51
|
Abstract
Autophagy is a major intracellular degradation system that derives its degradative abilities from the lysosome. The most well-studied form of autophagy is macroautophagy, which delivers cytoplasmic material to lysosomes via the double-membraned autophagosome. Other forms of autophagy, namely chaperone-mediated autophagy and microautophagy, occur directly on the lysosome. Besides providing the means for degradation, lysosomes are also involved in autophagy regulation and can become substrates of autophagy when damaged. During autophagy, they exhibit notable changes, including increased acidification, enhanced enzymatic activity, and perinuclear localization. Despite their importance to autophagy, details on autophagy-specific regulation of lysosomes remain relatively scarce. This review aims to provide a summary of current understanding on the behaviour of lysosomes during autophagy and outline unexplored areas of autophagy-specific lysosome research.
Collapse
Affiliation(s)
- Willa Wen-You Yim
- Department of Biochemistry and Molecular Biology, Graduate School and Faculty of Medicine, The University of Tokyo, Tokyo, 113-0033 Japan
| | - Noboru Mizushima
- Department of Biochemistry and Molecular Biology, Graduate School and Faculty of Medicine, The University of Tokyo, Tokyo, 113-0033 Japan
| |
Collapse
|
52
|
Taniguchi S, Toyoshima M, Takamatsu T, Mima J. Curvature-sensitive trans-assembly of human Atg8-family proteins in autophagy-related membrane tethering. Protein Sci 2020; 29:1387-1400. [PMID: 31960529 DOI: 10.1002/pro.3828] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/15/2020] [Accepted: 01/15/2020] [Indexed: 12/18/2022]
Abstract
In macroautophagy, de novo formation of the double membrane-bound organelles, termed autophagosomes, is essential for engulfing and sequestering the cytoplasmic contents to be degraded in the lytic compartments such as vacuoles and lysosomes. Atg8-family proteins have been known to be responsible for autophagosome formation via membrane tethering and fusion events of precursor membrane structures. Nevertheless, how Atg8 proteins act directly upon autophagosome formation still remains enigmatic. Here, to further gain molecular insights into Atg8-mediated autophagic membrane dynamics, we study the two representative human Atg8 orthologs, LC3B and GATE-16, by quantitatively evaluating their intrinsic potency to physically tether lipid membranes in a chemically defined reconstitution system using purified Atg8 proteins and synthetic liposomes. Both LC3B and GATE-16 retained the capacities to trigger efficient membrane tethering at the protein-to-lipid molar ratios ranging from 1:100 to 1:5,000. These human Atg8-mediated membrane-tethering reactions require trans-assembly between the membrane-anchored forms of LC3B and GATE-16 and can be reversibly and strictly controlled by the membrane attachment and detachment cycles. Strikingly, we further uncovered distinct membrane curvature dependences of LC3B- and GATE-16-mediated membrane tethering reactions: LC3B can drive tethering more efficiently than GATE-16 for highly curved small vesicles (e.g., 50 nm in diameter), although GATE-16 turns out to be a more potent tether than LC3B for flatter large vesicles (e.g., 200 and 400 nm in diameter). Our findings establish curvature-sensitive trans-assembly of human Atg8-family proteins in reconstituted membrane tethering, which recapitulates an essential subreaction of the biogenesis of autophagosomes in vivo.
Collapse
Affiliation(s)
- Saki Taniguchi
- Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | | | - Tomoyo Takamatsu
- Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Joji Mima
- Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
53
|
Tang BL. Syntaxin 16's Newly Deciphered Roles in Autophagy. Cells 2019; 8:cells8121655. [PMID: 31861136 PMCID: PMC6953085 DOI: 10.3390/cells8121655] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/05/2019] [Accepted: 12/06/2019] [Indexed: 12/16/2022] Open
Abstract
Syntaxin 16, a Qa-SNARE (soluble N-ethylmaleimide-sensitive factor activating protein receptor), is involved in a number of membrane-trafficking activities, particularly transport processes at the trans-Golgi network (TGN). Recent works have now implicated syntaxin 16 in the autophagy process. In fact, syntaxin 16 appears to have dual roles, firstly in facilitating the transport of ATG9a-containing vesicles to growing autophagosomes, and secondly in autolysosome formation. The former involves a putative SNARE complex between syntaxin 16, VAMP7 and SNAP-47. The latter occurs via syntaxin 16’s recruitment by Atg8/LC3/GABARAP family proteins to autophagosomes and endo-lysosomes, where syntaxin 16 may act in a manner that bears functional redundancy with the canonical autophagosome Qa-SNARE syntaxin 17. Here, I discuss these recent findings and speculate on the mechanistic aspects of syntaxin 16’s newly found role in autophagy.
Collapse
Affiliation(s)
- Bor Luen Tang
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore; ; Tel.: +65-6516-1040
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 119077, Singapore
| |
Collapse
|
54
|
Zeng Y, Li B, Lin Y, Jiang L. The interplay between endomembranes and autophagy in plants. CURRENT OPINION IN PLANT BIOLOGY 2019; 52:14-22. [PMID: 31344498 DOI: 10.1016/j.pbi.2019.05.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 05/08/2019] [Accepted: 05/22/2019] [Indexed: 06/10/2023]
Abstract
Autophagosomes are unique double-membrane organelles that enclose a portion of intracellular components for lysosome/vacuole delivery to maintain cellular homeostasis in eukaryotic cells. Genetic screening has revealed the requirement of autophagy-related proteins for autophagosome formation, although the origin of the autophagosome membrane remains elusive. The endomembrane system is a series of membranous organelles maintained by dynamic membrane flow between various compartments. In plants, there is accumulating evidence pointing to a link between autophagy and the endomembrane system, in particular between the endoplasmic reticulum and autophagosome. Here, we highlight and discuss about recent findings on plant autophagosome formation. We also look into the functional roles of endomembrane machineries in regard to the autophagy pathway in plants.
Collapse
Affiliation(s)
- Yonglun Zeng
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong.
| | - Baiying Li
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong.
| | - Youshun Lin
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Liwen Jiang
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong; The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen, China.
| |
Collapse
|
55
|
Gu Y, Princely Abudu Y, Kumar S, Bissa B, Choi SW, Jia J, Lazarou M, Eskelinen E, Johansen T, Deretic V. Mammalian Atg8 proteins regulate lysosome and autolysosome biogenesis through
SNARE
s. EMBO J 2019; 38. [DOI: https:/doi.org/10.15252/embj.2019101994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 09/13/2019] [Indexed: 12/19/2023] Open
Affiliation(s)
- Yuexi Gu
- Autophagy, Inflammation and Metabolism (AIM) Center of Biomedical Research Excellence University of New Mexico Health Sciences Center Albuquerque NM USA
- Department of Molecular Genetics and Microbiology University of New Mexico Health Sciences Center Albuquerque NM USA
| | - Yakubu Princely Abudu
- Molecular Cancer Research Group Institute of Medical Biology University of Tromsø‐The Arctic University of Norway Tromsø Norway
| | - Suresh Kumar
- Autophagy, Inflammation and Metabolism (AIM) Center of Biomedical Research Excellence University of New Mexico Health Sciences Center Albuquerque NM USA
- Department of Molecular Genetics and Microbiology University of New Mexico Health Sciences Center Albuquerque NM USA
| | - Bhawana Bissa
- Autophagy, Inflammation and Metabolism (AIM) Center of Biomedical Research Excellence University of New Mexico Health Sciences Center Albuquerque NM USA
- Department of Molecular Genetics and Microbiology University of New Mexico Health Sciences Center Albuquerque NM USA
| | - Seong Won Choi
- Department of Molecular Genetics and Microbiology University of New Mexico Health Sciences Center Albuquerque NM USA
| | - Jingyue Jia
- Autophagy, Inflammation and Metabolism (AIM) Center of Biomedical Research Excellence University of New Mexico Health Sciences Center Albuquerque NM USA
- Department of Molecular Genetics and Microbiology University of New Mexico Health Sciences Center Albuquerque NM USA
| | - Michael Lazarou
- Department of Biochemistry and Molecular Biology Biomedicine Discovery Institute Monash University Melbourne Australia
| | | | - Terje Johansen
- Molecular Cancer Research Group Institute of Medical Biology University of Tromsø‐The Arctic University of Norway Tromsø Norway
| | - Vojo Deretic
- Autophagy, Inflammation and Metabolism (AIM) Center of Biomedical Research Excellence University of New Mexico Health Sciences Center Albuquerque NM USA
- Department of Molecular Genetics and Microbiology University of New Mexico Health Sciences Center Albuquerque NM USA
| |
Collapse
|
56
|
Gu Y, Princely Abudu Y, Kumar S, Bissa B, Choi SW, Jia J, Lazarou M, Eskelinen E, Johansen T, Deretic V. Mammalian Atg8 proteins regulate lysosome and autolysosome biogenesis through SNAREs. EMBO J 2019; 38:e101994. [PMID: 31625181 PMCID: PMC6856626 DOI: 10.15252/embj.2019101994] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 09/07/2019] [Accepted: 09/13/2019] [Indexed: 12/14/2022] Open
Abstract
Mammalian homologs of yeast Atg8 protein (mAtg8s) are important in autophagy, but their exact mode of action remains ill-defined. Syntaxin 17 (Stx17), a SNARE with major roles in autophagy, was recently shown to bind mAtg8s. Here, we identified LC3-interacting regions (LIRs) in several SNAREs that broaden the landscape of the mAtg8-SNARE interactions. We found that Syntaxin 16 (Stx16) and its cognate SNARE partners all have LIR motifs and bind mAtg8s. Knockout of Stx16 caused defects in lysosome biogenesis, whereas a Stx16 and Stx17 double knockout completely blocked autophagic flux and decreased mitophagy, pexophagy, xenophagy, and ribophagy. Mechanistic analyses revealed that mAtg8s and Stx16 control several properties of lysosomal compartments including their function as platforms for active mTOR. These findings reveal a broad direct interaction of mAtg8s with SNAREs with impact on membrane remodeling in eukaryotic cells and expand the roles of mAtg8s to lysosome biogenesis.
Collapse
Affiliation(s)
- Yuexi Gu
- Autophagy, Inflammation and Metabolism (AIM) Center of Biomedical Research ExcellenceUniversity of New Mexico Health Sciences CenterAlbuquerqueNMUSA
- Department of Molecular Genetics and MicrobiologyUniversity of New Mexico Health Sciences CenterAlbuquerqueNMUSA
| | - Yakubu Princely Abudu
- Molecular Cancer Research GroupInstitute of Medical BiologyUniversity of Tromsø‐The Arctic University of NorwayTromsøNorway
| | - Suresh Kumar
- Autophagy, Inflammation and Metabolism (AIM) Center of Biomedical Research ExcellenceUniversity of New Mexico Health Sciences CenterAlbuquerqueNMUSA
- Department of Molecular Genetics and MicrobiologyUniversity of New Mexico Health Sciences CenterAlbuquerqueNMUSA
| | - Bhawana Bissa
- Autophagy, Inflammation and Metabolism (AIM) Center of Biomedical Research ExcellenceUniversity of New Mexico Health Sciences CenterAlbuquerqueNMUSA
- Department of Molecular Genetics and MicrobiologyUniversity of New Mexico Health Sciences CenterAlbuquerqueNMUSA
| | - Seong Won Choi
- Department of Molecular Genetics and MicrobiologyUniversity of New Mexico Health Sciences CenterAlbuquerqueNMUSA
| | - Jingyue Jia
- Autophagy, Inflammation and Metabolism (AIM) Center of Biomedical Research ExcellenceUniversity of New Mexico Health Sciences CenterAlbuquerqueNMUSA
- Department of Molecular Genetics and MicrobiologyUniversity of New Mexico Health Sciences CenterAlbuquerqueNMUSA
| | - Michael Lazarou
- Department of Biochemistry and Molecular BiologyBiomedicine Discovery InstituteMonash UniversityMelbourneAustralia
| | | | - Terje Johansen
- Molecular Cancer Research GroupInstitute of Medical BiologyUniversity of Tromsø‐The Arctic University of NorwayTromsøNorway
| | - Vojo Deretic
- Autophagy, Inflammation and Metabolism (AIM) Center of Biomedical Research ExcellenceUniversity of New Mexico Health Sciences CenterAlbuquerqueNMUSA
- Department of Molecular Genetics and MicrobiologyUniversity of New Mexico Health Sciences CenterAlbuquerqueNMUSA
| |
Collapse
|
57
|
Hollenstein DM, Gómez-Sánchez R, Ciftci A, Kriegenburg F, Mari M, Torggler R, Licheva M, Reggiori F, Kraft C. Vac8 spatially confines autophagosome formation at the vacuole in S. cerevisiae. J Cell Sci 2019; 132:jcs235002. [PMID: 31649143 PMCID: PMC6899017 DOI: 10.1242/jcs.235002] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 10/01/2019] [Indexed: 01/02/2023] Open
Abstract
Autophagy is initiated by the formation of a phagophore assembly site (PAS), the precursor of autophagosomes. In mammals, autophagosome formation sites form throughout the cytosol in specialized subdomains of the endoplasmic reticulum (ER). In yeast, the PAS is also generated close to the ER, but always in the vicinity of the vacuole. How the PAS is anchored to the vacuole and the functional significance of this localization are unknown. Here, we investigated the role of the PAS-vacuole connection for bulk autophagy in the yeast Saccharomyces cerevisiae We show that Vac8 constitutes a vacuolar tether that stably anchors the PAS to the vacuole throughout autophagosome biogenesis via the PAS component Atg13. S. cerevisiae lacking Vac8 show inefficient autophagosome-vacuole fusion, and form fewer and smaller autophagosomes that often localize away from the vacuole. Thus, the stable PAS-vacuole connection established by Vac8 creates a confined space for autophagosome biogenesis between the ER and the vacuole, and allows spatial coordination of autophagosome formation and autophagosome-vacuole fusion. These findings reveal that the spatial regulation of autophagosome formation at the vacuole is required for efficient bulk autophagy.
Collapse
Affiliation(s)
- David M Hollenstein
- Department of Biochemistry and Cell Biology, Max Perutz Labs, University of Vienna, Vienna BioCenter, Dr. Bohr-Gasse 9, 1030 Vienna, Austria
| | - Rubén Gómez-Sánchez
- Department of Biomedical Sciences of Cells & Systems, University of Groningen, University Medical Center Groningen, 9713 AV Groningen, The Netherlands
| | - Akif Ciftci
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Franziska Kriegenburg
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Muriel Mari
- Department of Biomedical Sciences of Cells & Systems, University of Groningen, University Medical Center Groningen, 9713 AV Groningen, The Netherlands
| | - Raffaela Torggler
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Mariya Licheva
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Fulvio Reggiori
- Department of Biomedical Sciences of Cells & Systems, University of Groningen, University Medical Center Groningen, 9713 AV Groningen, The Netherlands
| | - Claudine Kraft
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
- CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg
| |
Collapse
|
58
|
Wang Z, Zhao H, Yuan C, Zhao D, Sun Y, Wang X, Zhang H. The RBG-1-RBG-2 complex modulates autophagy activity by regulating lysosomal biogenesis and function in C. elegans. J Cell Sci 2019; 132:jcs.234195. [PMID: 31444285 DOI: 10.1242/jcs.234195] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 08/19/2019] [Indexed: 01/05/2023] Open
Abstract
Vici syndrome is a severe and progressive multisystem disease caused by mutations in the EPG5 gene. In patient tissues and animal models, loss of EPG5 function is associated with defective autophagy caused by accumulation of non-degradative autolysosomes, but very little is known about the mechanism underlying this cellular phenotype. Here, we demonstrate that loss of function of the RBG-1-RBG-2 complex ameliorates the autophagy defect in C. elegans epg-5 mutants. The suppression effect is independent of the complex's activity as a RAB-3 GAP and a RAB-18 GEF. Loss of rbg-1 activity promotes lysosomal biogenesis and function, and also suppresses the accumulation of non-functional autolysosomes in epg-5 mutants. The mobility of late endosome- and lysosome-associated RAB-7 is reduced in epg-5 mutants, and this defect is rescued by simultaneous loss of function of rbg-1 Expression of the GDP-bound form of RAB-7 also promotes lysosomal biogenesis and suppresses the autophagy defect in epg-5 mutants. Our study reveals that the RBG-1-RBG-2 complex acts by modulating the dynamics of membrane-associated RAB-7 to regulate lysosomal biogenesis, and provides insights into the pathogenesis of Vici syndrome.
Collapse
Affiliation(s)
- Zhaoyu Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Hongyu Zhao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Chongzhen Yuan
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Dongfeng Zhao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yanan Sun
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaochen Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China .,College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
59
|
Colorectal cancer cells respond differentially to autophagy inhibition in vivo. Sci Rep 2019; 9:11316. [PMID: 31383875 PMCID: PMC6683171 DOI: 10.1038/s41598-019-47659-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 07/19/2019] [Indexed: 12/19/2022] Open
Abstract
Autophagy has both tumor-promoting and -suppressing effects in cancer, including colorectal cancer (CRC), with transformed cells often exhibiting high autophagic flux. In established tumors, autophagy inhibition can lead to opposite responses resulting in either tumor cell death or hyperproliferation. The functional mechanisms underlying these differences are poorly understood. The present study aimed to investigate the relationship between the autophagic capacities of CRC cells and their sensitivities to autophagy inhibition. All studied CRC cell lines showed high basal autophagic flux. However, only HCT116 and Caco-2/15 cells displayed regulated autophagic flux upon starvation. Knockdown of ATG5 (which disrupts autophagosome elongation) or RAB21 (which decreases autophagosome/lysosome fusion) had little effect on CRC cell proliferation in vitro. Nonetheless, inhibition of autophagy in vivo had a substantial cell line-dependent impact on tumor growth, with some cells displaying decreased (HCT116 and Caco-2/15) or increased (SW480 and LoVo) proliferation. RNA sequencing and Western blot analyses in hyperproliferative SW480 tumors revealed that the mTORC2 and AKT pathways were hyperactivated following autophagy impairment. Inhibition of either mTOR or AKT activities rescued the observed hyperproliferation in autophagy-inhibited SW480 and reduced tumor growth. These results highlight that autophagy inhibition can lead, in specific cellular contexts, to compensatory mechanisms promoting tumor growth.
Collapse
|
60
|
Zientara-Rytter K, Subramani S. Mechanistic Insights into the Role of Atg11 in Selective Autophagy. J Mol Biol 2019; 432:104-122. [PMID: 31238043 DOI: 10.1016/j.jmb.2019.06.017] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/11/2019] [Accepted: 06/13/2019] [Indexed: 12/19/2022]
Abstract
Macroautophagy (referred to hereafter as autophagy) is an intracellular degradation pathway in which the formation of a double-membrane vesicle called the autophagosome is a key event in the transport of multiple cytoplasmic cargo (e.g., proteins, protein aggregates, lipid droplets or organelles) to the vacuole (lysosome in mammals) for degradation and recycling. During this process, autophagosomes are formed de novo by membrane fusion events leading to phagophore formation initiated at the phagophore assembly site. In yeast, Atg11 and Atg17 function as protein scaffolds, essential for selective and non-selective types of autophagy, respectively. While Atg17 functions in non-selective autophagy are well-defined in the literature, less attention is concentrated on recent findings regarding the roles of Atg11 in selective autophagy. Here, we summarize current knowledge about the Atg11 scaffold protein and review recent findings in the context of its role in selective autophagy initiation and autophagosome formation.
Collapse
Affiliation(s)
- Katarzyna Zientara-Rytter
- Section of Molecular Biology, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA.
| | - Suresh Subramani
- Section of Molecular Biology, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
61
|
Lamber EP, Siedenburg AC, Barr FA. Rab regulation by GEFs and GAPs during membrane traffic. Curr Opin Cell Biol 2019; 59:34-39. [PMID: 30981180 DOI: 10.1016/j.ceb.2019.03.004] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 03/06/2019] [Indexed: 01/05/2023]
Abstract
Rab GTPases and their regulatory proteins play a crucial role in vesicle-mediated membrane trafficking. During vesicle membrane tethering Rab GTPases are activated by GEFs (guanine nucleotide exchange factors) and then inactivated by GAPs (GTPase activating proteins). Recent evidence shows that in addition to activating and inactivating Rab GTPases, both Rab GEFs and GAPs directly contribute to membrane tethering events during vesicle traffic. Other studies have extended the range of processes, in which Rabs function, and revealed roles for Rabs and their GAPs in the regulation of autophagy. Here, we will discuss these advances and the emerging relationship between the domain architectures of Rab GEFs and vesicle coat protein complexes linked with GTPases of the Sar, ARF and Arl families in animal cells.
Collapse
Affiliation(s)
- Ekaterina P Lamber
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | | | - Francis A Barr
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.
| |
Collapse
|
62
|
Rab7a and Mitophagosome Formation. Cells 2019; 8:cells8030224. [PMID: 30857122 PMCID: PMC6468461 DOI: 10.3390/cells8030224] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 02/27/2019] [Accepted: 03/01/2019] [Indexed: 12/14/2022] Open
Abstract
The small GTPase, Rab7a, and the regulators of its GDP/GTP-binding status were shown to have roles in both endocytic membrane traffic and autophagy. Classically known to regulate endosomal retrograde transport and late endosome-lysosome fusion, earlier work has indicated a role for Rab7a in autophagosome-lysosome fusion as well as autolysosome maturation. However, as suggested by recent findings on PTEN-induced kinase 1 (PINK1)-Parkin-mediated mitophagy, Rab7a and its regulators are critical for the correct targeting of Atg9a-bearing vesicles to effect autophagosome formation around damaged mitochondria. This mitophagosome formation role for Rab7a is dependent on an intact Rab cycling process mediated by the Rab7a-specific guanine nucleotide exchange factor (GEF) and GTPase activating proteins (GAPs). Rab7a activity in this regard is also dependent on the retromer complex, as well as phosphorylation by the TRAF family-associated NF-κB activator binding kinase 1 (TBK1). Here, we discuss these recent findings and broadened perspectives on the role of the Rab7a network in PINK1-Parkin mediated mitophagy.
Collapse
|
63
|
Kriegenburg F, Bas L, Gao J, Ungermann C, Kraft C. The multi-functional SNARE protein Ykt6 in autophagosomal fusion processes. Cell Cycle 2019; 18:639-651. [PMID: 30836834 PMCID: PMC6464585 DOI: 10.1080/15384101.2019.1580488] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 01/06/2019] [Accepted: 01/29/2019] [Indexed: 01/01/2023] Open
Abstract
Autophagy is a degradative pathway in which cytosolic material is enwrapped within double membrane vesicles, so-called autophagosomes, and delivered to lytic organelles. SNARE (Soluble N-ethylmaleimide sensitive factor attachment protein receptor) proteins are key to drive membrane fusion of the autophagosome and the lytic organelles, called lysosomes in higher eukaryotes or vacuoles in plants and yeast. Therefore, the identification of functional SNARE complexes is central for understanding fusion processes and their regulation. The SNARE proteins Syntaxin 17, SNAP29 and Vamp7/VAMP8 are responsible for the fusion of autophagosomes with lysosomes in higher eukaryotes. Recent studies reported that the R-SNARE Ykt6 is an additional SNARE protein involved in autophagosome-lytic organelle fusion in yeast, Drosophila, and mammals. These current findings point to an evolutionarily conserved role of Ykt6 in autophagosome-related fusion events. Here, we briefly summarize the principal mechanisms of autophagosome-lytic organelle fusion, with a special focus on Ykt6 to highlight some intrinsic features of this unusual SNARE protein.
Collapse
Affiliation(s)
- Franziska Kriegenburg
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Levent Bas
- Max F. Perutz Laboratories, Vienna Biocenter, University of Vienna, Vienna, Austria
| | - Jieqiong Gao
- Biochemistry Section, Department of Biology/Chemistry, University of Osnabrück, Osnabrück, Germany
- Center of Cellular Nanoanalytics Osnabrück (CellNanOs), University of Osnabrück, Osnabrück, Germany
| | - Christian Ungermann
- Biochemistry Section, Department of Biology/Chemistry, University of Osnabrück, Osnabrück, Germany
- Center of Cellular Nanoanalytics Osnabrück (CellNanOs), University of Osnabrück, Osnabrück, Germany
| | - Claudine Kraft
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Max F. Perutz Laboratories, Vienna Biocenter, University of Vienna, Vienna, Austria
- CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg
| |
Collapse
|
64
|
Kumar S, Gu Y, Abudu YP, Bruun JA, Jain A, Farzam F, Mudd M, Anonsen JH, Rusten TE, Kasof G, Ktistakis N, Lidke KA, Johansen T, Deretic V. Phosphorylation of Syntaxin 17 by TBK1 Controls Autophagy Initiation. Dev Cell 2019; 49:130-144.e6. [PMID: 30827897 DOI: 10.1016/j.devcel.2019.01.027] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 12/16/2018] [Accepted: 01/30/2019] [Indexed: 01/07/2023]
Abstract
Syntaxin 17 (Stx17) has been implicated in autophagosome-lysosome fusion. Here, we report that Stx17 functions in assembly of protein complexes during autophagy initiation. Stx17 is phosphorylated by TBK1 whereby phospho-Stx17 controls the formation of the ATG13+FIP200+ mammalian pre-autophagosomal structure (mPAS) in response to induction of autophagy. TBK1 phosphorylates Stx17 at S202. During autophagy induction, Stx17pS202 transfers from the Golgi, where its steady-state pools localize, to the ATG13+FIP200+ mPAS. Stx17pS202 was in complexes with ATG13 and FIP200, whereas its non-phosphorylatable mutant Stx17S202A was not. Stx17 or TBK1 knockouts blocked ATG13 and FIP200 puncta formation. Stx17 or TBK1 knockouts reduced the formation of ATG13 protein complexes with FIP200 and ULK1. Endogenous Stx17pS202 colocalized with LC3B following induction of autophagy. Stx17 knockout diminished LC3 response and reduced sequestration of the prototypical bulk autophagy cargo lactate dehydrogenase. We conclude that Stx17 is a TBK1 substrate and that together they orchestrate assembly of mPAS.
Collapse
Affiliation(s)
- Suresh Kumar
- Autophagy Inflammation and Metabolism Center of Biomedical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Yuexi Gu
- Autophagy Inflammation and Metabolism Center of Biomedical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Yakubu Princely Abudu
- Molecular Cancer Research Group, Institute of Medical Biology, University of Tromsø, The Arctic University of Norway, Tromsø 9037, Norway
| | - Jack-Ansgar Bruun
- Molecular Cancer Research Group, Institute of Medical Biology, University of Tromsø, The Arctic University of Norway, Tromsø 9037, Norway
| | - Ashish Jain
- Department of Molecular Cell Biology, Centre for Cancer Biomedicine, University of Oslo and Institute for Cancer Research, The Norwegian Radium Hospital, Oslo 0379, Norway
| | - Farzin Farzam
- Departments of Physics and Astronomy, University of New Mexico, Albuquerque, NM 87131, USA
| | - Michal Mudd
- Autophagy Inflammation and Metabolism Center of Biomedical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Jan Haug Anonsen
- Department of Biosciences IBV Mass Spectrometry and Proteomics Unit, University of Oslo, Oslo 0371, Norway
| | - Tor Erik Rusten
- Department of Molecular Cell Biology, Centre for Cancer Biomedicine, University of Oslo and Institute for Cancer Research, The Norwegian Radium Hospital, Oslo 0379, Norway
| | - Gary Kasof
- Cell Signaling Technology, Danvers, MA 01923, USA
| | | | - Keith A Lidke
- Departments of Physics and Astronomy, University of New Mexico, Albuquerque, NM 87131, USA
| | - Terje Johansen
- Molecular Cancer Research Group, Institute of Medical Biology, University of Tromsø, The Arctic University of Norway, Tromsø 9037, Norway
| | - Vojo Deretic
- Autophagy Inflammation and Metabolism Center of Biomedical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA.
| |
Collapse
|
65
|
Structural Basis of Autophagy Regulatory Proteins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1206:287-326. [PMID: 31776992 DOI: 10.1007/978-981-15-0602-4_15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Autophagy is an evolutionarily conserved lysosome-dependent intracellular degradation process that is essential for the maintenance of cellular homeostasis and adaptation to cellular stresses in eukaryotic cells. The most well-characterized type of autophagy, the macroautophagy, involves the progressive sequestration of cytoplasmic components into dedicated double-membraned vesicles called autophagosomes, which ultimately fuse with lysosomes to initiate the autophagic degradation of the sequestered cargo. In the past decade, our understanding of the molecular mechanism of macroautophagy has significantly evolved, with particular contributions from the biochemical and structural characterizations of autophagy-related proteins. In this chapter, we focus on some autophagy regulatory proteins involved in the macroautophagy pathway, summarize their currently known structures, and discuss their relevant molecular mechanisms from a perspective of structural biology.
Collapse
|
66
|
Zhao YG, Zhang H. Autophagosome maturation: An epic journey from the ER to lysosomes. J Cell Biol 2018; 218:757-770. [PMID: 30578282 PMCID: PMC6400552 DOI: 10.1083/jcb.201810099] [Citation(s) in RCA: 241] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 12/05/2018] [Accepted: 12/05/2018] [Indexed: 12/23/2022] Open
Abstract
Macroautophagy involves the sequestration of cytoplasmic contents in a double-membrane autophagosome and their delivery to lysosomes for degradation. In multicellular organisms, nascent autophagosomes fuse with vesicles originating from endolysosomal compartments before forming degradative autolysosomes, a process known as autophagosome maturation. ATG8 family members, tethering factors, Rab GTPases, and SNARE proteins act coordinately to mediate fusion of autophagosomes with endolysosomal vesicles. The machinery mediating autophagosome maturation is under spatiotemporal control and provides regulatory nodes to integrate nutrient availability with autophagy activity. Dysfunction of autophagosome maturation is associated with various human diseases, including neurodegenerative diseases, Vici syndrome, cancer, and lysosomal storage disorders. Understanding the molecular mechanisms underlying autophagosome maturation will provide new insights into the pathogenesis and treatment of these diseases.
Collapse
Affiliation(s)
- Yan G Zhao
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA
| | - Hong Zhang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China .,National Laboratory of Biomacromolecules, Chinese Academy of Sciences Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
67
|
Abstract
Formation of the autolysosome involves SNARE-mediated autophagosome-lysosome fusion, which is mediated by a combination of the Qa SNARE STX17 (syntaxin 17), the Qbc SNARE SNAP29 and the R-SNAREs VAMP7/8. 2 very recent reports have now implicated another R-SNARE with a longin domain, YKT6, in this fusion process. Interestingly, these reports painted two different pictures of YKT6's involvement. Studies in HeLa cells indicated that YKT6, acting independently of STX17, could form a separate SNARE complex with SNAP29 and another Qa SNARE to mediate autophagosome-lysosome fusion. Conversely, work in Drosophila larvae fat cells showed that while Ykt6 could form a SNARE complex with Snap29 and Syx17/Stx17, it is readily outcompeted by lysosomal Vamp7 in this regard. Moreover, its activity in autophagosome-lysosome fusion is not impaired by mutation of the supposedly critical ionic zero-layer residue from R to Q. In this regard, YKT6 may therefore act in a noncanonical way to regulate fusion. Here, we ponder on the fresh mechanistic perspectives on the final membrane fusion step of macroautophagy/autophagy offered by these new findings. Further, we propose another possible mechanism as to how YKT6 might act, which may provide some reconciliation to the differences observed. Abbreviations: LD: longin domain.
Collapse
Affiliation(s)
- Cheryl Qian Ying Yong
- a Department of Biochemistry, Yong Loo Lin School of Medicine , National University of Singapore , Singapore
| | - Bor Luen Tang
- a Department of Biochemistry, Yong Loo Lin School of Medicine , National University of Singapore , Singapore.,b NUS Graduate School for Integrative Sciences and Engineering , National University of Singapore , Singapore
| |
Collapse
|
68
|
Bas L, Papinski D, Kraft C. Ykt6 mediates autophagosome-vacuole fusion. Mol Cell Oncol 2018; 5:e1526006. [PMID: 30525099 PMCID: PMC6276844 DOI: 10.1080/23723556.2018.1526006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 09/12/2018] [Accepted: 09/14/2018] [Indexed: 01/01/2023]
Abstract
Studying the mechanism of autophagosome-vacuole fusion has proven difficult in live yeast cells. Developing a novel in vitro fusion assay, we identified Ykt6 as the missing R-SNARE (Soluble N-ethylmaleimide sensitive factor attachment protein receptor) in this process and pinpoint the place of action of all four SNAREs involved. Parallel studies have confirmed our findings in other organisms.
Collapse
Affiliation(s)
- Levent Bas
- Max F. Perutz Laboratories, Vienna Biocenter, University of Vienna, Vienna, Austria
| | - Daniel Papinski
- Max F. Perutz Laboratories, Vienna Biocenter, University of Vienna, Vienna, Austria
| | - Claudine Kraft
- Max F. Perutz Laboratories, Vienna Biocenter, University of Vienna, Vienna, Austria
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
69
|
Bas L, Papinski D, Licheva M, Torggler R, Rohringer S, Schuschnig M, Kraft C. Reconstitution reveals Ykt6 as the autophagosomal SNARE in autophagosome-vacuole fusion. J Cell Biol 2018; 217:3656-3669. [PMID: 30097514 PMCID: PMC6168255 DOI: 10.1083/jcb.201804028] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 06/12/2018] [Accepted: 07/05/2018] [Indexed: 11/22/2022] Open
Abstract
Autophagy mediates the bulk degradation of cytoplasmic material, particularly during starvation. Upon the induction of autophagy, autophagosomes form a sealed membrane around cargo, fuse with a lytic compartment, and release the cargo for degradation. The mechanism of autophagosome-vacuole fusion is poorly understood, although factors that mediate other cellular fusion events have been implicated. In this study, we developed an in vitro reconstitution assay that enables systematic discovery and dissection of the players involved in autophagosome-vacuole fusion. We found that this process requires the Atg14-Vps34 complex to generate PI3P and thus recruit the Ypt7 module to autophagosomes. The HOPS-tethering complex, recruited by Ypt7, is required to prepare SNARE proteins for fusion. Furthermore, we discovered that fusion requires the R-SNARE Ykt6 on the autophagosome, together with the Q-SNAREs Vam3, Vam7, and Vti1 on the vacuole. These findings shed new light on the mechanism of autophagosome-vacuole fusion and reveal that the R-SNARE Ykt6 is required for this process.
Collapse
Affiliation(s)
- Levent Bas
- Max F. Perutz Laboratories, Vienna Biocenter, University of Vienna, Vienna, Austria
| | - Daniel Papinski
- Max F. Perutz Laboratories, Vienna Biocenter, University of Vienna, Vienna, Austria
| | - Mariya Licheva
- Institute of Biochemistry and Molecular Biology, Centre for Biochemistry and Molecular Cell Research , Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Raffaela Torggler
- Max F. Perutz Laboratories, Vienna Biocenter, University of Vienna, Vienna, Austria
- Institute of Biochemistry and Molecular Biology, Centre for Biochemistry and Molecular Cell Research , Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Sabrina Rohringer
- Max F. Perutz Laboratories, Vienna Biocenter, University of Vienna, Vienna, Austria
| | - Martina Schuschnig
- Max F. Perutz Laboratories, Vienna Biocenter, University of Vienna, Vienna, Austria
| | - Claudine Kraft
- Max F. Perutz Laboratories, Vienna Biocenter, University of Vienna, Vienna, Austria
- Institute of Biochemistry and Molecular Biology, Centre for Biochemistry and Molecular Cell Research , Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|