51
|
TGF-β Inhibition Rescues Hematopoietic Stem Cell Defects and Bone Marrow Failure in Fanconi Anemia. Cell Stem Cell 2016; 18:668-81. [PMID: 27053300 DOI: 10.1016/j.stem.2016.03.002] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 11/10/2015] [Accepted: 03/03/2016] [Indexed: 11/22/2022]
Abstract
Fanconi anemia (FA) is an inherited DNA repair disorder characterized by progressive bone marrow failure (BMF) from hematopoietic stem and progenitor cell (HSPC) attrition. A greater understanding of the pathogenesis of BMF could improve the therapeutic options for FA patients. Using a genome-wide shRNA screen in human FA fibroblasts, we identify transforming growth factor-β (TGF-β) pathway-mediated growth suppression as a cause of BMF in FA. Blocking the TGF-β pathway improves the survival of FA cells and rescues the proliferative and functional defects of HSPCs derived from FA mice and FA patients. Inhibition of TGF-β signaling in FA HSPCs results in elevated homologous recombination (HR) repair with a concomitant decrease in non-homologous end-joining (NHEJ), accounting for the improvement in cellular growth. Together, our results suggest that elevated TGF-β signaling contributes to BMF in FA by impairing HSPC function and may be a potential therapeutic target for the treatment of FA.
Collapse
|
52
|
Leiva M, Quintana JA, Ligos JM, Hidalgo A. Haematopoietic ESL-1 enables stem cell proliferation in the bone marrow by limiting TGFβ availability. Nat Commun 2016; 7:10222. [PMID: 26742601 PMCID: PMC4729861 DOI: 10.1038/ncomms10222] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 11/17/2015] [Indexed: 01/11/2023] Open
Abstract
The life-long maintenance of haematopoietic stem and progenitor cells (HSPCs) critically relies on environmental signals produced by cells that constitute the haematopoietic niche. Here we report a cell-intrinsic mechanism whereby haematopoietic cells limit proliferation within the bone marrow, and show that this pathway is repressed by E-selectin ligand 1 (ESL-1). Mice deficient in ESL-1 display aberrant HSPC quiescence, expansion of the immature pool and reduction in niche size. Remarkably, the traits were transplantable and dominant when mutant and wild-type precursors coexisted in the same environment, but were independent of E-selectin, the vascular receptor for ESL-1. Instead, quiescence is generated by unrestrained production of the cytokine TGFβ by mutant HSPC, and in vivo or in vitro blockade of the cytokine completely restores the homeostatic properties of the haematopoietic niche. These findings reveal that haematopoietic cells, including the more primitive compartment, can actively shape their own environment. Hematopoietic stem and progenitor cell (HSPCs) proliferation is controlled by signals from the niche. Here, Leiva et al. show in vivo in mice that deletion of E-selectin ligand 1 causes quiescence of HSPCs and a reduction in niche size, which is mediated by changes of TGFß levels in the bone marrow.
Collapse
Affiliation(s)
- Magdalena Leiva
- Area of Developmental and Cell Biology, Centro Nacional de Investigaciones Cardiovasculares, 28029 Madrid, Spain
| | - Juan A Quintana
- Area of Developmental and Cell Biology, Centro Nacional de Investigaciones Cardiovasculares, 28029 Madrid, Spain
| | - José M Ligos
- Cellomics Unit, Centro Nacional de Investigaciones Cardiovasculares, 28029 Madrid, Spain
| | - Andrés Hidalgo
- Area of Developmental and Cell Biology, Centro Nacional de Investigaciones Cardiovasculares, 28029 Madrid, Spain.,Institute for Cardiovascular Prevention, Ludwig-Maximilians University, 80336 Munich, Germany
| |
Collapse
|
53
|
Wang Z, Ema H. Mechanisms of self-renewal in hematopoietic stem cells. Int J Hematol 2015; 103:498-509. [DOI: 10.1007/s12185-015-1919-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 11/30/2015] [Indexed: 11/29/2022]
|
54
|
Xu X, Zheng L, Bian Q, Xie L, Liu W, Zhen G, Crane JL, Zhou X, Cao X. Aberrant Activation of TGF-β in Subchondral Bone at the Onset of Rheumatoid Arthritis Joint Destruction. J Bone Miner Res 2015; 30:2033-43. [PMID: 25967237 PMCID: PMC4809636 DOI: 10.1002/jbmr.2550] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 04/23/2015] [Accepted: 05/07/2015] [Indexed: 02/05/2023]
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease that often leads to joint destruction. A myriad of drugs targeting the immune abnormalities and downstream inflammatory cascades have been developed, but the joint destruction is not effectively halted. Here we report that aberrant activation of TGF-β in the subchondral bone marrow by immune response increases osteoprogenitors and uncoupled bone resorption and formation in RA mouse/rat models. Importantly, either systemic or local blockade of TGF-β activity in the subchondral bone attenuated articular cartilage degeneration in RA. Moreover, conditional deletion of TGF-β receptor II (Tgfbr2) in nestin-positive cells also effectively halted progression of RA joint destruction. Our data demonstrate that aberrant activation of TGF-β in the subchondral bone is involved at the onset of RA joint cartilage degeneration. Thus, modulation of subchondral bone TGF-β activity could be a potential therapy for RA joint destruction.
Collapse
Affiliation(s)
- Xin Xu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Liwei Zheng
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Qin Bian
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Institute of Spine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Liang Xie
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Wenlong Liu
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The University of Hong Kong, Hong Kong, PR China
| | - Gehua Zhen
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Janet L Crane
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pediatrics, Johns Hopkins University, Baltimore, MD, USA
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China
| | - Xu Cao
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
55
|
Herbertz S, Sawyer JS, Stauber AJ, Gueorguieva I, Driscoll KE, Estrem ST, Cleverly AL, Desaiah D, Guba SC, Benhadji KA, Slapak CA, Lahn MM. Clinical development of galunisertib (LY2157299 monohydrate), a small molecule inhibitor of transforming growth factor-beta signaling pathway. Drug Des Devel Ther 2015; 9:4479-99. [PMID: 26309397 PMCID: PMC4539082 DOI: 10.2147/dddt.s86621] [Citation(s) in RCA: 270] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Transforming growth factor-beta (TGF-β) signaling regulates a wide range of biological processes. TGF-β plays an important role in tumorigenesis and contributes to the hallmarks of cancer, including tumor proliferation, invasion and metastasis, inflammation, angiogenesis, and escape of immune surveillance. There are several pharmacological approaches to block TGF-β signaling, such as monoclonal antibodies, vaccines, antisense oligonucleotides, and small molecule inhibitors. Galunisertib (LY2157299 monohydrate) is an oral small molecule inhibitor of the TGF-β receptor I kinase that specifically downregulates the phosphorylation of SMAD2, abrogating activation of the canonical pathway. Furthermore, galunisertib has antitumor activity in tumor-bearing animal models such as breast, colon, lung cancers, and hepatocellular carcinoma. Continuous long-term exposure to galunisertib caused cardiac toxicities in animals requiring adoption of a pharmacokinetic/pharmacodynamic-based dosing strategy to allow further development. The use of such a pharmacokinetic/pharmacodynamic model defined a therapeutic window with an appropriate safety profile that enabled the clinical investigation of galunisertib. These efforts resulted in an intermittent dosing regimen (14 days on/14 days off, on a 28-day cycle) of galunisertib for all ongoing trials. Galunisertib is being investigated either as monotherapy or in combination with standard antitumor regimens (including nivolumab) in patients with cancer with high unmet medical needs such as glioblastoma, pancreatic cancer, and hepatocellular carcinoma. The present review summarizes the past and current experiences with different pharmacological treatments that enabled galunisertib to be investigated in patients.
Collapse
Affiliation(s)
| | - J Scott Sawyer
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Anja J Stauber
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | | | - Kyla E Driscoll
- Lilly Research Laboratories, Eli Lilly and Company, New York, NY, USA
| | - Shawn T Estrem
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Ann L Cleverly
- Lilly Research Laboratories, Eli Lilly and Company, Windlesham, Surrey, UK
| | - Durisala Desaiah
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Susan C Guba
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Karim A Benhadji
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | | | - Michael M Lahn
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| |
Collapse
|
56
|
Brenet F, Scandura JM. Cutting the brakes on hematopoietic regeneration by blocking TGFβ to limit chemotherapy-induced myelosuppression. Mol Cell Oncol 2015; 2:e978703. [PMID: 27308454 PMCID: PMC4905289 DOI: 10.4161/23723556.2014.978703] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Revised: 10/14/2014] [Accepted: 10/15/2014] [Indexed: 01/17/2023]
Abstract
Hematopoietic stressors such as infection, bleeding, or toxic injury trigger a hematopoietic adaptation that sacrifices hematopoietic stem and progenitor cell (HSPC) quiescence to meet an urgent need for new blood cell production. Once the hematopoietic demands are adequately met, homeostasis must be restored. Transforming growth factor β (TGFβ) signaling is a central mediator mandating the return of HSPCs to quiescence after stress. Blockade of TGFβ signaling after hematopoietic stress delays the return of cycling HSPCs to quiescence and in so doing promotes hematopoietic stem cell (HSC) self-renewal and accelerates hematopoietic reconstitution. These findings open the door to new therapeutics that modulate the hematopoietic adaptation to stress. In this review, we will discuss the complex context-dependent activities of TGFβ in hematopoiesis and the potential benefits and limitations of using TGFβ pathway inhibitors to promote multilineage hematopoietic reconstitution after myelosuppressive chemotherapy.
Collapse
Affiliation(s)
- Fabienne Brenet
- Inserm U1068, Centre de Recherche en Cancérologie de Marseille (CRCM), Signaling, Hematopoiesis and Mechanisms of Oncogenesis; Institut Paoli-Calmettes; Aix-Marseille Université UM 105, CNRS UMR 7258 ; Marseille, France
| | - Joseph M Scandura
- Department of Medicine; Divisions of Hematology-Oncology and Regenerative Medicine; Laboratory of Molecular Hematopoiesis; Weill Cornell Medical College; New York, NY; Weill Cornell Medical College; Regenerative Medicine, Laboratory of Molecular Hematopoiesis; New York, NY USA
| |
Collapse
|
57
|
Kobayashi H, Kobayashi CI, Nakamura-Ishizu A, Karigane D, Haeno H, Yamamoto KN, Sato T, Ohteki T, Hayakawa Y, Barber GN, Kurokawa M, Suda T, Takubo K. Bacterial c-di-GMP affects hematopoietic stem/progenitors and their niches through STING. Cell Rep 2015; 11:71-84. [PMID: 25843711 DOI: 10.1016/j.celrep.2015.02.066] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 01/22/2015] [Accepted: 02/28/2015] [Indexed: 12/31/2022] Open
Abstract
Upon systemic bacterial infection, hematopoietic stem and progenitor cells (HSPCs) migrate to the periphery in order to supply a sufficient number of immune cells. Although pathogen-associated molecular patterns reportedly mediate HSPC activation, how HSPCs detect pathogen invasion in vivo remains elusive. Bacteria use the second messenger bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP) for a variety of activities. Here, we report that c-di-GMP comprehensively regulated both HSPCs and their niche cells through an innate immune sensor, STING, thereby inducing entry into the cell cycle and mobilization of HSPCs while decreasing the number and repopulation capacity of long-term hematopoietic stem cells. Furthermore, we show that type I interferon acted as a downstream target of c-di-GMP to inhibit HSPC expansion in the spleen, while transforming growth factor-β was required for c-di-GMP-dependent splenic HSPC expansion. Our results define machinery underlying the dynamic regulation of HSPCs and their niches during bacterial infection through c-di-GMP/STING signaling.
Collapse
Affiliation(s)
- Hiroshi Kobayashi
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, Japan; Department of Cell Differentiation, The Sakaguchi Laboratory of Developmental Biology, Keio University School of Medicine, Tokyo 160-8582, Japan; Department of Hematology and Oncology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Chiharu I Kobayashi
- Department of Cell Differentiation, The Sakaguchi Laboratory of Developmental Biology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Ayako Nakamura-Ishizu
- Department of Cell Differentiation, The Sakaguchi Laboratory of Developmental Biology, Keio University School of Medicine, Tokyo 160-8582, Japan; Cancer Science Institute, National University of Singapore, 14 Medical Drive, Singapore 117599, Singapore
| | - Daiki Karigane
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, Japan; Department of Cell Differentiation, The Sakaguchi Laboratory of Developmental Biology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Hiroshi Haeno
- Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka 812-8581, Japan
| | - Kimiyo N Yamamoto
- Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka 812-8581, Japan
| | - Taku Sato
- Department of Biodefense Research, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 113-8510, Japan; Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan
| | - Toshiaki Ohteki
- Department of Biodefense Research, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 113-8510, Japan; Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan
| | - Yoshihiro Hayakawa
- Department of Applied Chemistry, Faculty of Engineering, Aichi Institute of Technology, Toyota 470-0392, Japan
| | - Glen N Barber
- Department of Cell Biology and the Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Mineo Kurokawa
- Department of Hematology and Oncology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan; Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan
| | - Toshio Suda
- Department of Cell Differentiation, The Sakaguchi Laboratory of Developmental Biology, Keio University School of Medicine, Tokyo 160-8582, Japan; Cancer Science Institute, National University of Singapore, 14 Medical Drive, Singapore 117599, Singapore.
| | - Keiyo Takubo
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, Japan; Department of Cell Differentiation, The Sakaguchi Laboratory of Developmental Biology, Keio University School of Medicine, Tokyo 160-8582, Japan; Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan.
| |
Collapse
|
58
|
TGF-β signaling in the control of hematopoietic stem cells. Blood 2015; 125:3542-50. [PMID: 25833962 DOI: 10.1182/blood-2014-12-618090] [Citation(s) in RCA: 198] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 03/30/2015] [Indexed: 02/08/2023] Open
Abstract
Blood is a tissue with high cellular turnover, and its production is a tightly orchestrated process that requires constant replenishment. All mature blood cells are generated from hematopoietic stem cells (HSCs), which are the self-renewing units that sustain lifelong hematopoiesis. HSC behavior, such as self-renewal and quiescence, is regulated by a wide array of factors, including external signaling cues present in the bone marrow. The transforming growth factor-β (TGF-β) family of cytokines constitutes a multifunctional signaling circuitry, which regulates pivotal functions related to cell fate and behavior in virtually all tissues of the body. In the hematopoietic system, TGF-β signaling controls a wide spectrum of biological processes, from homeostasis of the immune system to quiescence and self-renewal of HSCs. Here, we review key features and emerging concepts pertaining to TGF-β and downstream signaling pathways in normal HSC biology, featuring aspects of aging, hematologic disease, and how this circuitry may be exploited for clinical purposes in the future.
Collapse
|
59
|
Nakamura-Ishizu A, Takizawa H, Suda T. The analysis, roles and regulation of quiescence in hematopoietic stem cells. Development 2015; 141:4656-66. [PMID: 25468935 DOI: 10.1242/dev.106575] [Citation(s) in RCA: 155] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tissue homeostasis requires the presence of multipotent adult stem cells that are capable of efficient self-renewal and differentiation; some of these have been shown to exist in a dormant, or quiescent, cell cycle state. Such quiescence has been proposed as a fundamental property of hematopoietic stem cells (HSCs) in the adult bone marrow, acting to protect HSCs from functional exhaustion and cellular insults to enable lifelong hematopoietic cell production. Recent studies have demonstrated that HSC quiescence is regulated by a complex network of cell-intrinsic and -extrinsic factors. In addition, detailed single-cell analyses and novel imaging techniques have identified functional heterogeneity within quiescent HSC populations and have begun to delineate the topological organization of quiescent HSCs. Here, we review the current methods available to measure quiescence in HSCs and discuss the roles of HSC quiescence and the various mechanisms by which HSC quiescence is maintained.
Collapse
Affiliation(s)
- Ayako Nakamura-Ishizu
- Department of Cell Differentiation, The Sakaguchi Laboratory, Keio University, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582, Japan Cancer Science Institute, National University of Singapore, 14 Medical Drive MD6, Centre for Translational Medicine, 117599 Singapore
| | - Hitoshi Takizawa
- Division of Hematology, University Hospital Zurich, Raemistrasse 100, Zurich 8091, Switzerland
| | - Toshio Suda
- Department of Cell Differentiation, The Sakaguchi Laboratory, Keio University, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582, Japan Cancer Science Institute, National University of Singapore, 14 Medical Drive MD6, Centre for Translational Medicine, 117599 Singapore
| |
Collapse
|
60
|
Megakaryocytes maintain homeostatic quiescence and promote post-injury regeneration of hematopoietic stem cells. Nat Med 2014; 20:1321-6. [PMID: 25326798 DOI: 10.1038/nm.3706] [Citation(s) in RCA: 432] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 09/02/2014] [Indexed: 12/15/2022]
Abstract
Multiple bone marrow stromal cell types have been identified as hematopoietic stem cell (HSC)-regulating niche cells. However, whether HSC progeny can serve directly as HSC niche cells has not previously been shown. Here we report a dichotomous role of megakaryocytes (MKs) in both maintaining HSC quiescence during homeostasis and promoting HSC regeneration after chemotherapeutic stress. We show that MKs are physically associated with HSCs in the bone marrow of mice and that MK ablation led to activation of quiescent HSCs and increased HSC proliferation. RNA sequencing (RNA-seq) analysis revealed that transforming growth factor β1 (encoded by Tgfb1) is expressed at higher levels in MKs as compared to other stromal niche cells. MK ablation led to reduced levels of biologically active TGF-β1 protein in the bone marrow and nuclear-localized phosphorylated SMAD2/3 (pSMAD2/3) in HSCs, suggesting that MKs maintain HSC quiescence through TGF-β-SMAD signaling. Indeed, TGF-β1 injection into mice in which MKs had been ablated restored HSC quiescence, and conditional deletion of Tgfb1 in MKs increased HSC activation and proliferation. These data demonstrate that TGF-β1 is a dominant signal emanating from MKs that maintains HSC quiescence. However, under conditions of chemotherapeutic challenge, MK ablation resulted in a severe defect in HSC expansion. In response to stress, fibroblast growth factor 1 (FGF1) signaling from MKs transiently dominates over TGF-β inhibitory signaling to stimulate HSC expansion. Overall, these observations demonstrate that MKs serve as HSC-derived niche cells to dynamically regulate HSC function.
Collapse
|
61
|
Hematopoietic stem cell niche maintenance during homeostasis and regeneration. Nat Med 2014; 20:833-46. [PMID: 25100529 DOI: 10.1038/nm.3647] [Citation(s) in RCA: 584] [Impact Index Per Article: 53.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 07/03/2014] [Indexed: 02/08/2023]
Abstract
The bone marrow niche has mystified scientists for many years, leading to widespread investigation to shed light into its molecular and cellular composition. Considerable efforts have been devoted toward uncovering the regulatory mechanisms of hematopoietic stem cell (HSC) niche maintenance. Recent advances in imaging and genetic manipulation of mouse models have allowed the identification of distinct vascular niches that have been shown to orchestrate the balance between quiescence, proliferation and regeneration of the bone marrow after injury. Here we highlight the recently discovered intrinsic mechanisms, microenvironmental interactions and communication with surrounding cells involved in HSC regulation, during homeostasis and in regeneration after injury and discuss their implications for regenerative therapy.
Collapse
|
62
|
Loss of SPARC protects hematopoietic stem cells from chemotherapy toxicity by accelerating their return to quiescence. Blood 2014; 123:4054-63. [PMID: 24833352 DOI: 10.1182/blood-2013-10-533711] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Around birth, hematopoietic stem cells (HSCs) expanding in the fetal liver migrate to the developing bone marrow (BM) to mature and expand. To identify the molecular processes associated with HSCs located in the 2 different microenvironments, we compared the expression profiles of HSCs present in the liver and BM of perinatal mice. This revealed the higher expression of a cluster of extracellular matrix-related genes in BM HSCs, with secreted protein acidic and rich in cysteine (SPARC) being one of the most significant ones. This extracellular matrix protein has been described to be involved in tissue development, repair, and remodeling, as well as metastasis formation. Here we demonstrate that SPARC-deficient mice display higher resistance to serial treatment with the chemotherapeutic agent 5-fluorouracil (5-FU). Using straight and reverse chimeras, we further show that this protective effect is not due to a role of SPARC in HSCs, but rather is due to its function in the BM niche. Although the kinetics of recovery of the hematopoietic system is normal, HSCs in a SPARC-deficient niche show an accelerated return to quiescence, protecting them from the lethal effects of serial 5-FU treatment. This may become clinically relevant, as SPARC inhibition and its protective effect on HSCs could be used to optimize chemotherapy schemes.
Collapse
|
63
|
Mallaney C, Kothari A, Martens A, Challen GA. Clonal-level responses of functionally distinct hematopoietic stem cells to trophic factors. Exp Hematol 2014; 42:317-327.e2. [PMID: 24373928 PMCID: PMC4004675 DOI: 10.1016/j.exphem.2013.11.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 11/01/2013] [Accepted: 11/22/2013] [Indexed: 11/29/2022]
Abstract
Recent findings from several groups have identified distinct classes of hematopoietic stem cells (HSCs) in the bone marrow, each with inherent functional biases in terms of their differentiation, self-renewal, proliferation, and lifespan. It has previously been demonstrated that myeloid- and lymphoid-biased HSCs can be prospectively enriched based on their degree of Hoechst dye efflux. In the present study, we used differential Hoechst efflux to enrich lineage-biased HSC subtypes and analyzed their functional potentials. Despite similar outputs in vitro, bone marrow transplantation assays revealed contrasting lineage differentiation in vivo. To stratify the molecular differences underlying these contrasting functional potentials at the clonal level, single-cell gene expression analysis was performed using the Fluidigm BioMark system and revealed dynamic expression of genes including Meis1, CEBP/α, Sfpi1, and Dnmt3a. Finally, single-cell gene expression analysis was used to unravel the opposing proliferative responses of lineage-biased HSCs to the growth factor TGF-β1, revealing a potential role for the cell cycle inhibitor Cdkn1c as molecular mediator. This work lends further credence to the concept of HSC heterogeneity, and it presents unprecedented molecular resolution of the HSC response to trophic factors using single-cell gene expression analysis.
Collapse
Affiliation(s)
- Cates Mallaney
- Division of Oncology, Section of Molecular Oncology, Department of Internal Medicine, Washington University in St. Louis, St. Louis, MO
| | - Alok Kothari
- Department of Pediatrics, Washington University in St. Louis, St. Louis, MO
| | - Andrew Martens
- Division of Oncology, Section of Molecular Oncology, Department of Internal Medicine, Washington University in St. Louis, St. Louis, MO
| | - Grant A Challen
- Division of Oncology, Section of Molecular Oncology, Department of Internal Medicine, Washington University in St. Louis, St. Louis, MO.
| |
Collapse
|
64
|
Roset R, Inagaki A, Hohl M, Brenet F, Lafrance-Vanasse J, Lange J, Scandura JM, Tainer JA, Keeney S, Petrini JH. The Rad50 hook domain regulates DNA damage signaling and tumorigenesis. Genes Dev 2014; 28:451-62. [PMID: 24532689 PMCID: PMC3950343 DOI: 10.1101/gad.236745.113] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 01/16/2014] [Indexed: 01/25/2023]
Abstract
The Mre11 complex (Mre11, Rad50, and Nbs1) is a central component of the DNA damage response (DDR), governing both double-strand break repair and DDR signaling. Rad50 contains a highly conserved Zn(2+)-dependent homodimerization interface, the Rad50 hook domain. Mutations that inactivate the hook domain produce a null phenotype. In this study, we analyzed mutants with reduced hook domain function in an effort to stratify hook-dependent Mre11 complex functions. One of these alleles, Rad50(46), conferred reduced Zn(2+) affinity and dimerization efficiency. Homozygous Rad50(46/46) mutations were lethal in mice. However, in the presence of wild-type Rad50, Rad50(46) exerted a dominant gain-of-function phenotype associated with chronic DDR signaling. At the organismal level, Rad50(+/46) exhibited hydrocephalus, liver tumorigenesis, and defects in primitive hematopoietic and gametogenic cells. These outcomes were dependent on ATM, as all phenotypes were mitigated in Rad50(+/46) Atm(+/-) mice. These data reveal that the murine Rad50 hook domain strongly influences Mre11 complex-dependent DDR signaling, tissue homeostasis, and tumorigenesis.
Collapse
Affiliation(s)
- Ramon Roset
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA
| | - Akiko Inagaki
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA
| | - Marcel Hohl
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA
| | - Fabienne Brenet
- Department of Medicine, Laboratory of Molecular Hematopoiesis, Weill-Cornell Medical College, New York, New York 10065, USA
| | - Julien Lafrance-Vanasse
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Julian Lange
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA
| | - Joseph M. Scandura
- Department of Medicine, Laboratory of Molecular Hematopoiesis, Weill-Cornell Medical College, New York, New York 10065, USA
| | - John A. Tainer
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Scott Keeney
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA
- Howard Hughes Medical Institute, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
- Weill Graduate School of Medical Sciences, Cornell University, New York, New York 10021, USA
| | - John H.J. Petrini
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA
- Weill Graduate School of Medical Sciences, Cornell University, New York, New York 10021, USA
| |
Collapse
|
65
|
Pietras EM, Lakshminarasimhan R, Techner JM, Fong S, Flach J, Binnewies M, Passegué E. Re-entry into quiescence protects hematopoietic stem cells from the killing effect of chronic exposure to type I interferons. ACTA ACUST UNITED AC 2014; 211:245-62. [PMID: 24493802 PMCID: PMC3920566 DOI: 10.1084/jem.20131043] [Citation(s) in RCA: 229] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Quiescence acts as a safeguard mechanism to ensure survival of the HSC pool during chronic IFN-1 exposure Type I interferons (IFN-1s) are antiviral cytokines that suppress blood production while paradoxically inducing hematopoietic stem cell (HSC) proliferation. Here, we clarify the relationship between the proliferative and suppressive effects of IFN-1s on HSC function during acute and chronic IFN-1 exposure. We show that IFN-1–driven HSC proliferation is a transient event resulting from a brief relaxation of quiescence-enforcing mechanisms in response to acute IFN-1 exposure, which occurs exclusively in vivo. We find that this proliferative burst fails to exhaust the HSC pool, which rapidly returns to quiescence in response to chronic IFN-1 exposure. Moreover, we demonstrate that IFN-1–exposed HSCs with reestablished quiescence are largely protected from the killing effects of IFNs unless forced back into the cell cycle due to culture, transplantation, or myeloablative treatment, at which point they activate a p53-dependent proapoptotic gene program. Collectively, our results demonstrate that quiescence acts as a safeguard mechanism to ensure survival of the HSC pool during chronic IFN-1 exposure. We show that IFN-1s can poise HSCs for apoptosis but induce direct cell killing only upon active proliferation, thereby establishing a mechanism for the suppressive effects of IFN-1s on HSC function.
Collapse
Affiliation(s)
- Eric M Pietras
- The Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Department of Medicine, Division of Hematology/Oncology, University of California San Francisco, San Francisco, California 94143
| | | | | | | | | | | | | |
Collapse
|
66
|
Park SM, Deering RP, Lu Y, Tivnan P, Lianoglou S, Al-Shahrour F, Ebert BL, Hacohen N, Leslie C, Daley GQ, Lengner CJ, Kharas MG. Musashi-2 controls cell fate, lineage bias, and TGF-β signaling in HSCs. ACTA ACUST UNITED AC 2014; 211:71-87. [PMID: 24395885 PMCID: PMC3892968 DOI: 10.1084/jem.20130736] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Musashi-2 is an important regulator of the hematopoietic stem cell translatome and balances HSC homeostasis and lineage bias. Hematopoietic stem cells (HSCs) are maintained through the regulation of symmetric and asymmetric cell division. We report that conditional ablation of the RNA-binding protein Msi2 results in a failure of HSC maintenance and engraftment caused by a loss of quiescence and increased commitment divisions. Contrary to previous studies, we found that these phenotypes were independent of Numb. Global transcriptome profiling and RNA target analysis uncovered Msi2 interactions at multiple nodes within pathways that govern RNA translation, stem cell function, and TGF-β signaling. Msi2-null HSCs are insensitive to TGF-β–mediated expansion and have decreased signaling output, resulting in a loss of myeloid-restricted HSCs and myeloid reconstitution. Thus, Msi2 is an important regulator of the HSC translatome and balances HSC homeostasis and lineage bias.
Collapse
Affiliation(s)
- Sun-Mi Park
- Molecular Pharmacology and Chemistry Program, 2 Center for Cell Engineering, and 3 Computational Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Brenet F, Scandura JM. [TGFβ contribution to hematopoietic regeneration after myelosuppressive chemotherapy]. Med Sci (Paris) 2013; 29:940-2. [PMID: 24280490 DOI: 10.1051/medsci/20132911003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Fabienne Brenet
- Inserm U1068, Centre de recherche en cancérologie de Marseille (CRCM), Institut Paoli-Calmettes (IPC), Université d'Aix-Marseille II, 27, boulevard Leï Roure, 13009 Marseille, France
| | | |
Collapse
|
68
|
Abstract
TG-interacting factor 1 (TGIF1) is a transcriptional repressor that can modulate retinoic acid and transforming growth factor β signaling pathways. It is required for myeloid progenitor cell differentiation and survival, and mutations in the TGIF1 gene cause holoprosencephaly. Furthermore, we have previously observed that acute myelogenous leukemia (AML) patients with low TGIF1 levels had worse prognoses. Here, we explored the role of Tgif1 in murine hematopoietic stem cell (HSC) function. CFU assays showed that Tgif1(-/-) bone marrow cells produced more total colonies and had higher serial CFU potential. These effects were also observed in vivo, where Tgif1(-/-) bone marrow cells had higher repopulation potential in short- and long-term competitive repopulation assays than wild-type cells. Serial transplantation and replating studies showed that Tgif1(-/-) HSCs exhibited greater self-renewal and were less proliferative and more quiescent than wild-type cells, suggesting that Tgif1 is required for stem cells to enter the cell cycle. Furthermore, HSCs from Tgif1(+/-) mice had a phenotype similar to that of HSCs from Tgif1(-/-) mice, while bone marrow cells with overexpressing Tgif1 showed increased proliferation and lower survival in long-term transplant studies. Taken together, our data suggest that Tgif1 suppresses stem cell self-renewal and provide clues as to how reduced expression of TGIF1 may contribute to poor long-term survival in patients with AML.
Collapse
|
69
|
Yamada T, Park CS, Lacorazza HD. Genetic control of quiescence in hematopoietic stem cells. Cell Cycle 2013; 12:2376-83. [PMID: 23839041 PMCID: PMC3841317 DOI: 10.4161/cc.25416] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Revised: 06/13/2013] [Accepted: 06/14/2013] [Indexed: 01/08/2023] Open
Abstract
Cellular quiescence is a reversible cell cycle arrest that is poised to re-enter the cell cycle in response to a combination of cell-intrinsic factors and environmental cues. In hematopoietic stem cells, a coordinated balance between quiescence and differentiating proliferation ensures longevity and prevents both genetic damage and stem cell exhaustion. However, little is known about how all these processes are integrated at the molecular level. We will briefly review the environmental and intrinsic control of stem cell quiescence and discuss a new model that involves a protein-to-protein interaction between G0S2 and the phospho-nucleoprotein nucleolin in the cytosol.
Collapse
Affiliation(s)
- Takeshi Yamada
- Department of Pathology & Immunology; Baylor College of Medicine; Texas Children’s Hospital; Houston, TX USA
| | - Chun Shik Park
- Department of Pathology & Immunology; Baylor College of Medicine; Texas Children’s Hospital; Houston, TX USA
| | - H Daniel Lacorazza
- Department of Pathology & Immunology; Baylor College of Medicine; Texas Children’s Hospital; Houston, TX USA
| |
Collapse
|