrocytes and commensal bacteria. The high rate of phagocytosis in this protist parasite provides a unique system to study the signaling cascade that is activated after attachment of the particle to the cell surface. The major objective of the signaling pathway is to generate force for uptake of the particle and this is done through stimulating cytoskeleton to form appropriate structures. However, the molecular mechanism of the same is still largely unknown in E. histolytica, though this pathway has been characterized in many other systems. We have been investigating this pathway by using red blood cells as a particle and have identified different molecules required during the initial stages of phagocytosis. In this study we demonstrate the mechanism by which actin cytoskeleton branching complex EhARP2/3 is recruited at the site of erythrophagocytosis and show that the recruitment is through an atypical alpha kinase EhAK1. A number of different approaches, such as pull down assay, conditional suppression of EhAK1 expression and imaging were used to decipher this pathway. Therefore this study provides a mechanism by which actin dynamics couples to the initial signaling system, activated on attachment of RBC to the cell receptors.
Collapse
Affiliation(s)
- Mrigya Babuta
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - M Shahid Mansuri
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Sudha Bhattacharya
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Alok Bhattacharya
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
- School of Natural Sciences, Department of life Sciences, Shiv Nadar University, Uttar Pradesh, India
- * E-mail: ,
| |
Collapse
|
66
|
KISSing kinases. Nat Chem Biol 2015. [DOI: 10.1038/nchembio.1877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
67
|
Short B. Kinases KISS and tell. J Biophys Biochem Cytol 2015. [PMCID: PMC4477850 DOI: 10.1083/jcb.2096iti3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
|