51
|
Amarante-Mendes GP, Adjemian S, Branco LM, Zanetti LC, Weinlich R, Bortoluci KR. Pattern Recognition Receptors and the Host Cell Death Molecular Machinery. Front Immunol 2018; 9:2379. [PMID: 30459758 PMCID: PMC6232773 DOI: 10.3389/fimmu.2018.02379] [Citation(s) in RCA: 418] [Impact Index Per Article: 69.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 09/25/2018] [Indexed: 12/18/2022] Open
Abstract
Pattern Recognition Receptors (PRRs) are proteins capable of recognizing molecules frequently found in pathogens (the so-called Pathogen-Associated Molecular Patterns—PAMPs), or molecules released by damaged cells (the Damage-Associated Molecular Patterns—DAMPs). They emerged phylogenetically prior to the appearance of the adaptive immunity and, therefore, are considered part of the innate immune system. Signals derived from the engagement of PRRs on the immune cells activate microbicidal and pro-inflammatory responses required to eliminate or, at least, to contain infectious agents. Molecularly controlled forms of cell death are also part of a very ancestral mechanism involved in key aspects of the physiology of multicellular organism, including the elimination of unwanted, damaged or infected cells. Interestingly, each form of cell death has its particular effect on inflammation and on the development of innate and adaptive immune responses. In this review article, we discuss some aspects of the molecular interplay between the cell death machinery and signals initiated by the activation of PRRs by PAMPs and DAMPs.
Collapse
Affiliation(s)
- Gustavo P Amarante-Mendes
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil.,Instituto de Investigação em Imunologia, Instituto Nacional de Ciência e Tecnologia (INCT), São Paulo, Brazil
| | - Sandy Adjemian
- Molecular Signaling and Cell Death Unit, Inflammation Research Center, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Laura Migliari Branco
- Departamento de Ciências Biológicas, Universidade Federal de São Paulo, Diadema, Brazil.,Centro de Terapia Celular e Molecular (CTC-Mol), Universidade Federal de São Paulo, São Paulo, Brazil
| | - Larissa C Zanetti
- Instituto Israelita de Ensino e Pesquisa, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Ricardo Weinlich
- Instituto Israelita de Ensino e Pesquisa, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Karina R Bortoluci
- Departamento de Ciências Biológicas, Universidade Federal de São Paulo, Diadema, Brazil.,Centro de Terapia Celular e Molecular (CTC-Mol), Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
52
|
Cordero MD, Alcocer-Gómez E, Ryffel B. Gain of function mutation and inflammasome driven diseases in human and mouse models. J Autoimmun 2018; 91:13-22. [DOI: 10.1016/j.jaut.2018.03.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/22/2018] [Accepted: 03/25/2018] [Indexed: 12/26/2022]
|
53
|
Grandjean T, Boucher A, Thepaut M, Monlezun L, Guery B, Faudry E, Kipnis E, Dessein R. The human NAIP-NLRC4-inflammasome senses the Pseudomonas aeruginosa T3SS inner-rod protein. Int Immunol 2018; 29:377-384. [PMID: 28992059 DOI: 10.1093/intimm/dxx047] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Accepted: 08/26/2017] [Indexed: 12/12/2022] Open
Abstract
While NLRC4-dependent sensing of intracellular Gram-negative pathogens such as Salmonella enterica serovar typhimurium is a beneficial host response, NLRC4-dependent sensing of the Pseudomonas aeruginosa type 3 secretion system (T3SS) has been shown to be involved in pathogenicity. In mice, different pathogen-associated microbial patterns are sensed by the combination of the NLRC4-inflammasome with different neuronal apoptosis inhibitory proteins (NAIPs). NAIP2 is involved in sensing PscI, an inner-rod protein of the P. aeruginosa T3SS. Surprisingly, only a single human NAIP (hNAIP) has been found. Moreover, there is no description of hNAIP-NLRC4 inflammasome recognition of T3SS inner-rod proteins in humans. Here, we show that the P. aeruginosa T3SS inner-rod protein PscI and needle protein PscF are both sensed by the hNAIP-NLRC4 inflammasome in human macrophages and PBMCs from healthy donors, allowing caspase-1 and IL-1β maturation and resulting in a robust inflammatory response. TLR4 and TLR2 are involved in redundantly sensing these two T3SS components.
Collapse
Affiliation(s)
- Teddy Grandjean
- EA 7366, Host-Pathogens Translational Research Group, Faculty of Medicine of Lille, University of Lille Nord de France, F-59000 Lille, France
| | - Anne Boucher
- EA 7366, Host-Pathogens Translational Research Group, Faculty of Medicine of Lille, University of Lille Nord de France, F-59000 Lille, France
| | - Marion Thepaut
- EA 7366, Host-Pathogens Translational Research Group, Faculty of Medicine of Lille, University of Lille Nord de France, F-59000 Lille, France
| | - Laura Monlezun
- Université Grenoble Alpes, F-38041 Grenoble, France.,CNRS, Bacterial Pathogenesis and Cellular Responses, ERL 5261, F-38054 Grenoble, France.,INSERM, UMR-S 1036, Biology of Cancer and Infection, F-38054 Grenoble, France.,CEA, DSV/iRTSV, F-38054 Grenoble, France
| | - Benoit Guery
- EA 7366, Host-Pathogens Translational Research Group, Faculty of Medicine of Lille, University of Lille Nord de France, F-59000 Lille, France.,Infectious Diseases Service, Centre Hospitalier Universitaire Vaudois and University of Lausanne, CH-1011 Lausanne, Switzerland
| | - Eric Faudry
- Université Grenoble Alpes, F-38041 Grenoble, France.,CNRS, Bacterial Pathogenesis and Cellular Responses, ERL 5261, F-38054 Grenoble, France.,INSERM, UMR-S 1036, Biology of Cancer and Infection, F-38054 Grenoble, France.,CEA, DSV/iRTSV, F-38054 Grenoble, France
| | - Eric Kipnis
- EA 7366, Host-Pathogens Translational Research Group, Faculty of Medicine of Lille, University of Lille Nord de France, F-59000 Lille, France
| | - Rodrigue Dessein
- EA 7366, Host-Pathogens Translational Research Group, Faculty of Medicine of Lille, University of Lille Nord de France, F-59000 Lille, France.,Microbiological Institute, Center of Biology and Pathology, Teaching University Hospital of Lille, Univ Lille Nord de France, F-59000 Lille, France
| |
Collapse
|
54
|
Tenthorey JL, Haloupek N, López-Blanco JR, Grob P, Adamson E, Hartenian E, Lind NA, Bourgeois NM, Chacón P, Nogales E, Vance RE. The structural basis of flagellin detection by NAIP5: A strategy to limit pathogen immune evasion. Science 2018; 358:888-893. [PMID: 29146805 PMCID: PMC5842810 DOI: 10.1126/science.aao1140] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 10/04/2017] [Indexed: 12/17/2022]
Abstract
Robust innate immune detection of rapidly evolving pathogens is critical for host defense. Nucleotide-binding domain leucine-rich repeat (NLR) proteins function as cytosolic innate immune sensors in plants and animals. However, the structural basis for ligand-induced NLR activation has so far remained unknown. NAIP5 (NLR family, apoptosis inhibitory protein 5) binds the bacterial protein flagellin and assembles with NLRC4 to form a multiprotein complex called an inflammasome. Here we report the cryo-electron microscopy structure of the assembled ~1.4-megadalton flagellin-NAIP5-NLRC4 inflammasome, revealing how a ligand activates an NLR. Six distinct NAIP5 domains contact multiple conserved regions of flagellin, prying NAIP5 into an open and active conformation. We show that innate immune recognition of multiple ligand surfaces is a generalizable strategy that limits pathogen evolution and immune escape.
Collapse
Affiliation(s)
- Jeannette L Tenthorey
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Nicole Haloupek
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - José Ramón López-Blanco
- Departamento de Química Física Biológica, Instituto de Química Física 'Rocasolano', Consejo Superior de Investigaciones Científicas, 28006 Madrid, Spain
| | - Patricia Grob
- Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
| | - Elise Adamson
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA.,University of Maryland, Baltimore County, Baltimore, MD 21250, USA
| | - Ella Hartenian
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Nicholas A Lind
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Natasha M Bourgeois
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Pablo Chacón
- Departamento de Química Física Biológica, Instituto de Química Física 'Rocasolano', Consejo Superior de Investigaciones Científicas, 28006 Madrid, Spain
| | - Eva Nogales
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA. .,Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA.,Molecular Biophysics and Integrative Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Russell E Vance
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA. .,Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA.,Cancer Research Laboratory and Immunotherapeutics and Vaccine Research Initiative, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
55
|
Karki R, Lee E, Place D, Samir P, Mavuluri J, Sharma BR, Balakrishnan A, Malireddi RKS, Geiger R, Zhu Q, Neale G, Kanneganti TD. IRF8 Regulates Transcription of Naips for NLRC4 Inflammasome Activation. Cell 2018; 173:920-933.e13. [PMID: 29576451 DOI: 10.1016/j.cell.2018.02.055] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 01/17/2018] [Accepted: 02/21/2018] [Indexed: 02/08/2023]
Abstract
Inflammasome activation is critical for host defenses against various microbial infections. Activation of the NLRC4 inflammasome requires detection of flagellin or type III secretion system (T3SS) components by NLR family apoptosis inhibitory proteins (NAIPs); yet how this pathway is regulated is unknown. Here, we found that interferon regulatory factor 8 (IRF8) is required for optimal activation of the NLRC4 inflammasome in bone-marrow-derived macrophages infected with Salmonella Typhimurium, Burkholderia thailandensis, or Pseudomonas aeruginosa but is dispensable for activation of the canonical and non-canonical NLRP3, AIM2, and Pyrin inflammasomes. IRF8 governs the transcription of Naips to allow detection of flagellin or T3SS proteins to mediate NLRC4 inflammasome activation. Furthermore, we found that IRF8 confers protection against bacterial infection in vivo, owing to its role in inflammasome-dependent cytokine production and pyroptosis. Altogether, our findings suggest that IRF8 is a critical regulator of NAIPs and NLRC4 inflammasome activation for defense against bacterial infection.
Collapse
Affiliation(s)
- Rajendra Karki
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Ein Lee
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Integrated Biomedical Sciences Program, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - David Place
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Parimal Samir
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jayadev Mavuluri
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Bhesh Raj Sharma
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Arjun Balakrishnan
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | | - Rechel Geiger
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Qifan Zhu
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Integrated Biomedical Sciences Program, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Geoffrey Neale
- Hartwell Center for Bioinformatics & Biotechnology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | |
Collapse
|
56
|
Ajamian L, Melnychuk L, Jean-Pierre P, Zaharatos GJ. DNA Vaccine-Encoded Flagellin Can Be Used as an Adjuvant Scaffold to Augment HIV-1 gp41 Membrane Proximal External Region Immunogenicity. Viruses 2018; 10:E100. [PMID: 29495537 PMCID: PMC5869493 DOI: 10.3390/v10030100] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 02/22/2018] [Accepted: 02/23/2018] [Indexed: 02/07/2023] Open
Abstract
Flagellin's potential as a vaccine adjuvant has been increasingly explored over the last three decades. Monomeric flagellin proteins are the only known agonists of Toll-like receptor 5 (TLR5). This interaction evokes a pro-inflammatory state that impacts upon both innate and adaptive immunity. While pathogen associated molecular patterns (PAMPs) like flagellin have been used as stand-alone adjuvants that are co-delivered with antigen, some investigators have demonstrated a distinct advantage to incorporating antigen epitopes within the structure of flagellin itself. This approach has been particularly effective in enhancing humoral immune responses. We sought to use flagellin as both scaffold and adjuvant for HIV gp41 with the aim of eliciting antibodies to the membrane proximal external region (MPER). Accordingly, we devised a straightforward step-wise approach to select flagellin-antigen fusion proteins for gene-based vaccine development. Using plasmid DNA vector-based expression in mammalian cells, we demonstrate robust expression of codon-optimized full length and hypervariable region-deleted constructs of Salmonella enterica subsp. enterica serovar Typhi flagellin (FliC). An HIV gp41 derived sequence including the MPER (gp41607-683) was incorporated into various positions of these constructs and the expressed fusion proteins were screened for effective secretion, TLR5 agonist activity and adequate MPER antigenicity. We show that incorporation of gp41607-683 into a FliC-based scaffold significantly augments gp41607-683 immunogenicity in a TLR5 dependent manner and elicits modest MPER-specific humoral responses in a mouse model.
Collapse
Affiliation(s)
- Lara Ajamian
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC H3T 1E2, Canada.
- Division of Experimental Medicine, Department of Medicine, McGill University, Montréal, QC H4A 3J1, Canada.
| | - Luca Melnychuk
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC H3T 1E2, Canada.
- Division of Experimental Medicine, Department of Medicine, McGill University, Montréal, QC H4A 3J1, Canada.
| | - Patrick Jean-Pierre
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC H3T 1E2, Canada.
| | - Gerasimos J Zaharatos
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC H3T 1E2, Canada.
- Division of Infectious Disease, Department of Medicine & Division of Medical Microbiology, Department of Clinical Laboratory Medicine, Jewish General Hospital, Montréal, QC H3T 1E2, Canada.
| |
Collapse
|
57
|
Rathinam VAK, Chan FKM. Inflammasome, Inflammation, and Tissue Homeostasis. Trends Mol Med 2018; 24:304-318. [PMID: 29433944 DOI: 10.1016/j.molmed.2018.01.004] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 01/06/2018] [Accepted: 01/14/2018] [Indexed: 02/07/2023]
Abstract
Organismal fitness demands proper response to neutralize the threat from infection or injury. At the mammalian intestinal epithelium barrier, the inflammasome coordinates an elaborate tissue repair response marked by the induction of antimicrobial peptides, wound-healing cytokines, and reparative proliferation of epithelial stem cells. The inflammasome in myeloid and intestinal epithelial compartments exerts these effects in part through maintenance of a healthy microbiota. Disease-associated mutations and elevated expression of certain inflammasome sensors have been identified. In many cases, inhibition of inflammasome activity has dramatic effects on disease outcome in mouse models of experimental colitis. Here, we discuss recent studies on the role of distinct inflammasome sensors in intestinal homeostasis and how this knowledge may be translated into a therapeutic setting.
Collapse
Affiliation(s)
- Vijay A K Rathinam
- Department of Immunology, UConn Health School of Medicine, Farmington, CT 06030, USA.
| | - Francis Ka-Ming Chan
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
58
|
Some news from the unknown soldier, the Peyer's patch macrophage. Cell Immunol 2018; 330:159-167. [PMID: 29395860 DOI: 10.1016/j.cellimm.2018.01.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 01/15/2018] [Accepted: 01/16/2018] [Indexed: 12/24/2022]
Abstract
In mammals, macrophages (MF) are present in virtually all tissues where they serve many different functions linked primarily to the maintenance of homeostasis, innate defense against pathogens, tissue repair and metabolism. Although some of these functions appear common to all tissues, others are specific to the homing tissue. Thus, MF become adapted to perform particular functions in a given tissue. Accordingly, MF express common markers but also sets of tissue-specific markers linked to dedicated functions. One of the largest pool of MF in the body lines up the wall of the gut. Located in the small intestine, Peyer's patches (PP) are primary antigen sampling and mucosal immune response inductive sites. Surprisingly, although markers of intestinal MF, such as F4/80, have been identified more than 30 years ago, MF of PP escaped any kind of phenotypic description and remained "unknown" for decades. In absence of MF identification, the characterization of the PP mononuclear phagocyte system (MPS) functions has been impaired. However, taking into account that PP are privileged sites of entry for pathogens, it is important to understand how the latter are handled by and/or escape the PP MPS, especially MF, which role in killing invaders is well known. This review focuses on recent advances on the PP MPS, which have allowed, through new criteria of PP phagocyte subset identification, the characterization of PP MF origin, diversity, specificity, location and functions.
Collapse
|
59
|
Sanos SL, Kassub R, Testori M, Geiger M, Pätzold J, Giessel R, Knallinger J, Bathke B, Gräbnitz F, Brinkmann K, Chaplin P, Suter M, Hochrein H, Lauterbach H. NLRC4 Inflammasome-Driven Immunogenicity of a Recombinant MVA Mucosal Vaccine Encoding Flagellin. Front Immunol 2018; 8:1988. [PMID: 29416534 PMCID: PMC5787573 DOI: 10.3389/fimmu.2017.01988] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 12/21/2017] [Indexed: 01/12/2023] Open
Abstract
Bacterial flagellin enhances innate and adaptive immune responses and is considered a promising adjuvant for the development of vaccines against infectious diseases and cancer. Antigen-presenting cells recognize flagellin with the extracellular TLR5 and the intracellular NLRC4 inflammasome-mediated pathway. The detailed cooperation of these innate pathways in the induction of the adaptive immune response following intranasal (i.n.) administration of a recombinant modified vaccinia virus Ankara (rMVA) vaccine encoding flagellin (rMVA-flagellin) is not known. rMVA-flagellin induced enhanced secretion of mucosal IL-1β and TNF-α resulting in elevated CTL and IgG2c antibody responses. Importantly, mucosal IgA responses were also significantly enhanced in both bronchoalveolar (BAL) and intestinal lavages accompanied by the increased migration of CD8+ T cells to the mesenteric lymph nodes (MLN). Nlrc4−/− rMVA-flagellin-immunized mice failed to enhance pulmonary CTL responses, IgG2c was lower, and IgA levels in the BAL or intestinal lavages were similar as those of control mice. Our results show the favorable adjuvant effect of rMVA-flagellin in the lung as well as the intestinal mucosa following i.n. administration with NLRC4 as the essential driver of this promising mucosal vaccine concept.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Mark Suter
- University of Zurich, Zurich, Switzerland
| | | | | |
Collapse
|
60
|
Abstract
Inflammasome signalling is an emerging pillar of innate immunity and has a central role in the regulation of gastrointestinal health and disease. Activation of the inflammasome complex mediates both the release of the pro-inflammatory cytokines IL-1β and IL-18 and the execution of a form of inflammatory cell death known as pyroptosis. In most cases, these mediators of inflammation provide protection against bacterial, viral and protozoal infections. However, unchecked inflammasome activities perpetuate chronic inflammation, which underpins the molecular and pathophysiological basis of gastritis, IBD, upper and lower gastrointestinal cancer, nonalcoholic fatty liver disease and obesity. Studies have also highlighted an inflammasome signature in the maintenance of gut microbiota and gut-brain homeostasis. Harnessing the immunomodulatory properties of the inflammasome could transform clinical practice in the treatment of acute and chronic gastrointestinal and extragastrointestinal diseases. This Review presents an overview of inflammasome biology in gastrointestinal health and disease and describes the value of experimental and pharmacological intervention in the treatment of inflammasome-associated clinical manifestations.
Collapse
|
61
|
Nichols RD, von Moltke J, Vance RE. NAIP/NLRC4 inflammasome activation in MRP8 + cells is sufficient to cause systemic inflammatory disease. Nat Commun 2017; 8:2209. [PMID: 29263322 PMCID: PMC5738432 DOI: 10.1038/s41467-017-02266-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 11/14/2017] [Indexed: 01/18/2023] Open
Abstract
Inflammasomes are cytosolic multiprotein complexes that initiate protective immunity in response to infection, and can also drive auto-inflammatory diseases, but the cell types and signalling pathways that cause these diseases remain poorly understood. Inflammasomes are broadly expressed in haematopoietic and non-haematopoietic cells and can trigger numerous downstream responses including production of IL-1β, IL-18, eicosanoids and pyroptotic cell death. Here we show a mouse model with endogenous NLRC4 inflammasome activation in Lysozyme2+ cells (monocytes, macrophages and neutrophils) in vivo exhibits a severe systemic inflammatory disease, reminiscent of human patients that carry mutant auto-active NLRC4 alleles. Interestingly, specific NLRC4 activation in Mrp8+ cells (primarily neutrophil lineage) is sufficient to cause severe inflammatory disease. Disease is ameliorated on an Asc−/− background, and can be suppressed by injections of anti-IL-1 receptor antibody. Our results provide insight into the mechanisms by which NLRC4 inflammasome activation mediates auto-inflammatory disease in vivo. Inflammasomes are protein complexes induced by pathogens for the secretion of pro-inflammatory cytokines IL-1β and IL-18 in immune cells. Here the authors show, using a new mouse model, that aberrant NLRC4 and ASC-dependent inflammasome activation in neutrophils contributes to systemic inflammation.
Collapse
Affiliation(s)
- Randilea D Nichols
- Division of Immunology and Pathogenesis, University of California, Berkeley, 94720, California, USA
| | - Jakob von Moltke
- Division of Immunology and Pathogenesis, University of California, Berkeley, 94720, California, USA.,Department of Immunology, University of Washington, Seattle, 98109, Washington, USA
| | - Russell E Vance
- Division of Immunology and Pathogenesis, University of California, Berkeley, 94720, California, USA. .,Howard Hughes Medical Institute, University of California, Berkeley, 94720, California, USA. .,Cancer Research Laboratory, University of California, Berkeley, 94720, California, USA. .,Immunotherapeutics and Vaccine Research Initiative, University of California, Berkeley, 94720, California, USA.
| |
Collapse
|
62
|
Structural basis for specific flagellin recognition by the NLR protein NAIP5. Cell Res 2017; 28:35-47. [PMID: 29182158 PMCID: PMC5752844 DOI: 10.1038/cr.2017.148] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 11/05/2017] [Accepted: 11/10/2017] [Indexed: 12/17/2022] Open
Abstract
The nucleotide-binding domain- and leucine-rich repeat (LRR)-containing proteins (NLRs) function as intracellular immune receptors to detect the presence of pathogen- or host-derived signals. The mechanisms of how NLRs sense their ligands remain elusive. Here we report the structure of a bacterial flagellin derivative in complex with the NLR proteins NAIP5 and NLRC4 determined by cryo-electron microscopy at 4.28 Å resolution. The structure revealed that the flagellin derivative forms two parallel helices interacting with multiple domains including BIR1 and LRR of NAIP5. Binding to NAIP5 results in a nearly complete burial of the flagellin derivative, thus stabilizing the active conformation of NAIP5. The extreme C-terminal side of the flagellin is anchored to a sterically constrained binding pocket of NAIP5, which likely acts as a structural determinant for discrimination of different bacterial flagellins by NAIP5, a notion further supported by biochemical data. Taken together, our results shed light on the molecular mechanisms underlying NLR ligand perception.
Collapse
|
63
|
Broad detection of bacterial type III secretion system and flagellin proteins by the human NAIP/NLRC4 inflammasome. Proc Natl Acad Sci U S A 2017; 114:13242-13247. [PMID: 29180436 DOI: 10.1073/pnas.1710433114] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Inflammasomes are cytosolic multiprotein complexes that initiate host defense against bacterial pathogens by activating caspase-1-dependent cytokine secretion and cell death. In mice, specific nucleotide-binding domain, leucine-rich repeat-containing family, apoptosis inhibitory proteins (NAIPs) activate the nucleotide-binding domain, leucine-rich repeat-containing family, CARD domain-containing protein 4 (NLRC4) inflammasome upon sensing components of the type III secretion system (T3SS) and flagellar apparatus. NAIP1 recognizes the T3SS needle protein, NAIP2 recognizes the T3SS inner rod protein, and NAIP5 and NAIP6 recognize flagellin. In contrast, humans encode a single functional NAIP, raising the question of whether human NAIP senses one or multiple bacterial ligands. Previous studies found that human NAIP detects both flagellin and the T3SS needle protein and suggested that the ability to detect both ligands was achieved by multiple isoforms encoded by the single human NAIP gene. Here, we show that human NAIP also senses the Salmonella Typhimurium T3SS inner rod protein PrgJ and that T3SS inner rod proteins from multiple bacterial species are also detected. Furthermore, we show that a single human NAIP isoform is capable of sensing the T3SS inner rod, needle, and flagellin. Our findings indicate that, in contrast to murine NAIPs, promiscuous recognition of multiple bacterial ligands is conferred by a single human NAIP.
Collapse
|
64
|
Cell death and cell lysis are separable events during pyroptosis. Cell Death Discov 2017; 3:17070. [PMID: 29147575 PMCID: PMC5682879 DOI: 10.1038/cddiscovery.2017.70] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 08/23/2017] [Accepted: 09/04/2017] [Indexed: 01/02/2023] Open
Abstract
Although much insight has been gained into the mechanisms by which activation of the inflammasome can trigger pyroptosis in mammalian cells, the precise kinetics of the end stages of pyroptosis have not been well characterized. Using time-lapse fluorescent imaging to analyze the kinetics of pyroptosis in individual murine macrophages, we observed distinct stages of cell death and cell lysis. Our data demonstrate that cell membrane permeability resulting from gasdermin D pore formation is coincident with the cessation of cell movement, loss of mitochondrial activity, and cell swelling, events that can be uncoupled from cell lysis. We propose a model of pyroptosis in which cell death can occur independently of cell lysis. The uncoupling of cell death from cell lysis may allow for better control of cytosolic contents upon activation of the inflammasome.
Collapse
|
65
|
Abstract
Infections can cause a multitude of stresses on the host and microbe. To detect potential infections, the mammalian immune system utilizes several families of pattern recognition receptors, which survey the intracellular and extracellular environments for microbial products. Members of each receptor family induce antimicrobial effector responses, which include inflammatory cytokine or interferon expression, downregulation of protein synthesis, or host cell death. In this review, we discuss the benefits of each of these innate immune responses. We highlight how non-infectious bacteria and viruses typically activate a single family of receptors, which results in a predictable host response. Infections with virulent pathogens, in contrast, may activate receptors from distinct families. As each receptor family may induce responses that antagonize or synergize with the activities of another family, cell fate decisions during pathogenic encounters are unpredictable. Understanding the antagonistic antimicrobial activities of the innate immune system should provide insight into how cell fate decisions are made during infections and potentially during other environmental stresses.
Collapse
Affiliation(s)
- Kate M Franz
- Division of Gastroenterology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Program in Virology, Harvard Medical School, Boston, MA 02115, USA
| | - Jonathan C Kagan
- Division of Gastroenterology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Program in Virology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
66
|
Abstract
The inflammasome is a large multimeric protein complex comprising an effector protein that demonstrates specificity for a variety of activators or ligands; an adaptor molecule; and procaspase-1, which is converted to caspase-1 upon inflammasome activation. Inflammasomes are expressed primarily by myeloid cells and are located within the cell. The macromolecular inflammasome structure can be visualized by cryo-electron microscopy. This complex has been found to play a role in a variety of disease models in mice, and several have been genetically linked to human diseases. In most cases, the effector protein is a member of the NLR (nucleotide-binding domain leucine-rich repeat-containing) or NOD (nucleotide oligomerization domain)-like receptor protein family. However, other effectors have also been described, with the most notable being AIM-2 (absent in melanoma 2), which recognizes DNA to elicit inflammasome function. This review will focus on the role of the inflammasome in myeloid cells and its role in health and disease.
Collapse
|
67
|
Finlay D, Teriete P, Vamos M, Cosford NDP, Vuori K. Inducing death in tumor cells: roles of the inhibitor of apoptosis proteins. F1000Res 2017; 6:587. [PMID: 28529715 PMCID: PMC5414821 DOI: 10.12688/f1000research.10625.1] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/24/2017] [Indexed: 12/17/2022] Open
Abstract
The heterogeneous group of diseases collectively termed cancer results not just from aberrant cellular proliferation but also from a lack of accompanying homeostatic cell death. Indeed, cancer cells regularly acquire resistance to programmed cell death, or apoptosis, which not only supports cancer progression but also leads to resistance to therapeutic agents. Thus, various approaches have been undertaken in order to induce apoptosis in tumor cells for therapeutic purposes. Here, we will focus our discussion on agents that directly affect the apoptotic machinery itself rather than on drugs that induce apoptosis in tumor cells indirectly, such as by DNA damage or kinase dependency inhibition. As the roles of the Bcl-2 family have been extensively studied and reviewed recently, we will focus in this review specifically on the inhibitor of apoptosis protein (IAP) family. IAPs are a disparate group of proteins that all contain a baculovirus IAP repeat domain, which is important for the inhibition of apoptosis in some, but not all, family members. We describe each of the family members with respect to their structural and functional similarities and differences and their respective roles in cancer. Finally, we also review the current state of IAPs as targets for anti-cancer therapeutics and discuss the current clinical state of IAP antagonists.
Collapse
Affiliation(s)
- Darren Finlay
- NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Peter Teriete
- NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Mitchell Vamos
- NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Nicholas D P Cosford
- NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Kristiina Vuori
- NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| |
Collapse
|
68
|
Rauch I, Deets KA, Ji DX, von Moltke J, Tenthorey JL, Lee AY, Philip NH, Ayres JS, Brodsky IE, Gronert K, Vance RE. NAIP-NLRC4 Inflammasomes Coordinate Intestinal Epithelial Cell Expulsion with Eicosanoid and IL-18 Release via Activation of Caspase-1 and -8. Immunity 2017; 46:649-659. [PMID: 28410991 PMCID: PMC5476318 DOI: 10.1016/j.immuni.2017.03.016] [Citation(s) in RCA: 277] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 12/09/2016] [Accepted: 03/24/2017] [Indexed: 11/25/2022]
Abstract
Intestinal epithelial cells (IECs) form a critical barrier against pathogen invasion. By generation of mice in which inflammasome expression is restricted to IECs, we describe a coordinated epithelium-intrinsic inflammasome response in vivo. This response was sufficient to protect against Salmonella tissue invasion and involved a previously reported IEC expulsion that was coordinated with lipid mediator and cytokine production and lytic IEC death. Excessive inflammasome activation in IECs was sufficient to result in diarrhea and pathology. Experiments with IEC organoids demonstrated that IEC expulsion did not require other cell types. IEC expulsion was accompanied by a major actin rearrangement in neighboring cells that maintained epithelium integrity but did not absolutely require Caspase-1 or Gasdermin D. Analysis of Casp1-/-Casp8-/- mice revealed a functional Caspase-8 inflammasome in vivo. Thus, a coordinated IEC-intrinsic, Caspase-1 and -8 inflammasome response plays a key role in intestinal immune defense and pathology.
Collapse
Affiliation(s)
- Isabella Rauch
- Division of Immunology & Pathogenesis, Department of Molecular & Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Katherine A Deets
- Division of Immunology & Pathogenesis, Department of Molecular & Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Daisy X Ji
- Division of Immunology & Pathogenesis, Department of Molecular & Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Jakob von Moltke
- Division of Immunology & Pathogenesis, Department of Molecular & Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Jeannette L Tenthorey
- Division of Immunology & Pathogenesis, Department of Molecular & Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Angus Y Lee
- Cancer Research Laboratory and Immunotherapeutics and Vaccine Research Initiative, University of California, Berkeley, CA 94720, USA
| | - Naomi H Philip
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - Janelle S Ayres
- Division of Immunology & Pathogenesis, Department of Molecular & Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Igor E Brodsky
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - Karsten Gronert
- Vision Science Program, School of Optometry, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Russell E Vance
- Division of Immunology & Pathogenesis, Department of Molecular & Cell Biology, University of California, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA; Cancer Research Laboratory and Immunotherapeutics and Vaccine Research Initiative, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
69
|
Lin CK, Kazmierczak BI. Inflammation: A Double-Edged Sword in the Response to Pseudomonas aeruginosa Infection. J Innate Immun 2017; 9:250-261. [PMID: 28222444 DOI: 10.1159/000455857] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 01/05/2017] [Indexed: 12/22/2022] Open
Abstract
The Gram-negative opportunistic pathogen Pseudomonas aeruginosa exploits failures of barrier defense and innate immunity to cause acute infections at a range of anatomic sites. We review the defense mechanisms that normally protect against P. aeruginosa pulmonary infection, as well as the bacterial products and activities that trigger their activation. Innate immune recognition of P. aeruginosa is critical for pathogen clearance; nonetheless, inflammation is also associated with pathogen persistence and poor host outcomes. We describe P. aeruginosa adaptations that improve this pathogen's fitness in the inflamed airway, and briefly discuss strategies to manipulate inflammation to benefit the host. Such adjunct therapies may become increasingly important in the treatment of acute and chronic infections caused by this multi-drug-resistant pathogen.
Collapse
|
70
|
Furman D, Chang J, Lartigue L, Bolen CR, Haddad F, Gaudilliere B, Ganio EA, Fragiadakis GK, Spitzer MH, Douchet I, Daburon S, Moreau JF, Nolan GP, Blanco P, Déchanet-Merville J, Dekker CL, Jojic V, Kuo CJ, Davis MM, Faustin B. Expression of specific inflammasome gene modules stratifies older individuals into two extreme clinical and immunological states. Nat Med 2017; 23:174-184. [PMID: 28092664 DOI: 10.1038/nm.4267] [Citation(s) in RCA: 284] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 12/13/2016] [Indexed: 12/13/2022]
Abstract
Low-grade, chronic inflammation has been associated with many diseases of aging, but the mechanisms responsible for producing this inflammation remain unclear. Inflammasomes can drive chronic inflammation in the context of an infectious disease or cellular stress, and they trigger the maturation of interleukin-1β (IL-1β). Here we find that the expression of specific inflammasome gene modules stratifies older individuals into two extremes: those with constitutive expression of IL-1β, nucleotide metabolism dysfunction, elevated oxidative stress, high rates of hypertension and arterial stiffness; and those without constitutive expression of IL-1β, who lack these characteristics. Adenine and N4-acetylcytidine, nucleotide-derived metabolites that are detectable in the blood of the former group, prime and activate the NLRC4 inflammasome, induce the production of IL-1β, activate platelets and neutrophils and elevate blood pressure in mice. In individuals over 85 years of age, the elevated expression of inflammasome gene modules was associated with all-cause mortality. Thus, targeting inflammasome components may ameliorate chronic inflammation and various other age-associated conditions.
Collapse
Affiliation(s)
- David Furman
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, California, USA.,Department of Systems Biology, Division of Translational Medicine, Sidra Medical and Research Center, Doha, Qatar
| | - Junlei Chang
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, California, USA
| | - Lydia Lartigue
- INSERM U916 VINCO, Institut Bergonié, Bordeaux Cedex, France
| | - Christopher R Bolen
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
| | - François Haddad
- Institute of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Brice Gaudilliere
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
| | - Edward A Ganio
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
| | - Gabriela K Fragiadakis
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
| | - Matthew H Spitzer
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
| | - Isabelle Douchet
- CIRID, UMR CNRS 5164, Université Bordeaux 2, Bordeaux Cedex, France
| | - Sophie Daburon
- CIRID, UMR CNRS 5164, Université Bordeaux 2, Bordeaux Cedex, France
| | | | - Garry P Nolan
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
| | - Patrick Blanco
- CIRID, UMR CNRS 5164, Université Bordeaux 2, Bordeaux Cedex, France
| | | | - Cornelia L Dekker
- Department of Pediatrics, Division of Infectious Diseases, Stanford University, Stanford, California, USA
| | - Vladimir Jojic
- Department of Computer Science, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Calvin J Kuo
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, California, USA
| | - Mark M Davis
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, California, USA.,Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California, USA
| | - Benjamin Faustin
- CIRID, UMR CNRS 5164, Université Bordeaux 2, Bordeaux Cedex, France
| |
Collapse
|
71
|
Neuronal apoptosis inhibitory protein (NAIP) localizes to the cytokinetic machinery during cell division. Sci Rep 2017; 7:39981. [PMID: 28059125 PMCID: PMC5216396 DOI: 10.1038/srep39981] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 11/30/2016] [Indexed: 12/17/2022] Open
Abstract
The neuronal apoptosis inhibitory protein (NAIP) is a constituent of the inflammasome and a key component of the innate immune system. Here we use immunofluorescence to position NAIP within the cytokinetic apparatus, contiguous to chromosomal passenger complex (CPC), Centralspindlin, PRC1 and KIF4A. During metaphase, NAIP accumulates in the mitotic spindle poles and is shown in spindle microtubules; in anaphase NAIP is detected in the middle of the central spindle. At the end of cytokinesis, NAIP is localized in the outlying region of the stem body, the center of the intercellular bridge formed between daughter cells prior to cellular abscission. We also describe the sustained presence of NAIP mRNA and protein throughout the cell cycle with a significant increase observed in the G2/M phase. Consistent with a role for NAIP in cytokinesis, NAIP overexpression in HeLa cells promotes the acquisition of a multinuclear phenotype. Conversely, NAIP siRNA gene silencing results in an apoptotic lethal phenotype. Our confocal and super resolution stimulated-emission-depletion (STED) examination of mammalian cell cytokinesis demonstrate a potential new role for NAIP in addition to anti-apoptotic and innate immunology functions.
Collapse
|
72
|
Ratner D, Orning MPA, Lien E. Bacterial secretion systems and regulation of inflammasome activation. J Leukoc Biol 2016; 101:165-181. [PMID: 27810946 DOI: 10.1189/jlb.4mr0716-330r] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 09/19/2016] [Accepted: 09/20/2016] [Indexed: 01/03/2023] Open
Abstract
Innate immunity is critical for host defenses against pathogens, but many bacteria display complex ways of interacting with innate immune signaling, as they may both activate and evade certain pathways. Gram-negative bacteria can exhibit specialized nanomachine secretion systems for delivery of effector proteins into mammalian cells. Bacterial types III, IV, and VI secretion systems (T3SS, T4SS, and T6SS) are known for their impact on caspase-1-activating inflammasomes, necessary for producing bioactive inflammatory cytokines IL-1β and IL-18, key participants of anti-bacterial responses. Here, we discuss how these secretion systems can mediate triggering and inhibition of inflammasome signaling. We propose that a fine balance between secretion system-mediated activation and inhibition can determine net activation of inflammasome activity and control inflammation, clearance, or spread of the infection.
Collapse
Affiliation(s)
- Dmitry Ratner
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA; and
| | - M Pontus A Orning
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA; and.,Centre of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Norges Teknisk-Naturvitenskapelige Universitet, Trondheim, Norway
| | - Egil Lien
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA; and .,Centre of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Norges Teknisk-Naturvitenskapelige Universitet, Trondheim, Norway
| |
Collapse
|
73
|
Liu J, Cao X. Cellular and molecular regulation of innate inflammatory responses. Cell Mol Immunol 2016; 13:711-721. [PMID: 27818489 PMCID: PMC5101451 DOI: 10.1038/cmi.2016.58] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 10/16/2016] [Indexed: 02/07/2023] Open
Abstract
Innate sensing of pathogens by pattern-recognition receptors (PRRs) plays essential roles in the innate discrimination between self and non-self components, leading to the generation of innate immune defense and inflammatory responses. The initiation, activation and resolution of innate inflammatory response are mediated by a complex network of interactions among the numerous cellular and molecular components of immune and non-immune system. While a controlled and beneficial innate inflammatory response is critical for the elimination of pathogens and maintenance of tissue homeostasis, dysregulated or sustained inflammation leads to pathological conditions such as chronic infection, inflammatory autoimmune diseases. In this review, we discuss some of the recent advances in our understanding of the cellular and molecular mechanisms for the establishment and regulation of innate immunity and inflammatory responses.
Collapse
Affiliation(s)
- Juan Liu
- National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, Shanghai 200433, China
| | - Xuetao Cao
- National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, Shanghai 200433, China
- National Key Laboratory of Medical Molecular Biology, Department of Immunology & Center for Immunotherapy, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100005, China
| |
Collapse
|
74
|
Wang X, Shaw DK, Hammond HL, Sutterwala FS, Rayamajhi M, Shirey KA, Perkins DJ, Bonventre JV, Velayutham TS, Evans SM, Rodino KG, VieBrock L, Scanlon KM, Carbonetti NH, Carlyon JA, Miao EA, McBride JW, Kotsyfakis M, Pedra JHF. The Prostaglandin E2-EP3 Receptor Axis Regulates Anaplasma phagocytophilum-Mediated NLRC4 Inflammasome Activation. PLoS Pathog 2016; 12:e1005803. [PMID: 27482714 PMCID: PMC4970705 DOI: 10.1371/journal.ppat.1005803] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 07/11/2016] [Indexed: 01/21/2023] Open
Abstract
Rickettsial agents are sensed by pattern recognition receptors but lack pathogen-associated molecular patterns commonly observed in facultative intracellular bacteria. Due to these molecular features, the order Rickettsiales can be used to uncover broader principles of bacterial immunity. Here, we used the bacterium Anaplasma phagocytophilum, the agent of human granulocytic anaplasmosis, to reveal a novel microbial surveillance system. Mechanistically, we discovered that upon A. phagocytophilum infection, cytosolic phospholipase A2 cleaves arachidonic acid from phospholipids, which is converted to the eicosanoid prostaglandin E2 (PGE2) via cyclooxygenase 2 (COX2) and the membrane associated prostaglandin E synthase-1 (mPGES-1). PGE2-EP3 receptor signaling leads to activation of the NLRC4 inflammasome and secretion of interleukin (IL)-1β and IL-18. Importantly, the receptor-interacting serine/threonine-protein kinase 2 (RIPK2) was identified as a major regulator of the immune response against A. phagocytophilum. Accordingly, mice lacking COX2 were more susceptible to A. phagocytophilum, had a defect in IL-18 secretion and exhibited splenomegaly and damage to the splenic architecture. Remarkably, Salmonella-induced NLRC4 inflammasome activation was not affected by either chemical inhibition or genetic ablation of genes associated with PGE2 biosynthesis and signaling. This divergence in immune circuitry was due to reduced levels of the PGE2-EP3 receptor during Salmonella infection when compared to A. phagocytophilum. Collectively, we reveal the existence of a functionally distinct NLRC4 inflammasome illustrated by the rickettsial agent A. phagocytophilum.
Collapse
Affiliation(s)
- Xiaowei Wang
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Dana K. Shaw
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Holly L. Hammond
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Fayyaz S. Sutterwala
- Division of Infectious Diseases, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Manira Rayamajhi
- Department of Microbiology and Immunology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Kari Ann Shirey
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Darren J. Perkins
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Joseph V. Bonventre
- Renal Division, Brigham and Women’s Hospital, Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Thangam S. Velayutham
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Sean M. Evans
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, United States of America
| | - Kyle G. Rodino
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, United States of America
| | - Lauren VieBrock
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, United States of America
| | - Karen M. Scanlon
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Nicholas H. Carbonetti
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Jason A. Carlyon
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, United States of America
| | - Edward A. Miao
- Department of Microbiology and Immunology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Jere W. McBride
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Michail Kotsyfakis
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Budweis, Czech Republic
| | - Joao H. F. Pedra
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
75
|
Affiliation(s)
- Youssef Aachoui
- Department of Microbiology and Immunology, Lineberger Comprehensive Cancer Center, and Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill
| | - Edward A Miao
- Department of Microbiology and Immunology, Lineberger Comprehensive Cancer Center, and Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill
| |
Collapse
|