51
|
Taylor SK, Houshdaran S, Robinson JF, Gormley MJ, Kwan EY, Kapidzic M, Schilling B, Giudice LC, Fisher SJ. Cytotrophoblast extracellular vesicles enhance decidual cell secretion of immune modulators via TNFα. Development 2020; 147:dev.187013. [PMID: 32747437 DOI: 10.1242/dev.187013] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 07/23/2020] [Indexed: 12/11/2022]
Abstract
The placenta releases large quantities of extracellular vesicles (EVs) that likely facilitate communication between the embryo/fetus and the mother. We isolated EVs from second trimester human cytotrophoblasts (CTBs) by differential ultracentrifugation and characterized them using transmission electron microscopy, immunoblotting and mass spectrometry. The 100,000 g pellet was enriched for vesicles with a cup-like morphology typical of exosomes. They expressed markers specific to this vesicle type, CD9 and HRS, and the trophoblast proteins placental alkaline phosphatase and HLA-G. Global profiling by mass spectrometry showed that placental EVs were enriched for proteins that function in transport and viral processes. A cytokine array revealed that the CTB 100,000 g pellet contained a significant amount of tumor necrosis factor α (TNFα). CTB EVs increased decidual stromal cell (dESF) transcription and secretion of NF-κB targets, including IL8, as measured by qRT-PCR and cytokine array. A soluble form of the TNFα receptor inhibited the ability of CTB 100,000 g EVs to increase dESF secretion of IL8. Overall, the data suggest that CTB EVs enhance decidual cell release of inflammatory cytokines, which we theorize is an important component of successful pregnancy.
Collapse
Affiliation(s)
- Sara K Taylor
- Center for Reproductive Sciences, University of California, San Francisco, CA 94143, USA.,Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco, CA 94143, USA.,Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA
| | - Sahar Houshdaran
- Center for Reproductive Sciences, University of California, San Francisco, CA 94143, USA.,Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco, CA 94143, USA
| | - Joshua F Robinson
- Center for Reproductive Sciences, University of California, San Francisco, CA 94143, USA.,Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco, CA 94143, USA.,Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA
| | - Matthew J Gormley
- Center for Reproductive Sciences, University of California, San Francisco, CA 94143, USA.,Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco, CA 94143, USA.,Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA
| | - Elaine Y Kwan
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco, CA 94143, USA
| | - Mirhan Kapidzic
- Center for Reproductive Sciences, University of California, San Francisco, CA 94143, USA.,Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco, CA 94143, USA.,Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA
| | - Birgit Schilling
- Chemistry & Mass Spectrometry, Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Linda C Giudice
- Center for Reproductive Sciences, University of California, San Francisco, CA 94143, USA.,Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco, CA 94143, USA
| | - Susan J Fisher
- Center for Reproductive Sciences, University of California, San Francisco, CA 94143, USA .,Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco, CA 94143, USA.,Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA.,Division of Maternal Fetal Medicine, University of California, San Francisco, CA 94143, USA.,Department of Anatomy, University of California, San Francisco, CA 94143, USA.,Human Embryonic Stem Cell Program, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
52
|
Chen Z, Yin S, Zheng L, Tang W, Kang M, Wei W, Sui K. Relationship between the Monocyte Chemo-attractant Protein-1 gene rs1024611 A>G Polymorphism and Cancer Susceptibility: A Meta-analysis Involving 14,617 Subjects. Immunol Invest 2020; 50:461-477. [PMID: 32552226 DOI: 10.1080/08820139.2020.1776726] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Inflammatory and inducible chemokines are the hallmarks of malignancy. Monocyte chemo-attractant protein-1 (MCP-1) is a crucial chemokine implicated in infection and inflammation. Methods: We performed an updated meta-analysis of thirty independent case-control studies with 6,777 cancer cases and 7,840 controls to determine if the MCP-1 gene rs1024611 A > G variant is associated with the risk of cancer. Results: The G allele carriers of rs1024611 in the MCP-1 gene might have a null association with cancer risk in overall comparison. In a subgroup analysis by ethnicity, we identified a marked association between the MCP-1 G allele rs1024611 polymorphism and cancer risk in the Caucasian populations (GG vs. AA: OR = 1.72, 95% CI, 1.12-2.64, P = .013, and GG vs. AG/AA: OR = 1.82, 95% CI, 1.19-2.78, P = .006). The potential bias in literature selection was witnessed in this meta-analysis (G vs. A: P Begg's = 0.187, PEgger's = 0.049; and GG/GA vs. AA: P Begg's = 0.069, PEgger's = 0.024). The adjusted ORs and CIs of the nonparametric "trim-and-fill" method demonstrated the reliability of these findings. The outcome of heterogeneity analysis indicated that heterogeneity might be due to small sample sizes (<1000 subjects), cancer types (bladder cancer, other cancers), ethnicity (Asians), and population-based studies. However, the sensitivity analysis validated the reliability of the findings. Conclusion: In conclusion, this updated meta-analysis showed that the G carrier of the MCP-1 gene rs1024611 is associated with susceptibility to cancer in Caucasian.
Collapse
Affiliation(s)
- Zhan Chen
- Department of Cardiothoracic Surgery, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, China
| | - Shiping Yin
- Physical Examination Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Liang Zheng
- Department of Thoracic Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China
| | - Weifeng Tang
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
| | - Mingqiang Kang
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China.,Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian Province, China.,Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Wei Wei
- Department of Cardiothoracic Surgery, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, China
| | - Kang Sui
- Department of Cardiothoracic Surgery, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, China
| |
Collapse
|
53
|
Molecular mechanism of gossypol mediating CCL2 and IL‑8 attenuation in triple‑negative breast cancer cells. Mol Med Rep 2020; 22:1213-1226. [PMID: 32627003 PMCID: PMC7339712 DOI: 10.3892/mmr.2020.11240] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 04/28/2020] [Indexed: 12/28/2022] Open
Abstract
Chronic inflammation associated with cancer is characterized by the production of different types of chemokines and cytokines. In cancer, numerous signaling pathways upregulate the expression levels of several cytokines and evolve cells to the neoplastic state. Therefore, targeting these signaling pathways through the inhibition of distinctive gene expression is a primary target for cancer therapy. The present study investigated the anticancer effects of the natural polyphenol gossypol (GOSS) in triple-negative breast cancer (TNBC) cells, the most aggressive breast cancer type with poor prognosis. GOSS effects were examined in two TNBC cell lines: MDA-MB-231 (MM-231) and MDA-MB-468 (MM-468), representing Caucasian Americans (CA) and African Americans (AA), respectively. The obtained IC50s revealed no significant difference between the two cell lines' response to the compound. However, the use of microarray assays for cytokine determination indicated the ability of GOSS to attenuate the expression levels of cancer-related cytokines in the two cell lines. Although GOSS did not alter CCL2 expression in MM-468 cells, it was able to cause 30% inhibition in TNF-α-stimulated MM-231 cells. Additionally, IL-8 was not altered by GOSS treatment in MM-231 cells, while its expression was inhibited by 60% in TNF-α-activated MM-468 cells. ELISA assays supported the microarray data and indicated that CCL2 expression was inhibited by 40% in MM-231 cells, and IL-8 expression was inhibited by 50% in MM-468 cells. Furthermore, in MM-231 cells, GOSS inhibited CCL2 release via the repression of IKBKE, CCL2 and MAPK1 gene expression. Additionally, in MM-468 cells, the compound downregulated the release of IL-8 through repressing IL-8, MAPK1, MAPK3, CCDC88A, STAT3 and PIK3CD gene expression. In conclusion, the data obtained in the present study indicate that the polyphenol compound GOSS may provide a valuable tool in TNBC therapy.
Collapse
|
54
|
Gu X, Xiao F, Lu W, Xu Y, Li X, Yu C, Cui X. Nanomedicine-mediated prevention of inflammatory monocytes infiltration ameliorate ovalbumin-induced allergic rhinitis in mouse model. Autoimmunity 2020; 53:218-224. [PMID: 32285703 DOI: 10.1080/08916934.2020.1750009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Th2 immune cells infiltration into nasal mucosa is one of the characters of allergic rhinitis (AR). We aimed to explore whether inhibition of Th2 immune cells infiltration would attenuate AR progression. AR mouse model was established by i.p. injection of ovalbumin (OVA). The infiltrated immune cells into nasal lavage fluid were detected by flow cytometry. Cytokine concentration in serum was determined by ELISA. AR mice symptoms were indicated by the number of sneezing and nasal rubbing events. In AR mice, CCL2 expression levels and CD45+CD11b+Ly6Chi inflammatory monocytes cells significantly increased as compared with control mice. CCL2 siRNA encapsulated nanoparticles (NPsiCCL2) prevent CCL2 expression and inflammatory monocytes infiltration in AR mice. NPsiCCL2 treatment dramatically decreased the number of sneezing and nasal rubbing events in AR mice. Moreover, NPsiCCL2 treatment attenuated serum OVA-specific IgE, OVA-specific IgG1 and histamine levels. Mechanically, NPsiCCL2 treatment attenuates AR symptoms via inhibiting Th2 cytokine (IL-4, IL-5 and IL-13) production. Nanomedicine-mediated prevention of inflammatory monocytes infiltration ameliorates ovalbumin-induced allergic rhinitis in mouse model.
Collapse
Affiliation(s)
- Xiaofeng Gu
- Department of Otorhinolaryngology, Changzhou Second People's Hospital Affiliated to Nanjing Medical University, Changzhou, China
| | - Feng Xiao
- Department of Otorhinolaryngology, Changzhou Second People's Hospital Affiliated to Nanjing Medical University, Changzhou, China
| | - Wenmin Lu
- Department of Otorhinolaryngology, Changzhou Second People's Hospital Affiliated to Nanjing Medical University, Changzhou, China
| | - Ying Xu
- Department of Otorhinolaryngology, Changzhou Second People's Hospital Affiliated to Nanjing Medical University, Changzhou, China
| | - Xia Li
- Department of Otorhinolaryngology, Changzhou Second People's Hospital Affiliated to Nanjing Medical University, Changzhou, China
| | - Chenjie Yu
- Department of Otorhinolaryngology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, China.,Department of Otorhinolaryngology, Drum Tower Clinical Medical College, Nanjing Medical University, Nanjing, China.,Research Institute of Otorhinolaryngology, Drum Tower Hospital, Nanjing, China
| | - Xinyan Cui
- Department of Otorhinolaryngology, the First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
55
|
Terashima Y, Toda E, Itakura M, Otsuji M, Yoshinaga S, Okumura K, Shand FHW, Komohara Y, Takeda M, Kokubo K, Chen MC, Yokoi S, Rokutan H, Kofuku Y, Ohnishi K, Ohira M, Iizasa T, Nakano H, Okabe T, Kojima H, Shimizu A, Kanegasaki S, Zhang MR, Shimada I, Nagase H, Terasawa H, Matsushima K. Targeting FROUNT with disulfiram suppresses macrophage accumulation and its tumor-promoting properties. Nat Commun 2020; 11:609. [PMID: 32001710 PMCID: PMC6992764 DOI: 10.1038/s41467-020-14338-5] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 12/20/2019] [Indexed: 12/15/2022] Open
Abstract
Tumor-associated macrophages affect tumor progression and resistance to immune checkpoint therapy. Here, we identify the chemokine signal regulator FROUNT as a target to control tumor-associated macrophages. The low level FROUNT expression in patients with cancer correlates with better clinical outcomes. Frount-deficiency markedly reduces tumor progression and decreases macrophage tumor-promoting activity. FROUNT is highly expressed in macrophages, and its myeloid-specific deletion impairs tumor growth. Further, the anti-alcoholism drug disulfiram (DSF) acts as a potent inhibitor of FROUNT. DSF interferes with FROUNT-chemokine receptor interactions via direct binding to a specific site of the chemokine receptor-binding domain of FROUNT, leading to inhibition of macrophage responses. DSF monotherapy reduces tumor progression and decreases macrophage tumor-promoting activity, as seen in the case of Frount-deficiency. Moreover, co-treatment with DSF and an immune checkpoint antibody synergistically inhibits tumor growth. Thus, inhibition of FROUNT by DSF represents a promising strategy for macrophage-targeted cancer therapy. The cytoplasmic protein FROUNT can bind to chemokine receptors and enhance chemokine signalling. Here, the authors show that inhibiting FROUNT in macrophages either by knockdown of the gene or using the anti-alcoholism drug disulfiram, results in a reduction in tumour growth.
Collapse
Affiliation(s)
- Yuya Terashima
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences (RIBS), Tokyo University of Science, Chiba, 278-0022, Japan. .,Department of Molecular Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan. .,Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences (RIBS), Tokyo University of Science, Chiba, 278-0022, Japan.
| | - Etsuko Toda
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences (RIBS), Tokyo University of Science, Chiba, 278-0022, Japan.,Department of Molecular Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan.,Department of Analytic Human Pathology, Nippon Medical School, Tokyo, 113-8602, Japan.,Department of Analytic Human Pathology, Nippon Medical School, Tokyo, 113-8602, Japan
| | - Meiji Itakura
- Department of Thoracic Disease, Chiba Cancer Center, Chiba, 260-8717, Japan.,Chiba Cancer Center Research Institute, Chiba, 260-8717, Japan.,Chiba Cancer Center Research Institute, Chiba, 260-8717, Japan
| | - Mikiya Otsuji
- Department of Molecular Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan.,Department of Anesthesiology, Tokyo Teishin Hospital, Tokyo, 102-8798, Japan.,Department of Anesthesiology, Tokyo Teishin Hospital, Tokyo, 102-8798, Japan
| | - Sosuke Yoshinaga
- Department of Structural BioImaging, Faculty of Life Sciences, Kumamoto University, Kumamoto, 862-0973, Japan
| | | | - Francis H W Shand
- Department of Molecular Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Yoshihiro Komohara
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Mitsuhiro Takeda
- Department of Structural BioImaging, Faculty of Life Sciences, Kumamoto University, Kumamoto, 862-0973, Japan
| | - Kana Kokubo
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences (RIBS), Tokyo University of Science, Chiba, 278-0022, Japan.,Department of Molecular Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan.,Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences (RIBS), Tokyo University of Science, Chiba, 278-0022, Japan
| | - Ming-Chen Chen
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences (RIBS), Tokyo University of Science, Chiba, 278-0022, Japan.,Department of Molecular Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan.,Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences (RIBS), Tokyo University of Science, Chiba, 278-0022, Japan
| | - Sana Yokoi
- Chiba Cancer Center Research Institute, Chiba, 260-8717, Japan
| | - Hirofumi Rokutan
- Department of Molecular Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Yutaka Kofuku
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Koji Ohnishi
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Miki Ohira
- Chiba Cancer Center Research Institute, Chiba, 260-8717, Japan
| | - Toshihiko Iizasa
- Department of Thoracic Disease, Chiba Cancer Center, Chiba, 260-8717, Japan
| | - Hirofumi Nakano
- Drug Discovery Initiative, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Takayoshi Okabe
- Drug Discovery Initiative, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Hirotatsu Kojima
- Drug Discovery Initiative, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Akira Shimizu
- Department of Analytic Human Pathology, Nippon Medical School, Tokyo, 113-8602, Japan
| | - Shiro Kanegasaki
- Research Institute, National Center for Global Health and Medicine, Tokyo, 162-8655, Japan
| | - Ming-Rong Zhang
- Department of Radiopharmaceutics Development, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Ichio Shimada
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Hiroki Nagase
- Chiba Cancer Center Research Institute, Chiba, 260-8717, Japan
| | - Hiroaki Terasawa
- Department of Structural BioImaging, Faculty of Life Sciences, Kumamoto University, Kumamoto, 862-0973, Japan
| | - Kouji Matsushima
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences (RIBS), Tokyo University of Science, Chiba, 278-0022, Japan.,Department of Molecular Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan.,Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences (RIBS), Tokyo University of Science, Chiba, 278-0022, Japan
| |
Collapse
|
56
|
Gschwandtner M, Derler R, Midwood KS. More Than Just Attractive: How CCL2 Influences Myeloid Cell Behavior Beyond Chemotaxis. Front Immunol 2019; 10:2759. [PMID: 31921102 PMCID: PMC6923224 DOI: 10.3389/fimmu.2019.02759] [Citation(s) in RCA: 389] [Impact Index Per Article: 64.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 11/11/2019] [Indexed: 12/15/2022] Open
Abstract
Monocyte chemoattractant protein-1 (MCP-1/CCL2) is renowned for its ability to drive the chemotaxis of myeloid and lymphoid cells. It orchestrates the migration of these cell types both during physiological immune defense and in pathological circumstances, such as autoimmune diseases including rheumatoid arthritis and multiple sclerosis, inflammatory diseases including atherosclerosis, as well as infectious diseases, obesity, diabetes, and various types of cancer. However, new data suggest that the scope of CCL2's functions may extend beyond its original characterization as a chemoattractant. Emerging evidence shows that it can impact leukocyte behavior, influencing adhesion, polarization, effector molecule secretion, autophagy, killing, and survival. The direction of these CCL2-induced responses is context dependent and, in some cases, synergistic with other inflammatory stimuli. The involvement of CCL2 signaling in multiple diseases renders it an interesting therapeutic target, although current targeting strategies have not met early expectations in the clinic. A better understanding of how CCL2 affects immune cells will be pivotal to the improvement of existing therapeutic approaches and the development of new drugs. Here, we provide an overview of the pleiotropic effects of CCL2 signaling on cells of the myeloid lineage, beyond chemotaxis, and highlight how these actions might help to shape immune cell behavior and tumor immunity.
Collapse
Affiliation(s)
- Martha Gschwandtner
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Rupert Derler
- Department of Pharmaceutical Chemistry, Institute of Pharmaceutical Sciences, University of Graz, Graz, Austria
| | - Kim S. Midwood
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
57
|
Aqueous Humor Mediator and Cytokine Aberrations in Diabetic Retinopathy and Diabetic Macular Edema: A Systematic Review and Meta-Analysis. DISEASE MARKERS 2019; 2019:6928524. [PMID: 31871502 PMCID: PMC6906842 DOI: 10.1155/2019/6928524] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 10/20/2019] [Accepted: 10/30/2019] [Indexed: 12/13/2022]
Abstract
Purpose To evaluate the relationship between the aqueous humor levels of VEGF, TNF-α, IL-10, IL-6, IL-12, MCP-1, and IP-10 with DR/DME. Methods PubMed, Web of Science, Embase, China National Knowledge Infrastructure (CNKI), and Wanfang databases were searched up to October 2018. Systematic review and meta-analysis were conducted. Results 18 studies comprising 362 cases with DR (100 with DME) and 620 controls without DR were included in this meta-analysis. There was a significant association between VEGF levels in the aqueous humor and DR (standardized mean difference (SMD) 1.94 (95% CI 1.05-2.83)) and DME (1.07 (0.71, 1.42)). Furthermore, a significant correlation was observed between levels of IL-6 and DR (3.53 (0.37, 6.69)), and similarly correlation with DME (1.26 (0.30, 2.21)). The relationship between MCP-1 and DR and DME was significant, in which the SMD was (0.49 (0.09, 0.89)) and (1.49 (0.78, 2.20)), respectively. However, IL-12, IP-10, and TNF-α had no correlation with DR and DME, whereas there was a significant relationship between IL-8 and DME (1.68 (0.97, 2.40)). Conclusion Elevated levels of VEGF, IL-6, and MCP-1 in the aqueous humor were associated with the risk for the presence of DR, and levels of VEGF, IL-6, IL-8, and MCP-1 were associated with the risk of DME. Furthermore, these biomarkers may be used as potential predictors or therapeutic targets for DR/DME.
Collapse
|
58
|
Yanagisawa R, Koike E, Win-Shwe TT, Takano H. Oral exposure to low dose bisphenol A aggravates allergic airway inflammation in mice. Toxicol Rep 2019; 6:1253-1262. [PMID: 31788436 PMCID: PMC6880024 DOI: 10.1016/j.toxrep.2019.11.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 11/11/2019] [Accepted: 11/13/2019] [Indexed: 01/20/2023] Open
Abstract
Oral exposure to BPA relevant to human exposure aggravated allergic asthma. Low dose BPA with allergen reduced lung mRNA levels of hormone receptors. Low dose BPA with allergen altered lymph node and bone marrow microenvironments.
Bisphenol A (BPA) is widely used in many consumer products and has adverse effects on human health including allergic diseases. We investigated the effects of low dose BPA, comparable to actual human oral exposure, on allergic asthma in mice. C3H/HeJ male mice were fed a chow diet containing BPA (equivalent to 0.09, 0.90, or 9.01 μg/kg/day) and were intratracheally administered ovalbumin (OVA, 1 μg/animal) every two weeks from 5–11 weeks of age. All doses of BPA plus OVA enhanced pulmonary inflammation and airway hyperresponsiveness, and increased lung mRNA levels of Th2 cytokine/chemokine, and serum OVA-specific IgE and IgG1 compared to OVA alone, with greater effects observed in the middle- and high-dose BPA plus OVA groups. Furthermore, high-dose BPA with OVA decreased lung mRNA levels of ERβ and AR compared with OVA. Furthermore, BPA enhanced OVA-restimulated cell proliferation and protein levels of IL-4 and IL-5 in mediastinal lymph node (MLN) cells in OVA-sensitized mice. In bone marrow (BM) cells, middle-dose BPA with OVA increased Gr-1 expression. In conclusion, oral exposure to low-dose BPA at levels equivalent to human exposure can aggravate allergic asthmatic responses through enhancement of Th2-skewed responses, lung hormone receptor downregulation, and MLN and BM microenvironment change.
Collapse
Key Words
- AhR, aryl hydrocarbon receptor
- Allergic asthma
- Ar, androgen receptor
- BM, bone marrow
- BPA, bisphenol a
- Bisphenol A
- ER, estrogen receptor
- Endocrine disruptor
- FACS, fluorescence-activated cell-sorting
- GR, glucocorticoid receptor
- Gr-1, granulocyte-differentiation antigen
- Hormone receptor
- Hprt1, hypoxanthine phosphoribosyltransferase 1
- IFN-γ, interferon-gamma
- IL, interleukin
- Ig, immunoglobulin
- Low dose effects
- MCP-1, monocyte chemoattractant protein-1
- MIP-1α, macrophage inflammatory protein 1-alpha
- MLN, mediastinal lymph node
- OVA, ovalbumin
- RANTES, normal T cell expressed and secreted
- SDF-1α, stromal cell derived factor 1 alpha
- Th, T helper
- Th2 response
Collapse
Affiliation(s)
- Rie Yanagisawa
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, Tsukuba, Japan
| | - Eiko Koike
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, Tsukuba, Japan
| | - Tin-Tin Win-Shwe
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, Tsukuba, Japan
| | - Hirohisa Takano
- Graduate School of Global Environmental Studies, Kyoto University, Kyoto, Japan
| |
Collapse
|
59
|
Moore BB, Kunkel SL. Attracting Attention: Discovery of IL-8/CXCL8 and the Birth of the Chemokine Field. THE JOURNAL OF IMMUNOLOGY 2019; 202:3-4. [PMID: 30587567 DOI: 10.4049/jimmunol.1801485] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Bethany B Moore
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109; .,Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109; and
| | - Steven L Kunkel
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
60
|
Tajima S, Yamamoto N, Masuda S. Clinical prospects of biomarkers for the early detection and/or prediction of organ injury associated with pharmacotherapy. Biochem Pharmacol 2019; 170:113664. [PMID: 31606409 DOI: 10.1016/j.bcp.2019.113664] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 10/08/2019] [Indexed: 12/31/2022]
Abstract
Several biomarkers are used to monitor organ damage caused by drug toxicity. Traditional markers of kidney function, such as serum creatinine and blood urea nitrogen are commonly used to estimate glomerular filtration rate. However, these markers have several limitations including poor specificity and sensitivity. A number of serum and urine biomarkers have recently been described to detect kidney damage caused by drugs such as cisplatin, gentamicin, vancomycin, and tacrolimus. Neutrophil gelatinase-associated lipocalin (NGAL), liver-type fatty acid-binding protein (L-FABP), kidney injury molecule-1 (KIM-1), monocyte chemotactic protein-1 (MCP-1), and cystatin C have been identified as biomarkers for early kidney damage. Hy's Law is widely used as to predict a high risk of severe drug-induced liver injury caused by drugs such as acetaminophen. Recent reports have indicated that glutamate dehydrogenase (GLDH), high-mobility group box 1 (HMGB-1), Keratin-18 (k18), MicroRNA-122 and ornithine carbamoyltransferase (OCT) are more sensitive markers of hepatotoxicity compared to the traditional markers including the blood levels of amiotransferases and total bilirubin. Additionally, the rapid development of proteomic technologies in biofluids and tissue provides a new multi-marker panel, leading to the discovery of more sensitive biomarkers. In this review, an update topics of biomarkers for the detection of kidney or liver injury associated with pharmacotherapy.
Collapse
Affiliation(s)
- Soichiro Tajima
- Department of Pharmacy, Kyushu University Hospital, Fukuoka 812-8582, Japan
| | - Nanae Yamamoto
- Department of Pharmacy, Kyushu University Hospital, Fukuoka 812-8582, Japan
| | - Satohiro Masuda
- Department of Pharmacy, Kyushu University Hospital, Fukuoka 812-8582, Japan; Department of Clinical Pharmacology and Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan; Department of Pharmacy, International University of Health and Welfare Narita Hospital, Japan; Department of Clinical Pharmacy, Faculty of Pharmaceutical Sciences, International University of Health and Welfare Narita Hospital, Japan.
| |
Collapse
|
61
|
Waller K, James C, de Jong A, Blackmore L, Ma Y, Stagg A, Kelsell D, O'Dwyer M, Hutchins R, Alazawi W. ADAM17-Mediated Reduction in CD14 ++CD16 + Monocytes ex vivo and Reduction in Intermediate Monocytes With Immune Paresis in Acute Pancreatitis and Acute Alcoholic Hepatitis. Front Immunol 2019; 10:1902. [PMID: 31507587 PMCID: PMC6718469 DOI: 10.3389/fimmu.2019.01902] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 07/26/2019] [Indexed: 12/16/2022] Open
Abstract
Impaired immune responses and increased susceptibility to infection characterize acute inflammatory conditions such as pancreatitis and alcoholic hepatitis and are major causes of morbidity and mortality. However, the mechanisms that drive this apparent immune paresis remain poorly understood. Monocytes mediate host responses to damage and pathogens in health and disease, and three subsets of monocytes have been defined based on CD14 and CD16 expression. We sought to determine the changes in monocyte subsets in acute pancreatitis (AP) and acute alcoholic hepatitis (AAH), together with functional consequences and mechanisms that underlie this change. Peripheral blood mononuclear cells (PBMCs) from patients with AP or AAH were compared with healthy controls. Monocyte subsets were defined by HLA-DR, CD14, and CD16 expression. Changes in surface and intracellular protein expression and phosphorylation were determined by flow cytometry. Phenotype and function were assessed following stimulation with lipopolysaccharide (LPS) or other agonists in the presence of specific inhibitors of TNFα and a disintegrin and metalloproteinase 17 (ADAM17). Patients with AP and AAH had reduced CD14++CD16+ intermediate monocytes compared to controls. Reduction of intermediate monocytes was recapitulated ex vivo by stimulating healthy control PBMCs with Toll-like receptor (TLR) agonists LPS, flagellin or polyinosilic:polycytidylic acid (poly I:C). Stimulation caused shedding of CD14 and CD16, which could be reversed using the ADAM17 inhibitor, TMI005 but not direct inhibitors of TNFα, a known ADAM17-target. Culturing PBMCs from healthy controls resulted in expansion of intermediate monocytes, which did not occur when LPS was in the culture medium. Cultured intermediate monocytes showed reduced expression of CX3CR1, CCR2, TLR4, and TLR5. We found reduced migratory responses, intracellular signaling and pro-inflammatory cytokine production, and increased expression of IL-10. Stimulation with TLR agonists results in ADAM17-mediated shedding of phenotypic markers from CD16+ monocytes, leading to apparent “loss” of intermediate monocytes. Reduction in CD14++CD16− monocytes and increased CD14++CD16+ is associated with altered responses in functional assays ex vivo. Patients with AP and AAH had reduced proportions of CD14++CD16+ monocytes and reduced phosphorylation of NFκB and IL-6 production in response to bacterial LPS. Together, these processes may contribute to the susceptibility to infection observed in AP and AAH.
Collapse
Affiliation(s)
- Kathryn Waller
- Blizard Institute, Queen Mary University of London, London, United Kingdom
| | - Charlotte James
- Blizard Institute, Queen Mary University of London, London, United Kingdom
| | - Anja de Jong
- Blizard Institute, Queen Mary University of London, London, United Kingdom
| | - Laura Blackmore
- Institute of Liver Studies and Transplantation, King's College London, London, United Kingdom
| | - Yun Ma
- Institute of Liver Studies and Transplantation, King's College London, London, United Kingdom
| | - Andrew Stagg
- Blizard Institute, Queen Mary University of London, London, United Kingdom
| | - David Kelsell
- Blizard Institute, Queen Mary University of London, London, United Kingdom
| | | | - Robert Hutchins
- Hepatopancreaticobiliary Unit, Barts Health NHS Trust, London, United Kingdom
| | - William Alazawi
- Blizard Institute, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
62
|
Yumimoto K, Sugiyama S, Mimori K, Nakayama KI. Potentials of C-C motif chemokine 2-C-C chemokine receptor type 2 blockers including propagermanium as anticancer agents. Cancer Sci 2019; 110:2090-2099. [PMID: 31111571 PMCID: PMC6609805 DOI: 10.1111/cas.14075] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 05/09/2019] [Accepted: 05/14/2019] [Indexed: 12/21/2022] Open
Abstract
Inflammation plays an essential role in the development and progression of most cancers. Chemokine C‐C motif chemokine 2 (CCL2) and its receptor C‐C chemokine receptor type 2 (CCR2) constitute a key signaling axis in inflammation that has recently attracted much interest on the basis of evidence showing its association with cancer progression. Propagermanium (3‐oxygermylpropionic acid polymer) is an organogermanium compound that is given for the treatment of hepatitis B in Japan and which inhibits the CCL2‐CCR2 signaling pathway. Herein, we review the importance of the CCL2‐CCR2 axis as a target in cancer treatment as shown by studies in mice and humans with pharmacological agents including propagermanium.
Collapse
Affiliation(s)
- Kanae Yumimoto
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Shigeaki Sugiyama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Koshi Mimori
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, Japan
| | - Keiichi I Nakayama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| |
Collapse
|
63
|
Suppressive Role of Androgen/Androgen Receptor Signaling via Chemokines on Prostate Cancer Cells. J Clin Med 2019; 8:jcm8030354. [PMID: 30871130 PMCID: PMC6463189 DOI: 10.3390/jcm8030354] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 03/10/2019] [Accepted: 03/11/2019] [Indexed: 01/29/2023] Open
Abstract
Androgen/androgen receptor (AR) signaling is a significant driver of prostate cancer progression, therefore androgen-deprivation therapy (ADT) is often used as a standard form of treatment for advanced and metastatic prostate cancer patients. However, after several years of ADT, prostate cancer progresses to castration-resistant prostate cancer (CRPC). Androgen/AR signaling is still considered an important factor for prostate cancer cell survival following CRPC progression, while recent studies have reported dichotomic roles for androgen/AR signaling. Androgen/AR signaling increases prostate cancer cell proliferation, while simultaneously inhibiting migration. As a result, ADT can induce prostate cancer metastasis. Several C-C motif ligand (CCL)-receptor (CCR) axes are involved in cancer cell migration related to blockade of androgen/AR signaling. The CCL2-CCR2 axis is negatively regulated by androgen/AR signaling, with the CCL22-CCR4 axis acting as a further downstream mediator, both of which promote prostate cancer cell migration. Furthermore, the CCL5-CCR5 axis inhibits androgen/AR signaling as an upstream mediator. CCL4 is involved in prostate carcinogenesis through macrophage AR signaling, while the CCL21-CCR7 axis in prostate cancer cells is activated by tumor necrotic factor, which is secreted when androgen/AR signaling is inhibited. Finally, the CCL2-CCR2 axis has recently been demonstrated to be a key contributor to cabazitaxel resistance in CRPC.
Collapse
|
64
|
Faienza MF, D'Amato G, Chiarito M, Colaianni G, Colucci S, Grano M, Corbo F, Brunetti G. Mechanisms Involved in Childhood Obesity-Related Bone Fragility. Front Endocrinol (Lausanne) 2019; 10:269. [PMID: 31130918 PMCID: PMC6509993 DOI: 10.3389/fendo.2019.00269] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 04/11/2019] [Indexed: 01/11/2023] Open
Abstract
Childhood obesity is one of the major health problems in western countries. The excessive accumulation of adipose tissue causes inflammation, oxidative stress, apoptosis, and mitochondrial dysfunctions. Thus, obesity leads to the development of severe co-morbidities including type 2 diabetes mellitus, liver steatosis, cardiovascular, and neurodegenerative diseases which can develop early in life. Furthermore, obese children have low bone mineral density and a greater risk of osteoporosis and fractures. The knowledge about the interplay bone tissue and between adipose is still growing, although recent findings suggest that adipose tissue activity on bone can be fat-depot specific. Obesity is associated to a low-grade inflammation that alters the expression of adiponectin, leptin, IL-6, Monocyte Chemotactic Protein 1 (MCP1), TRAIL, LIGHT/TNFSF14, OPG, and TNFα. These molecules can affect bone metabolism, thus resulting in osteoporosis. The purpose of this review was to deepen the cellular mechanisms by which obesity may facilitate osteoporosis and bone fractures.
Collapse
Affiliation(s)
- Maria Felicia Faienza
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy
| | | | - Mariangela Chiarito
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy
| | - Graziana Colaianni
- Department of Emergency and Organ Transplantation, Section of Human Anatomy and Histology, University of Bari, Bari, Italy
| | - Silvia Colucci
- Department of Basic and Medical Sciences, Neurosciences and Sense Organs, Section of Human Anatomy and Histology, University of Bari Aldo Moro, Bari, Italy
| | - Maria Grano
- Department of Emergency and Organ Transplantation, Section of Human Anatomy and Histology, University of Bari, Bari, Italy
| | - Filomena Corbo
- Department of Pharmacy-Drug Science, University of Bari Aldo Moro, Bari, Italy
| | - Giacomina Brunetti
- Department of Basic and Medical Sciences, Neurosciences and Sense Organs, Section of Human Anatomy and Histology, University of Bari Aldo Moro, Bari, Italy
- *Correspondence: Giacomina Brunetti
| |
Collapse
|
65
|
Sadakane K, Ichinose T, Nishikawa M. Effects of co-exposure of lipopolysaccharide and β-glucan (Zymosan A) in exacerbating murine allergic asthma associated with Asian sand dust. J Appl Toxicol 2018; 39:672-684. [PMID: 30548448 DOI: 10.1002/jat.3759] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/30/2018] [Accepted: 11/02/2018] [Indexed: 12/11/2022]
Abstract
During the 2000s, Asian sand dust (ASD) was implicated in the increasing prevalence of respiratory disorders, including asthma. We previously demonstrated that a fungus from ASD aerosol exacerbated ovalbumin (OVA)-induced airways inflammation. Exposure to heat-inactivated ASD (H-ASD) and either Zymosan A (ZymA, containing β-glucan) or lipopolysaccharide (LPS) exacerbated allergic airways inflammation in a mouse model, but the effects of co-exposure of LPS and β-glucan are unclear. We investigated the effects of co-exposure of LPS and ZymA in OVA-induced allergic airways inflammation with ASD using BALB/c mice. Exposure to OVA + LPS enhanced the recruitment of inflammatory cells to the lungs, particularly neutrophils; exposure to OVA + LPS + H-ASD potentiated this effect. Exposure to OVA + ZymA + H-ASD stimulated the recruitment of inflammatory cells to the lungs, particularly eosinophils, and serum levels of OVA-specific IgE and IgG1 antibodies, whereas exposure to OVA + ZymA did not affect most indicators of lung inflammation. Although exposure to OVA + LPS + ZymA + H-ASD affected a few allergic parameters additively or synergistically, most allergic parameters in this group indicated the same level of exposure to OVA + LPS + H-ASD or OVA + ZymA + H-ASD. These results suggest that LPS and ZymA play different roles in allergic airways inflammation with ASD; LPS mainly enhances neutrophil recruitment through H-ASD, and ZymA enhances eosinophil recruitment through H-ASD.
Collapse
Affiliation(s)
- Kaori Sadakane
- Department of Health Sciences, Oita University of Nursing and Health Sciences, Oita, 870-1201, Japan
| | - Takamichi Ichinose
- Department of Health Sciences, Oita University of Nursing and Health Sciences, Oita, 870-1201, Japan
| | - Masataka Nishikawa
- Environmental Chemistry Division, National Institute for Environmental Studies, Ibaraki, 305-8506, Japan
| |
Collapse
|
66
|
Xue W, Fan Z, Li L, Lu J, Zhai Y, Zhao J. The chemokine system and its role in obesity. J Cell Physiol 2018; 234:3336-3346. [PMID: 30375006 DOI: 10.1002/jcp.27293] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 07/31/2018] [Indexed: 12/27/2022]
Abstract
The chemokine system is a complex arrangement of molecules that attract leukocytes to the site of injury or inflammation. This chemotactic behavior gives the system the name "Chemokine." The intricate and redundant nature of the chemokine system has made it a subject of ongoing scientific investigation. Obesity is characterized as low-grade systemic or chronic inflammation that is responsible for the release of cytokines, adipokines, and chemokines. Excessive tissue fat expansion triggers the release of chemokines, which in turn attract various leukocytes and activate the resident immune surveillance system, eventually leading to worsening of obesity and other related comorbidities. To date, 50 chemokines and 20 chemokine receptors that belong to the G-protein-coupled receptor family have been discovered, and over the past two decades, the physiological and pathological roles of many of these chemokines and their receptors have been elucidated. The objective of this review is to present an update on the link between chemokines and obesity under the light of recent knowledge.
Collapse
Affiliation(s)
- Wenhua Xue
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhirui Fan
- Department of Oncology, Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Lifeng Li
- Department of Oncology, Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jingli Lu
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yunkai Zhai
- Center of Telemedicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Engineering Laboratory for Digital Telemedicine Service, Zhengzhou, Henan, China
| | - Jie Zhao
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Center of Telemedicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Engineering Laboratory for Digital Telemedicine Service, Zhengzhou, Henan, China
| |
Collapse
|
67
|
Li YL, Shi ZH, Wang X, Gu KS, Zhai ZM. Prognostic significance of monocyte chemoattractant protein-1 and CC chemokine receptor 2 in diffuse large B cell lymphoma. Ann Hematol 2018; 98:413-422. [PMID: 30374624 DOI: 10.1007/s00277-018-3522-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 10/09/2018] [Indexed: 12/20/2022]
Abstract
Aberrant monocyte chemoattractant protein-1 (MCP-1) and CC chemokine receptor 2 (CCR2) expression in malignant tissues have been reported; however, their role in hematological malignancies prognosis remains little known. The aim of this study was to investigate the prognostic value of MCP-1 and CCR2 expression in patients with diffuse large B cell lymphoma (DLBCL). The study included 221 patients with DLBCL. MCP-1 and CCR2 expression was analyzed by immunohistochemical staining and its correlations with clinicopathologic features and prognosis were evaluated. High expression of MCP-1 or CCR2 was correlated with clinicopathological characteristics, and an adverse prognostic factor for overall survival (OS) and progression-free survival (PFS) of DLBCL patients. Also, significant positive correlation between MCP-1 and CCR2 expression was revealed (r = 0.545, P < 0.001). Patients with high MCP-1 or high CCR2 expression had significantly poorer OS and PFS than those with low MCP-1 or low CCR2 expression (OS: P < 0.001, P < 0.001; PFS: P < 0.001, P < 0.001), respectively, even in the rituximab era, and MCP-1 or CCR2 expression could further identify high-risk patients otherwise classified as low/intermediate risk by the International Prognostic Index (IPI) alone. Furthermore, incorporation of MCP-1 or CCR2 expression into the IPI score could improve prognostic value for OS. This is the first report describing the clinicopathological features and survival outcome according to expression of MCP-1 and CCR2 in DLBCL.
Collapse
Affiliation(s)
- Yan-Li Li
- Department of Pathology, Anhui Medical University, Hefei, Anhui, 230032, People's Republic of China.,Department of Pathology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, People's Republic of China
| | - Zhi-Hu Shi
- Department of Pathology, Anhui Ji Min Cancer Hospital, Hefei, Anhui, 230012, People's Republic of China
| | - Xian Wang
- Department of Pathology, Anhui Medical University, Hefei, Anhui, 230032, People's Republic of China.,Department of Pathology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, People's Republic of China
| | - Kang-Sheng Gu
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, People's Republic of China
| | - Zhi-Min Zhai
- Department of Hematology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, People's Republic of China.
| |
Collapse
|
68
|
Behfar S, Hassanshahi G, Nazari A, Khorramdelazad H. A brief look at the role of monocyte chemoattractant protein-1 (CCL2) in the pathophysiology of psoriasis. Cytokine 2018; 110:226-231. [DOI: 10.1016/j.cyto.2017.12.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 12/05/2017] [Accepted: 12/08/2017] [Indexed: 12/22/2022]
|
69
|
Ruytinx P, Proost P, Van Damme J, Struyf S. Chemokine-Induced Macrophage Polarization in Inflammatory Conditions. Front Immunol 2018; 9:1930. [PMID: 30245686 PMCID: PMC6137099 DOI: 10.3389/fimmu.2018.01930] [Citation(s) in RCA: 259] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 08/06/2018] [Indexed: 12/15/2022] Open
Abstract
Macrophages represent a heterogeneous cell population and are known to display a remarkable plasticity. In response to distinct micro-environmental stimuli, e.g., tumor stroma vs. infected tissue, they polarize into different cell subtypes. Originally, two subpopulations were defined: classically activated macrophages or M1, and alternatively activated macrophages or M2. Nowadays, the M1/M2 classification is considered as an oversimplified approach that does not adequately cover the total spectrum of macrophage phenotypes observed in vivo. Especially in pathological circumstances, macrophages behave as plastic cells modifying their expression and transcription profile along a continuous spectrum with M1 and M2 phenotypes as extremes. Here, we focus on the effect of chemokines on macrophage differentiation and polarization in physiological and pathological conditions. In particular, we discuss chemokine-induced macrophage polarization in inflammatory diseases, including obesity, cancer, and atherosclerosis.
Collapse
Affiliation(s)
- Pieter Ruytinx
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, REGA Institute KU Leuven, Leuven, Belgium
| | - Paul Proost
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, REGA Institute KU Leuven, Leuven, Belgium
| | - Jo Van Damme
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, REGA Institute KU Leuven, Leuven, Belgium
| | - Sofie Struyf
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, REGA Institute KU Leuven, Leuven, Belgium
| |
Collapse
|
70
|
Messeha SS, Zarmouh NO, Mendonca P, Alwagdani H, Kolta MG, Soliman KFA. The inhibitory effects of plumbagin on the NF-қB pathway and CCL2 release in racially different triple-negative breast cancer cells. PLoS One 2018; 13:e0201116. [PMID: 30059519 PMCID: PMC6066199 DOI: 10.1371/journal.pone.0201116] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 07/09/2018] [Indexed: 12/17/2022] Open
Abstract
Breast cancer (BC) is the second leading cause of death among women in the US, and its subtype triple-negative BC (TNBC) is the most aggressive BC with poor prognosis. In the current study, we investigated the anticancer effects of the natural product plumbagin (PL) on racially different TNBC cells. The PL effects were examined in two TNBC cell lines: MDA-MB-231 (MM-231) and MDA-MB-468 (MM-468), representing Caucasian Americans and African Americans, respectively. The results obtained indicate that PL inhibited cell viability and cell proliferation and induced apoptosis in both cell lines. Notably, MM-468 cells were 5-fold more sensitive to PL than MM-231 cells were. Testing PL and Taxol® showed the superiority of PL over Taxol® as an antiproliferative agent in MM-468 cells. PL treatment resulted in an approximately 20-fold increase in caspase-3 activity with 3 μM PL in MM-468 cells compared with an approximately 3-fold activity increase in MM-231 cells with 8 μM PL. Moreover, the results indicate a higher sensitivity to PL in MM-468 cells than in MM-231 cells. The results also show that PL downregulated CCL2 cytokine expression in MM-468 cells by 30% compared to a 90% downregulation in MM-231 cells. The ELISA results confirmed the array data (35% vs. 75% downregulation in MM-468 and MM-231 cells, respectively). Moreover, PL significantly downregulated IL-6 and GM-CSF in the MM-231 cells. Indeed, PL repressed many NF-қB-regulated genes involved in the regulation of apoptosis, proliferation, invasion, and metastasis. The compound significantly downregulated the same genes (BIRC3, CCL2, TLR2, and TNF) in both types of cells. However, PL impacted five more genes in MM-231 cells, including BCL2A1, ICAM1, IKBKE, IL1β, and LTA. In conclusion, the data obtained in this study indicate that the quinone compound PL could be a novel cancer treatment for TNBC in African American women.
Collapse
Affiliation(s)
- Samia S. Messeha
- College of Pharmacy and Pharmaceutical Science, Florida A & M University, Tallahassee, Florida, United States of America
| | - Najla O. Zarmouh
- College of Pharmacy and Pharmaceutical Science, Florida A & M University, Tallahassee, Florida, United States of America
| | - Patricia Mendonca
- College of Pharmacy and Pharmaceutical Science, Florida A & M University, Tallahassee, Florida, United States of America
| | - Hayfaa Alwagdani
- College of Pharmacy and Pharmaceutical Science, Florida A & M University, Tallahassee, Florida, United States of America
| | - Malak G. Kolta
- College of Pharmacy and Pharmaceutical Science, Florida A & M University, Tallahassee, Florida, United States of America
| | - Karam F. A. Soliman
- College of Pharmacy and Pharmaceutical Science, Florida A & M University, Tallahassee, Florida, United States of America
- * E-mail:
| |
Collapse
|
71
|
Su Y, Feng S, Luo L, Liu R, Yi Q. Association between IL-35 and coronary arterial lesions in children with Kawasaki disease. Clin Exp Med 2018; 19:87-92. [PMID: 30054763 DOI: 10.1007/s10238-018-0513-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 06/18/2018] [Indexed: 02/07/2023]
Abstract
Kawasaki disease (KD) arises due to the acute inflammation and immune system dysfunction. This study investigated the relationship between the serum level of IL-35 and coronary artery lesions (CALs) in patients with KD. We obtained blood samples from 90 children with KD before intravenous immunoglobulin therapy. Levels of IL-35, IL-6, IL-17A, IL-10, MCP-1 and VEGF were measured in 190 cases, including 4 groups: KD with coronary arterial lesions (n = 46), KD without coronary arteries lesions (n = 44), febrile control group (FC, n = 40) and the normal control group (NC, n = 60). White blood cell counts (WBC), red blood cell counts (RBC), hemoglobin, platelet, C-reactive protein (CRP), erythrocyte sedimentation rate (ESR) and procalcitonin were tested in all subjects. Levels of IL-35, RBC and hemoglobin significantly decreased, and IL-6, IL-17A, IL-10, MCP-1 and VEGF were significantly elevated in the KD group compared with febrile and control groups. IL-35 serum level even decreased, and ESR, IL-6, MCP-1 and VEGF increased in the KD patients with CALs. Serum levels of IL-35 in KD patients were negatively associated with WBC, CRP, IL-6, IL-17A, IL-10, MCP-1 and VEGF in children with KD. IL-35 may have the effect on inhibiting inflammatory process in KD and further preventing KD patients from coronary artery lesion.
Collapse
Affiliation(s)
- Ya Su
- Key Laboratory of Pediatrics in Chongqing, Chongqing, 400014, China.,China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, 400014, China
| | - Siqi Feng
- Key Laboratory of Pediatrics in Chongqing, Chongqing, 400014, China.,China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, 400014, China
| | - Li Luo
- Key Laboratory of Pediatrics in Chongqing, Chongqing, 400014, China.,China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, 400014, China
| | - Ruixi Liu
- Department of Cardiovascular Medicine, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorder, Chongqing, 400014, China.
| | - Qijian Yi
- Department of Cardiovascular Medicine, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorder, Chongqing, 400014, China.
| |
Collapse
|
72
|
Nakatsumi H, Matsumoto M, Nakayama KI. Noncanonical Pathway for Regulation of CCL2 Expression by an mTORC1-FOXK1 Axis Promotes Recruitment of Tumor-Associated Macrophages. Cell Rep 2018; 21:2471-2486. [PMID: 29186685 DOI: 10.1016/j.celrep.2017.11.014] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 09/26/2017] [Accepted: 11/02/2017] [Indexed: 12/13/2022] Open
Abstract
C-C chemokine ligand 2 (CCL2) plays pivotal roles in tumor formation, progression, and metastasis. Although CCL2 expression has been found to be dependent on the nuclear factor (NF)-κB signaling pathway, the regulation of CCL2 production in tumor cells has remained unclear. We have identified a noncanonical pathway for regulation of CCL2 production that is mediated by mammalian target of rapamycin complex 1 (mTORC1) but independent of NF-κB. Multiple phosphoproteomics approaches identified the transcription factor forkhead box K1 (FOXK1) as a downstream target of mTORC1. Activation of mTORC1 induces dephosphorylation of FOXK1, resulting in transactivation of the CCL2 gene. Inhibition of the mTORC1-FOXK1 axis attenuated insulin-induced CCL2 production as well as the accumulation of tumor-associated monocytes-macrophages and tumor progression in mice. Our results suggest that FOXK1 directly links mTORC1 signaling and CCL2 expression in a manner independent of NF-κB and that CCL2 produced by this pathway contributes to tumor progression.
Collapse
Affiliation(s)
- Hirokazu Nakatsumi
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka 812-8582, Japan
| | - Masaki Matsumoto
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka 812-8582, Japan
| | - Keiichi I Nakayama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka 812-8582, Japan.
| |
Collapse
|
73
|
Estrogen promotes progression of hormone-dependent breast cancer through CCL2-CCR2 axis by upregulation of Twist via PI3K/AKT/NF-κB signaling. Sci Rep 2018; 8:9575. [PMID: 29934505 PMCID: PMC6015029 DOI: 10.1038/s41598-018-27810-6] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 06/11/2018] [Indexed: 02/07/2023] Open
Abstract
The chemokine (C-C motif) ligand 2 (CCL2) with its cognate receptor chemokine (C-C motif) receptor 2 (CCR2) plays important roles in tumor invasion and metastasis. However, the mechanisms and mediators for autocrine CCL2 and CCL2-CCR2 axis remain elusive in breast cancer. Here we examined the levels of CCL2 in 4 breast cancer cell lines along with 57 human breast cancer specimens and found them significantly increased with presence of 17β-estradiol (E2) in estrogen receptor (ER)-positive breast cancer cells, while anti-estrogen treatment weakened this enhancement. CCL2 expression positively correlated with Twist staining and aggressiveness of breast cancer. Estrogen exposure facilitated the proliferation, invasion and metastasis of hormone-dependent breast cancer and promoted angiogenesis via the increased secretion of CCL2 in vitro and in vivo, which could be suppressed by disruption of CCL2-CCR2 axis with CCR2 antagonist RS102895. Knockdown of Twist in MCF-7 cells significantly inhibited E2-induced CCL2 production, indicating an essential role of Twist in CCL2 regulation under estrogenic condition. Our data show the hormonal regulation on CCL2-CCR2 axis is associated with enhanced Twist expression via activation of ERα and PI3K/AKT/NF-κB signaling. Thus, CCL2-CCR2 axis may represent as a novel therapeutic target eagerly needed for hormone-dependent breast cancer.
Collapse
|
74
|
Zimmerman KA, Song CJ, Gonzalez-Mize N, Li Z, Yoder BK. Primary cilia disruption differentially affects the infiltrating and resident macrophage compartment in the liver. Am J Physiol Gastrointest Liver Physiol 2018; 314. [PMID: 29543508 PMCID: PMC6048441 DOI: 10.1152/ajpgi.00381.2017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Hepatorenal fibrocystic disease (HRFCD) is characterized by cysts in the kidney and liver with associated fibrosis and is the result of defects in proteins required for cilia function or assembly. Previous reports indicate that macrophages, mainly M2-like macrophages, contribute to HRFCD, although the origin of these cells (yolk sac-derived resident macrophages vs. bone marrow-derived infiltrating macrophages) and their contribution to the observed phenotypes are unknown. We utilize a congenital model of cilia dysfunction (IFT88Orpk) to study the importance of macrophages in HRFCD. Our data show a rapid expansion of the bile duct region and development of fibrosis between 2 and 4 wk of age. Immunofluorescence microscopy analysis reveals an accumulation of F4/80+ macrophages in regions exhibiting biliary hyperplasia in IFT88Orpk mice. Flow cytometry data show that cilia dysfunction leads to an accumulation of infiltrating macrophages (CD11bhi, F4/80lo) and a reduction of resident macrophage (CD11blo, F4/80hi) number. A majority of the infiltrating macrophages are Ly6chi profibrogenic macrophages. Along with the accumulation of immune cells, expression of proinflammatory and profibrotic transcripts, including TGF-β, TNF-α, IL-1β, and chemokine (C-C) motif ligand 2, is increased. Quantitative RT-PCR analysis of flow-sorted cells shows enhanced expression of CCL2 in cholangiocytes and enhanced expression of VEGF-A and IL-6 in Ly6chi macrophages. Genetic inhibition of Ly6chi macrophage accumulation in IFT88Orpk FVB CCR2-/- mice reduced biliary fibrosis but did not affect epithelial expansion. Collectively, these studies suggest that biliary epithelium with defects in primary cilia preferentially recruits Ly6chi infiltrating macrophages, which promote fibrotic progression in HRFCD pathogenesis. NEW & NOTEWORTHY These studies are the first to address the contribution of the infiltrating and resident macrophage niche during progression of hepatorenal fibrocystic disease (HRFCD). We show that the number of infiltrating macrophages is significantly upregulated in HRFCD mouse models. Finally, we show that prevention of Ly6chi infiltrating macrophage accumulation significantly reduces biliary fibrosis, but not biliary hyperplasia, suggesting that this population may be responsible for the fibrotic progression of the disease in HRFCD patients.
Collapse
Affiliation(s)
- Kurt A. Zimmerman
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Cheng Jack Song
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Nancy Gonzalez-Mize
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Zhang Li
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Bradley K. Yoder
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
75
|
Nakatsumi H, Oka T, Higa T, Shirane M, Nakayama KI. Nuclear-cytoplasmic shuttling protein PP2A B56 contributes to mTORC1-dependent dephosphorylation of FOXK1. Genes Cells 2018; 23:599-605. [PMID: 29845697 DOI: 10.1111/gtc.12597] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 04/24/2018] [Indexed: 12/17/2022]
Abstract
Mammalian target of rapamycin complex 1 (mTORC1) kinase is a master regulator of the cellular response to nutrition-related signals such as insulin and amino acids. mTORC1 is activated on the lysosomal membrane and induces phosphorylation of a variety of downstream molecules. We previously showed that activated mTORC1 induces protein phosphatase 2A (PP2A)-mediated dephosphorylation of the transcription factor forkhead box K1 (FOXK1). The mechanism underlying the signal transduction from the cytoplasmic mTORC1 to the nuclear FOXK1 has remained unclear, however, we now show that a nuclear-cytoplasmic transport system is necessary for the mTORC1-FOXK1 signal transduction. This reaction is mediated by a shuttling protein B56, which is a regulatory subunit of PP2A and plays an essential role in the mTORC1-dependent dephosphorylation of FOXK1. These results suggest that PP2AB56 phosphatase contributes to the signaling for mTORC1-dependent transcriptional regulation.
Collapse
Affiliation(s)
- Hirokazu Nakatsumi
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan.,Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Takeru Oka
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Tsunaki Higa
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Michiko Shirane
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan.,Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Keiichi I Nakayama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| |
Collapse
|
76
|
TLR4/MyD88 -mediated CCL2 production by lipopolysaccharide (endotoxin): Implications for metabolic inflammation. J Diabetes Metab Disord 2018; 17:77-84. [PMID: 30288388 PMCID: PMC6154519 DOI: 10.1007/s40200-018-0341-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 03/21/2018] [Indexed: 12/11/2022]
Abstract
Background Obese human and mice were reported to have higher circularity endotoxin (LPS) levels as compared to their lean counter parts. The current study was aimed to reveal the molecular mechanisms underlying the LPS mediated induction of CCL2 in human monocytes/macrophages. Methods Human monocytic cell line THP-1, THP-1 cells derived macrophages and primary macrophages were treated with LPS and TNF-α (positive control). CCL2 expression was determined with real-time RT-PCR and ELISA. THP-1-XBlue™ cells, THP-1-XBlue™-defMyD cells, TLR4 neutralization antibody, TLR4 siRNA and inhibitors for NF-kB and MAPK were used to study the signaling pathways. Phosphorylation of NF-kB and c-Jun was analyzed by ELISA. Results LPS upregulates CCL2 expression at both mRNA (THP-1: 23.40 ± .071 Fold, P < 0.0001; THP-1-derived macrophages: 103 ± 0.56 Fold, < 0.0001; Primary macrophages: 48 ± 1.41 Fold, P < 0.0005) and protein (THP1 monocytes:1048 ± 5.67 pg/ml, P < 0.0001; THP-1-derived macrophages; 2014 ± 2.12, P = 0.0001; Primary macrophages: 859.5 ± 3.54, P < 0.0001) levels in human monocytic cells/macrophages. Neutralization of TLR4 blocked LPS-induced CCL-2 secretion (P < 0.0001). Silencing of TLR4 by siRNA also significantly reduced LPS-induced CCL-2 production. Furthermore, MyD88-Knockout cells treated with LPS did not produce CCL-2. NF-kB and c-Jun phosphorylation was noted in LPS treated cells. Conclusion Overall, our data reveal that LPS induces CCL-2 in monocytes/macrophages via TLR4/MyD88 signaling which leads to the activation of NF-kB/AP-1 transcription factors.
Collapse
|
77
|
Broadgate S, Kiire C, Halford S, Chong V. Diabetic macular oedema: under-represented in the genetic analysis of diabetic retinopathy. Acta Ophthalmol 2018; 96 Suppl A111:1-51. [PMID: 29682912 DOI: 10.1111/aos.13678] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 11/21/2017] [Indexed: 12/15/2022]
Abstract
Diabetic retinopathy, a complication of both type 1 and type 2 diabetes, is a complex disease and is one of the leading causes of blindness in adults worldwide. It can be divided into distinct subclasses, one of which is diabetic macular oedema. Diabetic macular oedema can occur at any time in diabetic retinopathy and is the most common cause of vision loss in patients with type 2 diabetes. The purpose of this review is to summarize the large number of genetic association studies that have been performed in cohorts of patients with type 2 diabetes and published in English-language journals up to February 2017. Many of these studies have produced positive associations with gene polymorphisms and diabetic retinopathy. However, this review highlights that within this large body of work, studies specifically addressing a genetic association with diabetic macular oedema, although present, are vastly under-represented. We also highlight that many of the studies have small patient numbers and that meta-analyses often inappropriately combine patient data sets. We conclude that there will continue to be conflicting results and no meaningful findings will be achieved if the historical approach of combining all diabetic retinopathy disease states within patient cohorts continues in future studies. This review also identifies several genes that would be interesting to analyse in large, well-defined cohorts of patients with diabetic macular oedema in future candidate gene association studies.
Collapse
Affiliation(s)
- Suzanne Broadgate
- Nuffield Laboratory of Ophthalmology; Nuffield Department of Clinical Neurosciences; University of Oxford; Oxford UK
| | - Christine Kiire
- Nuffield Laboratory of Ophthalmology; Nuffield Department of Clinical Neurosciences; University of Oxford; Oxford UK
- Oxford Eye Hospital; John Radcliffe Hospital; Oxford University NHS Foundation Trust; Oxford UK
| | - Stephanie Halford
- Nuffield Laboratory of Ophthalmology; Nuffield Department of Clinical Neurosciences; University of Oxford; Oxford UK
| | - Victor Chong
- Nuffield Laboratory of Ophthalmology; Nuffield Department of Clinical Neurosciences; University of Oxford; Oxford UK
| |
Collapse
|
78
|
Induction of extracranial arteriogenesis by an arteriovenous fistula in a pig model. Atherosclerosis 2018; 272:87-93. [PMID: 29579672 DOI: 10.1016/j.atherosclerosis.2018.03.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 02/20/2018] [Accepted: 03/02/2018] [Indexed: 11/21/2022]
Abstract
BACKGROUND AND AIMS Arteriogenesis, the positive outward remodeling and growth of pre-existent collateral vessels, holds potential as a novel treatment for ischemic vascular disease. An extracranial arteriogenesis model in a pig will allow us to study molecular changes in a complex arteriolar network in a more clinically relevant large-animal model. To increase fluid shear stress in the brain, an experimental carotid arteriovenous fistula (AVF model) in minipigs was established, providing high flow through the extracranial rete mirabile. The aim of the study was to examine whether creation of a carotid AVF can induce extracranial arteriogenesis in the pig. METHODS Angiography was performed to demonstrate blood flow diversion. Animals were sacrificed after 0, 3 and 14 days post-surgery and both retia mirabilia were removed. Immunohistochemical analysis was performed to analyze cell proliferation and accumulation of mononuclear cells in the vessel wall. RESULTS After 3 days of high-flow conditions, increases in vascular cell proliferation (approximately 1.5-fold; p = 0.143) and monocyte invasion (approximately 6-fold; p = 0.057) were observed when compared to animals sacrificed immediately after AVF formation. Quantitative PCR (RT-qPCR) analysis from rete mirabile tissue samples 3 days post-surgery revealed that monocyte chemoattractant protein (MCP)-1 and tissue inhibitor of metalloproteinases (TIMP)-1 were highly upregulated. Expression of the pro-arteriogenic marker, CD44, reached maximum expression level 14 days post-surgery. CONCLUSIONS In response to high levels of shear stress produced in the pig AVF model, the onset of the arteriogenic process can be induced. This was demonstrated by enhanced cell proliferation, monocyte invasion and vascular remodeling.
Collapse
|
79
|
Affiliation(s)
- R P M Negus
- Biological Therapies Laboratory, Imperial Cancer Research Fund, 44 Lincoln's Inn Fields, London WC2A 3PX, England
| |
Collapse
|
80
|
670nm light treatment following retinal injury modulates Müller cell gliosis: Evidence from in vivo and in vitro stress models. Exp Eye Res 2018; 169:1-12. [PMID: 29355737 DOI: 10.1016/j.exer.2018.01.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 01/04/2018] [Accepted: 01/12/2018] [Indexed: 11/22/2022]
Abstract
Photobiomodulation (PBM) with 670 nm light has been shown to accelerate wound healing in soft tissue injuries, and also to protect neuronal tissues. However, little data exist on its effects on the non-neuronal components of the retina, such as Müller cells (MCs), which are the principal macroglia of the retina that play a role in maintaining retinal homeostasis. The aim of this study was to explore the effects of 670 nm light on activated MCs using in vivo and in vitro stress models. Adult Sprague-Dawley rats were exposed to photo-oxidative damage (PD) for 24 h and treated with 670 nm light at 0, 3 and 14 days after PD. Tissue was collected at 30 days post-PD for analysis. Using the in vitro scratch model with a human MC line (MIO-M1), area coverage and cellular stress were analysed following treatment with 670 nm light. We showed that early treatment with 670 nm light after PD reduced MC activation, lowering the retinal expression of GFAP and FGF-2. 670 nm light treatment mitigated the production of MC-related pro-inflammatory cytokines (including IL-1β), and reduced microglia/macrophage (MG/MΦ) recruitment into the outer retina following PD. This subsequently decreased photoreceptor loss, slowing the progression of retinal degeneration. In vitro, we showed that 670 nm light directly modulated MC activation, reducing rates of area coverage by suppressing cellular proliferation and spreading. This study indicates that 670 nm light treatment post-injury may have therapeutic benefit when administered shortly after retinal damage, and could be useful for retinal degenerations where MC gliosis is a feature of disease progression.
Collapse
|
81
|
Yoshimura T. The chemokine MCP-1 (CCL2) in the host interaction with cancer: a foe or ally? Cell Mol Immunol 2018; 15:335-345. [PMID: 29375123 DOI: 10.1038/cmi.2017.135] [Citation(s) in RCA: 176] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 10/13/2017] [Accepted: 10/18/2017] [Indexed: 12/13/2022] Open
Abstract
Macrophages are one of the most abundant leukocyte populations infiltrating tumor tissues and can exhibit both tumoricidal and tumor-promoting activities. In 1989, we reported the purification of monocyte chemoattractant protein-1 (MCP-1) from culture supernatants of mitogen-activated peripheral blood mononuclear cells and tumor cells. MCP-1 is a potent monocyte-attracting chemokine, identical to the previously described lymphocyte-derived chemotactic factor or tumor-derived chemotactic factor, and greatly contributes to the recruitment of blood monocytes into sites of inflammatory responses and tumors. Because in vitro-cultured tumor cells often produce significant amounts of MCP-1, tumor cells are considered to be the main source of MCP-1. However, various non-tumor cells in the tumor stroma also produce MCP-1 in response to stimuli. Studies performed in vitro and in vivo have provided evidence that MCP-1 production in tumors is a consequence of complex interactions between tumor cells and non-tumor cells and that both tumor cells and non-tumor cells contribute to the production of MCP-1. Although MCP-1 production was once considered to be a part of host defense against tumors, it is now believed to regulate the vicious cycle between tumor cells and macrophages that promotes the progression of tumors.
Collapse
Affiliation(s)
- Teizo Yoshimura
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 700-8558, Kita-ku, Okayama, Japan.
| |
Collapse
|
82
|
Yoshimura T. The production of monocyte chemoattractant protein-1 (MCP-1)/CCL2 in tumor microenvironments. Cytokine 2017; 98:71-78. [DOI: 10.1016/j.cyto.2017.02.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 02/01/2017] [Indexed: 12/20/2022]
|
83
|
Matsushita T, Takehara K. An update on biomarker discovery and use in systemic sclerosis. Expert Rev Mol Diagn 2017; 17:823-833. [DOI: 10.1080/14737159.2017.1356722] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Takashi Matsushita
- Department of Dermatology, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Kazuhiko Takehara
- Department of Dermatology, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
84
|
Boshtam M, Asgary S, Kouhpayeh S, Shariati L, Khanahmad H. Aptamers Against Pro- and Anti-Inflammatory Cytokines: A Review. Inflammation 2017; 40:340-349. [PMID: 27878687 DOI: 10.1007/s10753-016-0477-1] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Inflammatory disorders result from continuous inflammation in injured sites. Many molecules are involved in this process; the inhibition of which could prevent the inflammation. Chemokines are a group of these biological mediators which are categorized into pro-, anti-, and pro-/anti-inflammatory. Thus, targeting these essential molecules can be an effective way for prevention and control of inflammatory diseases. Various therapeutic agents have been developed for primary and secondary prevention of these disorders, but each of them has its own limitations. Aptamers, as novel therapeutic agents, are a new generation of drugs which could replace other medications even antibodies. Aptamer can bind to its target molecule to trap it and prohibit its function. Among large group of inflammatory cytokines, only 11 aptamers have been selected either against cytokines or their related receptors. These cytokines include interleukin (IL)-2, IL-6, IL-10, IL-11, IL-17, IL-32, TGF-β, TNF-α, IFN-γ, CCL2, and IP-10. Most of the isolated aptamers are against pro-inflammatory or dual function cytokines, and it seems that they could be used for diagnosis, prevention, and treatment of the related inflammatory diseases. Most of the aptamers have been tested in vitro, but so far, none of them has been approved for in vivo use. Given a vast number of inflammatory cytokines, more aptamers against this group of biological molecules will be selected in the near future. The available aptamers will also be tested in clinical trials. Therefore, a significant improvement is expected for the prevention and control of inflammatory disorders.
Collapse
Affiliation(s)
- Maryam Boshtam
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Seddigheh Asgary
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shirin Kouhpayeh
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Laleh Shariati
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hossein Khanahmad
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
85
|
Jelonek K, Pietrowska M, Widlak P. Systemic effects of ionizing radiation at the proteome and metabolome levels in the blood of cancer patients treated with radiotherapy: the influence of inflammation and radiation toxicity. Int J Radiat Biol 2017; 93:683-696. [PMID: 28281355 DOI: 10.1080/09553002.2017.1304590] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
PURPOSE Blood is the most common replacement tissue used to study systemic responses of organisms to different types of pathological conditions and environmental insults. Local irradiation during cancer radiotherapy induces whole body responses that can be observed at the blood proteome and metabolome levels. Hence, comparative blood proteomics and metabolomics are emerging approaches used in the discovery of radiation biomarkers. These techniques enable the simultaneous measurement of hundreds of molecules and the identification of sets of components that can discriminate different physiological states of the human body. Radiation-induced changes are affected by the dose and volume of irradiated tissues; hence, the molecular composition of blood is a hypothetical source of biomarkers for dose assessment and the prediction and monitoring of systemic responses to radiation. This review aims to provide a comprehensive overview on the available evidence regarding molecular responses to ionizing radiation detected at the level of the human blood proteome and metabolome. It focuses on patients exposed to radiation during cancer radiotherapy and emphasizes effects related to radiation-induced toxicity and inflammation. CONCLUSIONS Systemic responses to radiation detected at the blood proteome and metabolome levels are primarily related to the intensity of radiation-induced toxicity, including inflammatory responses. Thus, several inflammation-associated molecules can be used to monitor or even predict radiation-induced toxicity. However, these abundant molecular features have a rather limited applicability as universal biomarkers for dose assessment, reflecting the individual predisposition of the immune system and tissue-specific mechanisms involved in radiation-induced damage.
Collapse
Affiliation(s)
- Karol Jelonek
- a Center for Translational Research and Molecular Biology of Cancer , Maria Sklodowska-Curie Institute - Oncology Center Gliwice Branch , Gliwice , Poland
| | - Monika Pietrowska
- a Center for Translational Research and Molecular Biology of Cancer , Maria Sklodowska-Curie Institute - Oncology Center Gliwice Branch , Gliwice , Poland
| | - Piotr Widlak
- a Center for Translational Research and Molecular Biology of Cancer , Maria Sklodowska-Curie Institute - Oncology Center Gliwice Branch , Gliwice , Poland
| |
Collapse
|
86
|
CCL2 expression correlates with Snail expression and affects the prognosis of patients with gastric cancer. Pathol Res Pract 2016; 213:217-221. [PMID: 28215642 DOI: 10.1016/j.prp.2016.12.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 11/17/2016] [Accepted: 12/18/2016] [Indexed: 12/18/2022]
Abstract
We aim to explore the associations of CCL2 and Snail in gastric cancer to the clinicopathologic features and prognosis of gastric cancer (GC). In our study, the expression of CCL2 and Snail in clinical specimens of 178 GC patients was detected by immunohistochemistry. High expression of CCL2 and Snail were closely related to the clinicopathologic features. The results showed there is a link between CCL2 and Snail expression at protein levels (Pearson Χ2=40.751, P<0.001). The Kaplan-Meier survival analysis showed that CCL2 or Snail expression was correlated with 5-year survival rate (P<0.001, P<0.001, respectively). Univariate analysis showed that CCL2, Snail, pTNM stage, depth of invasion, nodal involvement, metastasis and tumor diameter were significantly associated with 5-year survival rate respectively. Multivariate Cox analysis showed that the CCL2, Snail and nodal involvement were independent prognostic factor for patients with GC. In conclusion, the expression of CCL2 is significantly correlated with Snail expression and may be used as a predictive co-biomarker for patient prognosis and tumor aggressiveness in GC. The exactly mechanism between CCL2 and Snail in the process of EMT in GC need further investigation.
Collapse
|
87
|
Lacalle RA, Blanco R, Carmona-Rodríguez L, Martín-Leal A, Mira E, Mañes S. Chemokine Receptor Signaling and the Hallmarks of Cancer. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 331:181-244. [PMID: 28325212 DOI: 10.1016/bs.ircmb.2016.09.011] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The chemokines are a family of chemotactic cytokines that mediate their activity by acting on seven-transmembrane-spanning G protein-coupled receptors. Both the ability of the chemokines and their receptors to form homo- and heterodimers and the promiscuity of the chemokine-chemokine receptor interaction endow this protein family with enormous signaling plasticity and complexity that are not fully understood at present. Chemokines were initially identified as essential regulators of homeostatic and inflammatory trafficking of innate and adaptive leucocytes from lymphoid organs to tissues. Chemokines also mediate the host response to cancer. Nevertheless, chemokine function in this response is not limited to regulating leucocyte infiltration into the tumor microenvironment. It is now known that chemokines and their receptors influence most-if not all-hallmark processes of cancer; they act on both neoplastic and untransformed cells in the tumor microenvironment, including fibroblasts, endothelial cells (blood and lymphatic), bone marrow-derived stem cells, and, obviously, infiltrating leucocytes. This review begins with an overview of chemokine and chemokine receptor structure, to better define how chemokines affect the proliferation, survival, stemness, and metastatic potential of neoplastic cells. We also examine the main mechanisms by which chemokines regulate tumor angiogenesis and immune cell infiltration, emphasizing the pro- and antitumorigenic activity of this protein superfamily in these interrelated processes.
Collapse
Affiliation(s)
- R A Lacalle
- Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| | - R Blanco
- Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| | | | - A Martín-Leal
- Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| | - E Mira
- Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| | - S Mañes
- Centro Nacional de Biotecnología/CSIC, Madrid, Spain.
| |
Collapse
|
88
|
Kubo H, Hoshi M, Mouri A, Tashita C, Yamamoto Y, Nabeshima T, Saito K. Absence of kynurenine 3-monooxygenase reduces mortality of acute viral myocarditis in mice. Immunol Lett 2016; 181:94-100. [PMID: 27889626 DOI: 10.1016/j.imlet.2016.11.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 10/28/2016] [Accepted: 11/22/2016] [Indexed: 12/12/2022]
Abstract
Infection of the encephalomyocarditis virus (EMCV) in mice is an established model for viral myocarditis. Previously, we have demonstrated that indoleamine 2,3-dioxygenase (IDO), an L-tryptophan - kynurenine pathway (KP) enzyme, affects acute viral myocarditis. However, the roles of KP metabolites in EMCV infection remain unclear. Kynurenine 3-monooxygenase (KMO) is one of the key regulatory enzymes, which metabolizes kynurenine to 3-hydroxykynurenine in the KP. Therefore, we examined the role of KMO in acute viral infection by comparing between KMO-/- mice and KMO+/+ mice. KMO deficiency resulted in suppressed mortality after EMCV infection. The number of infiltrating cells and F4/80+ cells in KMO-/- mice was suppressed compared with those in KMO+/+ mice. KMO-/- mice showed significantly increased levels of serum KP metabolites, and induction of KMO expression upon EMCV infection was involved in its effect on mortality through EMCV suppression. Furthermore, KMO-/- mice showed significantly suppression of CCL2, CCL3 and CCL4 on day 2 and CXCL1 on day 4 after infection. These results suggest that increased KP metabolites reduced chemokine production, resulting in suppressed mortality upon KMO knockdown in EMCV infection. KP metabolites may thus provide an effective strategy for treating acute viral myocarditis.
Collapse
Affiliation(s)
- Hisako Kubo
- Human Health Sciences, Graduate School of Medicine and Faculty of Medicine, Kyoto University, Kyoto 606-8507, Japan; Department of Disease Control and Prevention, Fujita Health University Graduate School of Health Sciences, Aichi 470-1192, Japan
| | - Masato Hoshi
- Department of Biochemical and Analytical Sciences, Fujita Health University Graduate School of Health Sciences, Aichi 470-1192, Japan.
| | - Akihiro Mouri
- Advanced Diagnostic System Research Laboratory, Fujita Health University Graduate School of Health Sciences, Aichi 470-1192, Japan
| | - Chieko Tashita
- Department of Disease Control and Prevention, Fujita Health University Graduate School of Health Sciences, Aichi 470-1192, Japan; Department of Medical Technology, Gifu University of Medical Science, Gifu 501-3892, Japan
| | - Yasuko Yamamoto
- Department of Disease Control and Prevention, Fujita Health University Graduate School of Health Sciences, Aichi 470-1192, Japan
| | - Toshitaka Nabeshima
- Advanced Diagnostic System Research Laboratory, Fujita Health University Graduate School of Health Sciences, Aichi 470-1192, Japan; Japanese Drug Organization of Appropriate Use and Research, Aichi 468-0069, Japan; Aino University, Osaka, Ibaragi 567-0012, Japan
| | - Kuniaki Saito
- Human Health Sciences, Graduate School of Medicine and Faculty of Medicine, Kyoto University, Kyoto 606-8507, Japan; Department of Disease Control and Prevention, Fujita Health University Graduate School of Health Sciences, Aichi 470-1192, Japan; Advanced Diagnostic System Research Laboratory, Fujita Health University Graduate School of Health Sciences, Aichi 470-1192, Japan
| |
Collapse
|
89
|
CCL2 is a KIT D816V-dependent modulator of the bone marrow microenvironment in systemic mastocytosis. Blood 2016; 129:371-382. [PMID: 27856463 DOI: 10.1182/blood-2016-09-739003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 11/08/2016] [Indexed: 01/08/2023] Open
Abstract
Systemic mastocytosis (SM) is characterized by abnormal accumulation of neoplastic mast cells harboring the activating KIT mutation D816V in the bone marrow and other internal organs. As found in other myeloproliferative neoplasms, increased production of profibrogenic and angiogenic cytokines and related alterations of the bone marrow microenvironment are commonly found in SM. However, little is known about mechanisms and effector molecules triggering fibrosis and angiogenesis in SM. Here we show that KIT D816V promotes expression of the proangiogenic cytokine CCL2 in neoplastic mast cells. Correspondingly, the KIT-targeting drug midostaurin and RNA interference-mediated knockdown of KIT reduced expression of CCL2. We also found that nuclear factor κB contributes to KIT-dependent upregulation of CCL2 in mast cells. In addition, CCL2 secreted by KIT D816V+ mast cells was found to promote the migration of human endothelial cells in vitro. Furthermore, knockdown of CCL2 in neoplastic mast cells resulted in reduced microvessel density and reduced tumor growth in vivo compared with CCL2-expressing cells. Finally, we measured CCL2 serum concentrations in patients with SM and found that CCL2 levels were significantly increased in mastocytosis patients compared with controls. CCL2 serum levels were higher in patients with advanced SM and were found to correlate with poor survival. In summary, we have identified CCL2 as a novel KIT D816V-dependent key regulator of vascular cell migration and angiogenesis in SM. CCL2 expression correlates with disease severity and prognosis. Whether CCL2 may serve as a therapeutic target in advanced SM remains to be determined in forthcoming studies.
Collapse
|
90
|
Murine macrophage response from peritoneal cavity requires signals mediated by chemokine receptor CCR-2 during Staphylococcus aureus infection. Immunol Res 2016; 64:213-32. [PMID: 26616292 DOI: 10.1007/s12026-015-8739-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
C-C chemokine receptor-2 (CCR-2) is a cognate receptor for monocyte chemotactic protein-1 (MCP-1), and recent studies revealed that MCP-1-CCR-2 signaling is involved in several inflammatory diseases characterized by macrophage infiltration. Currently, there is no study on the involvement of CCR-2 in the killing of S. aureus by macrophages of Swiss albino mice, and its substantial role in host defense against S. aureus infection in murine macrophages is still unclear. Therefore, the present study was aimed to investigate the functional and interactive role of CCR-2 and MCP-1 in regulating peritoneal macrophage responses with respect to acute S. aureus infection. We found that phagocytosis of S. aureus can serve as an important stimulus for MCP-1 production by peritoneal macrophages, which is dependent directly or indirectly on cytokines, reactive oxygen species and nitric oxide. Neutralization of CCR-2 in macrophages leads to increased production of IL-10 and decreased production of IFN-γ and IL-6. In CCR-2 blocked macrophages, pretreatment with specific blocker of NF-κB or p38-MAPK causes elevation in MCP-1 level and subsequent downregulation of CCR-2 itself. We speculate that CCR-2 is involved in S. aureus-induced MCP-1 production via NF-κB or p38-MAPK signaling. We also hypothesized that unnaturally high level of MCP-1 that build up upon CCR-2 neutralization might allow promiscuous binding to one or more other chemokine receptors, a situation that would not occur in CCR-2 non-neutralized condition. This may be the plausible explanation for such observed Th-2 response in CCR-2 blocked macrophages infected with S. aureus in the present study.
Collapse
|
91
|
Chen X, Wang Y, Nelson D, Tian S, Mulvey E, Patel B, Conti I, Jaen J, Rollins BJ. CCL2/CCR2 Regulates the Tumor Microenvironment in HER-2/neu-Driven Mammary Carcinomas in Mice. PLoS One 2016; 11:e0165595. [PMID: 27820834 PMCID: PMC5098736 DOI: 10.1371/journal.pone.0165595] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 10/16/2016] [Indexed: 12/24/2022] Open
Abstract
Chronic inflammation is a hallmark of cancer. Inflammatory chemokines, such as C-C chemokine ligand 2 (CCL2), are often present in tumors but their roles in cancer initiation and maintenance are not clear. Here we report that CCL2 promotes mammary carcinoma development in a clinically relevant murine model of breast cancer. Targeted disruption of Ccl2 slowed the growth of activated Her2/neu-driven mammary tumors and prolonged host survival. Disruption of Ccl2 was associated with a decrease in the development and mobilization of endothelial precursor cells (EPCs) which can contribute to tumor neovascularization. In contrast, disruption of Ccr2, which encodes CCL2's sole signaling receptor, accelerated tumor development, shortened host survival, and mobilized EPCs. However, pharmacological inhibition of CCR2 phenocopied Ccl2 disruption rather than Ccr2 disruption, suggesting that the Ccr2-/- phenotype is a consequence of unanticipated alterations not linked to intact CCL2/CCR2 signaling. Consistent with this explanation, Ccr2-/- monocytes are more divergent from wild type monocytes than Ccl2-/- monocytes in their expression of genes involved in key developmental and functional pathways. Taken together, our data suggest a tumor-promoting role for CCL2 acting through CCR2 on the tumor microenvironment and support the targeting of this chemokine/receptor pair in breast cancer.
Collapse
Affiliation(s)
- Xuguang Chen
- Department of Medical Oncology, Dana-Farber Cancer Institute, and Department of Medicine, Brigham & Women’s Hospital, Boston, Massachusetts 02215, United States of America
- Harvard Medical School, Boston, Massachusetts 02115, United States of America
| | - Yunyue Wang
- Department of Medical Oncology, Dana-Farber Cancer Institute, and Department of Medicine, Brigham & Women’s Hospital, Boston, Massachusetts 02215, United States of America
- Harvard Medical School, Boston, Massachusetts 02115, United States of America
| | - David Nelson
- Department of Medical Oncology, Dana-Farber Cancer Institute, and Department of Medicine, Brigham & Women’s Hospital, Boston, Massachusetts 02215, United States of America
| | - Sara Tian
- Department of Medical Oncology, Dana-Farber Cancer Institute, and Department of Medicine, Brigham & Women’s Hospital, Boston, Massachusetts 02215, United States of America
| | - Erin Mulvey
- Department of Medical Oncology, Dana-Farber Cancer Institute, and Department of Medicine, Brigham & Women’s Hospital, Boston, Massachusetts 02215, United States of America
| | - Bhumi Patel
- Department of Medical Oncology, Dana-Farber Cancer Institute, and Department of Medicine, Brigham & Women’s Hospital, Boston, Massachusetts 02215, United States of America
| | - Ilaria Conti
- Department of Medical Oncology, Dana-Farber Cancer Institute, and Department of Medicine, Brigham & Women’s Hospital, Boston, Massachusetts 02215, United States of America
| | - Juan Jaen
- ChemoCentryx, Inc., Mountain View, California 94043, United States of America
| | - Barrett J. Rollins
- Department of Medical Oncology, Dana-Farber Cancer Institute, and Department of Medicine, Brigham & Women’s Hospital, Boston, Massachusetts 02215, United States of America
- Harvard Medical School, Boston, Massachusetts 02115, United States of America
- * E-mail:
| |
Collapse
|
92
|
Abstract
Chronic kidney disease (CKD) is a lethal and rapidly increasing burden on society. Despite this, there are relatively few therapies in development for the treatment of CKD. Several recent costly phase 3 trials have failed to provide improved renal outcomes, diminishing interest in pharmaceutical investment. Furthermore, poor patient, physician, and payer awareness of CKD as a diagnosis has contributed to slow trial enrollment and successful implementation of these trials. Nevertheless, several therapeutics remain in development for the treatment of CKD, including mineralocorticoid-receptor antagonists, sodium/glucose cotransporter 2 inhibitors, anti-inflammatory drugs, and drugs that mitigate oxidative injury. Success of future CKD therapeutic trials will depend not only on improved understanding of disease pathogenesis, but also on improved trial enrollment rates, through increasing awareness of this disease by the public, policy makers, and the greater medical community.
Collapse
Affiliation(s)
- Matthew D Breyer
- Biotechnology Discovery Research, Eli Lilly and Company, Indianapolis, IN.
| | - Katalin Susztak
- Renal Electrolyte and Hypertension Division, Department of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
93
|
Seehusen F, Al-Azreg SA, Raddatz BB, Haist V, Puff C, Spitzbarth I, Ulrich R, Baumgärtner W. Accumulation of Extracellular Matrix in Advanced Lesions of Canine Distemper Demyelinating Encephalitis. PLoS One 2016; 11:e0159752. [PMID: 27441688 PMCID: PMC4956304 DOI: 10.1371/journal.pone.0159752] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 07/07/2016] [Indexed: 11/18/2022] Open
Abstract
In demyelinating diseases, changes in the quality and quantity of the extracellular matrix (ECM) may contribute to demyelination and failure of myelin repair and axonal sprouting, especially in chronic lesions. To characterize changes in the ECM in canine distemper demyelinating leukoencephalitis (DL), histochemical and immunohistochemical investigations of formalin-fixed paraffin-embedded cerebella using azan, picrosirius red and Gomori`s silver stain as well as antibodies directed against aggrecan, type I and IV collagen, fibronectin, laminin and phosphacan showed alterations of the ECM in CDV-infected dogs. A significantly increased amount of aggrecan was detected in early and late white matter lesions. In addition, the positive signal for collagens I and IV as well as fibronectin was significantly increased in late lesions. Conversely, the expression of phosphacan was significantly decreased in early and more pronounced in late lesions compared to controls. Furthermore, a set of genes involved in ECM was extracted from a publically available microarray data set and was analyzed for differential gene expression. Gene expression of ECM molecules, their biosynthesis pathways, and pro-fibrotic factors was mildly up-regulated whereas expression of matrix remodeling enzymes was up-regulated to a relatively higher extent. Summarized, the observed findings indicate that changes in the quality and content of ECM molecules represent important, mainly post-transcriptional features in advanced canine distemper lesions. Considering the insufficiency of morphological regeneration in chronic distemper lesions, the accumulated ECM seems to play a crucial role upon regenerative processes and may explain the relatively small regenerative potential in late stages of this disease.
Collapse
Affiliation(s)
- Frauke Seehusen
- Department of Pathology, University of Veterinary Medicine, Hannover, Germany
| | - Seham A. Al-Azreg
- Department of Pathology, University of Veterinary Medicine, Hannover, Germany
| | - Barbara B. Raddatz
- Department of Pathology, University of Veterinary Medicine, Hannover, Germany
| | - Verena Haist
- Department of Pathology, University of Veterinary Medicine, Hannover, Germany
- Boehringer Ingelheim Veterinary Research Center GmbH & Co. KG, Hannover, Germany
| | - Christina Puff
- Department of Pathology, University of Veterinary Medicine, Hannover, Germany
| | - Ingo Spitzbarth
- Department of Pathology, University of Veterinary Medicine, Hannover, Germany
| | - Reiner Ulrich
- Department of Pathology, University of Veterinary Medicine, Hannover, Germany
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald - Insel Riems, Germany
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine, Hannover, Germany
- * E-mail:
| |
Collapse
|
94
|
Nomura S, Ishii K, Kamitsuji Y, Uoshima N, Ishikawa E, Kitayama H, Hayashi K. Elevation of Activated Platelet-Dependent Chemokines in Patients With Anti-CD20 Monoclonal Antibody (Rituximab)−Treated Non-Hodgkin's Lymphoma. Clin Appl Thromb Hemost 2016; 13:206-12. [PMID: 17456632 DOI: 10.1177/1076029606295583] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
.ocn.ne.jp. This study measured and compared levels of some chemokines in patients with rituximab-treated non-Hodgkin lymphoma because they may participate in the mechanism of efficacy of rituximab in non-Hodgkin lymphoma patients. Monocytic chemotactant protein-1, RANTES (regulated on activation, normally T-cell expressed and secreted), eotaxin, interleukin-8, neutrophil-activating protein-78, stromal cell-derived factor-1, and growth-regulating oncogene-α in patients with rituximab-treated non-Hodgkin lymphoma were measured by enzyme-linked immunosorbent assay. Levels of RANTES were higher in non-Hodgkin lymphoma patients than in controls. Levels of monocytic chemotactant protein-1, RANTES, and neutrophil-activating protein-78 were significantly elevated before and after chemotherapy with rituximab treatment. However, the level of stromal cell-derived factor-1 did not exhibit a significant change. Before to after chemotherapy without rituximab treatment, all chemokine levels did not exhibit significant changes. These findings suggest that activated platelet-dependent chemokines such as RANTES and neutrophil-activating protein-78 may modulate the efficacy of rituximab in antibody-dependent cellular cytotoxity.
Collapse
Affiliation(s)
- Shosaku Nomura
- Division of Hematology at Kishiwada City Hospital, Kishiwada, Osaka, Japan.
| | | | | | | | | | | | | |
Collapse
|
95
|
Gruenbacher G, Gander H, Rahm A, Idzko M, Nussbaumer O, Thurnher M. Ecto-ATPase CD39 Inactivates Isoprenoid-Derived Vγ9Vδ2 T Cell Phosphoantigens. Cell Rep 2016; 16:444-456. [PMID: 27346340 DOI: 10.1016/j.celrep.2016.06.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 04/29/2016] [Accepted: 05/26/2016] [Indexed: 01/11/2023] Open
Abstract
In humans, Vγ9Vδ2 T cells respond to self and pathogen-associated, diphosphate-containing isoprenoids, also known as phosphoantigens (pAgs). However, activation and homeostasis of Vγ9Vδ2 T cells remain incompletely understood. Here, we show that pAgs induced expression of the ecto-ATPase CD39, which, however, not only hydrolyzed ATP but also abrogated the γδ T cell receptor (TCR) agonistic activity of self and microbial pAgs (C5 to C15). Only mevalonate-derived geranylgeranyl diphosphate (GGPP, C20) resisted CD39-mediated hydrolysis and acted as a regulator of CD39 expression and activity. GGPP enhanced macrophage differentiation in response to the tissue stress cytokine interleukin-15. In addition, GGPP-imprinted macrophage-like cells displayed increased capacity to produce IL-1β as well as the chemokine CCL2 and preferentially activated CD161-expressing CD4(+) T cells in an innate-like manner. Our studies reveal a previously unrecognized immunoregulatory function of CD39 and highlight a particular role of GGPP among pAgs.
Collapse
Affiliation(s)
- Georg Gruenbacher
- Immunotherapy Unit, Department of Urology, Medical University of Innsbruck and K1 Center Oncotyrol-Center for Personalized Cancer Medicine, 6020 Innsbruck, Austria
| | - Hubert Gander
- Immunotherapy Unit, Department of Urology, Medical University of Innsbruck and K1 Center Oncotyrol-Center for Personalized Cancer Medicine, 6020 Innsbruck, Austria
| | - Andrea Rahm
- Immunotherapy Unit, Department of Urology, Medical University of Innsbruck and K1 Center Oncotyrol-Center for Personalized Cancer Medicine, 6020 Innsbruck, Austria
| | - Marco Idzko
- Department of Pulmonary Medicine, University Medical Center Freiburg, 79106 Freiburg, Germany
| | - Oliver Nussbaumer
- Peter Gorer Department of Immunobiology, King's College London, London SE1 9RT, UK
| | - Martin Thurnher
- Immunotherapy Unit, Department of Urology, Medical University of Innsbruck and K1 Center Oncotyrol-Center for Personalized Cancer Medicine, 6020 Innsbruck, Austria.
| |
Collapse
|
96
|
Ceesay MM, Kordasti S, Rufaie E, Lea N, Smith M, Wade J, Douiri A, Mufti GJ, Pagliuca A. Baseline cytokine profiling identifies novel risk factors for invasive fungal disease among haematology patients undergoing intensive chemotherapy or haematopoietic stem cell transplantation. J Infect 2016; 73:280-8. [PMID: 27343564 DOI: 10.1016/j.jinf.2016.04.040] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 04/16/2016] [Accepted: 04/20/2016] [Indexed: 12/28/2022]
Abstract
BACKGROUND Invasive fungal disease (IFD) is a disease of immunocompromised hosts. Cytokines are important mediators of innate and adaptive immune system. The aim of this study was to identify cytokine profiles that correlate with increased risk of IFD. METHODS We prospectively enrolled 172 adult haematology patients undergoing intensive chemotherapy, immunosuppressive therapy, and haematopoietic stem cell transplantation. Pro-inflammatory cytokine profiling using 30-plex Luminex assay was performed at baseline and during treatment. Nine single nucleotide polymorphisms (TLR1, TLR2, TLR3, TLR4.1, TLR4.2, TLR6, CLEC7A, CARD9, and INFG) were investigated among transplant recipients and donors. FINDINGS The incidence of IFD in this cohort was 16.9% (29/172). Median baseline serum concentrations of IL-15, IL-2R, CCL2, and MIP-1α were significantly higher whilst IL-4 was lower in patients with proven/probable IFD compared to those with no evidence of IFD. Baseline high IL-2R and CCL2 were associated with increased risk of IFD in the multivariate analysis (adjusted hazard ratio 2.3 [95% CI 1.1-5.1; P = 0.037], and hazard ratio 2.7 [95% CI 1.2-6.1; P = 0.016], respectively). However, these differences were not significant in follow up measurements. Similarly, no significant independent prognostic value was associated with baseline cytokine profile. INTERPRETATION High baseline IL-2R and CCL2 concentrations were independent indicators of the risk of developing IFD and could be used to identify patients for enhanced prophylaxis and early antifungal therapy.
Collapse
Affiliation(s)
- M Mansour Ceesay
- Department of Haematological Medicine, King's College Hospital NHS Foundation Trust and King's College London, London, SE5 9RS, United Kingdom.
| | - Shahram Kordasti
- Department of Haematological Medicine, King's College Hospital NHS Foundation Trust and King's College London, London, SE5 9RS, United Kingdom
| | - Eamaan Rufaie
- Department of Haematological Medicine, King's College Hospital NHS Foundation Trust and King's College London, London, SE5 9RS, United Kingdom
| | - Nicholas Lea
- Department of Haematological Medicine, King's College Hospital NHS Foundation Trust and King's College London, London, SE5 9RS, United Kingdom
| | - Melvyn Smith
- Department of Virology, King's College Hospital NHS Foundation Trust, SE5 9RS, United Kingdom
| | - Jim Wade
- Department of Microbiology, King's College Hospital NHS Foundation Trust, London, SE5 9RS, United Kingdom
| | - Abdel Douiri
- Department of Public Health Science, King's College London and NIHR Biomedical Research Centre at Guy's and St Thomas' NHS Foundation Trust, United Kingdom
| | - Ghulam J Mufti
- Department of Haematological Medicine, King's College Hospital NHS Foundation Trust and King's College London, London, SE5 9RS, United Kingdom
| | - Antonio Pagliuca
- Department of Haematological Medicine, King's College Hospital NHS Foundation Trust and King's College London, London, SE5 9RS, United Kingdom
| |
Collapse
|
97
|
Abstract
Chronic kidney disease (CKD) represents a leading cause of death in the United States. There is no cure for this disease, with current treatment strategies relying on blood pressure control through blockade of the renin-angiotensin system. Such approaches only delay the development of end-stage kidney disease and can be associated with serious side effects. Recent identification of several novel mechanisms contributing to CKD development - including vascular changes, loss of podocytes and renal epithelial cells, matrix deposition, inflammation and metabolic dysregulation - has revealed new potential therapeutic approaches for CKD. This Review assesses emerging strategies and agents for CKD treatment, highlighting the associated challenges in their clinical development.
Collapse
|
98
|
Role of Chemokines in Shaping Macrophage Activity in AMD. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 854:11-6. [PMID: 26427387 DOI: 10.1007/978-3-319-17121-0_2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Age-related macular degeneration (AMD) is a multifactorial disorder that affects millions of individuals worldwide. While the advent of anti-VEGF therapy has allowed for effective treatment of neovascular 'wet' AMD, no treatments are available to mitigate the more prevalent 'dry' forms of the disease. A role for inflammatory processes in the progression of AMD has emerged over a period of many years, particularly the characterisation of leukocyte infiltrates in AMD-affected eyes, as well as in animal models. This review focuses on the burgeoning understanding of chemokines in the retina, and their potential role in shaping the recruitment and activation of macrophages in AMD. Understanding the mechanisms which promote macrophage activity in the degenerating retina may be key to controlling the potentially devastating consequences of inflammation in diseases such as AMD.
Collapse
|
99
|
Carceller MC, Guillén MI, Ferrándiz ML, Alcaraz MJ. Paracrine in vivo inhibitory effects of adipose tissue-derived mesenchymal stromal cells in the early stages of the acute inflammatory response. Cytotherapy 2016; 17:1230-9. [PMID: 26276006 DOI: 10.1016/j.jcyt.2015.06.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 05/13/2015] [Accepted: 06/01/2015] [Indexed: 01/09/2023]
Abstract
BACKGROUND AIMS Excessive or unresolved inflammation leads to tissue lesions. Adipose tissue-derived mesenchymal stromal cells (AMSCs) have shown protective effects that may be dependent on the modulation of inflammation by secreted factors. METHODS We used the zymosan-induced mouse air pouch model at two time points (4 h and 18 h) to evaluate the in vivo effects of AMSCs and their conditioned medium (CM) on key steps of the early inflammatory response. We assessed the effects of AMSCs and CM on leukocyte migration and myeloperoxidase activity. The levels of chemokines, cytokines and eicosanoids in exudates were measured by use of enzyme-linked immunoassay or radio-immunoassay. In addition, the expression of cyclooxygenase-2 and microsomal prostaglandin E synthase-1 (mPGES-1) was studied by use of Western blotting and the phosphorylation of p65 nuclear factor-κB (NF-κB) by immunofluorescence. RESULTS All inflammatory parameters were significantly reduced by CM and AMSCs to a similar extent at 4 h after zymosan injection with lower effects at 18 h. The observed inhibition of leukocyte migration was associated with reduced levels of chemokines and leukotriene B4. Interleukin-1β, interleukin-6, tumor necrosis factor-α and tumor necrosis factor-stimulated gene 6 levels were significantly decreased. The downregulation of mPGES-1 was associated with inhibition of prostaglandin E2 production. Our results suggest that these anti-inflammatory effects are related, in part, to the inhibition of NF-κB activation. CONCLUSIONS AMSCs dampen the early process of inflammation in the zymosan-induced mouse air pouch model through paracrine mechanisms. These results support the potential utility of these cells as a source of novel treatment approaches for inflammatory pathologies.
Collapse
Affiliation(s)
| | - María Isabel Guillén
- Department of Pharmacology and IDM, University of Valencia, Valencia, Spain; Department of Chemistry, Biochemistry and Molecular Biology, Cardenal Herrera-CEU University, Valencia, Spain
| | | | - María José Alcaraz
- Department of Pharmacology and IDM, University of Valencia, Valencia, Spain.
| |
Collapse
|
100
|
Poon K, Abramova D, Ho HT, Leibowitz S. Prenatal fat-rich diet exposure alters responses of embryonic neurons to the chemokine, CCL2, in the hypothalamus. Neuroscience 2016; 324:407-19. [PMID: 26979053 DOI: 10.1016/j.neuroscience.2016.03.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 02/19/2016] [Accepted: 03/05/2016] [Indexed: 01/23/2023]
Abstract
Maternal consumption of a high-fat diet (HFD) during pregnancy is found to stimulate the genesis of hypothalamic orexigenic peptide neurons in the offspring, while HFD intake in adult animals produces a systemic low-grade inflammation which increases neuroimmune factors that may affect neurogenesis and neuronal migration. Building on this evidence and our recent study showing that the inflammatory chemokine, CCL2, stimulates the migration of hypothalamic neurons and expression of orexigenic neuropeptides, we tested here the possibility that prenatal exposure to a HFD in rats affects this chemokine system, both CCL2 and its receptors, CCR2 and CCR4, and alters its actions on hypothalamic neurons, specifically those expressing the neuropeptides, enkephalin (ENK) and galanin (GAL). Using primary dissociated hypothalamic neurons extracted from embryos on embryonic day 19, we found that prenatal HFD exposure compared to chow control actually reduces the expression of CCL2 in these hypothalamic neurons, while increasing CCR2 and CCR4 expression, and also reduces the sensitivity of hypothalamic neurons to CCL2. The HFD abolished the dose-dependent, stimulatory effect of CCL2 on the number of migrated neurons and even shifted its normal stimulatory effect on migrational velocity and distance traveled by control neurons to an inhibition of migration. Further, it abolished the dose-dependent, stimulatory effect of CCL2 on neuronal expression of ENK and GAL. These results demonstrate that prenatal HFD exposure greatly disturbs the functioning of the CCL2 chemokine system in embryonic hypothalamic neurons, reducing its endogenous levels and ability to promote the migration of neurons and their expression of orexigenic peptides.
Collapse
Affiliation(s)
- K Poon
- Laboratory of Behavioral Neurobiology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
| | - D Abramova
- Laboratory of Behavioral Neurobiology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
| | - H T Ho
- Laboratory of Behavioral Neurobiology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
| | - S Leibowitz
- Laboratory of Behavioral Neurobiology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
| |
Collapse
|